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In this paper we consider the problem of implementation when a principal hires many
agents and is not able to monitor their actions. We distinguish two cases: (i) when actions are
mutually observable among agents, (ii) when actions are not observable at all. In (i), there is a
mechanism in which the first-best arises as a unique perfect equilibrium. In (ii), we show by two
examples that typically there are multiple equilibria if the principal merely offers a set of optimal
sharing rules. However, we prove that the principal can use these optimal sharing rules as a
starting point and construct a multi-stage mechanism that has a unique second-best perfect
Bayesian equilibrium.

1. INTRODUCTION

Several papers have studied the principal-many agent problem: Holmstrom (1982),
Demski and Sappington (1984), Mookherjee (1984) and Malcomson (1986). The major
focus of these papers is the structure and welfare properties of the optimal incentive
schemes (sharing rules) the principal offers agents who take unobservable actions in a
correlated environment. These sharing rules are intended to implement a vector of agents’
actions as an equilibrium whose outcome maximizes the principal’s (second-best) welfare.
However, the implementation problem has never been adequately addressed. Optimal
sharing rules are in general not sufficient to guarantee the principal’s desired actions as
the only equilibrium in the agents’ game. In other words, the incentive schemes may fail
to implement uniquely the principal’s preferred actions. This problem is most explicit
when agents are assumed to use Nash equilibrium strategies, since typically there are
multiple Nash equilibria. In many examples, as we show below, the Nash equilibrium
the principal wishes to implement can involve agents choosing weakly-dominated
strategies, or there may be other Pareto superior (from the agents’ point of view) Nash
equilibria. It is then not at all clear that the principal’s preferred equilibrium will arise.

There have been attempts to avoid multiple equilibria, see Demski and Sappington
(1984) and Mookherjee (1982, 1984). The previous approach has been to strengthen the
set of incentive constraints so that the principal’s preferred equilibrium is in some sense
more stable. In other words, the principal is supposed to solve a more constrained
maximization problem. Apart from the fact, as Mookherjee (1982) has shown, that this
may be more awkward to solve, the principal’s welfare, due to extra constraints, invariably
decreases. However, as we demonstrate in this paper, there is an alternative way to solve
the implementation problem: by considering game forms with larger strategy sets, the
principal, exploiting features of the second-best incentive contracts, may be able to knock
out unwanted equilibria. Such a method has proved useful in a “hidden information”
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model of Demski and Sappington—see Ma, Moore and Turnbull (1987). In that paper,
besides a pair of incentive contracts, the principal also allows an agent to have more
strategies. By choosing the extra strategies and outcome function judiciously, we can
prove that the extended mechanism has a unique second-best Bayes-Nash equilibrium.
Here we are interested in Mookherjee’s model. This is an extension of Grossman and
Hart (1983). To provide a solution to the multiple equilibria problem of this “hidden
action” model, in addition to strategies we also put stages in the mechanism. Under
some conditions and by appealing to sequential rationality in the sense of Kreps and
Wilson (1982), we are able to implement actions as a unique perfect Bayesian equilibrium
whose outcome is the same as the desired equilibrium outcome if the principal had offered
just a set of incentive contracts. We therefore argue that there is no need for the principal
to incur additional cost by resorting to strengthening incentive contracts. In fact, he can
use the second-best contracts as a starting point to construct a “‘bigger’” game to determine
a unique (and still) second-best equilibrium outcome.

One other possibility that the recent literature has not explored is that even though
the principal does not observe agents’ actions, the agents nevertheless may be able to. It
is not hard to imagine situations in which agents operate together and take mutually
observable actions while there is no other party who can monitor them. In this case, the
analysis proceeds quite differently. We are able to establish a first-best result: the principal
may extract all relevant information about actions from agents. Indeed, under a mild
condition, we present a multi-stage mechanism to implement any desired actions as a
unique perfect equilibrium with first-best outcomes. In a recent paper, Moore and Repullo
(1986) also study multi-stage mechanisms in a general model and provide necessary and
sufficient conditions for sub-game perfect implementation of social choice corresponden-
ces. We note that the main distinction is that in their paper, the framework is “hidden
information”, while in ours, it is ‘“hidden action”.

The paper proceeds as follows. In Section 2, Mookherjee’s many agent model is
summarized. We discuss first-best contracts in a multi-stage mechanism when actions are
mutually observable in Section 3. Section 4 gives two examples to illustrate the consequen-
ces of multiple equilibria in the case of privately observable actions. We introduce another
multi-stage mechanism that (sequentially) uniquely implements second-best outcomes in
Section 5. Last, conclusions are given in Section 6.

2. THE MODEL

For most of the paper we shall concentrate on the case of one principal contracting with
two agents, although the results derived generalize to any finite number of agents and
we shall point out the necessary extensions as we go along. A principal owns two
production processes, f%(a, b, 6%), g = A, B, where (6", 8°) is a vector of discrete random
variables which may be correlated, and (q, b) is a pair of actions to be decided by agents
A and B respectively. For a pair of actions and a realization of the random variables,
each production process generates one of a (finite) range of possible outputs. Let
XA={x{,...,x’and X®={xP,..., x7} be the possible outputs for f* and f* respec-
tively. The sets of actions available to agents A and B are also finite and denoted by
A={a,,...,ax} and B={b,,..., b, } respectively. It is more convenient to work with
probability distributions on X%, g = A, B induced by a pair of actions and the random
variables. Hence, we let ;(a, b;) be the probability of output pair (x7, x) in X% x X *
under actions (a,, b)) in Ax B. It is assumed that for each pair (x;', x;°) there is at least
one action pair (ay, b;) such that 7;(ay, b)) >0. With (a, b;), the principal, who is risk
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neutral, derives a benefit F(ay, b) =Y, m;(a, b)) F(x}, x?), for some function F. Agents
have von Neumann-Morgenstern utility functions that are additively separable in income
and action. Thus A’s utility function is VA(Y"*) — G"*(a,), where Y* is income received
from the principal. We shall assume V*(-) to be strictly increasing and concave. For
convenience, we do not put bounds on the utility function V*, but none of the results
in this paper relies on imposing arbitrarily heavy penalties on an agent. The utility
function of B is analogously defined; however, to ease notation, we shall make the
inessential assumption that A and B have identical utility functions, thereby dropping
the superscripts. Each agent has a reservation utility U. The random variables (6%, 0%)
are not observable to anyone. This completes the basic structure of the model.

