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When a principal hires two (or more) agents to work in a correlated environ-
ment. each agent’s reward will depend on the other’s performance. Unfortunately,
with just the usual optimal (incentive-constrained) contracts being offered, the
agents strictly prefer to play equilibrium strategies other than those desired by the
pnaapal; they “cheat.” However, the principal can use a more subtle contractual
mechanism to stop them from cheating at no extra cost. This mechanism uses one
agent to police the other, and exploits certain properties of the optimal contracts.
Journal of Economic Literature Classification Numbers: 022, 026. € 1988 Academic

Press. faw

1. INTRODUCTION

The method of maximizing subject to “incentive constraints” is an
indispensable tool in the design and analysis of optimal mechanisms for use
in environments of incomplete information. But it is not always adequately
taken into account that incentive compatibility is only a necessary
requirement, and may not be sufficient. The difficulty is that in many
models, the optimal incentive compatible mechanism may have, in addition
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to the desired equilibrium, several undesired equilibria. In this paper we
look at such a model, in the context of agency theory.'

Principal/multi-agent models in general appear to be susceptible to the
problem of multiple equilibria in the game played by the agents. A number
of recent papers have made this point: Demski and Sappington [2], their
paper with Spiller [3], and Mookherjee [7]. Our particular concern is
with the model of Demski and Sappington [2], although we anticipate
that some variant of the method we propose here will prove to be useful in
dealing with unwanted equilibria in other models too.? Demski and
Sappington examine a situation in which two agents’ production functions
are correlated: specifically, agents observe correlated state variables before
they take actions. A pair of optimal incentive contracts—one for each
agent—exploits this correlation by making payments contingent not only
on an agent’s own output but also on the other agent’s output. The incen-
tive constraints ensure that it is a Bayes-Nash equilibrium for each agent
to accept his contract and to produce the output which the principal wants
from him (as a function of what he has observed).’ However, there is a
difficulty. Demski and Sappington found that given a pair of optimal
contracts, there exists another pair of equilibrium strategies whose outcome,
from the agents’ point of view, Pareto dominates the equilibrium outcome
which the principal wants to implement. Loosely put, the agents can
“cheat” the principal.

In [2], Demski and Sappington propose to avoid the problem of mul-
tiple equilibria by strengthening the principal’s constraint set so that one
agent’s output choice (as a function of his individual observation) 1s a
dominant strategy for him. (This agent has the “dual role of productive

'For a class of models where the direct mechanism exhibits multiple Bayes-Nash
equilibria, see Laffont and Maskin [4].

2See Ma [5].

3 Clearly, such a contract represents rather a narrowly specified mechanism. From the
Revelation Principle, we know that the most efficient contract would require each agent in
effect to report his private observation—so that if necessary, his output, as well as his
payment, could depend on borh agents’ observations. But notice that there is still likely to be
the problem of multiple equilibria even in these more general “revelation” mechanisms. The
point is that there is a distinction between a revelation mechanism that “tr‘ulhfully
implements” (i.., in which truth-telling is one equilibrium) and an abstract mechanism that
“fully implements” (i.e., in which the desired strategies constitute the unique equilibrium). On
this point, see, for example, Dasgupta et al. [1] and Repullo [11].

Demski and Sappington in [2] restricted their attention to the simpler kind of contracts in
which agents choose their outputs solely on the basis of their individual observations, and did
not consider revelation mechanisms. We shall follow them in this regard in order to facilitate a
direct comparison with their results. However, in Ma and Moore [6], we suggest some
reasons why general contracts might be infeasible. Also, it appears that a method similar to
the one we develop in this paper to knock out unwanted equilibria would work for more

general contracts.
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agent and information supplier” [2, p.168].) Of course it costs the
principal to do so.

In this paper we solve the problem of multiple equilibria raised by
Demski and Sappington, without incurring any additional cost to the
principal. We show how the principal can use one agent to police the other
by offering him a set of additional output levels from which to
choose—although these will not be used in equilibrium. It therefore turns
out that there is no need for the principal to adopt the (costly) solution of
acquiring information from an agent whose actions have been artificially
constrained to be a dominant strategy. Instead, the principal can proceed
as if the only constraints were those required to ensure that the agents’ out-
put choices constitute a Bayes—Nash equilibrium.

We also characterize the optimal contracts—i.e., when only the
(Bayesian) incentive constraints have been imposed. It is important to
characterize these optimal contracts since our mechanism relies on their
properties. Parts of the characterization theorem are not standard, owing
to the interrelated nature of the agents’ contracts. For example, unlike the
single-agent model, agents may not receive rents in their high productivity
states. Also, optimal contracts may not exhibit the usual monotonicity: an
agent may produce more output even though he is less productive.

