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a b s t r a c t 

We study subgame-perfect equilibria of the classical quality- 
price, multistage game of vertical product differentiation. Each 
of two firms can choose the levels of an arbitrary number of 
qualities. Consumers’ valuations are drawn from independent 
and general distributions. The unit cost of production is in- 
creasing and convex in qualities. We characterize equilibrium 

prices, and the effects of qualities on the rival’s equilibrium 

price in the general model. Equilibrium qualities depend on 
what we call the Spence and price-reaction effects. For any 
equilibrium, we characterize conditions for quality differentia- 
tion. 

© 2018 Elsevier B.V. All rights reserved. 

 

1. Introduction 

Firms using differentiated products to soften intense Bertrand price competition is 
a basic principle in industrial organization. Following ( Hotelling, 1929; D’Aspremont 
et al., 1979 ) clarify theoretical issues and solve the basic horizontal differentiation model. 
Gabszewicz and Thisse (1979) and Shaked and Sutton (1982, 1983) work out equilibria 
of the basic vertical differentiation model. 

The standard model of horizontal-vertical product differentiation is the following mul- 
tistage game between two firms: in Stage 1, firms cho ose pro duct attributes or qualities;
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n Stage 2, firms choose prices, and then consumers pick a firm to purchase from. In the
iterature, models have seldom gone beyond two possible qualities, have assumed that con-
umers’ quality valuations are uniformly distributed, and have let production or mismatch
osts be nonexistent, linear, or quadratic. We make none of these assumptions. In this
aper, each of two firms pro duces go o ds with an arbitrary number of quality attributes.
onsumers’ valuations on each quality follow a general distribution. A firm’s unit produc-

ion cost is an increasing and convex function of qualities. In this general environment, we
haracterize subgame-perfect equilibria of the standard differentiation model. By doing
o, we show that results in the literature are less general than previously thought. 

Using the uniform quality-valuation distribution and the separable cost assumptions,
esearchers have managed to solve for equilibrium prices explicitly as functions of
ualities. Equilibrium qualities then can be characterized. What has emerged in the
iterature are a few classes of equilibria with largest or smallest differences in equilibrium
ualities (see the literature review below, in particular the “Max-Min-...-Min” result
y Irmen and Thisse (1998) ). In equilibrium, firms may successfully differentiate their
roducts only in some qualities. We show that uniform distributions and separable
uality costs (or mismatch disutility) are drivers for nondifferentiation results. Indeed,
hen valuations are uniformly distributed and costs are separable, multidimensional
odels can be simplified to single-dimensional ones. However, how robust are maximal

r minimal differentiation results? To what extent are they driven by these assumptions?
hat are the fundamental forces that determine product differentiation? 
In this paper we solve the tractability-generality dilemma that has b een p osed by the

iterature. For the quality-price, multistage game, we characterize subgame-perfect equi-
ibria. First, we find out how qualities affect equilibrium prices—without solving for the
quilibrium prices explicitly in terms of qualities. Second, we identify two separate effects
or the characterization of equilibrium qualities. The first is what we call the Spence effect
because it is originally exposited in Spence (1975) ; see footnote 7). For maximum profit,
 firm chooses a quality which is efficient for the consumer who is just indifferent be-
ween buying from the firm and its rival. Consumers must buy from one of the two firms,
o firms share the same set of indifferent consumers. The Spence effect says that each
rm should choose those qualities that are efficient for the equilibrium set of indifferent
onsumers. The Spence effect alone is a motivation for minimal product differentiation. 

The second effect is what we call the price-reaction effect , which is how a firm’s quality
n Stage 1 affects the rival firm’s price in Stage 2. Prices are strategic complements, so
ach firm would like to use its qualities in Stage 1 to raise the rival’s price in Stage 2. The
wo firms engage in a race, each trying to solicit a positive price reaction from the rival by
ncreasing qualities. However, higher qualities raise the unit production cost. Equilibrium
ualities reflect each firm balancing between the benefit from price-reaction effects and
igher unit cost, against the rival’s strategy. The entire quality profile, not just one single
uality, determines the overall effects on production costs and the rival’s price reactions.

In an environment where consumers’ quality valuations are uniformly distributed,
rms’ equilibrium price-reaction effects are equal. In addition, when cost is separable
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in qualities, firms’ balancing between price reaction and higher quality cost pushes 
them to produce equal qualities except in one dimension. Nevertheless, when firms’ 
price-reaction effects are not proportional to the quality marginal cost difference, or when 

cost is nonseparable, firms likely choose different qualities in equilibrium. Thus, firms 
that produce “high-end” products will still differentiate—if only in small details of their 
product qualities. For example, BMW and Lexus are companies that differentiate even 

in the high qualities of their cars. All BMW and Lexus cars are high-quality automobiles,
but the common consensus is that BMW has a higher “performance” quality than Lexus ,
but the opposite is true when it comes to the “comfort” quality. However, any car by
BMW or Lexus will be a better performer and more comfortable than any car by Yugo .
In fact, in the automobile and most other markets, it is impossible to find products
that have identical quality attributes. These observations are consistent with the general 
tenet of product differentiation. 

What is behind our solution to the tractability-generality dilemma? The key is to 
show that equilibrium prices and equilibrium demands can b e decomp osed into two 
systems. The equilibrium prices must satisfy the usual inverse demand elasticity rule, 
whereas the equilibrium set of indifferent consumers which determines demands, must 
satisfy an integral equation. Furthermore, the solution of the integral equation takes 
the form of a set of implicit and explicit functions of the model primitives. Then a
firm’s equilibrium price can be characterized in terms of qualities, through the solution 

of the integral equation. In other words, we dispense with the need for computation of
equilibrium prices, which would require explicit specification of the model primitives. 

We use a vertical differentiation model, but Cremer and Thisse (1991) show that for
the usual model specification, the Hotelling, horizontal differentiation model is a special 
case of the vertical differentiation model. The intuition is simply that firms’ demand 

functions in a Hotelling model can be directly translated to the demand functions in a
quality model. Cremer and Thisse (1991) state the result for a single location or quality
dimension, but their result extends straightforwardly to an arbitrary number of such 

dimensions. (A model with a combination of horizontal and vertical dimensions can 

also be translated to a model with only vertical dimensions.) Hence, our results in this
paper apply to horizontal differentiation models. In particular, our method of solving 
for equilibrium prices is valid for Hotelling models. 1 

Whereas we have here characterized subgame-perfect equilibria of a general quality- 
then-price duopoly, our analysis is incomplete. We take for granted the existence of 
subgame-perfect equilibria. Our methodology is to exploit equilibrium properties. To 
date, the only known equilibrium-existence results are for models with (i) a single 
generally distributed dimension of consumer locations (or valuations) and quadratic 
cost, and (ii) multiple uniformly distributed dimensions of consumer locations and 
1 Differences between horizontal and vertical models may also b e due to sp ecification of the strategy sets. 
Here, we allow qualities to take any positive values; in lo cation mo dels, firms’ p ositions may not vary as 
much. 
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uadratic costs (see Anderson et al., 1997 and Irmen and Thisse, 1998 , discussed below).
ur results can be regarded as necessary conditions, so can be used to obtain candidate

quilibria. This already simplifies the search for equilibria. (In fact, in Section 4.2.1 ,
e verify that one candidate equilibrium of an example is an equilibrium, whereas
nother candidate fails to be an equilibrium.) In any case, our characterization uses no
ssumptions except those for existence of equilibria in the price subgame, so does not
resent any impediment on existence research. 
We continue with a subsection on the literature. In Section 2 , we define consumers’

references and firms’ technology. Then we set up the quality-price, multistage game.
ection 3 is divided into four subsections. In Section 3.1 , we characterize subgame-perfect
quilibrium prices. Lemma 1 presents the solution of the integral equation, the key step
n expressing equilibrium prices as functions of qualities. In Section 3.2 , we characterize
ow prices change with qualities. In Section 3.3 , we characterize equilibrium qualities,
nd establish the price-reaction and Spence effects. Section 3.4 presents a number
f implications. We specialize our model by adopting common assumptions (uniform
uality-valuation distribution and separable cost function), and draw connections be-
ween earlier results and ours. A number of examples are studied in Section 4 . These
xamples illustrate our general results and how they can be used. We also verify the
xistence of equilibria in some examples. The last section contains some remarks on open
ssues. Proofs of results and statements of some intermediate steps are in the Appendix.
athematica files for computations in Sections 4.1 . and 4.2 are available online. 

.1. Literature review 

The modern literature on product differentiation and competition begins with
’Aspremont et al. (1979) , Gabszewicz and Thisse (1979) and Shaked and Sutton (1982,
983) . In the past few decades, the principle of product differentiation relaxing price
ompetition has been stated in texts of industrial organization at all levels: ( Tirole, 1988;
nderson et al., 1992 ), and Belleflamme and Peitz (2010) for graduate level, as well as
abral (2000) , Carlton and Perloff (2005) , and Pepall et al. (2014) . Many researchers use

he basic horizontal and vertical differentiation models as their investigation workhorse.
The research here focuses on equilibrium differentiation. In both horizontal and

ertical models, a common theme has been to solve for subgame-perfect equilibria in
he quality-price, multistage game in various environments. 2 First, earlier papers have
ooked at single or multiple horizontal and vertical dimensions of consumer preferences.
econd, most papers have adopted the assumption that these preferences are uniformly
istributed. Third, most papers in the horizontal model have used a quadratic consumer
ismatch disutility function, whereas those in the vertical model have assumed that the
nit production cost is either independent of, or linear in, quality. 
2 As we have already mentioned, Cremer and Thisse (1991) (following on a suggestion by Champsaur and 
ochet (1989) ) show that horizontal-location models are special cases of vertical models. 
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1.1.1. Single dimension models 
Anderson et al. (1997) study equilibrium existence and characterization in a single- 

dimension horizontal model. They use a general consumer preference distribution but 
quadratic mismatch disutility. Our multidimensional vertical mo del can b e recast into 
the single-dimensional model in Anderson, Goeree and Ramer. A few other papers 
have adopted nonuniform distributions on consumer locations. Neven (1986) shows that 
firms tend to locate inside the market when consumers’ densities are higher near the
center. Tabuchi and Thisse (1995) assume a triangular distribution and find that there 
is no symmetric location equilibria but that asymmetric location equilibria exist. Yurko 
(2010) uses a vertical model for studying entry decisions, but her results are based on
numerical simulations. Benassi et al. (2006) allow consumers the nonpurchase option. 
They relate various trapezoidal valuation distributions to degrees of equilibrium quality 

differentiation. Finally, Loertscher and Muehlheusser (2011) consider sequential location 

entry games without price competition. They study equilibria under the uniform and 

some nonuniform consumer-location distributions. 

1.1.2. Multiple dimensions models 
A few papers have studied vertical models with two dimensions. These are 

Vandenbosch and Weinberg (1995) , Lauga and Ofek (2011) , and Garella and Lambertini 
(2014) . All three papers use the uniform valuation distribution. In the end of Section 3.4 ,
we will present the relationship between our results here to those in these papers. Here,
we note that these papers have assumed zero production cost, or unit cost that is linear
or discontinuous in quality. By contrast, we use a strictly convex quality cost function. 

In a recent paper, Chen and Riordan (2015) have proposed using the copula to
model consumers’ correlated multidimensional preferences on product varieties. In their 
formulation, each variety is a distinct go o d, and a consumer considers buying some
variety. Their analysis has assumed that average production cost is fixed, so a firm’s
variety choice has no cost consequences. By contrast, we let consumers’ preferences on 

different qualities be independent, but all qualities are embedded in a go o d. We also let
the unit production cost be increasing and convex in qualities. 