We are concerned with the situation where the principal cannot directly monitor
actions chosen by agents. Nevertheless, we distinguish two cases: (i) actions are mutually
observable among agents, and (ii) actions are only privately observable. As mentioned
in the introduction, there exists a mechanism in case (i) whereby the principal can
effectively eliminate all incentive problems and achieve the first-best (perfect monitoring)
welfare. This will be developed fully in the next section. Under case (ii), which is
otherwise called a second-best situation, the principal must provide incentives for agents
to perform according to his wish. This is accomplished by a departure from optimal risk
sharing. In particular, payments may be contingent on both (random) outcomes, i.e. if
(x7, x7) occurs, agent g is paid Y§, g=A,B,i=1,...,Iand j=1,...,J

Mookherjee (1984) has characterized the second-best incentive contracts. In his
analysis, for any given action pair, say (a, b;) the principal is content to find incentive
schemes (Y,f}, Yf} ) under the requirement that (a,, b;) are Nash equilibrium strategies.
Thus a pair of (optimal) contracts defines a game for agents A and B whose strategy sets
are respectively A and B, and the payments are given by (Y7, Y7). To find optimal
(second-best) incentive schemes for action pair (a, b), it is convenient to take contingent
utilities as the principal’s control variables. Using the notation h= V™' and V(Y%)=
v%, g = A, B, we may represent optimal contracts as a solution to the following programme:
Choose (vj, vi}) to minimize

Ty mi( @, b)[h(v3)+h(vy)]
subject to
2 mi(a, b)vi—Gla)zU
Y, mila, b)vi — G(b)= U
2 mila, b)vj — Gla)zY, mi(am, b)vi—G(a,), a.in A
Y, mila, b)vg — G(b) =Y, my(aw, by)vi — G(b,), b, in B.

Throughout this paper, we assume the solution (v}, v}}) of the above problem exists. We
shall sometimes call the second-best mechanism, as defined above, the Mookherjee game,
or simply I'.

In this paper, we are not directly concerned with the structure of (03, vg). Nor are
we interested in the choice of action pairs, which certainly depends on the function
F(ay, b)) and the solution of the above programme. Without loss of generality, in later
sections, we shall assume that the principal prefers to implement certain given action
pairs. We do rule out the uninteresting case where the principal implements an action
that minimizes utility cost in the set of actions. In the following analysis, we find it
helpful to imagine that the principal pays the agent in utility units. We therefore use the
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term “utility-payment” to mean the utility of income an agent receives. Thus utility-
payment v is equivalent to income h(v).

3. MUTUALLY OBSERVABLE ACTIONS AND THE FIRST-BEST

In this scenario, the principal, who cannot act as a direct monitor, wants to know exactly
what the agents’ choices of actions are in order to levy the appropriate reward or
punishment on them. We shall assume that agents pick actions simultaneously, and
afterwards they (but no one else) observe each other’s action. It is also natural to postulate
that there is a lag between the choices of actions and the realizations of outputs; if
(x?, xf ) and (ay, b)) occurred contemporaneously, then the principal could not utilize
the (random) outputs as monitoring devices. We suppose that the principal wants to
implement (ay, b;). Since agents are risk averse, optimal risk sharing implies that under
perfect monitoring, an agent’s reward is independent of the stochastic outputs. Hence
the first-best utility-payments are G(a,)+ U and G(b,)+ U.

The important point to note is that when agents know all about the actual actions,
a mechanism (designed by the principal) induces a game of perfect information between
them. Clearly, if the principal contemplates exploiting agents’ information, agents need
to send messages after actions have been taken. We assume that messages are publicly
sent and verification is costless.

It is perhaps not too surprising that the principal can design incentives for agents
to select (ay, by). In fact, it is relatively easy to construct a mechanism in which action
pair (ay, by) with utility-payments G(ay,) + U and G(b,)+ U form one perfect equilibrium.
Consider the following, simple mechanism. At Stage 1, actions are taken. At Stage 2,
each agent relates to the principal which action the other agent has chosen. If A says B
has done by, then B is paid G(by)+ U. Otherwise, B is paid 8, where 8 <min, G(b)+ U.
Payments to A are analogously defined. It is easy to verify that the strategies of (ay, by)
at Stage 1, and at Stage 2, each agent announcing the action that has been taken by the
other form a perfect equilibrium with first-best payoffs. The unsatisfactory aspect in this
mechanism is that agents picking least costly actions at Stage 1 and agent A (resp. B)
always saying b, (resp. a,;) at Stage 2 constitute another perfect equilibrium." Notice
both agents are better off in the latter equilibrium than in the former. The fact remains
that implementing (ay, by) uniquely is not a trivial matter.

The principal needs a more subtle way to extract information about actions. Notice
that while an agent can provide false information to the principal, the accuracy of this
information is known to the other agent. This suggests that once an agent has reported
on an action pair, the principal may appeal to the other agent for verification. Also,
utility-payments contingent on outputs may be designed for monitoring purposes.
Obviously, the aim is to make sure that agents find (ay b;) attractive and first-best
utility-payments are awarded in a unique equilibrium.

In the following analysis, we shall refer to

Condition (C.1).
H(aka bl) # H(ama bn) Whenever (aka bl) # (am, bn)a
where II(ay, b)) = (7Tij(ak, bl))i,j-

(C.1) implies that each pair of actions induces a distinct probability distribution on
outputs. The way (C.1) is used will be clear below.
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To see how the principal can use one agent’s report to examine the authenticity of
another’s, suppose A reports (4, b) concerning a pair of actions taken. Subsequently, B
is allowed an opportunity to “challenge” A’s veractiy. If B challenges, then he announces
an alternatlve pair of actions. On reportmg (a, b) B is entitled to a lottery s(d d)=
(e,j(d d)) contingent on (x7, x;’), where d=T11(4 b), d= I1(4, b), and e(d, d) satisfies

Y, e5(d, d)d; <0 and ¥, e,(d, d)d;>0. (1)

Notice that (C.1) implies that for any (ay, b)) in Ax B, A cannot announce (a4, b) #
(ay, b;) but with II(4, b) I(ay, b;). Suppose the actual action pair is (ay, b;). How will
B behave? This depends on A’s report (4, b)._ Fitst, if A reports (4, b) # (ay, b;), then B
prefers to challenge: with announcement (a, b)A= (ay, by), the contingent utility-payment
e(d, 47) gives (in expected terms) )., s,](H(é b), Il(ay, by))m;(ax, b)), which by (1) is
posmve Second, if A’s report is (a b)—(ak, b)), (1) implies that the expected value
of e(d d) corresponding to any (4, b) of B is Y., e;(Il(ay, by), 11(a4, b))wu(ak,b,)<0
Hence B will avoid (falsely) accusing A. The pomt is that B’s “challenge” is a signal
that A has been lying and deserves punishment.

