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Abstract

This appendix provides a detailed treatment of the portfolio choice problem
studied in our paper “Learning under Ambiguity”, filling in details of calculations
that were omitted in the text of the paper.

1 Investor Problem

Section 1 of this appendix restates the portfolio problem studied in Section 5 of “Learning
under Ambiguity”. Section 2 defines beliefs and derives the dynamics of beliefs under am-
biguity. Section 3 computes optimal portfolio weights for a benchmark Bayesian investor
and a myopic ambiguity-averse investor.

Time is measured in months; there are k trading dates per month. The state space is
S = {1, 0}.1 The return on stocks R (st) = er(st) realized in period t is either high or low:
we fix (log) return realizations r (1) = σ/

√
k and r (0) = −σ/√k. In addition to stocks,

the investor also has access to a riskless asset with constant per period interest rate Rf =
er

f/k, where rf < σ. We consider investors who plan for T months starting in month t and
who care about terminal wealth according to the utility function VT (Wt+T ) = logWt+T .
Investors may rebalance their portfolio at all k (T − t) trading dates between t and T .
Let ω∗t,T,k denote the optimal fraction of wealth invested in stocks at date t for an investor
who plans for T months, when there are k trading dates per month.

Consider the investor’s problem when beliefs are given by a general process of one-
step-ahead conditionals {Pτ (s

τ )}. The history sτ of state realizations up to trading date
∗Epstein: Department of Economics, U. Rochester, lepn@troi.cc.rochester.edu; Schneider: Depart-

ment of Economics, NYU, and Federal Reserve Bank of Minneapolis, ms1927@nyu.edu.
1In this appendix, we call the binary states 1 and 0, rather than hi and lo as in the text of “Learning

under Ambiguity”, because this allows simpler notation below.

1



τ = t+ j/k — the jth trading date in month t+ 1 — can be summarized by the fraction
φτ of the state st = 1 observed up to τ . The value function of the log investor takes the
form Vτ (Wτ , s

τ ) = hτ (φτ) + logWτ . The process {hτ} satisfies ht+T = 0 and

hτ (φτ) = max
ωτ

min
pτ∈Pτ (sτ )

Epτ
£
log
¡
Rf +

¡
R
¡
sτ+1/k

¢−Rf
¢
ωτ

¢
+ hτ+1/k

¡
φτ+1/k

¢¤
= min

pτ∈Pτ (sτ )
max
ωτ

Epτ
£
log
¡
Rf +

¡
R
¡
sτ+1/k

¢−Rf
¢
ωτ

¢
+ ht+1/k

¡
φτ+1/k

¢¤
,(1)

where we have used the minimax theorem to reverse the order of optimization.

We are interested in the optimal portfolio of an investor who has seen a monthly
sample of log real US stock returns {rτ}tτ=1. However, agents in the model are assumed
to observe not only monthly returns, but actually binary returns R (sτ) at every trading
date. To model an agent’s history up to date t, we thus construct a sample of tk realiza-
tions of R (sτ) such that the implied empirical distribution of monthly log returns is the
same as that in the data. Let σ denote the monthly standard deviation of log returns.
The sample of binary returns up to some integer date τ is summarized by the fraction of
states st = 1, defined by

φτ = φ̂k (r̄τ) :=
1

2
+
1

2

r̄τ

σ
√
k
. (2)

where r̄τ := 1
τ
Στ
j=1rj is the mean of the monthly return sample. For given k, the sequence

{φτ} pins down a sequence of monthly log returns
©
Σk
j=1 logR

¡
sτ+j/k

¢ª
that is identical

to the data sample {rτ}.

2 Beliefs

As a Bayesian benchmark, we assume that the investor has an improper beta prior over
the probability p of the high state, so that the posterior mean of p after t months (or tk
state realizations) is equal to φτ , the maximum likelihood estimator of p. The Bayesian’s
probability of a high state next period is then also given by φτ . The optimal portfolio
follows from solving (1) when Pτ (s

τ) is a singleton set containing only the measure that
puts probability φτ on the high state.

For an ambiguity-averse investor, beliefs are defined as in Section 3 of “Learning under
Ambiguity”. We briefly review the general model here. Beliefs are represented by

(Θ,M0,Lk, α),

where Θ is a parameter space,M0 is a set or priors on Θ, Lk is a set of likelihoods and α
is a number between zero and one. A theory is a pair (µ0, c

t), where µ0 is a prior belief on
Θ and ct =

¡
c1/k, c2/k.., ct

¢ ∈ Ltk
k is a sequence of likelihoods. Let µt (· ; st, µ0, ct) denote

the posterior derived from the theory (µ0, c
t) by Bayes’ Rule, given the data st.