Before starting our analysis, we should mention some recent related
work by Postlewaite and Schmeidler [10] and Palfrey and Srivastava [8]
(also see their paper [9]). The results of these papers may be applied to the
general question of what can be uniquely implemented as a Bayes—Nash
equilibrium in exchange environments with incomplete information. They
show that if the desired outcomes satisfy certain conditions (the key one
being “Bayesian monotonicity”), and if there are three or more agents, then
there exists a mechanism which generates those outcomes uniquely. Clearly
this work is germane to the present paper, in that a similar issue is being
addressed. But there are two respects in which our work is distinct. First,
the abstract mechanisms in [10, 8] only deal with exchange economies.
Moreover they do not deal with the case of two agents (it is well known
from the implementation literature that in general two-agent models pose
particular difficulties). Second, we are concerned here to find a mechanism
that is reasonably simple and which can be interpreted, whereas the
mechanisms in [10, 8] are rather abstruse. That is not surprising, though,
because those mechanisms are designed for a broad context. We are likely
to be able to find a mechanism that is “reasonably simple,” and then judge
whether it can be “interpreted,” only if we work with a specific model.

The plan of the paper is as follows. Section 2 introduces the model.
Optimal (second-best) contracts are characterized in Section 3. In Section
4, we describe a mechanism that implements the second best as a unique
Bayes—Nash equilibrium. Open questions are in Section S. '
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2. THE MODEL

The principal owns two production processes, x'= X'(d', 6'), I= A4, B, to
be operated by two agents, 4 and B. 0’ is a random variable with binary
support {64, 65}. For I=A4, B, let

p'=Prob{6'=6!}>0 (i=1,2)
pPitpi=1

The level of effort, ', exerted by agent / is not observable, and hence
compensation cannot be made contingent on it. Assume that for each /
there are decreasing returns to effort: X* >0 and X7, <0. Also

X'(d',0!)< X', 0,)  for all @,

so 6 represents a “good” state and 6] a “bad” state.
The state variables are positively but imperfectly correlated. That is,
putting

q? =Prob{6?=0210" =0}
and
q%=Prob{6*=6{|0°=0%},
we assume for /= A4, B that
1>qi>¢4>0.

(If ¢ is the joint probability that 64 =0/ and 6% =02, where j k=1, 2,
then for i=1,2: pf=(¢y+ ) pPP=(S1+¢2) 4'=¢u/(¢s +¢2); and
af=d1l($1:+ ¢2).)

Agent [ (= A, B) privately observes 0’ before he signs a contract with the
principal. Since neither 6’ nor a’ is publicly observed, an enforceable incen-
tive scheme, or contract, can only be based on the level(s) of output(s) of
one or both agents.

We assume that the principal is risk neutral, and he maximizes expected
profit. Prices of the x’s are normalized so that x* and x? represent both
outputs and revenues. Agents are risk averse and dislike effort increasingly.
They have additively separable utility functions '(R’, a') = U'(R') - V'(a'),
for /= A, B, where R’ is payment from principal; U’ is increasing and
strictly concave in R, and V' is increasing and strictly convex in a’

Knowing the utility function of an agent / (4 or B), one can compute the
level of effort, @', required to produce a certain level of output, x', in state
8'. Hence, one can define the agent’s disutility, D, say, of effort in terms of
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his output level and the state variable: D(x’, 6#'). From the assumptions on
X!'(-,-) and V/(-) given earlier, it follows that D' >0, D' >0, and
D'(x', 84) > D'(x!, 8%) for all x'. We also suppose that

D' (x,0))> D' (x',65)  for all x’

Thus for any given level of output, the marginal (as well as the total) dis-
utility for the agent in a good state is smaller than that in a bad state. Note
that this last assumption cannot be derived from the assumptions on
X'(+, ) and V'(-), but it will simplify the analysis when we handle incentive
constraints. This assumption—the “Spence/Mirrlees condition”—is very
common in self-selection models.

There exists a reservation utility level, I, for each agent /= A, B, that
represents the expected utility that he would obtain if he refused to sign a
contract with the principal.

The principal offers each agent a contract. These contracts may be inter-
dependent. For example, consider a typical contract offered to agent A4; it
will read

“You may choose to produce either x;' or x5. Your payment, R*,
will depend not only on your own output, but also on what agent
B does; if you choose to produce x (i=1,2), then*

if agent B produces x¥, you will be paid R:
if agent B produces xZ, you will be paid R}
if agent B does not sign his contract, you will be paid R3.”

