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A planner is interested in allocating an indivisible good (a *‘prize’’) to one of
many agents in the economy. His objective is to give the prize to the agent who
values it most, without any payments being made by the recipient. The planner,
however, does not know the identity of this agent, while the agents themselves do.
This paper shows how the planner can construct simple, multistage mechanisms
with a unique subgame perfect equilibrium outcome. At this outcome, the agent
who values the prize most gets it without any transfer of money being made by
any of the agents or the planner. © 1989 Academic Press, Inc.

1. INTRODUCTION

The title of this paper refers to the Old Testament, Kings A, Chapter 3:
Two mothers came to King Solomon with a baby and both claimed to be
the baby’s genuine mother. King Solomon faced the problem of finding
out which of two women was the true mother of the baby. The develop-
ment of modern economics, we hope, will enable us to recast King Solo-
mon’s problem in an interesting way. This paper attempts to use imple-
mentation theory to solve King Solomon’s and similar problems. It is
perhaps best to start with a simple example of King Solomon’s dilemma.

Suppose there are two mothers, Mother A and Mother B, and they both
claim to be the true mother of a baby. Let the ‘‘true’’ mother’s valuation
of the baby be v, and the ‘‘false’” mother’s valuation be vy. v, and vf are

* The research in this paper was motivated by a conversation with Ariel Rubinstein, to
whom we are very grateful. We have also benefited from discussions with and comments
from John Moore and Robert Rosenthal. We have received useful comments from seminar
participants at Harvard University and at the Econometric Society North American Winter
Meeting, 1988, in New York. Suggestions of a referee and the editor are appreciated.
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interpreted as willingness to pay, and v, > vy. This defines what we mean
by ‘‘true’” mother and ‘‘false’” mother. There is a monetary instrument so
that when a mother pays m, her utility is v — m (v = vs or vy) if she gets the
baby, whereas her utility is —m if she does not get the baby. The identity
of the mother whose valuation is v, is known to both mothers, but not to
King Solomon. In other words, the mothers have complete information
about the ‘‘state of the world,’’ while King Solomon does not. The valua-
tions v, and vy and the utility functions are common knowledge.

We can now describe King Solomon’s problem precisely. His goal is to
‘‘give”’ the baby to Mother A if her valuation is v, and to *‘give’” the baby
to Mother B otherwise. Now, it is straightforward to find out the identity
of the true mother—simply ask the mothers to participate in a second
price auction. The point that makes this problem interesting and non-
trivial is that King Solomon, as a result of his benevolent nature, is not
interested in collecting money; his goal is to give the baby to the true
mother, not to auction it. In the implementation language, King Solomon
wants to design a mechanism, or a game form, so that the unigue equilib-
rium outcome of the mechanism is to give the baby to Mother A when her
valuation is v, and to Mother B otherwise, without any monetary transfers
in equilibrium.

In this paper, we want to study a generalization of the situation de-
scribed above: imagine that an indivisible “‘prize’’ is to be allocated be-
tween two (or more) individuals. We would like to find an assignment
procedure so that the person with the highest valuation will be the recipi-
ent of this prize. In other words, we propose to construct a mechanism to
implement the social choice rule that assigns the prize to the individual
with the highest valuation. This seems to be a natural and interesting
social choice rule to implement; in any case, this choice rule implements
the Pareto efficient allocations.'

In this paper we assume that the individuals’ valuations of the prize are
common knowledge among the individuals themselves. This is in line with
a number of papers in the implementation theory literature, e.g., Maskin
(1977), Moore and Repullo (1988), Abreu and Sen (1987), and Palfrey and
Srivastava (1986). These authors have studied mechanism design in gen-