The set of posteriors contains posteriors that are based on theories not rejected by a
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likelihood ratio test:

Mα
t,k(s

t) = {µt
¡
st;µ0, c

t
¢
: µ0 ∈M, ct ∈ Lt

k,Z
Πt
j=1cj (sj|θ) dµ0(θ) ≥ α max

µ̃0∈M0

c̃t∈Ltk

Z
Πt
j=1c̃j (sj|θ) dµ̃0}. (3)

The set of one-step-ahead conditional belief is defined by

Pt(s
t) =

½
pt (·) =

Z
Θ

c(· | θ) dµt(θ) : µt ∈Mα
t (s

t), c ∈ Lk

¾
, (4)

This process enters the specification of recursive multiple priors preferences in (1).

The particular representation (Θ,M0,Lk, α) assumed for the portfolio choice problem
is defined as follows. The ambiguity averse investor perceives the mean monthly log return
as θ+λt, where θ ∈ Θ := R is fixed and can be learned, while λt is driven by many poorly
understood factors affecting returns and can never be learned. The set Lk consists of all
c (· | θ) such that

ck (hi|θ) = 1

2
+
1

2

θ + λ

σ
√
k
, for some λ with |λ| < λ̄. (5)

The set of priorsM0 on Θ consists of Dirac measures. For simplicity, we write θ ∈M0

if the Dirac measure on θ is included in the set of priors, and we define

M0 =
©
θ : | θ | ≤ λ̄+ 1/σ

ª
.

The condition ensures that the probability (5) remains between zero and one for all k ≥ 1.
Beliefs depend on history only via the fraction of high returns φt = φ̂k (r̄t). We write

θ ∈Mα
t,k (r̄t) if the Dirac measure on θ is included in the posterior set at the end of month

t after history φ̂k (r̄t) . The posterior set for fixed k can be characterized as follows:

Proposition S1. The posterior set is a subinterval
£
θk (r̄t) , θ̄k (r̄t)

¤
of M0 with both

bounds strictly increasing in r̄t.

Proof. The history st consists of tk realizations of the state. Write the likelihood of a
sample st under some theory, here identified with a pair

¡
θ, λt

¢
, as

Lk

¡
st, θ, λt

¢
=

t−1Y
τ=0

kY
j=1

µ
1

2
+
1

2

θ + λτ+j/k

σ
√
k

¶sτ+j/k
µ
1

2
− 1
2

θ + λτ+j/k

σ
√
k

¶1−sτ+j/k
. (6)

Let λ̃
t
denote the sequence that maximizes (6) for fixed θ. This sequence is independent

of θ and has λ̃i = λ if si = 1 and λ̃i = −λ if si = 0, for all i ≤ t. It follows that
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Lk

³
st, θ, λ̃

t
´
depends on the sample only through the fraction φt of high returns observed.

The posterior set can be written

Mα
t,k

¡
st
¢
=

½
θ :

1

tk
logL

³
st, θ, λ̃

t
´
≥ max

θ̃

1

tk
logL

³
st, θ̃, λ̃

t
´
− 1

tk
log (α)

¾
(7)

Indeed, if θ ∈ Mα
t,k, then there exists some λt such that the theory

¡
θ, λt

¢
passes the

criterion for an admissible theory put forward in (3). Thus the theory
³
θ, λ̃

t
´
must also

pass that criterion, since its likelihood is at least as high. In contrast, if θ /∈Mα
t,k, then

there is no λt such that the theory
¡
θ, λt

¢
passes the criterion.

Using the fraction of high states φt =
1
tk

X
i

si, rewrite the log data density as

logL
³
st, θ, λ̃

t
´
= f (θ;φt) := φt log

µ
1

2
+
1

2

θ + λ̄

σ
√
k

¶
+ (1− φt) log

µ
1

2
− 1
2

θ − λ̄

σ
√
k

¶
.

The likelihood ratio criterion becomes

f (θ;φt) ≥ max
θ̃
{f (θ;φt)}−

1

tk
log (α) . (8)

For φt ∈ (0, 1), the function f is strictly concave and achieves a unique maximum at the
MLE

θ∗ (φt) = (2φt − 1)
³
σ
√
k + λ̄

´
= (2φk (r̄t)− 1)

³
σ
√
k + λ̄

´
= r̄t

³
1 + λ̄/σ

√
k
´
.

Since f is strictly concave and limθ→λ̄+1/σ f (θ;φt) = limθ→−λ̄−1/σ f (θ;φt) = −∞, the set
of θs that pass the likelihood ratio test is a subinterval ofM0, with bounds that satisfy
(8) with equality. Using φt = φk (r̄t), the posterior set can be written as an interval£
θk (r̄t) , θ̄k (r̄t)

¤
.