3. CHARACTERIZATION

To provide a benchmark, we begin by writing down the optimal contract
in a first-best world where the principal can observe or monitor an agent’s
effort costlessly. It is obvious that this is equivalent to the case where the
principal can observe @, /= 4, B, before he signs a contract with an agent,
Also, it is enough to consider the optimal contract with respect to one
agent; accordingly, we shall leave out the superscripts /= A, B whenever
so doing does not create confusion. A first-best contract will have the
following properties:

“If it turns out that in agent B’s optimal contract x¥ precisely equals x%, then agent A’s
payment could not be made contingent on B’s output choice. We ignore this possibility
throughout our analysis—for if necessary, B’s output choices x and x# could be made dis-
tinct but arbitrarily close, with arbitrarily small loss to the principal. The same argument
applies il A’s output choices x{ and x4 happen to coincide at the optimum.
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(i) UR¥)—D(x*,0,)=0U,fori=1,2,
(iil) U'(R¥)=D.x}, 0,)fori=1,2,
(i) xF<xf

Properties (i) and (ii) together say that production levels are efficient
and the principal can hold an agent to his reservation utility in both states.
To see (iii), note that if x}>=x¥ then D x} 0,)>D.(x} 0,) and
D(xF, 6,)> D(x¥, 0,). The first inequality implies R¥ < R¥ from (ii); but
the second inequality implies R¥> R¥ from (i). Hence x} < x¥. These
properties will be useful for the characterization problem later.

Turning now to the second best, Demski and Sappington partially
characterized the solution of the program that restricts the agents’ output
choices to be a Bayes—Nash equilibrium, given that they are guaranteed at
least their reservation utilities (conditional on their private knowledge).
The following program gives the principal’s problem for each agent (again,
we drop the superscript /= A4, B):.

(P-BN) maxir;n’ze pilgi(x, =R+ (1—q)(x—Ry5)]

+palga(x;— Ry) + (1 = g2)(x2— Ry) ]
subject to
QJU(Rll)-i-(l_qf) U(RQ)_D(XH 61)2(‘7’ 121’2 (ls ’)

qu(R4l)+(l - q;) U(er)"D(xn 9;)
2q,URy)+ (1 —q;) U(Rp)— D(x;, 0,), L j=1,2;i#j.(2,1)

PROPOSITION 1. Optimal (second-best) contracts have the following
properties (omitting superscripts [= A, B):

(ai) R, >R, (ail) Ry = Ry =R, (say).

(bi) QIU(R:1)+(1_41)U{Rlz)_D(x|a91)=U,

(bii) U(R;)—D(x,,0,)=0.

(ci) q,U(Ry)+(1—¢,) U(Ry3)>D(xy,0),

(cii) U'(Ry)=Dx,,0,).

(di) ¢, U(Ry)+(1—4,) UR;)—D(x,,68,)> U(Ry) — D(x3, 6,),
(dii) U(R,)—D(x;,0;)=q2U(R,))+ (1 —q3) U(R,z)— D(x,, 6,).
() =m,>m,, where ;,=x,—q.R;—(1—q;) R for i=1,2.

(f)  x,<x¥, with equality if there is an equality in (bii).
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(8) If U(-) exhibits constant absolute risk aversion, then (i) x, < x¥,
and (ii) x, < x,. (These are also true for increasing absolute risk aversion.)

The nature of many of these results is well known, although there are a
couple of surprising possibilities. The key point is that only one of the
incentive constraints, (dii), binds at an optimum: the principal has to dis-
courage an agent from choosing output x, when he has in fact observed 6,.
Thus the only useful distortions from efficient risk sharing and efficient
production (at the margin) are for those parts of the contract designed for
an agent who has observed 8,. In (ai), the lottery (R};) helps with incen-
tives because if the agent has in fact observed 0,, not @,, then he has a
lower probability (g, <g¢,) of getting the higher payment (R,, > R,,).° In
(ci), the inefficiently low output x, (which is offset by a reduction in the
payments R,;) helps with incentives because if the agent has in fact
observed 6,, not 6,, then he has a lower marginal disutility of effort
(D(+8,)<D.(-0,)) Part (f) of the proposition says that the output x,
for an agent who has observed @, never exceeds the corresponding level in
the first best, and will be less only if he is receiving some rent from his
private information. Notice that it is indeed possible for him noz to receive
any rent (bii)! This stark contrast to the single-agent model reflects the fact
that the principal is exploiting the correlation between the two agents’
observations. Stronger results on the levels of outputs are obtained in (g),
when the assumption of constant (or increasing) absolute risk aversion is
made. With decreasing absolute risk aversion (a usual assumption), it is
quite possible that output x, in the bad state 8, is higher not only than out-
put x; in the good state 6,, but also than the first-best outputs (x ¥, x¥) in
either state. Again, this surprising possibility arises from the interrelated
nature of the two agents’ contracts.