' There are many examples of which our model is a realistic description: the allocation of a
piece of technology among many countries by a development agency, the assignment of a
piece of equipment among many researchers, etc. An especially interesting application is the
granting of a license for a research and development project. Suppose there are many
potential researchers. The planner does not know their abilities, but he wants to select the
ablest one and to motivate him to perform efficiently. In an earlier version of this paper, we
have analyzed this problem extensively and have shown that formally the planner’s problem
is equivalent to King Solomon’s. In order to achieve the first-best (i.e., the ablest researcher
choosing the efficient effort level). the planner would have to grant the license to the ablest
researcher without collecting any payment from him.
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eral models and have obtained interesting results. Our paper is closest to
those by Moore and Repullo, and Abreu and Sen—the game forms we use
are multistage mechanisms and the implementation solution concept is
subgame perfect equilibrium.” However, there are two elements that
make our contribution distinct from theirs. First, the mechanisms con-
structed by these authors are quite complex and are not easy to interpret.
(This is neither surprising nor meant to be a criticism, since their mecha-
nisms apply to very general environments. On the other hand, we con-
sider a relatively simple set of feasible allocations and a simple social
choice function.) We think the mechanisms in this paper are simple and
intuitive. Second, many general mechanisms in the literature exploit the
nonattainability of some supremum (for example, the agent shouting out
the biggest integer earns a bonus) in order to pin down the set of equilibria
in the game form. The mechanisms we construct do not have this prob-
lem. In our mechanisms, at each stage, there is only one player who
makes a move and she chooses from a finite or compact set.

The paper proceeds as follows. Section 2 begins with the solution to
King Solomon’s problem described earlier. We then define and solve the
general model. We find 1t useful to consider separately the discrete and
continuous valuation cases. In each, we provide a mechanism to imple-
ment the social choice function that awards a prize to the player with the
highest valuation. Conclusions are drawn in Section 3.

2. KING SOoLOMON’S PROBLEM

We first provide a solution to King Solomon’s problem as defined in
the Introduction. Recall that we have assumed that the valuations of the
true and false mothers (v, and vg) are common knowledge. The only miss-
ing information to King Solomon is which mother values the baby at v,.
Happily. King Solomon can use the following mechanism to find out the
true mother.

Stage 1: Mother A may say that the baby is either ‘‘mine’’ or ‘‘hers.”” If
she says “‘hers,”” then the baby is given to Mother B. If she
says ‘‘'mine,”’ then proceed to Stage 2.

Stage 2: Mother B can “‘agree’’ to or “‘challenge’’ Mother A’s claim. If
she agrees, then the baby is given to Mother A. If she chal-
lenges, then she gets the baby, but must pay King Solomon a
sum v, where vy < v < v,. In turn, Mother A is penalized and
pays King Solomon & > 0.

Figure 1 gives a sketch of the mechanism.

* It is clear that the social choice rule we want to implement is nonmonotonic (see Maskin,
1977). Hence. it 1s not implementable in Nash equilibrium.
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“‘hers’> ——— Baby is given to B.
Stage 1: A says
“‘mine”’

‘‘agree’’ —— Baby is given to A.

Stage 2: B says
“*challenge™

B pays v and gets the baby.
A pays 8.

FIGURE |

The outcome of the unique (subgame) perfect equilibrium of the above
game involves the true mother getting the baby without any transfers of
money. The strategies of the unique perfect equilibrium are: The true
mother says ‘‘mine’’ at Stage 1 and ‘‘challenge’” at Stage 2. The false
mother says ‘‘hers’” at Stage 1 and ‘‘agree’’ at Stage 2. The point is, the
payment v of the challenging mother satisfies vy < v < v, so that at Stage 2,
Mother B challenges only if she is the true mother; otherwise, allowing
Mother A to claim the baby is a better move. On the other hand. Mother A
must say ‘‘hers’” at Stage 1 when her valuation is vy in order to avoid the
penalty 6.

Note that the above game form relies on the assumption that there are
only two possible valuations. Our objective in this paper is to construct
mechanisms to solve ‘“*King Solomon’s dilemma’’ and similar problems
when this assumption is relaxed. This will be done in two steps. First, we
discuss the case where each mother’s valuation comes from a discrete but
arbitrary set. Then we consider the case where each mother’s valuation
comes from an interval. We shall now deal with the first case.

There are two players, A and B. King Solomon wants to award a prize
(the ‘*baby’’) to the player who values the prize higher. We assume that A
and B have complete information of each other’s valuations. However,
King Solomon does not, but he knows that A’s valuation is one of

My <ty < - - << pp < - << Uy,
and B’s valuation is one of

U]<U2<"'<Uj<"'<v_].
Therefore, King Solomon is able to deduce that:

If u; # v;, then there exists ¢ > 0 s.t. |u; — v;| > &, all i, j. (*)
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Formally, King Solomon wants to award the ‘‘prize’’ to the player with
the higher valuation. In the case of a tie in valuations, King Solomon gives
the prize to either A or B. The mechanism we have previously discussed
cannot be used directly to solve his problem. However, the following
mechanism does achieve the implementation of efficient prize allocation.