To see why both bounds are strictly increasing in r̄t, suppose that θ̃ satisfies (8) with
equality. Apply the implicit function theorem to obtain

dθ

dφ

¯̄̄̄
θ=θ̃

=
−f2

³
θ̃;φt

´
+ f2 (θ

∗ (φt) ;φt)

f1
³
θ̃;φt

´ ,

where fi is the derivative of f with respect to its ith argument. Since f is strictly
concave, f1

³
θ̃;φt

´
> 0 if θ̃ < θ∗ (φt) and f1

³
θ̃;φt

´
< 0 if θ̃ > θ∗ (φt). In addition, it

can be verified that f21
³
θ̃;φt

´
> 0, so that f2

³
θ̃;φt

´
− f2 (θ

∗ (φt) ;φt) < 0 if θ̃ < θ∗ (φt) ,

but f2
³
θ̃;φt

´
− f2 (θ

∗ (φt) ;φt) > 0 if θ̃ > θ∗. Taken together, these facts imply that

dθ/dφ > 0. Since φ0k (r̄t) > 0, it follows that the bounds are strictly increasing in r̄t. ¥

A simple formula for the posterior set is obtained by taking the limit as k →∞:
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Proposition S2. The limit of the posterior set is given by

h
lim
k→∞

θk (r̄t) , lim
k→∞

θ̄k (r̄t)
i
=
h
r̄t − t−

1
2σbα, r̄t + t−

1
2σbα

i
, (9)

where bα =
√−2 logα.

Proof. Substitute for θ∗ and φt = φk (r̄t) defined in (2) to obtainµ
1 +

r̄t

σ
√
k

¶
log

µ
1 +

θ + λ̄

σ
√
k

¶
+

µ
1− r̄t

σ
√
k

¶
log

µ
1− θ − λ̄

σ
√
k

¶
≥

µ
1 +

r̄t

σ
√
k

¶
log

µ
1 +

r̄t + λ̄

σ
√
k
+

r̄tλ̄

σ2k

¶
+

µ
1− r̄t

σ
√
k

¶
log

µ
1− r̄t − λ̄

σ
√
k
− r̄tλ̄

σ2k

¶
− 2

tk
log (α)

For each term of the form log (1 + x), perform a Taylor expansion around x = 0:µ
1 +

r̄t

σ
√
k

¶µ
θ + λ̄

σ
√
k
− 1
2

(θ + λ̄)2

σ2k
+O

³
k−

3
2

´¶
+

µ
1− r̄t

σ
√
k

¶µ
−θ − λ̄

σ
√
k
− 1
2

(θ − λ̄)2

σ2k
+O

³
k−

3
2

´¶
≥

µ
1 +

r̄t

σ
√
k

¶µ
r̄t + λ̄

σ
√
k
− 1
2

(r̄t + λ̄)2

σ2k
+

r̄tλ̄

σ2k
+O

³
k−

3
2

´¶
+

µ
1− r̄t

σ
√
k

¶
log

µ
− r̄t − λ̄

σ
√
k
− 1
2

(r̄t − λ̄)2

σ2k
− r̄tλ̄

σ2k
+O

³
k−

3
2

´¶
− 2

tk
log (α)

Multiply out to obtain

λ̄

σ
√
k
+
2r̄tθ

σ2k
− 1
2

(θ + λ̄)2

σ2k
− 1
2

(θ − λ̄)2

σ2k
+O

³
k−

3
2

´
≥ λ̄

σ
√
k
+
2r̄2t
σ2k
− 1
2

(r̄t + λ̄)2

σ2k
− 1
2

(r̄t − λ̄)2

σ2k
+O

³
k−

3
2

´
− 2

tk
log (α) (10)

All the terms involving λ̄ cancel from this inequality. Multiplying by σ2k thus yields

(r̄t − θ)2 ≤ σ2
−2 logα

t
+O

³
k−

1
2

´
, (11)

which implies (9). ¥

Finally, consider the set of one-step-ahead beliefs Pt,k (r̄t). Following (4), it con-
tains all likelihoods of the type (5) for some θ ∈ Mα

t,k (s
t) and |λ| < λ̄. It can thus
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be summarized by an interval of probabilities for the high state next period, denotedh
p
k
(r̄t) , p̄k (r̄t)

i
, with both bounds strictly increasing in the sample mean r̄t:

p
k
(r̄t) =

1

2
+
1

2

θk (r̄t)− λ̄

σ
√
k

p̄k (r̄t) =
1

2
+
1

2

θ̄k (r̄t) + λ

σ
√
k

. (12)

To get an idea about the shrinkage of the interval of possible equity premia, consider
the lowest and highest mean log returns per month. In the limit as k →∞,h

lim
k→∞

¡
θk (r̄t)− λ̄

¢
, lim
k→∞

¡
θ̄k (r̄t) + λ̄

¢i
= [r̄t − λ̄− t−

1
2σbα, r̄t + λ̄+ t−

1
2σbα].