The remaining question is, knowing that he can, in some sense, cross-examine agents,
can the principal successfully induce them to perform (ay, b;)? The precise details as to
how this is achieved are given in Theorem 1.

Theorem 1. Suppose (C.1) holds. Suppose further that actions are mutually observable
among agents. Then the principal can design a multi-stage mechanism with a unique perfect
equilibrium. In this equilibrium, (ays, by) are taken, and utility-payments to agents are
first-best, namely G(a;)+ U and G(b,)+ U.

Proof. Consider the following mechanism:

Stage 1: Both agents take actions simultaneously.
Stage 1+: Agents observe each other’s action. . )
Stage 2: Agent A announces a pair of actions (4, b), where (a, b) in AX B.
Stage 3: Agent B can either “agree” or ‘“‘challenge”. If B “challeges” then he
announces (d, b), where (d, ) in Ax B but (4, b) # (4, b).

Utility-payments are defined in Tables 1 and 2.

TABLE 1

Agent A’s utility-payments

A’s announcement d=a, i#a,

B “agrees” G(ap)+U min, G(a)+ U -6

B “challenges” Gla)+U-vy min, G(a)+U—-6—vy
TABLE 2

Agent B’s utility-payments

A’s announcement b=1b, b by

B ‘‘agrees” G(b))+ U min, G(b)+ U-6
B “challenges” G(by)+ U+ (s, (d d)) min, G(b)+ U - 8+ (g, (d d))
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In the Tables, 6 >0, 'y>[G(af) min,G(a)+8]>0 and d= I1(a, b) d =T1(4, b).
s(d d) satisfies (1) for any d and d (The notation K+(e,,(d d)) means that agent B
receives a utility-payment K + s,,(d d ) contingent on (x', x7).)

We claim that the following strategies form the unique perfect equilibrium of the
game. Agent A takes a, at Stage 1, and at Stage 2 reports honestly—i.e. reports whatever
action pair chosen at Stage 1. Agent B takes b, at Stage 1 and “agrees” at Stage 3 if and
only if A is honest at Stage 2.

First, consider Stage 3 and suppose actions (ay, b)) have been taken at Stage 1. What
is B’s optimal move? There are two cases to consider. Flrst A has announced (4, b) =
(ay, b)). From (1) and Table 2, B always prefers to “agree”. Second, A has announced
(4, b) # (ax, b). Then B always “challenges” since (1) implies that B can improve his
welfare by reporting (4, b) = (ay, b)). These two cases summarize B’s best responses at
Stage 3 depending on any combination of previous moves at Stages 1 and 2. Thus, A
knows that B “‘agrees” if any only if he is honest at Stage 2.

Next, consider Stage 2. What is A’s best choice, given that B “‘challenges” if and
only if he lies? From the property of v, we have G(a,)+ U — y <min, G(a)+ U — 8. Then
from Table 1, we know that A prefers the utility-payments when B ‘“agrees” to those
when B “‘challenges”. Therefore A is always honest, since he always prefers B to “agree”.

Finally, consider Stage 1. If A takes a,, k # f, then, regardless of B’s action, he
obtains less than U, because he reports d # a, at Stage 2. However, by choosing a, and
at Stage 2 reporting the actual action pair, A’s payoff is U, again regardless of B’s action.
We conclude that A’s unique choice at Stage 1 is a,. It is also obvious that B’s unique
best choice is b, Since A is honest at Stage 2 and B “agrees” at Stage 3, B gets his
maximum payoff U by performing b;.

To conclude, in equilibrium, (ay, b;) are chosen, and utility-payments to agents are
first-best, namely G(a;)+ U and G(b,)+ U. ||

The intuition behind Theorem 1 should be clear by now. The principal simply elicits
information from one agent, (here A), and uses agent B’s reaction as a policing device.
Incentives to B are provided by demanding that any accusation be supported by the
acceptance of a lottery. However, the lottery is valuable (in expected terms) if and only
if agent A has lied. Furthermore, the principal fills up the utility-payment matrices so
that, given agents’ optimal announcements at subsequent stages, the proposed actions
are also attractive to agents.

Generalizing Theorem 1 (together with an appropriate definition of (C.1)) to the
case of three or more agents is very easy. We have seen how the principal can make
agent A’s report reliable by requesting B to verify it. Now that A is honest, the principal
can compensate other agents according to information revealed by A. For example,
assume there are three agents and the principal wants agent C to perform ¢,. The pr1n01pa1
can keep the structure of the mechanism in Theorem 1 above, i.e. A reports (@, b 0); if
B “challenges”, he reports (4, b, ¢), and utility-payments to A and B are given by Tables
1 and 2. In addition, according as A reports &= c; or ¢# c;, agent C is paid G(¢;)+ U
or min, G(c)+ U—8. Then from C’s point of view, agent A is effectively supervising
him, and he therefore finds action ¢, his best choice.

4. TWO EXAMPLES OF MULTIPLE EQUILIBRIA

When actions are unobservable, due to the conflict between incentives and risk sharing,
implementation of the first-best actions (ay, by) at first-best cost is generally impossible.
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Furthermore, since agents never observe any state variable in the course of their relation-
ship with the principal, allowing them to send messages does not increase the principal’s
welfare. One can formally prove the above statements using the Revelation Principle;
we shall not bother with the details here. In fact, the Mookherjee game, I', discussed in
Section 2, appropriates to the principal the second-best welfare, if agents follow the
actions (Nash equilibrium) prescribed by the principal. It is however crucial to notice
that the sole concern of the optimal contracts (v}, v}) is to guarantee a certain pair of
(second-best) actions, say (a,, b;), as a Nash equilibrium in I'. This is tantamount to
filling one column and one row of a payoff matrix judiciously; yet, (v, v7) also define
payofls of agents’ various other actions. The loophole is that the incentive constraints in
the programme for optimal contracts impose no restrictions on payoffs when both agents
deviate from the principal’s preferred actions. We shall show by two examples that this
can give rise to other equilibria in actions which may, from agents’ perspectives, dominate
(a,, b,). (We will return to these two examples at the end of the next section.)