Stage 1: Player A says whether the prize is ‘‘mine’’ or ‘‘hers.”’ If she
says ‘‘hers,”’ then the prize is given to Player B. If she says
“mine,”’ then proceed to Stage 2.

Stage 2: Player B may say ‘‘agree’ or ‘‘challenge.” If she says
‘‘agree,” then Player A gets the prize. If she says ‘‘chal-
lenge,”’ both players pay King Solomon &/4 (& being defined by
(*)) and then they proceed to the following sequential bidding

game.
Stage 3: Player A announces a bid & from {u;, u,, . . ., u}.
Stage 4: Player B announces a bid ¢ from {v, v,, . . ., vs}. The player

who has placed the higher bid (the winner) gets the prize and
pays max[#, 0] — /2. If there is a tie, Player A gets the prize
and pays & — &/2. In any case the loser does not pay her bid.

Suppose that the actual valuations of the players are «; and v;. The game
form together with the utility functions of the players then defines a game;
call this game I'(«;, v;). See also Fig. 2.

THEOREM 1. Consider the game I'(u;, v;). (1) Suppose u; = v;. The
unique subgame perfect equilibrium outcome awards the prize to Player
A. (2) Suppose u; < v;. The unique subgame perfect equilibrium outcome
awards the prize to Player B. At this equilibrium outcome, no player ever
pays King Solomon anything.

Proof. T'(u;, v)) is a finite game and must possess a subgame perfect
equilibrium. We now characterize the (unique) subgame perfect
equilibrium outcome.

(1) Consider the case u; = v;. First, consider the subgame beginning at
Stage 3. In any subgame perfect equilibrium, A’s payoff is at least /2 and
B’s payoftf is 0. To prove this, we consider A’s strategy of bidding 4 = u;,
i.e., her true valuation. What is B’s best response at Stage 4? If B bids ¢ >
i, then B wins and gets the prize. Her payoffis v; — 0 + /2. But since 0 >
1 =u;=v;,0 —v;=0 — u; > ¢ by (). Then her payoff is at most —&/2 <
0. Thus, B 1s better off bidding ¢ = i, given & = u; at Stage 3. Hence, A
can guarantee herself a utility of at least w; — 4 + &/2 = &/2 by simply
bidding 7 = u; at Stage 3. Moreover, we know that A will never lose, since
that gives her 0. In other words, B always loses and her equilibrium
payoff at Stage 3 is 0.

Now consider Stage 2. Will B say ‘‘agree’” or ‘‘challenge?’’ If B says
‘““challenge,” she pays /4 and therefore nets a negative utility overall.
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“*hers’” —————— The prize is given to B.
Stage 1: A says
“‘mine”’

1 ‘‘agree’”’ — The prize is given to A.

Stage 2: B says
“‘challenge™”

Both pay &/4.
Stage 3: A bids 4.

Stage 4: B bids o.

The player with the higher bid gets the prize
and pays max[i, 0] — /2. If i = 0, A gets
the prize and pays i — &/2. In any case the
loser does not pay.

FIGURE 2

Therefore, B is better off saying ‘‘agree.”” Clearly, given that B says
‘‘agree’’ at Stage 2, A will say ‘‘mine’’ at Stage 1, and A gets the prize in
equilibrium.

(2) Consider the case u; < v;. Consider the subgame beginning at Stage
3. In any subgame perfect equilibrium A’s payoff is 0 and B’s payoff is at
least £/2. First, note that A’s equilibrium payoff cannot be negative, since
she can bid @i = u;. Can A ever have a strictly positive utility? Suppose A
bids i = v;; 1.e., A bids at least B’s true valuation. Given # = v;, B never
bids § > 4. [If B did, her payoff was v, — 0 + e/2 =4 — 0+ /2 < —¢e/2 <
0, by (). But B could have 0 by bidding 9 = ii.] Hence B bids § < 4. Then
A wins and gets a payoff of u; — & + €/2 = 4 — v; + &/2, which, by (%), is
less than —&/2. Therefore, A never bids 4 = v;. But given & < v;, B will
bid some & such that v; = ¢ > 4; thus v; — 0 + &/2 = /2. In sum, A never
wins and her payoff is 0, while B’s payoff is at least &/2.