The proof of Proposition 1 is also somewhat nonstandard, in that it is
difficult to show directly that the incentive constraint (di) is slack. Instead,
one proves this indirectly by first showing that the principal’s expected
profit from an agent in a bad state is less than that in‘a good state (¢). See
the Appendix.

4. AN INDIRECT MECHANISM WITH A UNIQUE EQUILIBRIUM

It is important to realize what Proposition 1 does and does not tell us.
We have characterized contracts that yield the principal the highest possible
expected profit. If the principal offers each agent /= A, B the choice of

* There would be no profit in adding any further, extraneous uncertainty to the payments
R. The reason is that the agents are risk averse, and the incentive constraints would not be
relaxed because the agents’ attitudes to risk are (by assumption) independent of their obser-
vation 6.



362 MA, MOORE, AND TURNBULL

— produce x| and receive (stochastic) payment {R},, R{,}, or
— produce x5 and receive payment R)

then the principal will earn the maximum profit if the agents both respond
as the principal desires: viz., sign their respective contracts and produce out-
put x/ when they observe 8! (i=1, 2). (Throughout the previous section, we
supposed that agents will sign their contract; that is why it was unnecessary
to specify the payments R/, made to an agent / (=4, B) who produces out-
put x/ when the other agent refuses to sign.) By construction, it must be an
equilibrium for the agents to respond in this way. Let this equilibrium be
E*, say. But the proposition does not tell us if there are other equilibria in
the game played by the agents.

The challenging observation made by Demski and Sappington [2] is
that the desired equilibrium E* is dominated (from the agents’ perspective)
by another Bayes—Nash equilibrium. Specifically, it is an equilibrium (E°,
say) for both agents to always choose the output x| corresponding to their
bad state 04 (/= A, B), and in all states they will both be strictly better off
than in equilibrium E*. (From now on, let x/, x5, R{,, R{,, and R; refer to
a solution of (P.BN) for agents /= A and B, respectively.) Of course, the
principal will be strictly worse off.

The point is that if agent 4 (say) is in the good state 64 then he is indif-
ferent between choosing x4 and x#, provided that agent B is playing
according to E*—that is, provided agent A assesses the respective
probabilities of payments Rf, and R{, to be g and (1 —g¢4) should he
choose x{. (See (dii) of Proposition 1.) However, suppose that agent B
always chooses output x?. Then in state 67 agent 4 will strictly prefer
producing x7 to x4, since with the former choice he will now be paid Rf,
with certainty and R{, > R7, from (ai) of Proposition 1. This argument
works symmetrically for agent B. E° is therefore an equilibrium, and it
dominates E* since both agents avoid the low payments R,.

Thus Demski and Sappington argued that “explicit attention must be
afforded [to] alternative strategies that the agents might adopt. In
particular, the equilibrium in which both agents simultaneously claim to
always be unproductive must be explicitly avoided” [2, p.166]. Their
approach is to strengthen the incentive constraints of one agent to make his
output choices a dominant strategy for him. (They do not analyze which
agent the principal would choose to place in this dominant strategy
position.) But although this method does guarantee a unique equilibrium,
it is also costly since the principal has to strengthen the incentive con-
straints in (P.BN).

We propose here an alternative, costless method of stopping the agents
from “cheating”: the principal enriches their strategy sets. We show that the
principal can guarantee the second-best outcome from (P.BN) as a unigue
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—and hence undominated (from the agents’ perspective }—equilibrium of an
appropriately designed mechanism.

The key to the indirect mechanism is that the principal offers one agent,
say agent A, a range of extra output options x{(e)—indexed by &, where
0<e<1—gqi. If agent 4 chooses one of these options xi(¢) then he
essentially produces xj—except that xi(¢) has some inconsequential
modification “&” which is costless for agent A to effect.® The importance of
¢ is that it acts as a signal that agent A sends to the principal:

“Agent B is cheating; from my perspective, the probability that he
is choosing x% is at least (g7 +¢).”