For horizontal models with multiple dimensions, the key paper is Irmen and Thisse 
(1998) , who set up an N dimensional model to derive what they call “Max-Min-...-Min”
equilibria. We will relate our results to those in Irmen and Thisse in Section 3.4 , right
after Corollary 4 . Tabuchi (1994) and Vandenbosch and Weinberg (1995) are special 
cases of Irmen and Thisse (1998) at N = 2 . Economides and Steckel (1998) study two
and three dimensional Hotelling models, and derive similar results as in Irmen and 

Thisse (1998) . All assume that consumers’ locations are uniformly distributed, and 

that the mismatch disutility is Euclidean and therefore separable. We are unaware of 
any paper in the multidimensional horizontal literature that adopts general consumer 
preferences distributions, or general, nonseparable mismatch disutility. 

Finally, Degryse and Irmen (2001) use a model with both horizontal and vertical dif-
ferentiation. For the horizontal dimension, consumer locations are uniformly distributed. 
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or the vertical dimension, consumers have the same valuation (as in the model in
arella and Lambertini (2014) ). However, the mismatch disutility depends also on
uality, which corresponds to the case of a nonseparable mismatch disutility or quality
ost function. This can be thought of as a special case of the model here. 

. The model 

We begin with describing consumers and their preferences. Then we present two iden-
ical firms. Finally, we define demands, profits, and the extensive form of quality-price
ompetition. 

.1. Consumers and preferences for qualities 

There is a set of consumers, with total mass normalized at 1. Each consumer would like
o buy one unit of a go o d, which has N ≥ 2 quality attributes. A go o d is defined by a vector
f qualities ( q 1 , q 2 . . . , q N 

) ∈ � 

N 

+ 

, where q i is the level of the i th quality, i = 1 , 2 , . . . , N . 
A consumer’s preferences on go o ds are described by his quality valuations, represented

y the vector ( v 1 , . . . , v i , . . . , v N 

) ∈ 

∏ N 

i =1 [ v i , v i ] ⊂ � 

N 

++ 

. The valuation on quality q i is
 i , which varies in a bounded, and strictly positive interval. If a consumer with valuation
ector ( v 1 , . . . , v i , . . . , v N 

) ≡ v buys a go o d with qualities ( q 1 , q 2 . . . , q N 

) ≡ q at price
 , his utility is v 1 q 1 + v 2 q 2 + · · · + v N 

q N 

− p . (We may sometimes call this consumer
 v 1 , . . . , v N 

) or simply consumer v.) The quasi-linear utility function is commonly
dopted in the literature (see such standard texts as Tirole (1988) and Belleflamme
nd Peitz (2010) ). (Throughout the paper, a vector is a mathematical symbol without
 subscript; components of a vector are distinguished by subscripts (either numerals
r Roman letters). Besides, we use v −i to denote the vector v with the i th component
mitted. Any exception should not create confusion.) 

Consumers’ heterogeneous preferences on qualities are modeled by letting the valu-
tion vector be random. We use the standard independence distribution assumption:
he valuation v i follows the distribution function F i with the corresponding density f i ,
 = 1 , . . . , N, and these distributions are all independent . Each density is assumed to
e differentiable (almost everywhere) and logconcave. The logconcavity of f i implies
hat the joint density of ( v 1 , . . . , v i , . . . , v N 

) ≡ v is logconca v e, 3 and it guaran tees that
rofit functions, to be defined below, are quasi-concave (see Proposition 4 in Caplin and
alebuff (1991) , p.39). 

.2. Firms and extensive form 

There are two firms and they have access to the same technology. If a firm produces
 go o d at quality vector ( q 1 , q 2 . . . , q N 

) ≡ q, the p er-unit pro duction cost is C ( q ). There
3 Because of independence, the joint density of ( v 1 , . . . , v i , . . . , v N 

) is 
∏ N 

i =1 f i . Hence, ln 
∏ 

f i = 

∑ 

ln f i . 
ecause ln f i is concave, so is Σln f i . 
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is no fixed cost, so if a firm produces D units of the go o d at quality q , its total cost is
D multiplied by C ( q ). We assume that the per-unit quality cost function C : R 

N 

+ 

→ R + 

is strictly increasing and strictly convex. We also assume that C is continuous and
differentiable, and satisfies the usual conditions: lim q→ 0 C( q) = 0 , lim q → 0 d C( q) = 0 ,
lim q→∞ 

C( q) = ∞ , and lim q → ∞ 

d C( q) = ∞ (where q is a quality vector, 0 stands for a
zero or an N -vector of all zeros, and ∞ stands for an infinity or an N -vector of infinities,
and d C is a vector of C ’s first-order derivatives). 4 If a firm sells D units of the go o d with
quality vector q at price p , its profit is D · [ p − C( q) ] . 

The two firms are called Firm A and Firm B . We use the notation q for Firm A ’s
vector of qualities ( q 1 , q 2 , . . . q N 

) ≡ q. We use the notation r for Firm B ’s vector of
qualities ( r 1 , r 2 , . . . r N 

) ≡ r. Hence, when we say quality q i , it indicates the level of Firm
A ’s i th quality attribute, whereas when we say quality r i , it indicates the level of Firm
B ’s i th quality attribute. Let Firm A ’s price be p A 

, and Firm B ’s price be p B 

. We use
the notation p for the price vector ( p A 

, p B 

). 
Given the two firms’ quality choices, consumer v = ( v 1 , .., v N 

) obtains utili-
ties v 1 q 1 + v 2 q 2 + · · · + v N 

q N 

− p A 

and v 1 r 1 + v 2 r 2 + · · · + v N 

r N 

− p B 

from Firm
A and Firm B , respectively. Consumer v purchases from Firm A if and only if
v · q − p A 

> v · r − p B 

. If the consumer is indifferent because v · q − p A 

= v · r − p B 

, he
picks a firm to buy from with probability 0.5. For given quality vectors and prices, the
demands for Firm A and Firm B are, respectively, ∫ 

· ·
∫ ∫ 

v ·q −p A 

≥v ·r−p B 

d F 1 d F 2 · ·d F N 

and 

∫ 
· ·
∫ ∫ 

v ·q −p A 

≤v ·r−p B 

d F 1 d F 2 · ·d F N 

. 

The two firms’ profits are ⎧ ⎨ ⎩ 

∫ 
· ·
∫ ∫ 

v ·q −p A 

≥v ·r−p B 

d F 1 d F 2 · ·d F N 

⎫ ⎬ ⎭ 

[ p A 

− C( q) ] ≡ πA 

( p A 

, p B 

; q, r) (1) 

⎧ ⎨ ⎩ 

∫ 
· ·
∫ ∫ 

v ·q −p A 

≤v ·r−p B 

d F 1 d F 2 · ·d F N 

⎫ ⎬ ⎭ 

[ p B 

− C( r) ] ≡ πB 

( p A 

, p B 

; q, r) . (2) 

In case q = r, and p A 

= p B 

, each firm sells to one half of the mass of consumers. 
We study subgame-perfect equilibria of the standard multistage game of quality-price 

competition: 

Stage 0: Consumers’ valuations are drawn from respective distributions. 
4 The Inada conditions do not necessarily imply that all equilibrium qualities must be strictly positive; 
this is due to price-reaction effects to be derived below. However, they do eliminate nondifferentiation due 
to marginal costs being too high at very low quality levels. 



F. Barigozzi, C.-t.A. Ma / International Journal of Industrial Organization 61 (2018) 380–412 387 

Fig. 1. Consumers’ choices given prices and qualities. 
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Stage 1: Firm A and Firm B simultaneously choose their product quality vectors q
and r , respectively. 

Stage 2: Firm A and Firm B simultaneously choose their product prices, p A 

and p B 

,
respectively. Then each consumer picks a firm to buy from. 

. Equilibrium product differentiation 

We begin with the subgame in Stage 2, defined by firms’ quality vectors q and r
n Stage 1. If Firm A ’s and Firm B ’s prices are p A 

and p B 

, respectively, consumer
 = ( v 1 , . . . , v N 

) now buys from Firm A if v · q − p A 

> v · r − p B 

. The set of consumers
ho are indifferent between buying from Firm A and Firm B is given by the equation
 1 q 1 + · · · + v N 

q N 

− p A 

= v 1 r 1 + · · · + v N 

q N 

− p B 

. For q 1 	 = r 1 we solve for v 1 in this
quation to define the following function: 

˜ v 1 ( v −1 ; p, q, r) ≡
p B 

− p A 

r 1 − q 1 
−

N ∑ 

k=2 

v k 
r k − q k 
r 1 − q 1 

, (3)

here v −1 = ( v 2 , . . . , v N 

) is the vector of valuations of the second to the last quality
ttributes. The vector ( ̃  v 1 ( v −1 ; p, q, r) , v 2 , . . . , v N 

) ≡ ( ̃  v 1 ( v −1 ; p, q, r) , v −1 ) describes all
onsumers who are indifferent between buying from the two firms. 

The function ˜ v 1 in (3) is linear in the valuations, and this is an important property
rom the quasi-linear consumer utility function. The function is illustrated in Fig. 1
or the case of two qualities ( N = 2) . There, we have the valuation v 1 on the vertical
xis, and the valuation v 2 on the horizontal axis. For this illustration, we have set
 1 < r 1 , q 2 < r 2 and p A 

< p B 

. The function ˜ v 1 is the negatively sloped straight line with
he formula ˜ v 1 ( v 2 ; p, q, r) = 

p B 

−p A 

r 1 −q 1 
− v 2 

r 2 −q 2 
r 1 −q 1 

. Prices affect only the intercept, whereas
ualities affect both the intercept and the slope. 

Consumer ( v ′ 1 , v 2 , ... v N 

) buys from Firm B if and only if v ′ 1 > ˜ v 1 ( v −1 ; p, q, r) : Firm B ’s
roduct is more attractive to a consumer with a higher valuation v 1 . In Fig. 1 , the set
f consumers who buy from Firm B consists of those with v above ˜ v 1 . We reformulate
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the firms’ demands as: 

Firm A Firm B ∫ v N 

v N 

... 
∫ v 2 
v 2 

∫ ˜ v 1 
v 1 

v ·q −p A 

≥v ·r−p B 

ΠN 

i =1 d F i ( v i ) 

= 

∫ v N 

v N 

... 
∫ v 2 
v 2 

F 1 ( ̃  v 1 ( v −1 ; p, q, r))ΠN 

k=2 d F k ( v k ) 

∫ v N 

v N 

... 
∫ v 2 
v 2 

∫ v 1 ˜ v 1 
v ·q −p A 

≤v ·r−p B 

ΠN 

i =1 d F i ( v i ) 

= 

∫ v N 

v N 

... 
∫ v 2 
v 2 

[1 − F 1 ( ̃  v 1 ( v −1 ; p, q, r))] 
ΠN 

k=2 d F k ( v k ) . 

For some values of q , r , and prices p A 

and p B 

, as v −1 varies over its ranges, the value
of the formula in (3) may be outside the support [ v 1 , v 1 ] . We can formally include
these possibilities by extending the valuation support over the entire real line, but set
f 1 ( x ) = 0 whenever x lies outside the support [ v 1 , v 1 ] . For easier exposition, we will stick
with the current notation. 

We use the following shorthand to simplify the notation: ∫ 
v −1 

stands for 
∫ v N 

v N 

. . . 

∫ v 2 
v 2 

and d F −1 stands for ΠN 

k=2 d F k ( v k ) . 