Next, consider Stage 2. If B challenges, she pays /4 so that in equilib-
rium she still obtains a strictly positive payoff from ‘‘challenging’’ (since
she gets at least £/2 from Stage 3). Therefore, B will challenge at Stage 2.
However, A has to pay /4 whenever B challenges. Moreover, A gets 0 at
Stage 3. Thus A’s unique best choice at Stage 1 is to say ‘‘hers,’” and the
prize is given to B.
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To summarize, we have shown that in any subgame perfect equilib-
rium, Player A gets the prize if #; = v; and Player B gets the prize if u; <v;.
In equilibrium, no player ever pays anything. Q.E.D.

It is readily verified that the low valuation player can never get the prize
in the ‘‘bidding”’ subgame starting at Stage 3, while the high valuation
player always gets the prize and her payoff is at least £/2. The bidding
game entry fee, /4, at Stage 2 (if B challenges) deters a low valuation
player from entering Stage 3 but does not change the high valuation play-
er’s incentives in the bidding game. We finally note that Theorem 1 can
easily be extended to three or more players. (This will be discussed in the
Appendix for the more general case to be presented below.)

It must be noted that we have made use of the discrete nature of
players’ valuations—see (*) and players’ strategy sets above. Clearly,
when players’ possible valuations are not discrete but are from distribu-
tions with continuous supports, there does not exist € > 0 such that (*) is
satisfied. Then the game form we have constructed may fail to implement
King Solomon’s choice rule. We now show how King Solomon can solve
his problem in this circumstance.

Let Player A’s valuation be from a (closed) interval U, and Player B’s
valuation be from a (closed) interval V. For simplicity, we assume U = V.
Let ¢ = min U and d = max U. We normalize U and let ¢ = 0. Again, King
Solomon’s objective is to award the prize to the player with the higher
valuation. The following mechanism allocates the prize efficiently.

Stage 1: Player B announces a real number &, where ¢ is in the interval
[0, d]. If ¢ = 0, Player A gets the prize. Otherwise, proceed to
Stage 2.

Stage 2: Player A says whether the prize is ‘‘mine’’ or ‘‘hers.’’ If she
says ‘‘hers,”” then the prize is given to Player B. If she says
““mine,”’ then proceed to Stage 3.

Stage 3: Player B may say ‘‘agree’” or ‘‘challenge.”” If she says
‘‘agree,”” then Player A gets the prize. If she says ‘‘chal-
lenge,”’ both players pay King Solomon ¢, and then they pro-
ceed to the next Stage.

Stage 4: Player A announces a bid # from the set [0, d] and pays 4.

Stage 5: Player B announces a bid ¢ from the set [0, d] and pays 9. The
player with the higher bid gets the prize. If there is a tie, Player
B gets the prize.

Let the true valuations of the players be v and v. The mechanism together
with the utility functions of the players then define a game; call this game
G (u, v). Figure 3 illustrates the mechanism.

THEOREM 2. Consider the game G(u, v). (1) Suppose u > v. The
unique subgame perfect equilibrium outcome awards the prize to Player
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g€ = 0 —— The prize is given to A.
Stage 1: B reports
e>0

“*hers’> ———— The prize is given to B.

Stage 2: A says
“‘mine”’

‘ “‘agree”’ — The prize is given to A.

Stage 3: B says

“*challenge’’
Both pay «.
Stage 4: Player A bids i and pays i.
Stage 5: Player B bids 0 and pays 0.

The player with the higher bid gets
the prize. If 7 = o, Player B
gets the prize.

FIGURE 3

A. (2) Suppose u < v. The unique subgame perfect equilibrium outcome
awards the prize to Player B. (3) Suppose u = v, either A or B may get the
prize in subgame perfect equilibrium. At this equilibrium outcome, no
player ever pays King Solomon anything.

Proof. (1) Consider the case where u > v;i.e., Player A should get the
prize. The following are Player B’s best responses at Stage 5 given that A
has bided & at Stage 4. If 7 > v, then B cannot get a positive utility from
Stage 5, and she therefore bids & = 0. However, if & < v, B will certainly
match A’s bid (6 = i), obtains the prize, and earns a positive payoff v — ¥
from Stage 5. If & = v, then B is indifferent between 9 = 0and 6 = 4 = v
and these are her only best choices.