In the light of such a signal from agent A, if agent B chooses x¥, the
principal pays him an amount R?, where

U(R?) =43 UP(R}) + (1 —q7) UP(RY,). (3)

That is, the principal pays the certainty equivalent of the lottery agent B
would face if he had observed 62. However, if agent B actually chooses
x%—and agent A signals some ¢ > 0 by choosing x{(¢}—then agent B is, so
to speak, “compensated for the slur on his character” by receiving a higher
payment (RZ+7y). (The increase y >0 must not be too great, though. It
turns out that too high a compensation (Rf+y) might admit unwanted
equilibria. More on this below.)

It must be the case that agent 4 has an incentive to exercise one of the
options x{(¢) if agent B is choosing x? more often than he would in
equilibrium E*. With this in mind, agent A4 is “rewarded” for signalling ¢ as
follows: in return for producing x{(e), he is paid

R{,+s(e)  if agent Bchooses x?
R&—1(e) if agent B chooses x%,

where the (continuous) functions s(¢) and t(g) are both strictly positive for
0<e<1—gqf, and satisfy

(q7 + &) UNR{, +5(2)) + (1 — g — &) UM(Ry — 1(e))
=(gi' +¢) U'(R{) + (1 —g{ —¢) U*(R}Y). (4)

®In case the idea of x{!(e) being a qualitative modification “¢” of x{' seems unappealing,
there is a purely quantitative way of achieving the same ends. Namely, let the quantity x{(¢)
vary slightly, and strictly monotonically, with ¢, so that x{(e) = x{' as £ = 0. We have chosen
not to model the mechanism this way because, although it works, the analysis would be
somewhat more complicated and less transparent.
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The idea of this “reward scheme” is as follows. Consider agent 4 who has
observed 84. Suppose he assesses that agent B is choosing x¥ more than he
would in equilibrium E*—say with a probability of g > g{. Then the con-
struction (4), together with the fact that s(¢) and #(¢) are both positive,
means that for all 0 <g<(g—gqf), agent A prefers to choose x{(¢) rather
than x7. To see why, define the difference in payoff between choosing x{'(¢)
and x{ as

4%(q) = {[qU (R, +5(e)) + (1 — q) U*(R{y — 1(e)) — D (x{, 67)]
— [qUA(RY) + (1 —q) UM(RY) = DA(x{, 07)]}.

Then 34%(q)/dq = [UA(R{, + () - UA(Rf, - 1(e))] - [UA(R) - UA(R$)]
>0, and—since (4) implies 4°(g{ +¢)=0—it follows that 4%(q)>0 for
g>qi+e

Two other aspects of this construction are important. First, if agent B is
in fact choosing output as in equilibrium E*, then agent 4 must not have
an incentive to signal some ¢>0. This has been taken into account: (4)
implies A4%(g{ +¢)=0, which (since 4°(-) is strictly increasing) in turn
implies 4%(g{) <0 and 4°(g%) <0 for all £>0.

Second, we do not want our uniqueness result to be contrived in the
sense that it hinges on either agent (in particular, agent 4) maximizing
over a noncompact strategy set. In other words, we would be unhappy
proposing a resolution of the multiple equilibria problem which exploited
the nonattainability of some supremum. Therefore, we have taken care to
ensure that each agent maximizes a continuous payoff over a compact
strategy set. For agent A, the limit point ¢ =0 is a potential problem. But
by choosing s(¢) and #(¢) so that

Lim s(e) = Lim r(e) =0,

e—0 e—0

the limit point ¢ =0 simply corresponds to choosing x{—since in the limit
agent A produces x{(0) (=x¢) for random payment (R{,, R{,).

An issue we must consider is how much should an agent be paid for
producing output x/ (i=1, 2) if the other agent refuses to sign his con-
tract—i.e., what values should R/, take? The principal wants to implement
the second best uniquely. So he must avoid any equilibrium in which one or
both agents refuse to sign their contracts. Rather than give the details here
of how the principal can do this, we leave them to the proof of
Proposition 2.

Before stating the proposition, it may be helpful to display the full
“payment matrices” of the mechanism which uniquely implements the
second best. These are given in Table I. The various aspects of the

S
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TABLE 1

The Mechanism

Agent A’s Payments

B’s choice
x? x4 Refuse
A’s choice
x{ R, RY R
x{(e) R +s(e) R, —1(e) R +s(e)
x3 R{ Ry R{—y
Refuse — — —
Agent B’s Payments
B’s choice
x8 x5 Refuse
A’s choice
x Ry R? -
xtte) R RE+) -
xgf R%, RY -
Refuse R% RE—y —

mechanism which have been highlighted in the preceding discussion should
be apparent.