Profits of Firms A and B are, respectively: 

πA 

( p A 

, p B 

; q, r ) = 

∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p, q, r)) d F −1 × [ p A 

− C( q) ] (4) 

πB 

( p A 

, p B 

; q, r ) = 

∫ 
v −1 

[1 − F 1 ( ̃  v 1 ( v −1 ; p, q, r ))] d F −1 × [ p B 

− C( r ) ] . (5) 

3.1. Subgame-perfect equilibrium prices 

In subgame ( q , r ), if q = r, the equilibrium in Stage 2 is the standard Bertrand
equilibrium so each firm will charge its unit production cost: p A 

= p B 

= C( q) = C( r) . 
We now turn to subgames in which q 	 = r . By a permutation of quality indexes and in-

terchanging the firms’ indexes if necessary, we let q 1 < r 1 . A price equilibrium in subgame
( q , r ) is a pair of prices ( p ∗A 

, p ∗B 

) that are b est resp onses: p ∗A 

= argmax p A 

πA 

( p A 

, p ∗B 

; q, r)
and p ∗B 

= argmax p B 

πB 

( p ∗A 

, p B 

; q, r) , where the profit functions are defined by (4) and
(5) . The existence of a price equilibrium follows from Caplin and Nalebuff (1991) . 
Furthermore, because of the logconcavity assumption on the densities, a firm’s profit 
function is quasi-concave in its own price. 

As we will show, the characterization of equilibrium prices boils down to the properties
of the solution of an integral equation. We begin with differentiating the profit functions
with respect to prices: 

∂πA 

∂p A 

= 

∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p, q, r)) d F −1 −
∫ 
v −1 

f 1 ( ̃  v 1 ( v −1 ; p, q, r)) d F −1 ×
[
p A 

− C( q) 
r 1 − q 1 

]
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∂πB 

∂p B 

= 

∫ 
v −1 

[1 − F 1 ( ̃  v 1 ( v −1 ; p, q, r))] d F −1 −
∫ 
v −1 

f 1 ( ̃  v 1 ( v −1 ; p, q, r )) d F −1 ×
[
p B 

− C( r ) 
r 1 − q 1 

]
, 

here we have used the derivatives of ˜ v 1 ( v −1 ; p, q, r) in (3) with respect to p A 

and p B 

. 
The equilibrium prices ( p ∗A 

, p ∗B 

) ≡ p ∗ satisfy the first-order conditions: 

p ∗A 

− C( q) = 

∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗, q, r)) d F −1 ∫ 
v −1 

f 1 ( ̃  v 1 ( v −1 ; p ∗, q, r)) d F −1 
× ( r 1 − q 1 ) (6)

p ∗B 

− C( r) = 

∫ 
v −1 

[1 − F 1 ( ̃  v 1 ( v −1 ; p ∗, q, r))] d F −1 ∫ 
v −1 

f 1 ( ̃  v 1 ( v −1 ; p ∗, q, r)) d F −1 
× ( r 1 − q 1 ) (7)

here 

˜ v 1 ( v −1 ; p ∗, q, r) = 

p ∗B 

− p ∗A 

r 1 − q 1 
−

N ∑ 

k=2 

v k 
r k − q k 
r 1 − q 1 

, v k ∈ [ v k , v k ] , k = 2 , . . . , N. (8)

qs. (6) and (7) say that the price-cost margins follow the usual inverse elasticity rule,
 standard result. 5 The complication is that (8) sets up a function ˜ v 1 that depends on
 − 1 continuous variables v k , k = 2 , . . . , N, and the quality vector ( q , r ), and this is to
e determined simultaneously with the prices in (6) and (7) . 
Let p ∗ = ( p ∗A 

, p ∗B 

) be the subgame-perfect equilibrium prices in Stage 2 in subgame
 q , r ). The equilibrium prices are functions of the quality vector, so we write them
s p 

∗( q , r ). Let ˜ v 1 ( v −1 ; p ∗( q, r) , q, r ) b e the solution to (8) at the subgame-perfect
quilibrium. Now we define ˜ v ∗1 ( v −1 ; q, r) ≡ ˜ v 1 ( v −1 ; p ∗( q, r) , q, r) , which describes the
et of consumers who are indifferent between buying from Firm A and Firm B in an
quilibrium in subgame ( q , r ). 

By substituting the equilibrium prices (6) and (7) into ˜ v 1 ( v −1 ; p ∗( q, r) , q, r) in
8) above, we have: 

˜ v ∗1 ( v −1 ; q, r) = 

∫ 
x −1 

[ 1 − 2 F 1 ( ̃  v ∗1 ( x −1 ; q, r)) ] d F −1 ∫ 
x −1 

f 1 ( ̃  v ∗1 ( x −1 ; q, r)) d F −1 
+ 

C( r) − C( q) 
r 1 − q 1 

−
N ∑ 

k=2 

v k 
r k − q k 
r 1 − q 1 

, (9)

here for the variables of the integrals we have used the notation x −1 to denote
 x 2 , . . . , x N 

) with x k ∈ [ v k , v k ] following distribution F k , k = 2 , . . . , N . This is an in-
egral equation in ˜ v ∗1 , a function that maps v −1 and quality vectors q and r to a real
umber, and the solution holds the key to the characterization of the price equilibrium.
ndeed, we have decomposed the system in (6) –(8) into two systems: a single integral
q. (9) , and those two equations in (6) and (7) . 
5 If we divide (6) by p ∗A 

, it can easily be seen that the right-hand side is the inverse elasticity of demand, 
hich is obtained from the demand 

∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p, q, r)) d F −1 . 
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The integral Eq. (9) is independent of prices. Using the solution to (9) , we can then
proceed to solve for the equilibrium prices in (6) and (7) . We are unaware that any paper
in the extant literature of multiple qualities has decomposed the equilibrium prices 
and demand characterization in this fashion. Yet, using this decomposition, we can 

characterize the functional relationship between quality and equilibrium prices. Notice 
that because the price equilibrium in subgame ( q , r ) exists (from Caplin and Nalebuff,
1991 ), a solution to (9) must exist. 

Lemma 1. The solution of the integral Eq. (9) takes the form ˜ v ∗1 ( v −1 ; q, r) = α( q, r) −∑ N 

k=2 v k βk ( q, r) , for v k ∈ [ v k , v k ] , k = 2 , . . . , N, where the functions α( q , r ) and βk ( q ,
r ) are defined by 

α( q, r) = 

∫ 
x −1 

[ 
1 − 2 F 1 ( α( q, r) −

∑ N 

k=2 x k βk ( q, r)) 
] 
d F −1 ∫ 

x −1 
f 1 ( α( q, r) −

∑ N 

k=2 x k βk ( q, r)) d F −1 
+ 

C( r) − C( q) 
r 1 − q 1 

(10) 

βk ( q, r) = 

r k − q k 
r 1 − q 1 

, k = 2 , . . . , N. (11) 

From (6) and (7) , a firm’s qualities affect equilibrium prices of both firms. In turn,
when equilibrium prices change, the set of indifferent consumers changes accordingly. 
The composition of the quality effect on equilibrium prices, and then the effect of
equilibrium prices on the equilibrium set of indifferent consumers is the solution in 

Lemma 1 . The equilibrium set of indifferent consumers takes the linear form, so the
intercept α and all the slopes βk , k = 2 , . . . , N are functions of the qualities. 

Lemma 1 is a remarkable result. First, the solution to the integral Eq. (9) takes a
manageable form: it consists of one implicit function α( q , r ) in (10) and N − 1 explicit
(and simple) functions βk ( q , r ), k = 2 , . . . , N, in (11) . Eq. (10) is no longer an integral
equation (for a solution ˜ v ∗1 ( v −1 ; q, r) ). Eq. (10) defines implicitly one function α( q , r )
whose arguments are qualities q and r but not v −1 . 

Lemma 1 is a sort of aggregative result. The set of indifferent consumers deter-
mines firms’ market shares, and qualities determine the intercept and slopes of the 
multi-dimensional line for the set of indifferent consumers. Although the integral 
Eq. (9) can be likened to a continuum of equations, Lemma 1 says that the solution can
be aggregated into just N equations. 

From Lemma 1 , the equilibrium prices boil down to solving for the solutions of just
three equations. By substituting the expressions for (10) and (11) to the right-hand side
of (6) and (7) , we can state the following proposition (proof omitted): 
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roposition 1. In subgame ( q , r ), equilibrium prices are the solution of p ∗A 

in (12) and
 

∗
B 

in (13) : 

p ∗A 

− C( q) = 

∫ 
v −1 

F 1 ( α( q, r) − v −1 · β−1 ( q, r)) d F −1 ∫ 
v −1 

f 1 ( α( q, r) − v −1 · β−1 ( q, r)) d F −1 
( r 1 − q 1 ) (12)

p ∗B 

− C( r) = 

∫ 
v −1 

[ 1 − F 1 ( α( q, r) − v −1 · β−1 ( q, r)) ] d F −1 ∫ 
v −1 

f 1 ( α( q, r) − v −1 · β−1 ( q, r)) d F −1 
( r 1 − q 1 ) , (13)

ith α( q , r ) implicitly defined by (10) , and βk ( q, r) = 

r k −q k 
r 1 −q 1 

, k = 2 , . . . , N. 

The importance of Proposition 1 is this. The equilibrium price p ∗A 

is given by (12) , a
unction of qualities. Thus, a direct differentiation of p ∗A 

with respect to qualities yields
ll the relevant information of how any of Firm B ’s quality choices changes Firm A ’s
quilibrium price. The same applies to p ∗B 

and (13) . The common link between p ∗A 

in
12) and p ∗B 

in (13) is the implicit function (10) , the explicit functions (11) , and the
istributions of quality valuations. 

.2. Qualities and equilibrium prices 

We now determine how qualities change equilibrium prices, and begin with writing
quilibrium prices p ∗A 

in (12) and p ∗B 

in (13) as 

p ∗A 

− C( q) 
r 1 − q 1 

= G ( α, β−1 ) and 

p ∗B 

− C( r) 
r 1 − q 1 

= H ( α, β−1 ) , 

here the functions: G ( α, β−1 ) : � 

N → � , and H ( α, β−1 ) : � 

N → � are defined by 

G ≡
∫ 
v −1 

F 1 ( α− v −1 · β−1 ) d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 
and H ≡

∫ 
v −1 

[ 1 − F 1 ( α− v −1 · β−1 ) ] d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 
. (14)

he functions G and H (with their arguments omitted) are firms’ equilibrium price-cost
arkups per unit of quality difference. The numerators of G and H are, respectively,
irm A ’s and Firm B ’s demands. 
By Proposition 1 , we directly differentiate p ∗A 

with respect to Firm B ’s qualities
 i , i = 1 , . . . , N, and differentiate p ∗B 

with respect to Firm A ’s qualities q i , and these
erivatives, ∂p 

∗
A 

∂r i 
and 

∂p ∗B 

∂q i 
, are the price-reaction effects. In the Appendix, we show these

erivatives right after the proof of Lemma 1 . There, we present two intermediate results
 Lemmas 2 and 3 ) that help us to simplify the price-reaction effects. As it turns out,
roduct differentiation is determined by differences between price-reaction effects, and
he next proposition presents them. 
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Proposition 2. In subgame ( q , r ), for quality j , j = 2 , . . . , N, the difference in the price-
reaction effects can be written in two ways: 

∂p ∗B 

( q, r) 
∂q j 

− ∂p ∗A 

( q, r) 
∂r j 

= 

( r 1 − q 1 ) ∂ ∂r j 

[ ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

] 
(∫ 

v −1 
f 1 ( α− v −1 · β−1 ) d F −1 

)2 

+ Z [ C j ( q ) − C j ( r ) ] (15) 

= −
( r 1 − q 1 ) ∂ ∂q j 

[ ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

] 
(∫ 

v −1 
f 1 ( α− v −1 · β−1 ) d F −1 

)2 + Z [ C j ( q ) − C j ( r ) ] , (16) 

where 

Z = 

1 + H( α, β−1 ) 
∫ 
v −1 

f ′ 1 ( α−v −1 ·β−1 ) d F −1 ∫ 
v −1 

f 1 ( α−v −1 ·β−1 ) d F −1 

3 −G ( α, β−1 ) 
∫ 
v −1 

f ′ 1 ( α−v −1 ·β−1 ) d F −1 ∫ 
v −1 

f 1 ( α−v −1 ·β−1 ) d F −1 

, 

and C j denotes the j th partial derivative of C. 