Example 1: Binary actions and outputs

Each agent has available two actions, A ={a,, a,}, B={b,, b,}. The random outputs have
binary supports, X* ={x{, x3}, X®={xP, x3}. Write X = (x{, x3, x7, x5). The utility
costs of actions are G(a,) =10, G(a,)=7-5, G(b,) =10, G(b,) =8-5; also U =20. The
probability distributions on X induced by different action pairs are Il(a,, b,)=
(1/8,1/4,1/2,1/8), Il(a,, b,)=(1/8,3/8,3/8,1/8), Il(a,, b;)=(1/4,1/4,3/8,1/8) and
II(a,, b,)=(1/8,1/8,3/8,3/8). Utility functions of income are V(I)=+(2I), or
equivalently h(v)=0-50>. We assume that the principal wants to implement’ (a,, b;).
Routine computations show that the following contingent utility-payments (on X) are
optimal contracts: v* = (14, 30, 34, 30), v® = (30, 22, 34, 30). Given (v*, v®), we can also
calculate agents’ payofls corresponding to other action pairs; the full payoff matrix is in
Table 3. (A’s utility payoff is on the top left corner of each cell.)

TABLE 3
b, b,
20 19-5
a,
20 20
20 22
a
19-5 22

Clearly, the principal’s preferred actions, namely (a,, b,), are, for the agents, weakly
dominated strategies! Moreover, (a,, b,) gives both agents higher payoffs than (a,, b,).
It is not plausible that (a,, b;) should be an outcome of the game, and hence the
implementation of (a,, b,) by (v*, v®) is questionable. We will insist that this example
is entirely non-pathological: since the programme for optimal contracts only guarantees
that (a,, b,) is a Nash equilibrium, the calculations of v* and v® do not involve I1(a,, b,);
there indeed exist an open set of examples such that (a,, b;) remain weakly dominated
strategies. Also, it is not to be expected that in more complex models, the problem of
multiple equilibria will disappear.
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Example 2: Mookherjee’s rank-order tournament

This example was first provided by Mookherjee (1984). Here, the problem is that in I,
the equilibrium the principal wants is, from agents’ point of view, Pareto dominated by
many other equilibria. The example is special in the sense that even though actions are
unobservable, the first-best is still feasible.

Agents have the following sets of actions A={a,, a,,...,ax}, B={b;, by, ..., bx}.
The sets of possible outputs are X2={x%,...,x§}, g=A, B, with x/*=x] iff i=j, and
xf<xf,fori=1,2,...,1—1. Let X" (resp. X?) denote the random variable for x*
(resp. x). Costs of actions are ordered as follows: G(ay) < G(ay.1), G(bi) < G(by+1),
for k=1,..., K—1. The stochastic structure satisfies m;(ax, b)) =0 iff either

(i) xf<x/and k=1 or
(i) x*>x7and k=1, or
(iii) x*=x]and k#1

We can then say that A wins whenever A puts in relatively more effort than B, because
with probability one, X*> X®. Similarly for B. When both agents put in (relatively)
the same amount of effort, a tie, X* = X ®, occurs with probability one. We assume that
the principal wants to implement action pair (a,, b,), 1<t= K. Mookherjee (1984, p.
442) has offered the following rank-order tournament: a prize U + G(a,) to A if X A= X5
otherwise A is paid U+ G(a,)—8, with 6>0; a prize U+ G(b,) to B if X®= X",
otherwise B receives only U+ G(b,)— 8. In this game (a,, b,) is a Nash equilibrium, but
so is every other (ay, bi), 1=k=1t! As Mookherjee has pointed out, (a,, b,) is a Nash
equilibrium that Pareto dominates all other equilibria, but the outcome of the tournament
gives no clear indication whether (a,, b;) or (a,, b,) has been chosen. Once again, there
are multiple equilibria in agents’ game. Moreover, the equilibrium the principal prefers
does not seem attractive to agents.

In view of the interest in rank-order tournaments shown in recent literature of optimal
contracting with many agents (see Green and Stokey (1983), Holmstrom (1982), Lazear
and Rosen (1981) etc.), we here propose a solution to this example. First, note that
(ax, by), k<t, is an equilibrium because there is no extra utility for winning. Second,
the principal cannot distinguish (ay, b,) from (a,, b,) because no agent has any incentive
to tell him. Can we make use of these two properties of the tournament to construct
another game with bigger strategy sets to implement (a,, b,) uniquely?

Consider the following “modified” rank-order tournament. Let A have a range of
extra strategies; specifically, A can announce an integer N, where 1= N=t Agent A
chooses N when he takes his action, and more importantly, agent B does not know A’s
announcement when he picks an action. The complete utility-payment matrices are
expressed in Tables 4 and 5.

TABLE 4

If A announces N = t, then

A’s utility-payment B’s utility-payment

If XA= X5 G(a)+U If X8z x4 G(b)+ U
If X*<X5 G(a)+U-6 If X8<x4 G(b)+U-6
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TABLE 5
If B announces N =k, 1=k=t—1, then

A’s utility-payment B’s utility-payment
If X4z Xx? Gla,)+U+(ek) If X8> x4 G(b)+U
If XA< X8 Gla)+U-8 If XB=x4 G(b)+U-6

In Tables 4 and 5, 8 >0, ¥ is an (extra) utility-payment to A contingent on outputs
(x?, x?) and satisfies, for k=1,2,...,¢t—1,

Z,- €ii’7Tii(ak, b)>0 and Z,— 35'771:‘(0', b,)<o. 2)

(Note that the principal is assumed to implement (a,, b,) and therefore for any k<t¢,
I(ay, be) #11(a,, b,). This implies (%) satisfying (2) exists.) The quantities 8 and (¥
are chosen” such that

G(a.+1)— G(a,)>8+max, |ef| fork=1,2,...,t-1 (3)
and
G(bi+y) —G(b)> 8. (4)

In the “modified” tournament, the principal wants to obtain some indication from
an agent, here A, that (a,, b,) are not being taken. This is achieved via (£%) and (2) by
motivating A to call out N # . Notice that the extra utility-payment ¢} is available only
if a tie occurs. Now if N # t is reported, B has to win to gather a prize G(b,)+ U. When
B increases his effort, A can do no better than increasing his effort in step. Happily, the
“modified” rank-order tournament has a unique (first-best) Nash equilibrium, as the
following proposition shows.