One last point to which we alluded earlier. Agent B’s “compensation”
y—see the payment RZ+y in the second row/second column box of his
payment matrix—cannot be too great, otherwise unwanted equilibria may
be admitted. Specifically, we assume that y >0 is chosen sufficiently small
so that

g3 UP(RE+7)+ (1 —q5) UX(RE)— D®(x%, 0%)

<q3 UB(RT)+ (1 —q%) U(RF))— DB(x?, 0%) (5)
and
UB(RS +7y)— D®(x2, 0f)< U-. (6)

These two upper bounds on y will be made use of in the proof of
Proposition 2. (Note that (5) is feasible for sufficiently small y >0: this
follows from (dii) and (ai) in Proposition 1, together with the definition of
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R?2in (3) and the fact that g7 < 1. Also (6) is feasible for sufficiently small
>0, directly because of (bi) and (di) in Proposition 1.)

(Incidently, we have used y in two other boxes of the payoff matrices—
the bottom right-hand boxes. This is not significant; it would suffice to
subtract any positive amount from these payments R, (=R,—y) for
= A, B. The critical upper bounds (5) and (6) pertain only to agent B’s
payment R?+y when he chooses x%, but agent A signals some ¢ >0 by
choosing x7(¢).)

We are now in position to state and prove our central result.

PROPOSITION 2. Suppose the payments are as given in Table I. Then the
second best is implemented as the unique Bayes—Nash equilibrium E*.

Proof. We adopt the following shorthand. Let Al (A2) denote agent A
if he has observed 67 (05), and let Bl (B2) denote agent B if he has
observed 82 (6%).

The proof is divided into nine steps:

Step 1: Al never chooses x7.
This is because refusing the contract strictly dominates: use (bi) and (di)
of Proposition 1.
Step 2: Bl never chooses x¥.
Again, this is because refusing the contract strictly dominates: use (bi)
and (di) of Proposition 1, together with (6).

Step 3: For each ¢ (0<e<1—g{), 4 never randomizes between
x#(&) and x¢, or between x{(e) and x3, or between x7(e) and refusing the
contract.

Suppose that this were not true for Ai, where =1 or 2. If Ai chooses
some x(¢), where 0 <e<1—g7, then

prob 4, { Bchoosing x2} <1—gf, (t)

otherwise 4i would strictly prefer choosing x{ to x{(e), since 4°(gf')<0.
Inequality (1) means that Ai strictly prefers x{' to both x7 and refusing the
contract (using (ai), (bi), (bii), and (dii) of Proposition 1). This means that
Ai must be randomizing between x{(g) and x{, and hence he must be indif-
ferent between them. But (4) implies that he would strictly prefer x{(&/2), a
contradiction.

Step 4: Al never chooses x{(e), for any £>0.

Suppose that this were not true. Then by Step 3, A1 must always choose
from the set {x{(¢)|0<e<1—gf}. This means that

prob,, { B chooses x7} <1—gqf,
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which, from Step 2, implies
prob 4, { B chooses x2} <1 —gq4. (t1)

Now (11), together with (bii) and (dii) of Proposition 1, means that A2
strictly prefers x{ to both x4 and refusing the contract. From Step 3, we
know that there are only two possibilities: either (a) A2 always chooses x{
or (b) A2 always chooses from the set {xf(e)|0<e<1—g7f}.

Suppose (a): A2 always chooses x#. Then, in the light of (5), B2 would
choose x%. But then B is never choosing x£, and so A2 strictly prefers some
xi(¢) to x¢!, a contradiction.

Now suppose (b): A2 always chooses from the set {x{(¢)[0<e<1—gf}.
Then by construction (3) and the fact that y >0, B2 strictly prefers x# to
both x% and refusing the contract. But this contradicts (7).

Step 5: B2 chooses x? with certainty.

Suppose not. Then

prob 4, { B chooses xf} <1—g{,

which, since 4%(g)>0 for some ¢>0 if ¢>gf, implies that 41 would
choose some x7(g). This contradicts Step 4.

Step 6: A2 never chooses x{(¢), for any ¢>0.
From Steps 2 and 5,
prob ,,{ B chooses x3} =1—gq3. (T11)
Hence A2 strictly prefers x{ to any x!(¢), since 4%(g) <0 for g < g¢".
Step 7: A2 never chooses x{.
If he did, then from Step 1,
probg,{A4 chooses x§} <1—g3.

Hence, from (ai) and (dii) of Proposition 1, B2 strictly prefers x5 to x%,
which contradicts Step 5.
Step 8: A never refuses to sign the contract.