The proposition says that the difference in firms’ price-reaction effects of a quality 

is determined by (i) how the quality changes the total density of the equilibrium set
of indifferent consumers, 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 , and (ii) by the difference in the
marginal costs of quality [C j ( q) − C j ( r)] . Indeed, the sum of the markups per unit of
quality difference is G + H = { 

∫ 
v −1 

f 1 ( ̃  v ∗1 ) dF −1 } −1 . The first term in each of two equiva-
lent expressions in Proposition 2 is the derivative of the sum of markups with respect to
a quality j , j = 2 , . . . , N . This is point (i). Also, Firm A ’s quality on the total density of
the set of indifferent consumers is equal and opposite to that of Firm B ’s, so this accounts
for the equivalence of (15) and (16) . For (ii), we just note that the second term in each of
the two expressions is the difference in firms’ marginal costs of a quality adjusted by Z . 

Finally, when f 1 is a step function, f ′ 1 ( α− v −1 · β−1 ) = 0 , expressions (15) and
(16) simplify to the term related to the difference in marginal costs: 

∂p ∗B 

( q, r) 
∂q j 

− ∂p ∗A 

( q, r) 
∂r j 

= 

1 
3 [ C j ( q ) − C j ( r ) ] . (17) 

That is, when the differentiated dimension has a uniform-distribution valuation, the 
leading case in the literature, each firm’s quality raises the markup by the same amount,
so the relative price-reaction effects fall entirely on the marginal-cost difference. 
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.3. Equilibrium qualities 

Now we characterize equilibrium qualities. When firms produce the same qualities,
 = r, the continuation is a strict Bertrand game, so each firm makes a zero profit.
learly, there is no equilibrium in which firms choose identical qualities. We use the
onvention that firms’ qualities differ in the first dimension, q 1 < r 1 . The profit functions
n Stage 1 in terms of qualities are: 

πA 

( p ∗A 

( q, r) , p ∗B 

( q, r); q, r) = 

∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗, q, r)) d F −1 × [ p ∗A 

( q, r) − C( q) ] (18)

πB 

( p ∗A 

( q, r) , p ∗B 

( q, r); q, r) = 

∫ 
v −1 

[ 1 − F 1 ( ̃  v 1 ( v −1 ; p ∗, q, r)) ] d F −1 

×[ p ∗B 

( q, r) − C( r) ] , (19)

here p ∗A 

( q, r) and p ∗B 

( q, r) are equilibrium prices in Stage 2, and ˜ v 1 ( v −1 ; p ∗, q, r) ≡
p ∗B 

( q ,r) −p ∗A 

( q ,r) 
r 1 −q 1 

−
∑ N 

k=2 v k 
r k −q k 
r 1 −q 1 

is the set of equilibrium indifferent consumers. Given
ubgame-perfect equilibrium prices, p 

∗, equilibrium qualities are q ∗ and r ∗ that are
utual best responses: 

q ∗ ≡ ( q ∗1 , . . . , q ∗N 

) = argmax 

q 

∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 × [ p ∗A 

( q, r ∗) − C( q) ] 

r ∗ ≡ ( r ∗1 , . . . , r ∗N 

) = argmax 

r 

∫ 
v −1 

[ 1 − F 1 ( ̃  v 1 ( v −1 ; p ∗( q ∗, r) , q ∗, r)) ] d F −1 

×[ p ∗B 

( q ∗, r) − C( r) ] , 

here p ∗( q, r) ≡ ( p ∗A 

( q, r) , p ∗B 

( q, r)) . 
Qualities q i , i = 1 , . . . , N, affect Firm A ’s profit (18) in three ways. First, they have

 direct effect through costs and demand. Second, they affect the profit through Firm
 ’s own equilibrium price p ∗A 

( q, r) . Third, they affect the profit through Firm B ’s
quilibrium price p ∗B 

( q, r) , captured by ∂ p ∗B 

/∂ q i . Because the equilibrium prices p ∗A 

( q, r)
nd p ∗B 

( q, r) are mutual best responses in the price subgame in Stage 2, the envelope
heorem applies. That is, Firm A ’s qualities q i , i = 1 , . . . , N, have second-order effects on
ts own profit (18) through its own equilibrium price; the second effect can be ignored. 

The first-order derivative of (18) with respect to q i is 

−
[ ∫ 

v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 

] 
C i ( q) 

+ 

∂ 

∂q i 

{ ∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 

} 

× [ p ∗A 

( q, r ∗) − C( q) ] ︸ ︷︷ ︸ 
effects of quality q i on cost and demand 

(20)
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∂ 

∂p ∗B 

{ ∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 

} 

∂p ∗B 

∂q i 
× [ p ∗A 

( q, r ∗) − C( q) ] ︸ ︷︷ ︸ 
effect of quality on Firm B ’s price 

, 

i = 1 , . . . , N, (21) 

where the partial derivative of profit with respect to p A 

has been ignored. The terms in
(20) describe how a quality affects cost and demand, whereas the term in (21) describes
the strategic effect of a quality on the rival’s price. We can also write out the derivative
of profit (19) with respect to r i to obtain a similar expression. For brevity, we have
omitted the expressions. 

We now state the main result on equilibrium qualities. We obtain the set of equations
in the next proposition by first simplifying the first-order derivatives and then setting 
them to zero. For simplification, we use the basic demand function (3) and equilibrium 

prices (12) and (13) in Proposition 1 , and finally drop common factors in the first-order
derivatives. (Details are in the proof.) 

Proposition 3. For the quality-price, multistage game in Section 2.2 , equilibrium qualities 
( q ∗, r ∗) (under the convention that q ∗1 < r ∗1 ) must satisfy the following 2 N equations: 

∂p ∗B 

∂q 1 
+ 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) ̃  v ∗1 d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 
− C 1 ( q ∗) = 0 (22) 

∂p ∗A 

∂r 1 
+ 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) ̃  v ∗1 d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 
− C 1 ( r ∗) = 0 , (23) 

and for j = 2 , . . . , N, 

∂p ∗B 

∂q j 
+ 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) v j d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 
− C j ( q ∗) = 0 (24) 

∂p ∗A 

∂r j 
+ 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) v j d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 
− C j ( r ∗) = 0 , (25) 

where α and βj are the functions in (10) and (11) , respectively, and ˜ v ∗1 is ˜ v ∗1 ( v −1 ; q ∗, r ∗) ,
the solution of the integral equation in Lemma 1 . 

The properties of equilibrium qualities in (22) and (24) can be explained as follows. 
There are two effects. The first term in each expression is the price-reaction effect : it
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escribes how Firm A ’s qualities q 1 and q j , j = 2 , . . . , N affect the rival’s price in the
ontinuation subgame (see (33) to (36) in the Appendix). 

The second effect concerns the average valuation of the j th quality among the
quilibrium set of indifferent consumers—the integrals in (22) and (24) —and the j th
uality’s marginal contribution to the per-unit cost, C j ( q) ≡ ∂C( q) 

∂q j 
. These two terms

ogether form the Spence effect . 6 Indeed, Spence (1975) shows that a profit-maximizing
rm chooses the efficient quality for the marginal consumer (and then raises the price to
xtract the marginal consumer’s surplus). 7 The same price-reaction and Spence effects
pply to Firm B ’s equilibrium quality choices described in (23) and (25) . 

Because the two firms face the same equilibrium set of indifferent consumers, the
pence effect pushes them to choose the same qualities. The price-reaction effects gener-
lly put the firms in a race situation. Prices are strategic complements, so each firm wants
o use its qualities to raise the rival’s price. The price-reaction effect dictates how much
 firm’s equilibrium quality deviates from the efficient quality for the equilibrium set of
ndifferent consumers. The firm that has a stronger price-reaction effect deviates more. 

If the two firms were playing another game in which prices and qualities were chosen
oncurrently (one with merged Stages 1 and 2 in the extensive form in Section 2.2 ),
he price-reaction effect would vanish. Then the Spence effect would dictate equilibrium
trategies. Each firm would choose qualities optimal for the average valuations of the
ommon set of marginal consumers, so would choose the same level for each quality
ttribute. Firms must then set their prices at marginal cost. (For an illustration of a
ame with firms choosing prices and qualities concurrently, see Ma and Burgess (1993) .)

We have stated Proposition 3 in terms of a set of equations, so we implicitly assume
hat firms do not set qualities at zero. If “corner” equilibrium qualities are to be included,
he equalities in the Proposition will be replaced by weak inequalities. If firms choose
o have zero level of a certain quality, then (trivially) product differentiation does not
appen in that quality. Obviously, when a quality valuation support has a high lower
ound, firms will find it optimal to produce a strictly positive quality, so zero quality
an be avoided simply by raising the support. 

.4. Quality differentiation 

Proposition 3 draws a connection between the price-reaction effects and qualities’
arginal contributions to unit production cost. Recalling that C j ( q ) ≡ ∂ C ( q )/ ∂ q j , we

tate this formally: 
6 In the literature, various authors have used such terms as demand and market-share effects to describe 
he direct effect of a quality (or a location) on marginal consumers. See, for example, Tirole (1988 , pp. 
81–2) and Vandenbosch and Weinberg (1995 , p. 226). These earlier works, however, have assumed either 
ero or linear quality cost, so must limit the quality to a bounded interval. 
7 Let P ( D , q ) be the price a firm can charge when it sells D units of its go o d at quality q = ( q 1 , . . . , q N 

) . 
et C ( D , q ) be the cost when the firm produces D units at quality q . Profit is D P ( D , q) − C( D, q) . The 
rofit-maximizing quality q i is given by D 

∂P 
∂q i 

= 

∂C 

∂q i 
. Hence, the quality valuation of the marginal consumer 

∂P 
∂q i 

is equal to the marginal contribution of quality i to per-unit cost ∂ C/∂ q i 
D 

. See Spence (1975 , p.419; 
q. (8) ). 
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Corollary 1. At the equilibrium ( q ∗, r ∗), a firm’s j th quality contributes more to its own
unit production cost than a rival’s j th quality contributes to the rival’s unit production cost
if and only if the firm’s price-reaction effect of that quality is stronger than the rival’s.
That is, for each j = 2 , . . . , N, the following are equivalent: 

(i) C j ( q ∗) < C j ( r ∗), 
(ii) ∂p 

∗
B 

( q ∗,r ∗) 
∂q j 

< 

∂p ∗A 

( q ∗,r ∗) 
∂r j 

, 

(iii) the two equivalent expressions on the right-hand side of (15) and (16) in 

Proposition 2 are negative at equilibrium ( q ∗, r ∗) . 

Corollary 1 offers a general p ersp ective. What matter are not quality levels. The key
is how each quality contributes to the unit production cost. From Proposition 3 we have
for any quality: 

∂p ∗B 

( q ∗, r ∗) 
∂q j 

− C j ( q ∗) = 

∂p ∗A 

( q ∗, r ∗) 
∂r j 

− C j ( r ∗) . (26) 

The statements in the corollary simply reflect this property: how product quality raises 
the rival’s price and its own unit production cost must be equalized among the two firms
in an equilibrium. 

However, the corollary does not directly address the equilibrium quality levels. We 
have used a general cost function, so it is quite possible that C j ( q ∗) = C j ( r ∗) but the
qualities q ∗j and r ∗j are different. 8 Sharper results can be obtained from the following 
(with proof omitted): 

Corollary 2. Suppose that the cost function C is additively separable: 

C( q) = C( q 1 , q 2 , . . . , q N 

) = γ1 ( q 1 ) + γ2 ( q 2 ) + · · · + γN 

( q N 

) , 

where γi is an increasing, differentiable and strictly convex function, so C i ( q) = γ′ 
i ( q i ) ,

i = 1 , 2 , . . . , N . In an equilibrium ( q ∗, r ∗), for j = 2 , . . . , N, 

q ∗j < r ∗j ⇐⇒ 

∂p ∗B 

( q ∗, r ∗) 
∂q j 

< 

∂p ∗A 

( q ∗, r ∗) 
∂r j 

. 