Consider the subgame beginning at Stage 4. The following are the
unique subgame perfect equilibrium strategies: Player A bids i = v at
Stage 4, Player B bids ¢ = @ if # < vand o = 0 if # = v at Stage 5. It is
obvious that these strategies constitute a subgame perfect equilibrium.
We now show that these are unique subgame perfect equilibrium strate-
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gies. Consider Player B first. The argument in the last paragraph estab-
lishes that B’s best responses against # < v and & > v are unique and are
given by his strategy just described. Hence these must also be his moves
(conditional on # < v or & > v) in any subgame perfect equilibrium. We
now show that in any subgame perfect equilibrium, B always bids 0 = 0
against 7 = v. Suppose not; i.e., suppose in a subgame perfect equilib-
rium, in response to A’s bid of 7 = v, B chooses ¢ = vand 0 = 0 with
probabilities 1 = p > 0 and 1 — p. respectively. Consider Player A. His
payoff for bidding & = vis now p(—a&) + (1 — p)u — i) = (u — v) — pu.
Consider now the strategy of bidding # = v + n. For m > 0, B's unique
best response is & = 0 and Player A receives the prize. Hence A’s payoff
isu — v — m. Form small enough, u — v — n > u — v — pu, since p,u > 0.
However, for any m > 0 (and small enough), Player A bidding v + 7
cannot be an equilibrium strategy: bidding v + n/2 will win the prize for
certain with a smaller payment. Contradiction. Hence in any subgame
perfect equilibrium, B always bids o = 0 against 7 = v. It is then clear that
the pair of strategies described forms the unique subgame perfect equilib-
rium, since A’s strategy of i = v is the unique equilibrium response.

Next, we consider Stage 3. Clearly, Player B’s best choice is to say
“agree’’; if she says *‘challenge,” she incurs a cost &€ > 0 and gets 0 from
Stage 4.

Given the strategies in subsequent stages. saying ““mine’’ is Player A’s
unique best choice at Stage 2. Moreover. any announcement of € Is opti-
mal for B at Stage 1.

In sum, in a subgame perfect equilibrium, A says *‘mine’” at Stage 2 (if
reached) and bids i = v at Stage 4; B says any ¢ at Stage 1, “agree’ at
Stage 3 (if reached), and at Stage 5 bids ¢ = 0. In equilibrium, Player A
gets the prize and no payment is ever made.

(2) Consider the case where v > u: i.e., Player B should get the prize.
Consider the subgame starting at Stage 4. We argue that in subgame
perfect equilibrium, Player A must bid 4 = 0. From the optimal strategies
of Player B at Stage 5 described in (1), Player A can never get the prize
and obtain a nonnegative utility in equilibrium. Thus Player A’s optimal
move at Stage 4 is to bid 7 = 0. Hence. Player B gets the prize and her
utility from the subgame at Stage 4 1s v.

At Stage 3. B will say ‘‘challenge™” if and only if & = v—she gets v from
Stage 4 and pays ¢ at Stage 3 when she challenges. Next, consider Stage
2. It is obvious that Player A will say “‘hers’" if and only if B challenges at
Stage 3. (Player A gets 0 from Stage 4 and must pay € > 0 at Stage 3 if
Player B challenges.)

Now. B clearly prefers A to say “*hers’” in order to get her maximum
utility v. Note that Player B can always announce 0 < & = v at Stage 1.
Therefore. in subgame perfect equilibrium, B will say 0 < & = v at Stage |
and ‘‘challenge’” at Stage 3. Given B’s strategy, A’s best choice is to say
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To summarize, in a subgame perfect equilibrium, A says ‘‘hers’’ at
Stage 2 and, if reached, bids @ = 0 at Stage 4; B says ¢, 0 < ¢ = v, at Stage
1, ““challenge’ at Stage 3 (if reached), and bids o = 0 at Stage 5. In
equilibrium, Player B gets the prize and no payment is ever made.

(3) Consider the case where u = v;i.¢., either Player A or Player B may
get the prize. Consider the subgame at Stage 5. Player B’s best responses
are given by (1). Next, consider the subgame at Stage 4. We first show
that in any subgame perfect equilibrium, Player B must bid § = 0 in
response to A’s bid of & = u (= v) at Stage 4. Note that A can always
guarantee a utility of 0 at Stage 4 by bidding 7 = 0. Now if against i = u
(= v), B chooses © = v with positive probability, then A will get a strictly
negative payoff, which contradicts the fact that A’s equilibrium payoff
must be nonnegative. Therefore, in a subgame perfect equilibrium, B
must bid & = 0 against 7 = u (= v). It can easily be shown that for each 6 €
[0, 1], the following is a subgame perfect equilibrium at Stage 4: Player A
chooses & = 0 and & = u with probabilities 6 and 1 — 6 respectively, while
Player B bids 6 = 4 if # < v and bids ¢ = 0 if # = v. Note that for each 6
(i.e., in each equilibrium), A’s equilibrium payoft is 0, while B’s equilib-
rium payoff is 6v. For later use, call a subgame perfect equ1hbr1um (at
Stage 4) in which A chooses i with probability 8 = 6, a ‘6 = 8 equilib-
rium.’