Suppose A refuses to sign with some positive probability. Notice from
Steps 4 and 6 that 4 never chooses any x{(g) where &> 0. Therefore, using
(dii) of Proposition 1, B2 strictly prefers x# to x# (since (—7y)<0). This
contradicts Step 5.

Step 9: Bl never refuses to sign the contract.

Suppose Bl refuses to sign with some positive probability. Then, using
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(t11) and (dii) of Proposition 1, A2 strictly prefers x7 to x4 (again, since
(—7v) <0). This contradicts Step 7.

In sum, the only possible equilibrium is one in which 4 chooses output
according to E* (by Steps 1, 4, 6, 7, and 8), and B does likewise (by Steps
2,5, and 9). It is straightforward to confirm that this is an equilibrium.

Q.ED.

5. OPEN QUESTIONS

It is, of course, a limitation that the model considers only binary-state
variables, since presumably very complicated equilibrium strategies can
arise in a many-state world. We do not yet know whether there is some
indirect mechanism which would uniquely implement the second best if the
stochastic structure were richer.

Another interesting area of research is to see whether an approach
similar to ours can knock out unwanted equilibria in other principal/multi-
agent models (e.g., Mookherjee [7]). Work by one of us, Ma [5], shows
that these indirect mechanisms do indeed help substantially.

APPENDIX: PROOF OF PROPOSITION 1

Consider the relaxed program (RP) of (P.BN) in which inequality (2, 1)
is not included, i.e., we omit the “upward” incentive constraint

g, UR,)+(1—q,) U(R;,)—D(x,, 8))
2‘11U(R21)+(1—Q1)U(Rzz)*D(xhgl)v (A3)

We shall show that at a solution to (RP), (A3) holds as a strict inequality.
Consider the first-order conditions of (RP) with respect to R,, and Ry,:

_P292+EZQ2 U'(Ry)+ 2442 U'(Ry)=0
oyl — g2) + Ax(1 = ¢2) U'(Raz) + 4g(1 — g2) U'(Ry2) =0,

where 1, and 1, are multipliers of (1, 2) and (2, 2). It cannot be the case
that both 1, and 4, are zero, otherwise the principal could lower R;, and
R,, to increase his payoff without violating any constraint. These first-
order conditions therefore give R,, = R,; = R,, say. That is, agents do not
face any lottery when they produce output x,. We can rewrite (RP) as

maximize p,[¢,(x; — Ry;) + (1= ¢:)(x; = Ry3)] + pa[x2— R, ]

xi. Ry, Ry
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subject to

g1 U(R,) +(1—¢,) UR)—D(x,,0,) 2T (A1)

U(R;) = D(x3,8,) 2 U (A2)

U(R;) = D(x;, 0,) 2 ¢ U(Ry1) + (1 — q2) U(Ry3) — D(x,, 8,)-  (A4)

Let A,, 4,, and A, be the multipliers of (A1), (A2), and (A4), respectively.
First note that 1, >0. For if not, then by complementary slackness (A1)
holds as a strict inequality, and the principal can lower R, and R,,

without violating (A4)}—which would be a contradiction.
The first-order conditions are

P qi+ 4 g U(Ry) —Aaga U'(R) =0 (A5)

—Pi(1=q)+ 41 —¢,) U(R;2) = 441 = g2) U'(R2) =0 (A6)
—pr+ AU (Ry) + 4, U (Ry) =0 (A7)

pr =MD (x,,0)+4,D(x,,0,)=0 (A8)

Pa— 22D (x5, 05) — 44D (x5, 0,)=0. (A9)

From (A7) and (A9), U'(R,)= D (x,, 8,) so that production is efficient in
a good state. Also x, < x¥, where xJ is the first-best level of output in a
good state. To see this, suppose to the contrary that x,>x¥. Now xJ is
characterized by U(R¥)— D(x¥, 0,)=U and U'(R¥)=D,x}.6,), where
R¥ is first-best payment. We thus have U'(R,)= D (x,, 8,) > D (x¥, 0,) =
U’'(R#), which implies R, < R¥. But we also have D(x,, 8,)> D(x5, 0,),
which with (A2) gives U(R,)> U(R#), and hence R,> R¥. This contra-
diction proves x, < x¥.
The proposition is proved in the following seven steps.

Step 1: Incentive constraint (A4) binds (with a positive multiplier).

If A, =0, then we have only the two individual rationality constraints to
worry about and the principal can attain the first best, which has R, =
R,,= R}, say, and also U(R¥)—D(x}¥,0,)=U(R¥)—D(x},0,)=T.

But U(R¥)—D(xt,0,)>UR})—D(x},0,)=U=U(R})— D(x}, 0,)
so that the incentive constraint (A4) is violated. Thus it must be that
As>0.