With separable cost, a quality’s contribution to the unit production cost is indepen- 
dent of other qualities. A firm having a stronger price-reaction effect at a quality than
its rival’s must choose a higher quality than the rival’s quality. Notice that the Corollary
gives a sufficient condition. In particular, when a cost function is separable in some, but
not all, qualities, differentiation in some qualities may still be manifested according to 
the relative strength of the price-reaction effects. 
8 For example, if the cost function is C( q 1 , q 2 ) = q 2 1 + θq 1 q 2 + 

1 
2 q 

2 
2 , for some parameter θ � = 0, then 

C 1 ( q 1 , q 2 ) = 2 q 1 + θq 2 , and C 1 ( r 1 , r 2 ) = 2 r 1 + θr 2 . Even if 2 q 1 + θq 2 = 2 r 1 + θr 2 , q i may not be equal to 
r i , i = 1 , 2 . 
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In the literature, the separable-cost assumption has been adopted. According to
orollaries 1 and 2 the fundamental issue is how a quality contributes to the production
ost. For a model with many qualities, a quality’s contribution to production cost
epends on the entire quality profile, and a cost function that assumes away cost
pillover is restrictive. We illustrate this point by some examples below, but first we
onsider specific quality-valuation density functions commonly used in the literature: 

orollary 3. Suppose that f 1 is a step function, so f ′ 1 = 0 almost everywhere. In an equi-
ibrium ( q ∗, r ∗), C j ( q ∗) = C j ( r ∗) and 

∂p ∗B 

( q ∗,r ∗) 
∂q j 

= 

∂p ∗A 

( q ∗,r ∗) 
∂r j 

, j = 2 , . . . , N . Furthermore,
f C is additively separable, then q ∗j = r ∗j , j = 2 , . . . , N ; in other words, qualities 2 through
 are nondifferentiated. 

Corollary 3 presents a striking result. Recall that in an equilibrium, there must be
t least one quality for which firms produce at different levels. This is our convention
or labeling that equilibrium differentiated quality as quality 1. Now if consumers’
aluations of quality 1 is a step function (of which the uniform distribution is a common
xample in the literature), Proposition 2 says that the difference in price-reaction effects,
rom (17) , is: ∂p 

∗
B 

( q,r) 
∂q j 

− ∂p ∗A 

( q,r) 
∂r j 

= 

1 
3 [ C j ( q ) − C j ( r ) ] , j = 2 , . . . , N . Corollary 1 also says

hat this price-reaction difference is equal to [ C j ( q ) − C j ( r ) ] , j = 2 , . . . , N (see (26) ), so
e have C j ( q ) = C j ( r ) , j = 2 , . . . , N . Next, if the cost function is additively separable
another common assumption in the literature), Corollary 2 applies, so in equilibrium,
rms produce identical qualities 2 through N ! 
Uniform valuation distributions and additively separable cost are the drivers

or quality nondifferentiation. Here is a simple example to show that even when
aluations are uniformly distributed, cost consideration will give rise to equilib-
ium product differentiation. Use the following cost function for two qualities:
( q 1 , q 2 ) = 

1 
2 q 

2 
1 + θq 1 q 2 + 

1 
2 q 

2 
2 . The marginal costs are C 1 ( q 1 , q 2 ) = q 1 + θq 2 , and

 2 ( q 1 , q 2 ) = θq 1 + q 2 . Supp ose that f 1 is a step function, so firms’ price-reaction effects
atisfy: ∂p ∗B 

∂q 2 
− ∂p ∗A 

∂r 2 
= 

1 
3 [ C 2 ( q 1 , q 2 ) − C 2 ( r 1 , r 2 ) ] (see (17) ). According to Corollary 3 ,

 2 ( q ∗1 , q ∗2 ) = C 2 ( r ∗1 , r ∗2 ) . In other words, θq ∗1 + q ∗2 = θr ∗1 + r ∗2 , and θ( r ∗1 − q ∗1 ) = q ∗2 − r ∗2 .
y assumption, we have q ∗1 < r ∗1 in the equilibrium. We conclude that q ∗2 > r ∗2 if and only

f θ > 0. When qualities have positive spillover on cost ( θ > 0), then Firm A ’s product has
ne superior quality and one inferior quality compared to Firm B ’s. By contrast, when
ualities have negative spillover ( θ < 0), Firm A ’s qualities are always lower than Firm B ’s.

Whereas Corollary 3 presents a set of sufficient conditions for equilibria with mini-
um differentiation, we also present, as an addendum, a set of necessary conditions in
orollary 5 at the end of the Appendix. 
Corollary 3 has used the convention that, in the equilibrium, q ∗1 < r ∗1 . The following

xplains the scope of the convention. 
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Corollary 4. Consider the game defined by valuation densities f i , i = 1 , . . . , N, and the
separable cost function C = 

∑ N 

i =1 γi . Suppose that at least one of the densities is a step
function. 

(i) In every subgame-perfect equilibrium, firms choose an identical level for at least one 
quality. 

(ii) If in an equilibrium ( q ∗, r ∗) there is differentiation in the j th quality, so that q ∗j 	 = r ∗j ,

and f j is a step function, j = 1 , . . . , N, then there is no differentiation in any other
quality, so q ∗k = r ∗k , for k = 1 , 2 , . . . , N, and k 	 = j 

(iii) For the special case of N = 2 , in every subgame-perfect equilibrium, one and only
one quality will be differentiated. 

In this corollary, we have gotten rid of the convention that in equilibrium Firm A
chooses a first quality different from Firm B ’s. Consider all equilibria of the multistage
game, given valuation densities and the cost function. The effect of any uniform quality- 
valuation distribution and the separable cost function is strong. Suppose that the j th 
quality has a uniform valuation distribution. If it so happens that in equilibrium firms
cho ose q ∗j 	 = r ∗j , then Corollary 3 applies to the j th quality, so all equilibrium qualities
except the j th must be identical. The only case in which equilibrium differentiation 

happens in more than one quality is when q ∗j = r ∗j . Then Corollary 3 does not apply to
the j th quality. But this means that there is (at least) one nondifferentiated quality. 

Corollary 4 clarifies the “Max-Min-Min...-Min” results in Irmen and Thisse (1998) . 
They consider an N -dimensional Hotelling model (which can be translated into our 
N -dimensional quality model). Consumers’ locations are uniformly distributed on the 
N -dimensional unit hyp ercub e. Consumers’ mismatch disutility is the (weighted) N -
dimensional Euclidean distance. Irmen and Thisse derive a subgame-perfect equilibrium 

in which the two firms choose the maximum distance between themselves in one 
dimension but zero distance in all other dimensions (p. 90, Proposition 2 ). Although 

Corollary 4 does not address existence of equilibria, it is consistent with the Irmen-
Thisse result. To see this, we can rewrite Corollary 4 as follows: if M of the qualities
have uniformly distributed valuations, 1 ≤M ≤N , then at least min { M, N − 1 } qualities
will be nondifferentiated. This is a slightly more general result than in Irmen and Thisse
(1998) . In their model, all valuations are uniformly distributed, so M = N . Therefore
exactly N − 1 qualities will be nondifferentiated. 

Vendorp and Majeed (1995) and Lauga and Ofek (2011) are two related papers in
the vertical differentiation literature. They use a linear cost function, and restrict each 

of two qualities to be in its own bounded interval. In the notation here, in b oth pap ers,
N = 2 , valuation density f i is uniform, quality q i is to be chosen from interval [ q 

i 
, q i ] ,

i = 1 , 2 , and unit production cost at quality q is C( q) = c 1 q 1 + c 2 q 2 , for constants c 1 
and c 2 . (In fact, the values of c 1 and c 2 are set at 0 in some cases.) The linear cost
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unction does not satisfy our assumption of strict convexity. Equilibria with maximum
r minimum differentiation arise due to corner solutions of firms’ profit maximization. 9 

We can interpret these results in terms of price-reaction and Spence effects. First,
ccording to Corollary 3 , because quality valuations are uniformly distributed, price-
eaction effects differ according to the marginal-cost difference, independent of the
ensity of the set of indifferent consumers. Second, because the cost is linear, a qual-
ty’s marginal contribution to unit production cost C i ( q ) is constant. The Spence
ffect generically does not specify an interior solution under linear cost. Hence, the
aximum-minimum differentiation results are driven by the combination of linear costs

nd uniform valuation distributions. 
Garella and Lambertini (2014) use a discontinuous cost function: a firm producing z

nits of the go o d at quality ( q 1 , q 2 ) has a total cost of cz + T ( q 1 , q 2 ) if q 1 > q 1 , but only
 ( q 1 , q 2 ) if q 1 = q 1 , where q 1 > 0 and c > 0 are fixed parameters, and T is increasing
hen q 1 > q 1 . Consumers have homogenous preferences on the second quality, but their
aluations on the first quality follow a uniform distribution. They derive equilibria in
hich firms choose different levels in both qualities. We use a continuous cost function,
o our results do not apply to their model. 

. Examples on two quality dimensions 

In this section, we present two sets of examples of a model with two quality
imensions ( N = 2 ). Besides verifying results, we also use these examples to ad-
ress existence of equilibria. For these examples, we assume that cost is quadratic:
( q 1 , q 2 ) = 

1 
2 q 

2 
1 + θq 1 q 2 + 

1 
2 q 

2 
2 , which exhibits a positive cost spillover if and only if

> 0, and which is separable if θ = 0 . Next, we assume that consumers’ valuations of
oth qualities belong to the interval [1, 2], and that v 1 follows the uniform distribution.
onsumers’ valuation on the second quality, v 2 , follows a trapezoid distribution. For
 parameter k , −1 ≤ k ≤ 1 , the density function is f 2 ( v 2 ) = 1 − k + 2 k( v 2 − 1) (so f 2
s a straight line, and has densities 1 − k at v 2 = 1 , and 1 + k at v 2 = 2 ), with the
orresponding distribution F 2 ( v 2 ) = (1 − k)( v 2 − 1) + k( v 2 − 1) 2 . Notice that at k = 0 ,
he distribution is uniform, and at k = 1 , the density is triangular on [1,2]. 

Solving for α( q , r ) in (10) in Lemma 1 , we obtain a unique solution (see the
athematica program in the online supplements): 

α( q, r) = 

[
3 q 1 (6 + q 1 ) + 2(9 + k) q 2 + 3 q 2 2 − 3 r 1 (6 + r 1 ) − 2(9 + k) r 2 − 3 r 2 2 − 6 θ( q 1 q 2 + r 1 r 2 ) 

18( q 1 − r 1 ) 

]
, (27)

hich will be used in the following two subsections. 
9 However, for some parameter configurations, Vandenbosch and Weinberg (1995) exhibit an interior choice 
f one quality. 
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4.1. Quadratic cost function and two uniform distributions 

The first set of examples uses the general quadratic cost function with spillover 
( θ 	 = 0) and two uniform distributions of consumers’ valuations ( k = 0 ). Setting k = 0
and rearranging terms in (27) , we obtain 

α( q , r) = 

1 
6 

[
q 2 1 + q 2 ( 6 + q 2 ) − r 2 ( 6 + r 2 ) + 2 q 1 ( 3 + θq 2 ) − r 1 ( 6 + r 1 + 2 θr 2 ) 

q 1 − r 1 

]
. (28) 

The equilibrium set of marginal consumers is 

˜ v ∗1 ( v 2 ; q, r) = 

[
q 2 1 + q 2 ( 6 + q 2 ) − r 2 ( 6 + r 2 ) + 2 q 1 ( 3 + θq 2 ) − r 1 ( 6 + r 1 + 2 θr 2 ) 

6( q 1 − r 1 ) 

]
−r 2 − q 2 
r 1 − q 1 

v 2 . 