Proposition 1. The “modified” rank-order tournament has a unique Nash equilibrium,
namely A calls out N = t, performs a, and B performs b,. In equilibrium, each agent obtains
U.

Proof. First note that agent A never takes any action a,.,;, where /=1 (if t < K, that
is). Since in any Nash equilibrium, a strictly dominated move can never occur, it suffices
to show that these actions are strictly dominated by some other. An upper bound for
A’s utility under action a,,,, from Table 5, is G(a,)+ U +max,, |e5| — G(a,,,). A lower
bound for A’s utility under action a,, from Table 4, is G(a,)+ U —8 — G(a,). However,
(3) implies that action a,., is strictly dominated by a,. By a similar argument, using (4),
we know that B never takes b,,;, where /=1. The proposition is proved in four steps.

Step 1. The strategies in the statement of the proposition constitute a Nash
equilibrium.

Suppose B chooses b,. If A takes a,, k<t, then A always loses, obtaining utility
G(a,)+ U - G(a,) -8 < U, independent of his announcement. However, if A takes a,,
then by calling out N = ¢, he has U, since a tie occurs with probability one. Indeed, this
is his unique best response, since, by (2), reporting N =k <t merely decreases his
(expected) utility. It is easy to see that B’s unique best response against a, and N =1t
is b,.
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Step 2. A only takes action a,, k=1,2, ..., ¢t if he believes b, occurs with positive
probability.

To see this, note that from Tables 4 and 5, A never strictly benefits from winning
(as distinct from a tie). Moreover, losing for A, which carries a utility less than U, is
never optimal, since he can always guarantee U by a, and N =t. First, suppose b, never
occurs, then A never selects a,, since a, always loses. Next, suppose b, never occurs,
k> 1, then the probability of losing induced by action a, is identical to that of a,_,.
Thus, A’s (expected) utility-payment cannot decrease if he selects a,_, rather than a.
But a, is more costly than a,_,. Hence A never takes a.

Step 3. Whenever A takes a,, it is optimal for him to announce N =t But if A
takes a,, k <t, then he should never announce N =t.

Consider a,. From Step 2, b, occurs with positive probability. If A selects a, as a
best response, then the event of a tie must be due to (a,, b,), and from (2), each of (e5),
k=1,2,...,t—1 would strictly decrease A’s expected utility. Thus A optimally chooses
N =t Next, consider a,, k <t Using a similar argument, we know that a tie only results
from (a,, b,). Hence reporting N =k <t is (in expected terms) suprior to N = t—by (2)
again.

Step 4. There are no other equilibria other than the one in the statement of the
Proposition.

Suppose not. Suppose in some equilibrium, a,, k <, is the least costly action among
those A chooses. Note that from Step 3, he also announces some N # t together with
a,. From Step 2, we need only consider whether B will choose b, optimally.

Will B choose b, ? First, observe that B can always have U by taking b,. This is
because b, is never a losing strategy for B. And yet if a tie occurs, A must also be saying
N =t, which makes Table 4 applicable. If b, actually wins for B, then of course A’s
announcement is irrelevant. Second, is b, optimal for B? The answer is no. By assumption,
A never takes an action that is less costly than a,, and hence b, can never win. Now
either a tie occurs, in which case Table 5 applies (since N # t), or B loses. In both
instances, B obtains less than U. Thus b, cannot be optimal.

Step 2 then implies that A never selects a,. Contradiction. ||

Example 2 and its solution perhaps lends some support to the conjecture that while
the Mookherjee game is susceptible to multiple equilibria problems, one may still be able
to use “‘nuisance” strategies to eliminate those undesirable ones. We now explain how
the principal may achieve this.

5. UNIQUE SECOND-BEST IMPLEMENTATION

Our discussions in Section 4 suggest that the principal’s problem, when he employs more
than one agent, is qualitatively different from a simple, constrained optimization problem.
The issue of multiple equilibria certainly deserves more attention. A tentative solution
that has been proposed (see Mookherjee, 1982) is to strengthen the (incentive) constraints
in the programme for optimal contracts to make the second-best equilibrium, in some
sense, more stable. But this is not desirable for the principal since strengthening constraints
is costly.



MA MULTI-AGENT INCENTIVE CONTRACTS 565

On the other hand, the result in Example 2 is more encouraging. It shows that while
adding on strategies (asking agents to report) never improves welfare, it does help with
uniquely implementing the desired action pair. Can the idea generalize? It must be noted
that an appealing feature in Example 2 is that by injecting a relatively small number of
nuisance strategies, we eliminate all unwanted equilibria in the tournament. This presum-
ably is due to the simple stochastic structure on outputs with respect to action pairs.
Furthermore, we have a very good understanding of all equilibria. In an abstract,
second-best model, these helpful clues are not going to be there. Are there more powerful
tools?

On top of nuisance strategies, we may also use stages. Notice however the sets of
Nash equilibria of an extensive form game and the corresponding normal form game are
identical. Therefore, if multi-stage mechanisms are to be more useful than normal form
mechanisms, a refinement of Nash equilibrium must be applied. In our model, actions
are privately known and no proper subgame exists if agents are playing a multi-stage
game. It is then natural to adopt sequential equilibrium or perfect Bayesian equilibrium
as the relevant implementation concept. The main result in this section is that under
some conditions, we are able to extend the Mookherjee game to a multi-stage game with
a unique second-best perfect Bayesian equilibrium. In other words, we knock out all
undesirable equilibria.

Some more notation is needed before we go on. Let (a, b), without subscripts,
denote random actions, i.e. II(a, b)=} ,, axB1l(ay, b)), a, in A, b, in B; o, B=0,
Y. ax =2, B1=1. a therefore denotes a probability distribution (a;) on A. Similarly for
b. Let D={II(a, b)|(ay, b)) in Ax B}, i.e. D is the set of all distributions obtained by
combining all possible random action pairs. We shall assume that the second-best action
pair to be implemented is (a,, b,). Let D =D —{Il(a,, b,)}. Also (v{, v}}) are optimal
incentive schemes for (as, b;).