Step 2. Ry, > R;.
Dividing (A5) into (A6),

Ay —24q2/q, — U'(R,,)
A= A1 —q2)/(1 —q,) U'(Ru)-

(A10)
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By assumption ¢,<gq, and (1 —g,)>(1—g,) so that the LHS of (A10)
exceeds 1. Hence U'(R,;)< U'(R,;), and R,; > R,.

Now write the contract the principal offers the agent in question as
{Z\, Z,} ={(x), Ry, Ryp), (x5, Ry, Ry)}

and define

T, =x;,—q;R; —(1—¢q;) Ry fori=1,2.
(Note that R,; =Ry, =R,.)

Step 3. my>m,.
Suppose not, ie., suppose n, < n,. First notice that since R,, > R, and
QI > ‘h,

x,—q,R;;— (1 _42)R12>H1?n3.

Let the principal offer {Z,, Z,} instead of {Z,, Z,} This increases the
principal’s expected profit. Moreover {Z,, Z,} is admissible in (RP): First,
the agent can attain his reservation utility. This is obvious if he is type 8,.
And if he is type 6,, then by Step 1 and (A2), he also obtains at least U.
Second, the incentive constraint (Ad4) is trivially satisfied. But this
contradicts the optimality of {Z,, Z,}. Hence n,>m,.

Step 4: Incentive constraint (A3) holds as a strict inequality.

Suppose not, i.e., suppose the agent did not strictly prefer Z, to Z,,
when he is type 6,. The principal could then offer {Z,, Z,} rather than
{Z,,2Z,}. {Z,,2Z,} is admissible in (RP): First, the agent can attain his
reservation utility. This is obvious if he is type 6,. And, since he weakly
prefers Z, to Z,, he can also have at least U if he is type 6,. Second, the
incentive constraint (A4) is trivially satisfied. But by Step 3, n, > m,, and so
the contract {Z,, Z,} will strictly increase the principal’s expected profit,
which is a contradiction. Hence (A3) holds as a strict inequality.

Step 5: Production is inefficiently low in a “bad” state 6,; ie,
g, U'(R))+(1—q,) U(R;3)>D.(x,,0))
Divide (A5), (A6), and (A8) by D (x,, 8,) and add them together:

VR L. URg

A‘{q‘ox(xl,el)*“ WD v, 6) 1}
) V(R .\ URy)  Dixi,0)
"“{“’znx(xl,el)*“ 92D e, 6)) Dx(xl,e.)}' (Al1)

By (A6) and (1 —g,) < (1 —g,), we have 4, > 4,. Also the terms inside the
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curly brackets of (A11) must be of the same sign. Since R, > R,, 4, > ¢2,
and D (x,, 8,) <D,(x,, 0,), the term inside the curly brackets on the LHS
of (A11) must be strictly less than the term inside the curly brackets on the
RHS of (A11). Hence both terms in the curly brackets of (A1l) must be
positive. Thus

G U (R, )+ (1—=q,) U(R;z)>Dx,,0))
Step 6: x, <xF if U(-) exhibits constant absolute risk aversion (CARA).

Suppose not, ie, suppose x;=x¥. From A,>0, complementary
slackness, and the properties of the first best, we have

g U(R,))+ (1 —q,) UR,)=U+D(x,,8))
and
U(R¥)= T+ D(x¥,0,).
Therefore
¢, U(Ry)+ (1 —¢,) UR;) = U(RY)

since D(x,, 8,)= D(x},0,). CARA implies that

7: U'(Ry)+(1—q,) U(R) S U'(RY).
By Step 5 and a property of the first best,

D(x,,0))<qU'(R;)+(1=¢,) U(R,) S U'(RF) =D (xF, 8,),

implying x¥ > x,, contrary to hypothesis. Hence x, < xf.

Step 7. x, <x, if U(-) exhibits CARA.

Suppose not, ie., suppose x, = x,. By Step 5 and (cii) in Proposition 1,
we have

g U(Ry)+ (1 —q;3) U'(R3) > D (xy, 0,) 2 D (x,, 0,) = U'(R,).
With CARA, this implies
g, U(R) + (1 —q3) U(Ryy) < U(R,).

Putting this into the (binding) incentive constraint (A4), it follows, from
D(x,, 8,) < D(x,, 8,), that x, < x,, contrary to hypothesis. Hence x, < x,.

Note. The arguments in Steps 6 and 7 are still valid if U(-) exhibits
nondecreasing absolute risk aversion (NDARA). Q.E.D.
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