The expressions for G ( α, β2 ) and H ( α, β2 ) are 

G ( α, β2 ) = 

[
q 2 1 + q 2 ( q 2 − 3 ) − r 2 ( r 2 − 3 ) + 2 θq 1 q 2 − r 1 ( r 1 + 2 θr 2 ) 

6( q 1 − r 1 ) 

]

H ( α, β2 ) = 1 −
[
q 2 1 + q 2 ( q 2 − 3 ) − r 2 ( r 2 − 3 ) + 2 θq 1 q 2 − r 1 ( r 1 + 2 θr 2 ) 

6( q 1 − r 1 ) 

]
. 

Price effects are: 

∂p ∗A 

∂r 1 
= G + ( r 1 − q 1 ) 

∂G 

∂r 1 
= 

r 1 + θr 2 
3 , 

∂p ∗B 

∂q 1 
= −H + ( r 1 − q 1 ) 

∂H 

∂q 1 
= 

−3 + q 1 + θq 2 
3 

∂p ∗A 

∂r 2 
= ( r 1 − q 1 ) 

∂G 

∂r 2 
= 

−3 + 2 r 2 + 2 θr 1 
6 , and 

∂p ∗B 

∂q 2 
= ( r 1 − q 1 ) 

∂H 

∂q 2 
= 

−3 + 2 q 2 + 2 θq 1 
6 . (29) 

A firm’s influence on the rival’s price is independent of the rival’s qualities, a consequence
of the uniform-distribution assumption. We verify (17) : 

∂p ∗B 

( q, r) 
∂q 2 

− ∂p ∗A 

( q, r) 
∂r 2 

= 

C 2 ( q 1 , q 2 ) − C 2 ( r 1 , r 2 ) 
3 = 

q 2 − r 2 + θ( q 1 − r 1 ) 
3 . 

Solving the system of equations of the first-order conditions in Proposition 3 we find: 

q ∗1 = 

(
3 
4 

)(
1 − 2 θ
1 − θ2 

)
; q ∗2 = 

(
3 
4 

)(
2 − θ

1 − θ2 

)
; r ∗1 = 

(
3 
4 

)(
3 − 2 θ
1 − θ2 

)
; r ∗2 = 

(
3 
4 

)(
2 − 3 θ
1 − θ2 

)
. 

(30) 
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ny equilibrium qualities must be in (30) . Moreover, substituting the qualities in
30) into the expressions for the price effects, ∂p 

∗
A 

( q,r) 
∂r 2 

and 

∂p ∗B 

( q,r) 
∂q 2 

, in (29) , respectively,
e verify that price effects of the second qualities are identical at an equilibrium. 
Finally, for some specific values of the parameter θ, we have 

(1) If θ = 0 , q ∗1 = 

3 
4 q ∗2 = 

3 
2 r ∗1 = 

9 
4 r ∗2 = 

3 
2 

(2) If θ = 

1 
4 , q ∗1 = 

2 
5 q ∗2 = 

7 
5 r ∗1 = 2 r ∗2 = 1 

(3) If θ = −1 
2 , q ∗1 = 2 q ∗2 = 

5 
2 r ∗1 = 4 r ∗2 = 

7 
2 . (31)

Case (1) in (31) illustrates Corollaries 3 and 4 (iii) : with a separable cost function and
niform distributions, only the first dimension of quality is differentiated. Moreover, in
quilibrium, the two firms must cho ose q ∗2 = r ∗2 = E [ v 2 ] . This is the same result in Irmen
nd Thisse (1998) . In Case (2), for positive cost spillover, Firm A produces a superior sec-
nd quality than Firm B . Conversely, in Case (3), for negative cost spillover, Firm A pro-
uces an inferior second quality than Firm B . Cases (2) and (3) confirm that the nondiffer-
ntiation result in Irmen and Thisse (1998) depends on the separable mismatch disutility.

.2. Separable quadratic cost function, and one uniform distribution and one trapezoid 

istribution 

This second set of examples uses a separable quadratic cost function ( θ = 0 ), and one
niform distribution and one trapezoid distribution ( k 	 = 0). Setting θ at 0 in (27) , we
btain the equilibrium set of marginal consumers: 

˜ v ∗1 ( v 2 ; q, r) = 

[
3 q 1 (6 + q 1 ) + 2(9 + k) q 2 + 3 q 2 2 − 3 r 1 (6 + r 1 ) − 2(9 + k) r 2 − 3 r 2 2 

18( q 1 − r 1 ) 

]
−r 2 − q 2 
r 1 − q 1 

v 2 . 

sing equation ˜ v ∗1 ( v 2 ; q, r) to compute the equilibrium prices p ∗A 

in (12) and p ∗B 

in (13) ,
e derive the profits as functions of qualities and the parameter k . We then solve the
ystem of equations of the first-order conditions with respect to the qualities to obtain: 

−1 ≤ k ≤ 1 , q ∗1 = 

3 
4 q ∗2 = 

3 
2 + 

k 

6 r ∗1 = 

9 
4 r ∗2 = 

3 
2 + 

k 

6 
(4) If k = 0 , q ∗1 = 

3 
4 q ∗2 = 

3 
2 r ∗1 = 

9 
4 r ∗2 = 

3 
2 

(5) If k = 1 , q ∗1 = 

3 
4 q ∗2 = 

3 
2 + 

1 
6 r ∗1 = 

9 
4 r ∗2 = 

3 
2 + 

1 
6 . (32)

The results are consistent with Corollaries 3 and 4 (iii) . Because q ∗1 < r ∗1 , and f 1 is
niform, the second quality dimension must not be differentiated for any members of



402 F. Barigozzi, C.-t.A. Ma / International Journal of Industrial Organization 61 (2018) 380–412 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the trapezoid distributions. Solution (4) matches case (1) ( θ = 0 ) of (31) in the previous
subsection. In fact, the consequence of a valuation distribution that puts more density 

on higher valuations than the uniform is higher equilibrium quality q ∗2 (= r ∗2 ) . Also, in
Solution (5), firms have equal shares of the market ( α = 

3 
2 , and ˜ v ∗1 ( v 2 ; q ∗, r ∗) = α); Firm

A sells a product with a lower quality at a lower price, and the opposite is true for Firm
B : p ∗A 

= 2 . 42014 < p ∗B 

= 4 . 67014 . However, because unit costs are increasing in qualities,
profits are the same for the two firms: π∗

A 

= π∗
B 

= 0 . 375 . 

4.2.1. Existence of equilibria 

Our characterization results can be interpreted as necessary conditions for subgame- 
perfect equilibria. Our results do not provide a proof of the existence of equilibria. The
general difficulty regarding existence has to do with multiple qualities that maximize 
profits. Consider for now just the first quality. For some given Firm B ’s quality r 1 , Firm
A ’s profit-maximizing quality may not be unique; say, they are qualities q ′ 1 and q ′′ 1 , and
q ′ 1 < r 1 < q ′′ 1 (but any convex combination of q ′ 1 and q ′′ 1 does not maximize profit). For
other values of r 1 , Firm A 

′ s profit-maximizing quality may be unique, but it may be
larger than r 1 , or it may be smaller. Thus, the requirement that a candidate equilibrium
has q 1 smaller than r 1 may be difficult to verify. We are unaware of results for the
existence of fixed points that serve as mutual quality best responses. 

Nevertheless, our results allow us to construct candidate equilibria, as in the previous 
two subsections. Therefore, one may verify that they are mutual b est resp onses. We have
in fact done that for Solution (5) in the previous subsection: at k = 1 for the trapezoid
distribution ( q 1 , q 2 ) = ( 3 4 , 

3 
2 + 

1 
6 ) and ( r 1 , r 2 ) = ( 9 4 , 

3 
2 + 

1 
6 ) are mutual b est resp onses. To

do so we have written a Mathematica program to compute profits πA 

( q 1 , q 2 ; r ∗1 , r ∗2 ) and 

πB 

( r 1 , r 2 ; q ∗1 , q ∗2 ) in (18) and (19) for all demand configurations. 10 The program is in the 
online supplement. 

It is important to note that some candidate equilibria may fail to be equilibria. For
the case of k = 1 in the previous subsection, another candidate equilibrium could have
firms producing identical qualities in the first dimension (valuations following a uniform 

distribution), but different qualities in the second (valuations following a trapezoid 

distribution). We have used Mathematica to compute such a candidate equilibrium. The 
numerical method yields ( q ∗1 , q ∗2 ) = (1 . 50 , 0 . 62) , and ( r ∗1 , r ∗2 ) = (1 . 50 , 1 . 96) . However, our
computation indicates that Firm A has a profitable deviation. In other words, for k = 1
there is no equilibrium in which firms produce identical qualities in the dimensions 
where valuations are uniform. 
10 We make sure that for any combination of q i and r i , valuations of the indifferent consumer ˜ v ∗1 ( v 2 ; q, r) 
must reside in [1, 2] as v 2 varies over [1, 2]. The Mathematica program computes max 

q 1 ,q 2 
πA 

( q 1 , q 2 ; r ∗1 , r 
∗
2 ) at 

r ∗1 = 

9 
4 , r 

∗
2 = 

5 
3 . (We do not place any restriction on q 1 or q 2 .) We have found that indeed the maximum 

profit is achieved at ( q 1 , q 2 ) = ( 3 4 , 
5 
3 ) . Then we p erform the corresp onding computation for Firm B ’s profit 

and have found that the maximum profit is achieved at ( r 1 , r 2 ) = ( 9 4 , 
5 
3 ) . 
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. Concluding remarks 

We reexamine the principle of product differentiation relaxing price competition in
he classical quality-price game. The environment for analysis in our model is more
eneral than existing works. Yet, we are able to characterize equilibria without having to
olve for equilibria explicitly. Product quality is used by each firm to raise a rival firm’s
quilibrium price, so firms engage in a race. A product quality’s contribution to marginal
osts is equal among firms when firms are equal rivals in this race. Generally, firms have
ifferent capabilities of raising the rival’s equilibrium price, due to nonuniform consumer
aluations or cost spillover, so product differentiation tends to be common. The outcome
f minimum differentiation in all but one dimension in earlier works can be attributed
o consumers’ quality valuations (or location) being uniformly distributed and quality
ost (or mismatch disutility) being separable. 

Various open questions remain. First, we have used only necessary conditions of
quilibria, not conditions of existence of equilibria. Existence of price equilibrium in
ny quality subgame is guaranteed by the logconcavity of the valuation functions (as in
aplin and Nalebuff, 1991 ). Further restrictions may need to b e imp osed for existence of

he equilibrium qualities (as in the case of Anderson et al. (1997) for the single-dimension
otelling model with a general location distribution and quadratic transportation).
ur necessary conditions of equilibria characterize all candidate equilibria. Hence, one
ay develop algorithms to check if a candidate equilibrium constitutes b est resp onses.
niqueness of equilibrium seems too much to expect in our general setting, but our

haracterization applies to each equilibrium. 
Second, we assume linear preferences: each quality benefits a consumer at a constant

ate. The linearity assumption is so ubiquitous in modern microeconomics that relaxing
his is both challenging and consequential. Third, our approach does make use of the
ndependence of consumer valuations across different qualities. However, there are
ctually two ways for qualities to become related. We have already incorporated one
ay—that the cost function allows for positive or negative spillover between qualities.
orrelation in valuations is the other way. A full model that allows valuation correlation
nd cost spillover will be for future research. 