It is straightforward to verify that the set of subgame perfect equilib-
rium of the whole game is characterized by 6, where 6 € [0, 1]. For 6 = 0,
the equilibrium is: Player B announces any £ = 0 at Stage |. Player A says
““mine’’ at Stage 2 and Player B says “‘agree’” at Stage 3. The continuation
equilibrium at Stage 4 is a “‘# = 0 equilibrium.”” For 8§ = § > 0,
the equilibrium is: At Stage 1, Player B announces any &, where 0 < & < fuv.
Player A says ‘‘hers’” at Stage 2 and Player B says ‘‘challenge’” at Stage 3.
The continuation equilibrium at Stage 4 is a *‘6 = & equilibrium.”

To conclude, when u = v, either A or B may get the prize, and no player
pays anything in equilibrium. Q.E.D.

Theorem 2 can be easily extended to the case of N = 3 players. In the
Appendix, we have written the mechanism that implements the efficient
prize allocation rule for N = 3 players. We wish to note that the mecha-
nism in Theorem 2 is more general than that in Theorem 1, in that (*) is
not required. We have chosen to discuss also the discrete case because
we are able to construct a simpler mechanism (it has one stage less than
the mechanism in Theorem 2).

3. CONCLUSION

This paper has studied the following situation: A planner is interested in
allocating an indivisible good or project, which we call a “*prize,”” to one
of many agents in the economy. His objective is to give the prize to the
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agent who values it most, without any payments being made by the recipi-
ent. The planner, however, does not know the identity of this agent, while
the agents themselves do. We have shown how the planner can construct
simple, multistage mechanisms with a unique subgame perfect equilib-
rium outcome. At this outcome, the agent who values the prize most gets
it without any transfer of money being made by any of the agents or the
planner. In each of the mechanisms we construct, the players move se-
quentially and have perfect information about all previous moves. In
these games the solution concept we use, subgame perfect equilibrium, is
natural and intuitive.

We have assumed that the agents have complete information. Even
though this may be a realistic assumption in some contexts and is in
conformity with a number of recent papers in implementation, we feel
that the simple mechanisms we have proposed (or some modifications of
them) may work well under less restrictive assumptions, for example,
when agents know who has the highest valuation but not the exact values,
or when each agent knows only whether his valuation is highest or not.
These extensions await future research.

APPENDIX

We now describe a mechanism that implements the efficient prize allo-
cation choice rule when there are N = 3 players. We retain the assump-
tion used in Theorem 2: each player’s possible valuation is from the
interval [0, d].

Stage 0: Each player k&, kK = 2, . . ., N, announces a real number g
from the interval [0, d]. Let e = min(g, K =2, . . ., N). If € = 0, the
prize is awarded to Player 1. Otherwise, proceed to Stage i, where i = 1.

Stage i: Player i says whether the prize is “‘mine’’ or ‘‘not mine.”’ If she
says ‘‘not mine,’’ then proceed to Stagei + 1,i=1,. . ., N — 2. If she
says ‘‘mine,’’ then proceed to Stage i.i + j, where j = 1. If at Stage N-1,
Player N-1 says ‘‘not mine,”’ then Player N gets the prize.

Stage i.i + j: Playeri + j says “‘challenge’’ or *‘not challenge.”’ If Player
[ + jsays ‘‘not challenge’” andi + j + 1 = N, then proceed to Stage i.i + j
+ 1;if Player i + jsays ‘‘not challenge’ and i + j = N, then Player / gets
the prize. If Player i + j says ‘‘challenge,’” Player i and Player i + j each
pays £. Then they proceed to game y(i, j).

v (i, j): Player i bids & from [0, d] and pays ii. Then Player i + j bids
from [0, d] and pays 0. The player with the higher bid gets the prize. If
there 1s a tie, Player i + j gets the prize.

In the above mechanism each player is asked in sequence to claim the
““prize’’ or not. Whenever a player claims, then another player may chal-

g
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lenge her. This will lead the two players to play the sequential bidding
game as described in Stages 4 and 5 of the mechanism in Theorem 2.
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