The following conditions will be made use of:

Condition (C.2).
I(a,, b) #I1(a,, b;) for any given b # b,,
and
I1(a, b,) #1(a,, b,) for any given a # a;,

where a and b are random actions.

(C.2) asserts that if agent A (resp. B) is taking action a, (resp. b,), then whenever
agent B (resp. agent A) deviates from b, (resp. a;), the probability distribution on outputs
will never be that of I1(as, b,). The first part of (C.2) says that the following system has
a ungiue solution in B,,...,B,..., B.. (The second part has a similar meaning.)

Y, Bmy(as, b)) =m;(a,, b)), i=1,...,landj=1,...,J,
Bi=0, I=1,...,L

The system has I xJ equations and L inequalities. Also, note that the fact that
II(ay, by)’s are probability distributions implies ), B; = 1. Clearly, if II(a;, b;)’s are affine
independent, then this part of (C.2) is satisfied. Since the vectors II(a,, b;), I=1,...,L
are generically affine independent if I xJ +1> L, this part of (C.2) is generically satisfied
if I xJ+1> L. Similarly, if I xJ+1> K, the second part of (C.2) is generically satisfied.
Note, however, that (C.2) may still be true for IXJ+I=K or IXJ+1=L.
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Condition (C.3).
For any k#s,k=1,..., K, I(ay, b) #I1(a,, b,),
where b is any random action of agent B.
For any I#s,1=1,..., L, I(a, b)) #I1(a,, b,),

where a is any random action of agent A.

(C.3) says that whenever agent A (resp. B) does not take action a, (resp. b,), then
the probability distribution on outputs will never be Il(a,, b,). Notice that the first part
of (C.3) says that for any k # s, the following system has no solutionin 8,,...,8;,..., BL.
(The second part of (C.3) has an analogous meaning.)

Z,B,wij(ak, b1)=7'r,-j(as, bs), i=1,...,Iandj=1,...,J,
B1=0, I=1,...,L

(In this system, there are I x J equations and L inequalities. Also, Y., 8;=1.) IfIxJ+1>
L, then generically the system has no solution. Hence, for I xJ+1> L, this part of (C.3)
is generically satisfied. Similarly, if I x J+1> K, then the second part of (C.3) is generi-
cally satisfied. We can easily find a necessary and sufficient condition for (C.3) in terms
of probability distributions II(ay, b;)’s. By Farkas Lemma (see e.g. Takayama (1985), p.
46), (C.3) is equivalent to the following:

Condition (C.3'). For every k#s, k=1,...,K, there exists a vector P*=
(P11s---»Pijs- - -» P1s) such that

I(ay, by) - P*>0, I=1,...,L and I(a,,b,) - P*<0.
For every I#s, I=1,..., L, there exists a vector Q'=(q,,,..., Gij, - - - » q1y) such that
(ay, by) - Q'>0, k=1,...,K and II(a,, b,) - Q' <0.

One last point, we find it convenient to assume in the Theorem that the implementation
of (a,, b,) involves genuine second-best considerations. In other words, in the game T,
assuming B (resp. A) is taking b, (resp. a,), A (resp. B) is indifferent between a; (resp.
b,) and some other action a, (resp. b;) (incentive constraints are binding). However, the
game form to be constructed does not rely on this assumption: for the case of the first-best
being feasible, see footnotes 7 and 8.

We are now in a position to state and prove our main Theorem.

Theorem 2. Suppose (C.2) and (C.3) hold. Suppose actions are privately observed.
Then the principal can design a multi-stage mechanism with a unique perfect Bayesian
equilibrium. In this equilibrium, (a;, b,) are taken, and utility-payments are second-best, i.e.
agent g gets v§ contingent on (x{*,x/), g=A, B.

Proof. Recall that in the Mookherjee game I, agents have strategy sets A and B,
with utility-payment (v;‘, v;) contingent on (x7, x}’ ). Moreover, by construction (a;, b,)
is a Nash equilibrium in I. Define a multi-stage game I" as follows:

Stage 1: Actions are taken.
Stage 2: Each agent says’ either “Yes” or “No”. If either both agents say “Yes”,
or both say “No”, then the second-best schemes (v,f}, v;) are enforced. If
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one agent, say y, has said “Yes”, while the other, say n, has said “No”, Stage 3 applies.

(Of course, y#n, y,n=A, B.)
Stage 3: The agent who has said “Yes” at Stage 2 (y) announces Y=0,1,2,....
The agent who has said “No” at Stage 2 (n) announces N=1,2,3,....

There are three cases to consider:

(i) If Y= N, then the agent who has said “Yes” at Stage 2 announces d in D. This
agent then has contingent utility-payment v};+¢;(d), and the other agent has
utility-payment v — 8.

(ii) If N> Y >0, then the agent who has said “No” at Stage 2 announces d in D.
This agent then has contingent utility-payment vj;+¢;(d), and the other agent
has utility-payment v}, — 8.
(iii) If Y =0, (v}, v]}) are enforced.
(Note that since actions are not observable, the distinction between Stage 1 and
Stage 2 is semantic and is made for expositional convenience.)
In the above mechanism, 8§ >0, (g;(d)) satisfies,® for d in D,

2; €(d)d;>0 and Y, &;(d)my(a,, bs) <O, (5)

and, for some k, I, where k, [ #s,

Zij 7Tij(alz’ bs)[v;‘_*- Eij(H(aE7 bs))] - G(aE) >Zij 7Tl'j(asa bS)vl{;' - G(as) (63)
and

T, mi(as, bplvf +e;(I(ay, b1))1- G(br) > X, m(ay, by) v — G(b,). (6b)
Recall that we assume some incentive constraint binds, we can just pick az (resp. br) to
be an action binding on a, (resp. b,). Then (5) automatically implies (6).”

Figure 1 provides a sketch of the mechanism.

Agents take (unobservable) actions.

~Each agent says either “Yes” or “No”.

Both say “Yes” or Agent y says “Yes” and
both say “No”. ! Agent n says “No”.

I Then y says Y=0

(v}, vp and n saysl N>0.
Y=N Y=0 N>Y>0
v+ &,(d) v vf+ey(d)
o8 o=

FIGURE 1
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The Theorem is proved by the following three claims.