Fourth, we have assumed that consumers must buy a product from a firm. Although
he “fully-covered-market” assumption is convenient, it obviously imposes restrictions
n specific applications. Also, in a single dimensional model without production costs,
xistence of duopoly equilibria is not easily established when consumers have the nonpur-
hase option ( Benassi et al., 2015 ). The consumer nonpurchase option can be formally
ikened to a model with three firms: the two original firms, and one (new but artificial)
rm that produces a good at zero quality and sells it a zero price. This covered-market
ssue is related to the duopoly assumption. If there are more than two firms, obviously
trategic interactions become complex. Future research may shed light on these problems.
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App endix A. Pro ofs of lemmas, prop ositions, and corollaries 

Proof of Lemma 1. Equilibrium prices p ∗A 

and p ∗B 

depend on qualities ( q , r ), so the
right-hand side of (8) is (affine) linear in v 2 , . . . , v N 

. The solution ˜ v ∗1 ( v −1 ; q, r) of (9) also
satisfies (8) , so it must also be linear in v 2 , . . . , v N 

. Therefore, we write ˜ v ∗1 ( v −1 ; q, r) =
α( q, r) −

∑ N 

k=2 v k βk ( q, r) , v k ∈ [ v k , v k ] , k = 2 , . . . , N for some functions α, and βk ,
k = 2 , . . . , N . Then we substitute ˜ v ∗1 ( v −1 ; q, r) by α( q, r) −

∑ N 

k=2 v k βk ( q, r) in (9) to get 

α( q, r) −
N ∑ 

k=2 

v k βk ( q, r) = 

∫ 
x −1 

[ 
1 − 2 F 1 ( α( q, r) −

∑ N 

k=2 x k βk ( q, r)) 
] 
d F −1 ∫ 

x −1 
( f 1 ( α( q, r) −

∑ N 

k=2 x k βk ( q, r)) d F −1 

+ 

C( r) − C( q) 
r 1 − q 1 

−
N ∑ 

k=2 

v k 
r k − q k 
r 1 − q 1 

, for v k ∈ [ v k , v k ] , k = 2 , . . . , N. 

Because this is true for every v 2 , . . . , v N 

, Eqs. (10) and (11) in the lemma follow. �
Steps and Lemmas for Proposition 2 : 
By partially differentiating p ∗A 

and p ∗B 

in (12) and (13) with respect to qualities, we
obtain 

∂p ∗A 

∂r 1 
= 

∂( r 1 − q 1 ) G ( α, β−1 ) 
∂r 1 

= G ( α, β−1 ) + ( r 1 − q 1 ) 
[ 
∂G 

∂α

∂α

∂r 1 
+ 

N ∑ 

k=2 

∂G 

∂βk 

∂βk 

∂r 1 

] 
(33) 

∂p ∗B 

∂q 1 
= 

∂( r 1 − q 1 ) H ( α, β−1 ) 
∂q 1 

= −H ( α, β−1 ) + ( r 1 − q 1 ) 
[ 
∂H 

∂α

∂α

∂q 1 
+ 

N ∑ 

k=2 

∂H 

∂βk 

∂βk 

∂q 1 

] 
, 

(34) 

and 

∂p ∗A 

∂r j 
= ( r 1 − q 1 ) 

∂G ( α, β−1 ) 
∂r j 

= ( r 1 − q 1 ) 
[
∂G 

∂α

∂α

∂r j 
+ 

∂G 

∂βj 

∂βj 

∂r j 

]
, j = 2 , . . . , N (35) 
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∂p ∗B 

∂q j 
= ( r 1 − q 1 ) 

∂H ( α, β−1 ) 
∂q j 

= ( r 1 − q 1 ) 
[
∂H 

∂α

∂α

∂q j 
+ 

∂H 

∂βj 

∂βj 

∂q j 

]
, j = 2 , . . . , N. (36)

ecause we label a differentiated quality attribute as the first attribute ( q 1 < r 1 ), there
s a slight difference between the form of price-reaction effects of the first quality and
he other qualities. We now present two lemmas that are used for Proposition 2 . 

emma 2. In any subgame ( q , r ), the sum of the proportional changes in the firms’
quilibrium price-cost markups and the proportional change in the total density of the
quilibrium set of indifferent consumers must vanish: 

d ln [G ( α, β−1 ) + H( α, β−1 )] + d ln 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 = 0 . (37)

t follows that the sum of the partial derivatives of G ( α, β−1 ) and H( α, β−1 ) with respect
o α and βj , j = 2 , . . . , N are 

∂G 

∂α
+ 

∂H 

∂α
= −

∫ 
v −1 

f ′ 1 ( α− v −1 · β−1 ) d F −1 (∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

)2 (38)

∂G 

∂βj 
+ 

∂H 

∂βj 
= 

∫ 
v −1 

f ′ 1 ( α− v −1 · β−1 ) v j d F −1 (∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

)2 . (39)

roof of Lemma 2. From the definitions of G and H in (14) , at each ( q , r ), we have: 

G ( α, β−1 ) + H( α, β−1 ) = 

1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 
. 

ence 

d ln ( G + H) + d ln 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 = 0 , 

o the first statement of the lemma follows. 
Because (37) holds for each ( q , r ), we can partially differentiate it with respect to α

nd βj , j = 2 , . . . , N, to obtain (38) and (39) . �

Lemma 2 allows us to present how qualities change the equilibrium price markups.
his then allows us to find how the intercept and slopes of the equation for the
quilibrium set of indifferent consumers are impacted by qualities. 
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Lemma 3. In any subgame ( q , r ), in equilibrium, for i = 1 , . . . , N, 

∂βj ( q, r) 
∂q i 

+ 

∂βj ( q, r) 
∂r i 

= 0 and 

∂α( q, r) 
∂q i 

+ 

∂α( q, r) 
∂r i 

= 

C i ( r ) − C i ( q ) 
( r 1 − q 1 ) 

[
1 + 

∂G 

∂α − ∂H 

∂α

] . 
(40) 

Proof of Lemma 3. From (11) , the functions βj ( q , r ) are βj = 

r j −q j 
r 1 −q 1 

, j = 2 , . . . , N . Hence, 

∂βj 

∂q 1 
= 

r j − q j 
( r 1 − q 1 ) 2 

= −∂βj 

∂r 1 
, and 

∂βj 

∂q j 
= − 1 

r 1 − q 1 
= −∂βj 

∂r j 
, j = 2 , . . . , N, (41) 

and all partial derivatives of βj with respect to q k or r k , k = 2 , . . . , N, k 	 = j , vanish.
These prove the first equality in (40) . 

From definitions of G and H in (14) , we write (10) as 

α + G ( α, β−1 ) −H ( α, β−1 ) = 

C( r) − C( q) 
r 1 − q 1 

. (42) 

We totally differentiate (42) to obtain 

[
1 + 

∂G 

∂α
− ∂H 

∂α

]
d α + 

N ∑ 

k=2 

(
∂G 

∂βk 
− ∂H 

∂βk 

)
d βk = d 

[
C( r) − C( q) 

r 1 − q 1 

]
. 

Then we have [
1 + 

∂G 

∂α
− ∂H 

∂α

]
∂α

∂q 1 
+ 

N ∑ 

k=2 

(
∂G 

∂βk 
− ∂H 

∂βk 

)
∂βk 

∂q 1 
= 

∂ 

∂q 1 

[
C( r) − C( q) 

r 1 − q 1 

]
= − C 1 ( q) 

( r 1 − q 1 ) 
+ 

[
C( r) − C( q) 
( r 1 − q 1 ) 2 

]
[
1 + 

∂G 

∂α
− ∂H 

∂α

]
∂α

∂r 1 
+ 

N ∑ 

k=2 

(
∂G 

∂βk 
− ∂H 

∂βk 

)
∂βk 

∂r 1 
= 

∂ 

∂r 1 

[
C( r) − C( q) 

r 1 − q 1 

]
= 

C 1 ( r) 
( r 1 − q 1 ) 

−
[
C( r) − C( q) 
( r 1 − q 1 ) 2 

]
, 

where C i ( q) ≡ ∂C( q) 
∂q i 

denotes the i th partial derivative of the cost function C . Using (41) ,
we obtain 

∂α

∂q 1 
+ 

∂α

∂r 1 
= 

C 1 ( r ) − C 1 ( q ) 
( r 1 − q 1 ) 

[
1 + 

∂G 

∂α − ∂H 

∂α

] . 
Next, we have, for j = 2 , . . . , N, [

1 + 

∂G 

∂α
− ∂H 

∂α

]
∂α

∂q j 
+ 

N ∑ 

k=2 

(
∂G 

∂βk 
− ∂H 

∂βk 

)
∂βk 

∂q j 
= 

∂ 

∂q j 

[
C( r) − C( q) 

r 1 − q 1 

]
= − C j ( q) 

( r 1 − q 1 ) 
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[
1 + 

∂G 

∂α
− ∂H 

∂α

]
∂α

∂r j 
+ 

N ∑ 

k=2 

(
∂G 

∂βk 
− ∂H 

∂βk 

)
∂βk 

∂r j 
= 

∂ 

∂r j 

[
C( r) − C( q) 

r 1 − q 1 

]
= 

C j ( r) 
( r 1 − q 1 ) 

sing (41) , we obtain 

∂α

∂q j 
+ 

∂α

∂r j 
= 

C j ( r ) − C j ( q ) 
( r 1 − q 1 ) 

[
1 + 

∂G 

∂α − ∂H 

∂α

] . 
e have proven the second equality in (40) . �
roof of Proposition 2. From (35) and (36) , we have 

∂p ∗B 

( q, r) 
∂q j 

− ∂p ∗A 

( q, r) 
∂r j 

= ( r 1 − q 1 ) 
{[

∂H 

∂α

∂α

∂q j 
+ 

∂H 

∂βj 

∂βj 

∂q j 

]
−
[
∂G 

∂α

∂α

∂r j 
+ 

∂G 

∂βj 

∂βj 

∂r j 

]}
, 

j = 2 , . . . , N. 

sing Lemma 3 , we have ∂α
∂q j 

= 

C j ( r ) −C j ( q ) 
( r 1 −q 1 ) [ 1+ 

∂G 

∂α − ∂H 

∂α ] −
∂α
∂r j 

and 

∂βj 

∂q j 
= −∂βj 

∂r j 
, and substitute

hem into the above to obtain: 

∂p ∗B 

( q, r) 
∂q j 

−∂p ∗A 

( q, r) 
∂r j 

= ( r 1 −q 1 ) 
{ [ 

∂H 

∂α

( 

C j ( r ) −C j ( q ) 
( r 1 −q 1 ) 

[
1 + 

∂G 

∂α−
∂H 

∂α

]− ∂α

∂r j 

) 

−∂H 

∂βj 

∂βj 

∂r j 

] 
−
[
∂G 

∂α

∂α

∂r j 
+ 

∂G 

∂βj 

∂βj 

∂r j 

]} 

= ( r 1 −q 1 ) 
{[
−∂H 

∂α

∂α

∂r j 
−∂H 

∂βj 

∂βj 

∂r j 

]
−
[
∂G 

∂α

∂α

∂r j 
+ 

∂G 

∂βj 

∂βj 

∂r j 

]}
+ 

∂H 

∂α

[C j ( r ) −C j ( q ) ] [
1 + 

∂G 

∂α−
∂H 

∂α

]
= −( r 1 −q 1 ) 

{[
∂G 

∂α
+ 

∂H 

∂α

]
∂α

∂r j 
+ 

[
∂G 

∂βj 
+ 

∂H 

∂βj 

]
∂βj 

∂r j 

}
+ 

∂H 

∂α

[C j ( r ) −C j ( q ) ] [
1 + 

∂G 

∂α−
∂H 

∂α

] . 

Next, we define 

Z ≡ ∂H 

∂α

1 [
1 + 

∂G 

∂α − ∂H 

∂α

] . 
e use (38) and (39) in Lemma 2 to obtain 

∂p ∗B 

( q, r) 
∂q j 

− ∂p ∗A 

( q, r) 
∂r j 

= ( r 1 − q 1 ) 

⎡ ⎢ ⎣ 

∫ 
v −1 

f ′ 1 ( α− v −1 · β−1 ) d F −1 (∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

)2 

⎤ ⎥ ⎦ 

∂α

∂r j 

−( r 1 − q 1 ) 

⎡ ⎢ ⎣ 

∫ 
v −1 

f ′ 1 ( α− v −1 · β−1 ) v j d F −1 (∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

)2 

⎤ ⎥ ⎦ 

∂βj 

∂r j 
+ Z [ C j ( q ) − C j ( r ) ] 
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= 

( r 1 − q 1 ) 
(∫ 

v −1 
f ′ 1 ( α− v −1 · β−1 ) d F −1 

∂α
∂r j 

−
∫ 
v −1 

f ′ 1 ( α− v −1 · β−1 ) v j d F −1 
∂βj 

∂r j 

)
(∫ 

v −1 
f 1 ( α− v −1 · β−1 ) d F −1 

)2 

+ Z [ C j ( q ) − C j ( r ) ] . (43) 

Then we further write the first term in (43) as 

( r 1 − q 1 ) 
∂ 

∂r j 

[ ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

] 
(∫ 

v −1 
f 1 ( α− v −1 · β−1 ) d F −1 

)2 . (44) 

Hence, we have shown (15) . Next, from Lemma 3 , we have ∂α∂r j 
= 

C j ( r) −C j ( q) 
( r 1 −q 1 )[1+ 

∂G 

∂α − ∂H 

∂α ] −
∂α
∂q j 

and 

∂βj 

∂r j 
= −∂βj 

∂q j 
, so (44) also equals 

−
( r 1 − q 1 ) ∂ ∂q j 

[ ∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

] 
(∫ 

v −1 
f 1 ( α− v −1 · β−1 ) d F −1 

)2 . 

Therefore, (15) equals (16) . 
Finally, from the definition of G ( α, β−1 ) and H ( α, β−1 ) in (14) , we have: 

∂ 

∂α
G ( α, β−1 ) = 1 −

∫ 
v −1 

f ′ 1 ( α− v −1 · β−1 ) d F −1 
∫ 
v −1 

F 1 ( α− v −1 · β−1 ) d F −1 (∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

)2 

∂ 

∂α
H ( α, β−1 ) = −1 −

∫ 
v −1 

f ′ 1 ( α− v −1 · β−1 ) d F −1 
∫ 
v −1 

[ 1 − F 1 ( α− v −1 · β−1 ) ] d F −1 (∫ 
v −1 

f 1 ( α− v −1 · β−1 ) d F −1 

)2 . 

After we substitute these into the definition of Z , we obtain the same expression for Z
in the Proposition. �
Proof of Proposition 3. We begin by simplifying Firm A ’s first-order derivatives with 

respect to qualities. First, for (20) we use (3) to obtain 

∂ 

∂q j 

∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 

= 

1 
r 1 − q 1 

∫ 
v −1 

f 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) v j d F −1 j = 2 , . . . , N. 

Second, for (21) , again we use (3) to obtain 

∂ 

∂p ∗B 

∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 

= 

1 
r 1 − q 1 

∫ 
v −1 

f 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 . 
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e then substitute these expressions into (20) and (21) , and the first-order derivative
f Firm A ’s with respect to quality q j , j = 2 , . . . , N, becomes 

−
[ ∫ 

v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 

] 
C i ( q) 

+ 

1 
r 1 − q 1 

∫ 
v −1 

f 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) v j d F −1 [ p ∗A 

( q, r ∗) − C( q) ] 

+ 

1 
r 1 − q 1 

∫ 
v −1 

f 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 
∂p ∗B 

∂q j 
[ p ∗A 

( q, r ∗) − C( q) ] . (45)

We now evaluate (45) at the equilibrium qualities, so replace ̃  v 1 ( v −1 ; p ∗( q ∗, r ∗) , q ∗, r ∗))
s ˜ v ∗1 ( v −1 ; q ∗, r ∗) = α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗) . Using the equilibrium price (12) in
roposition 1 

p ∗A 

( q ∗, r ∗) − C( q ∗) 
r ∗1 − q ∗1 

= 

∫ 
v −1 

F 1 ( α− v −1 · β−1 )) d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 )) d F −1 
, 

e simplify the first-order derivative of Firm A ’s profit with respect to q j to [ ∫ 
v −1 

F 1 ( α− v −1 · β−1 ) d F −1 

] [ 
∂p ∗B 

∂q j 
+ 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) v j d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 )) d F −1 
− C j ( q) 

] 
, 

j = 2 , . . . , N, 

here we have omitted the arguments in α and β−1 . We set this to zero to obtain the
rst-order condition for q ∗j : 

∂p ∗B 

∂q j 
+ 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) v j d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 )) d F −1 
− C j ( q ∗) = 0 j = 2 , . . . , N. 

or brevity we do not lay out all the steps for obtaining the first-order condition of Firm
 ’s equilibrium quality q 1 , but the key difference is that (3) yields ∂ ̃  v 1 

∂q 1 
= 

˜ v 1 
r 1 −q 1 

. The
ffect of quality q 1 on demand now becomes 

∂ 

∂q 1 

∫ 
v −1 

F 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) d F −1 

= 

1 
r 1 − q 1 

∫ 
v −1 

f 1 ( ̃  v 1 ( v −1 ; p ∗( q, r ∗) , q, r ∗)) ̃  v 1 d F −1 . 

ollowing the same steps, we obtain the following first-order condition for q ∗1 

∂p ∗B 

∂q 1 
+ 

∫ 
v −1 

f 1 ( α− v −1 · β−1 ) ̃  v ∗1 d F −1 ∫ 
v −1 

f 1 ( α− v −1 · β−1 )) d F −1 
− C 1 ( q ∗) = 0 . 
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The first-order conditions for Firm B ’s equilibrium qualities are derived analogously. �
Proof of Corollary 1 : For each j = 2 , . . . , N, the terms with the integrals are the same
in the two equations in (24) and (25) . Taking their difference, we have 

∂p ∗B 

∂q j 
− ∂p ∗A 

∂r j 
= C j ( q ∗) − C j ( r ∗) , 

and the equivalence of (i) and (ii) in the Corollary follows. Then we simply apply
Proposition 2 on the equilibrium ( q ∗, r ∗) for the equivalence of (ii) and (iii). �
Proof of Corollary 3. Consider the subgame defined by equilibrium quality ( q ∗, r ∗).
The difference in the firms’ price-reaction effects is in Proposition 2 . Obviously, f ′ 1 = 0
by assumption, so (15) becomes ∂p ∗B 

( q ∗,r ∗) 
∂q j 

− ∂p ∗A 

( q ∗,r ∗) 
∂r j 

= 

1 
3 [ C j ( q ∗) − C j ( r ∗) ] . Under 

the step-function assumption, Corollary 1 then says that ∂p ∗B 

( q ∗,r ∗) 
∂q j 

− ∂p ∗A 

( q ∗,r ∗) 
∂r j 

= 

1 
3 [ C j ( q ∗) − C j ( r ∗) ] = C j ( q ∗) − C j ( r ∗) . Hence it must be C j ( q ∗) = C j ( r ∗) , j = 2 , . . . , N .
We conclude that ∂p ∗B 

( q ∗,r ∗) 
∂q j 

− ∂p ∗A 

( q ∗,r ∗) 
∂r j 

= 0 . Finally, we apply Corollary 2 to obtain 

the nondifferentiation result. �
Proof of Corollary 4. Let the valuation density of quality j be a step function. Consider
an equilibrium ( q ∗r ∗). If q ∗j = r ∗j , then the first part of the corollary is trivially true.
Supp ose that q ∗j 	 = r ∗j . Without loss of generality we let q ∗j < r ∗j . Now we relabel the
indexes so that j = 1 . Then Corollary 3 applies, and the firms choose identical qualities
for all quality attributes k = 2 , . . . , N . Finally, the last part of the Corollary is a special
case of (i) and (ii). �

Corollary 5. Suppose that the cost function C is additively separable. If in equilibrium 

( q ∗, r ∗), q ∗j = r ∗j at some j , 2 < j < N , then 

∫ 
v −1 

f ′ 1 ( α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗)) d F v −1 ×
[
( r ∗1 − q ∗1 ) 

∂α( q ∗, r ∗) 
∂r j 

− E ( v j ) 
]

= 0 , (46) 

where E ( v j ) is the expected value of v j . Furthermore, if q ∗j = r ∗j for each j = 2 , . . . , N,

then 

f ′ 1 ( α( q ∗, r ∗) ×
[
( r ∗1 − q ∗1 ) 

∂α( q ∗, r ∗) 
∂r j 

− E ( v j ) 
]

= 0 . (47) 

Corollary 5 can b e understo o d as follows. Absent differentiation at quality j , firms
have identical price-reaction effects. The slope of the line defining the set of indifferent
consumers has a zero slope at quality j ( βj = 0 ). If f 1 ’s derivative does not vanish, the
derivative of the intercept α with respect to r j (or q j ), evaluated at the equilibrium
( q ∗, r ∗), exactly equals the mean of the quality- j valuation distribution divided by
( r ∗1 − q ∗1 ) , independent of other qualities or distributions. Corollary 5 does not imply
any global properties of the key α function. Neither does Corollary 5 imply any global 
properties that f 1 must satisfy. 
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roof of Corollary 5. From Corollary 2 , q ∗j = r ∗j implies ∂p ∗B 

( q ∗,r ∗) 
∂q j 

= 

∂p ∗A 

( q ∗,r ∗) 
∂r j 

. Next,
rom Proposition 2 , we use (15) and C j ( q ∗) = C j ( r ∗) to obtain 

∂p ∗B 

( q ∗, r ∗) 
∂q j 

− ∂p ∗A 

( q ∗, r ∗) 
∂r j 

= 

( r ∗1 − q ∗1 ) ∂ ∂r j 

[ ∫ 
v −1 

f 1 ( α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗)) d F −1 

] 
(∫ 

v −1 
f 1 ( α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗)) d F −1 

)2 

= 

( r ∗1 − q ∗1 ) 
∫ 
v −1 

f ′ 1 ( α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗)) 
[ 
∂α( q ∗,r ∗) 

∂r j 
− v j 

r ∗1 −q ∗1 

] 
d F v −1 (∫ 

v −1 
f 1 ( α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗)) d F −1 

)2 . (48)

n the numerator of (48) , the term in the integrand involving v j 
r ∗1 −q ∗1 

is 

( r ∗1 − q ∗1 ) 
∫ 
v −1 

f ′ 1 ( α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗)) 
[

v j 
r ∗1 − q ∗1 

]
d F v −1 . 

bserve that when q ∗j = r ∗j , α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗) is independent of v j , so
 

′ 
1 ( α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗)) is also independent of v j . Therefore, we can simplify
his to ∫ 

v −1 

f ′ 1 ( α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗)) d F v −1 ×
∫ 
v −1 

v j d F v −1 

= 

∫ 
v −1 

[ f ′ 1 ( α( q ∗, r ∗) − v −1 · β−1 ( q ∗, r ∗)) × E ( v j ) ] d F v −1 . 

sing this and then setting (48) to 0, we obtain (46) . Finally, if, for each j = 2 , . . . , N,

e have q ∗j = r ∗j , then βj ( q ∗, r ∗) = 

r ∗j −q ∗j 
r ∗1 −q ∗1 

= 0 , so v −1 · β−1 ( q ∗, r ∗) = 0 . Simplifying the
rgument inside f ′ 1 , we obtain (47) . �

upplementary material 

Supplementary material associated with this article can be found, in the online
ersion, at doi: 10.1016/j.ijindorg.2018.10.002 . 
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