Claim 1. If (a, b) is a Nash equilibrium in T, then (a, Yes, 0; b, Yes, 0) is a Nash
equilibrium in T.

(The notation (a, Yes, 0) means that A adopts the strategy of action a at Stage 1,
says “Yes” at Stage 2, and, if ever reached, announces Y =0 at Stage 3. Similarly for
(b, Yes, 0).)

Claim 1 is fairly obvious. Suppose A says “Yes” and Y =0, then (v}, v}) are
enforced. B is therefore indifferent between all moves at Stages 2 and 3; he may as well
choose (Yes, 0) always. If a is taken, then B cannot do better than b, since (a, b) is a
Nash equilibrium in I A symmetric argument establishes that (a, Yes, 0) is a best
response against (b, Yes, 0).

Claim 2. Inany Nash equilibrium of T, both agents always say “Yes” and announce
Y =0.

We will first argue that if ever an agent (say A) is allowed to revise his reward
scheme, (v}}), by announcing some d after winning the integer game at Stage 3, he strictly
prefers to do so. Note that an agent will never want to lose the integer game, since he
can avoid the fine 8 by announcing (Yes, 0). Thus in considering whether to announce
some d, an agent will compare the expected payoff between (v{}) and (v +&;(d)).

Assume that agent A believes B has picked action b. Suppose A takes an action ay,
where k#s. (C.3) says II(ayx, b) #II(a,, b). (5) implies that announcing d to revise the
utility-payments to (v§ + &;(II(ay, b))) is better than having (v]). Next, suppose that A
takes a,. There are two possibilities: either b # b, or b= b,. In the former case, (C.2)
says that I[I(a,, b) #I1(ay, b) so that by a similar argument we know that agent A strictly
prefers to announce some d. Now consider the case b = b,. (5) says none of the (&;(d))
gives extra positive utility. However, agent A is indifferent between a, and a; under
(v,f}). But because by (C.3) II(ag, b,) #I1(a,, b,), action az and announcement d =
II(ag, b) is superior to action a, with no revision in the contingent utility-payments (see
also (6a)). Hence, we conclude that A strictly wants to announce some d at Stage 3 if
he is ever allowed to.

To establish Claim 2, suppose not, i.e. suppose that in some equilibrium there is at
least one agent (say B) who says (Yes, Y =0) with probability less than one. It suffices
to show that there is no equilibrium in the “integer game™ at Stage 3. Such will be the
case when both agents want to win the “integer game” in order to announce some d
in D.

Suppose B does not always say (Yes, 0). By the structure of Stage 3, (5) and (6a),
agent A wants to force the game to Stage 3 as far as possible, and choose an integer big
enough in order to announce some d at Stage 3. Therefore A never says (Yes, 0), because
(Yes, 0) rules out any report of d at Stage 3. Now, given A never says (Yes, 0), by the
structure of Stage 3, (5) and (6b), B prefers to win the integer game as well, regardless
of A’s choice of action. Hence there cannot be an equilibrium in which an agent announces
(Yes, 0) with probability less than one.

To summarize, Claims 1 and 2 together prove that the sets of Nash equilibria of T
and I are identical.® It remains to prove that only one Nash equilibrium in I is a perfect
Bayesian equilibrium.

Claim 3. (a, Yes, 0; b,, Yes, 0) is the unique perfect Bayesian equilibrium in T.

Proof. We begin by showing that (a,, Yes, 0; b,, Yes, 0) is a perfect Bayesian
equilibrium and then later show that it is the unique perfect Bayesian equilibrium.
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In (a,, Yes, 0; b,, Yes, 0), Stage 3 is never reached. Are the prescribed moves at
Stage 3 rational? Consider agent A first. Suppose A finds himself in the situation where
B has said “No” at Stage 2. What does A conclude about B’s action at Stage 1? We
cannot apply Bayes’ Rule directly since this occurs with zero probability. We specify
that A believes B has taken b, with probability one. Call this belief (*).

If Stage 3 is ever reached, assuming (*) and suppose A has taken a, at Stage 1, A
never wants to announce some d, since to him, each (¢;(d)) lowers his expected utility—by
(5). On the other hand, he does not want to lose the integer game, since his utility-payment
will decrease by 8. Thus, his unique optimal choice is to announce Y =0, independent
of agent B’s announcement. We conclude therefore (a,, Yes, 0) is sequentially rational.

By a symmetric argument, (b,, Yes, 0) is also sequentially rational. In sum, (a;, Yes,
0; b,, Yes, 0) is a perfect Bayesian equilibrium.

Now suppose (a, b) # (a,, b,) is any other Nash equilibrium in T, is (a, Yes, 0; b,
Yes, 0) a perfect Bayesian equilibrium in I'? The answer is no.

Without loss of generality, suppose a # a,. Let a, # a, be in the support of a (since
a may be a random action). Suppose A discovered that B has said “No” at Stage 2.
Given any belief, b*, A has about B’s action, (C.3) implies that I1(a, b*)#II(a;, b;).
For any N(>0) announced by B at Stage 3, A would never optimally choose Y =0: by
(5), A would strictly prefer to win the integer game at Stage 3 to revise the contract to
(v,f}+ g;(d)), some d, so he must call out Y >0. This contradicts Claim 2. We therefore
conclude that (a, Yes, 0; b, Yes, 0) is not a perfect Bayesian equilibrium. ||

It may be useful to provide the intuition behind Theorem 2. In the game T, each
agent has a ‘““veto” (viz., calling out (Yes, Y =0)) to enforce the second-best schemes.
Also, in T', under (C.2) and (C.3) an agent always finds some £(d) (revising (v}, v}))
attractive, whenever he is allowed to play the integer game; but if one agent gains, the
other agent loses. In equilibrium, such competing moves to revise (v,f}, v,—l; ) in the “integer
game” at Stage 3 cannot happen. Hence in I, each Nash equilibrium must involve agents’
utility-payment being determind by (v,f}, v;). This requires that each agent always exer-
cises his “veto” in equilibrium. To understand the importance of sequential rationality,
suppose the distinction between Stage 2 and Stage 3 were dropped. Then all those
nuisance strategies in I’ would not eliminate even one undesirable equilibrium in '—in
all simple, Nash equilibria of T, (v, v7) are always enforced, making the sets of
equilibrium actions in I' and T identical. However, there are stages in I, and plays are
sequential. When it actually comes to Stage 3, according to sequential rationality, an
agent must act optimally, basing on his belief about actions at Stage 1. Will the agent who
has said “Yes” really say Y =0? In other words, is it “credible” that the ‘“‘veto” is
exercised? Under (C.3), Y =0 is optimal only when (a,, b;) have been chosen at Stage
1, because none of the e(d)’s gives extra positive expected utility. Under any other
actions, an agent strictly wants to revise (v, v) to benefit himself. Thus saying Y =0
cannot be optimal at Stage 3. By appealing to sequential rationality, we have then knocked
out all unwanted equilibria.’

Theorem 2 can be generalized to the case of T=3 agents. In a T-agent second-best
contract, agent ¢ is offered a T-dimensional contingent utility-payment, v', t=1,2,..., T,
that pays according to the occurrence of a T-dimensional (random) output vector. A
T-vector of actions (a',...,a") generates a T-dimensional probability distribution
I(a',...,a")=1II(a). Assume that the principal wants to implement (a.,...,a;), and
(v') is a vector of optimal contracts. D, D and Conditions (C.2) and (C.3) are defined
similarly.
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Theorem 2A. Consider a T-agent model. Under Conditions (C.2) and (C.3), the
following game has a unique perfect Bayesian equilibrium in which a,=(al,...,al) are
taken with second-best contingent utility-payments.

Stage 1: Agents take actions.

Stage 2:  Each agent can say either ““ Yes™ or “No”. If either all T agents say “ Yes”,
or all T agents say ‘“No”, then the second-best schemes (v') are enforced.
Otherwise Stage 3 applies.

Stage 3: Those agents, say r, who have said “Yes” announce Y,=0,1,2,....
Those agents, say s, who have said “No” announce N,=1,2,3,....

There are three cases to consider:

(i) If all the agents who have said “Yes” at Stage 2 say Y, = 0, then the second-best
schemes are enforced.

Otherwise, let Y =max, (Y,), y=arg max, (Y,),
N =max, (N;), n =arg max, (N;).

(If there are multiple y and/or n, select arbitrarily.)

(ii) If Y= N then agent y announces d in D and agent y has a utility-payment
v"+e(d).
All other agents have v"— 8 or v°—348.

(iii) If N> Y then agent n announces d in D and agent n has a utility-payment
v"+¢e(d).
All other agents have v"— 3§ or v°— 8.

e(d) satisfies £(d) - d >0 and &(d) - II(a,) <0, and
H(ak, a;’) - [v' +e(I(as, a;")]— G(ai) >11(a,) - v' — G(a)),

- 1 - 1
some a;#a;, t=1,...,Tand a;'=(a;,...,a. ", al™,..., al.

The proof of Theorem 2A is omitted since it so closely matches that of Theorem 2:
Claims 1 and 2 go through directly. For Claim 3, it is not difficult to see that under action
vector a,, and some belief, those agents who have said “Yes” are indeed going to announce
Y, =0.

Finally, we would like to note that the stochastic structure in Example 1 in the last
section satisfies (C.2) and (C.3) and hence the multiple equilibria problem in that example
can be solved. Also, in general the stochastic structure in Example 2 does not satisfy the
conditions in Theorem 2 so that (C.2) and (C.3) are not necessary for unique
implementation.

6. CONCLUSION

We have shown in this paper how the principal can achieve the first-best when actions
are known to agents. When actions are unobservable, to guarantee the second-best as a
unique equilibrium, the principal has to consider a more subtle game form than just
offering agents a set of optimal sharing rules. We show in Theorems 2 and 2A how this
game I can be constructed.

Perhaps, a drawback of T is that agents’ strategy sets are quite large. This presumably
is because I has to apply to any model (satisfying (C.2)+(C.3) of course). Indeed, in
an abstract model, there is very little information about the set of equilibria of I'. When
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we extend I to T, the only useful property of I' is that (a;, b) is an equilibrium. However,
we suspect in specific examples, as Proposition 1 demonstrates, the “nuisance” strategies
required need not always be too complex.
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NOTES

1. In fact, in this game, with & small enough, any pair of actions can be sustained as equilibrium strategies
at Stage 1.

2. It is easy to find F(a, b)) so that (a;, b,) is optimal with respect to F and the costs of implementation.

3. With 8 small enough, (a,,;, b,y;), t+I=K, is also a Nash equilibrium. Also, there may be mixed
strategy equilibria.

4. That is, only if t < K. If not, then (3) and (4) are unnecessary.

5. All announcements are public and costless. As in Section 3, we also assume that realizations of outputs
and the choices of actions are not contemporaneous.

6. If one wants, one can let ¢,(d)~ 0 as d >II(ay, b,), all i, .

7. If none of the incentive constraint binds, then (6) is still possible when &’s are chosen big enough.

8. When none of the incentive constraint binds, Claim 2 will be modified slightly, essentially because
under (a,, b,), equilibrium moves at Stages 2 and 3 are not uniquely determined. There are other equilibria:
agents choose (a,, b,) and randomize between (Yes, 0) and (No, N), or between (Yes, 0) and (Yes, Y >0),
with big enough probability on (Yes, 0); or one agent always chooses (Yes, 0) and the other agent randomizes
between (Yes, 0), (Yes, Y >0) and (No, N), with big enough probability on (Yes, 0). But such equilibria give
rise to identical outcome paths as (a;, Yes, 0; b, Yes, 0), i.e. utility-payments are (v{}, ug). Notice that if (a;, b,)
are equilibrium actions, no agent would like to announce d, because of (5). Also, no agent would want to lose
the integer game, because of the penalty 5. When (ay, b;) are equilibrium actions, (Yes, 0) must be announced
with sufficiently high probability. Otherwise, by (6), an agent will deviate from a, to ag. It is easy to show
that the moves described above are equilibrium moves at Stages 2 and 3. Moreover, such Nash equilibria are
perfect Bayesian equilibria, since Stage 3 is reached with positive probability.

9. We wish to note that (C.2) and (C.3) are not the only (sufficient) conditions for unique implementation.
In an earlier version of this paper, we also show that Theorem 2 is true under some other conditions. The
interested reader is referred to Ma (1987).
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