3 Optimal portfolio weights

It is helpful to begin with the maximization step in (1), given some arbitrary probability
0 < p < 1 for the high state. The optimal weight on stocks is

w (p) =
er

f/k
³
p
³
eσ/

√
k − er

f/k
´
+ (1− p)

³
e−σ/

√
k − er

f/k
´´

³
eσ/

√
k − erf/k

´³
erf/k − e−σ/

√
k
´ (13)

Taylor expansions of the exponential terms lead to

w (p) =

µ
1 +

rf

k
+O

µ
1

k2

¶¶
×

p
³

σ√
k
+ 1

2
σ2

k
− rf

k
+O

³
1

k
3
2

´´
+ (1− p)

³
− σ√

k
+ 1

2
σ2

k
− rf

k
+O

³
1

k
3
2

´´
³

σ√
k
+ 1

2
σ2

k
− rf

k
+O

³
1

k
3
2

´´³
rf

k
+ σ√

k
− 1

2
σ2

k
+O

³
1

k
3
2

´´ (14)

=
(2p− 1)σ/√k + 1

2
σ2/k − rf/k +O

³
k−

3
2

´
σ2/k +O

³
k−

3
2

´ . (15)

We are now ready to derive optimal portfolio weights. Begin with the Bayesian case:

Proposition S3. The optimal Bayesian portfolio weight for horizon T > 0 is

lim
k→∞

ω∗t,k,T (r̄t) =
r̄t +

1
2
σ2 − rf

σ2
=: ωbay

t .

Proof. Consider the optimal portfolio weight for the Bayesian investor with horizon
T > 0. There is no minimization step in (1); as a result, the objective function on the
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left hand side is the sum of (i) the objective for a myopic investor and (ii) continuation
utility, which depends on the investment horizon T , but is independent of the optimal
portfolio weight. The optimal weight is therefore independent of the horizon T . The
optimal weight is now obtained by evaluating w (p) at p = φt = φk (r̄t):

ω∗t,k,T (r̄t) = w (φk (r̄t))

=
(2φk (r̄t)− 1)σ/

√
k + 1

2
σ2/k − rf/k +O

³
k−

3
2

´
σ2/k +O

³
k−

3
2

´
=

r̄t/k +
1
2
σ2/k − rf/k +O

³
k−

3
2

´
σ2/k +O

³
k−

3
2

´ ,

where the third equality uses the definition of φk (recall (2)). Taking the limit as k →∞
delivers the Bayesian solution.¥

Consider next the problem with a nondegenerate set of one-step-ahead conditionals,
but assume T = 1/k. In (12) above, the belief set Pt,k (r̄t) was defined in terms of an

interval
h
p
k
(r̄t) , p̄k (r̄t)

i
for the probability of the high state, with bounds bounds strictly

increasing in r̄t.

Proposition S4. The optimal portfolio weight of the myopic ambiguity averse in-
vestor (T = 1/k) is

lim
k→∞

ω∗t,k,1/k (r̄t) = σ−2max
½
r̄t +

1

2
σ2 − rf −

³
λ̄+ t−

1
2σbα

´
, 0

¾
+ σ−2min

½
r̄t +

1

2
σ2 − rf + λ̄+ t−

1
2σbα, 0

¾
= max

n
ωbay
t − σ−2

³
λ̄+ t−

1
2σbα

´
, 0
o

+min
n
ωbay
t + σ−2

³
λ̄+ t−

1
2σbα

´
, 0
o
.

Proof. For given p, the optimal weight is w (p) . To solve the minimization step,

substituting w (p) back into the objective (1). We now need to find p ∈
h
p
k
(r̄t) , p̄k (r̄t)

i
to minimize

g (p) = p log
³
er

f/k + w (p)
³
eσ/

√
k − er

f/k
´´

+(1− p) log
³
er

f/k + w (p)
³
e−σ/

√
k − er

f/k
´´

= rf/k + p log p+ (1− p) log (1− p) + log
³
eσ/

√
k − e−σ/

√
k
´

−p log
³
er

f/k − e−σ/
√
k
´
− (1− p) log

³
eσ/

√
k − er

f/k
´
.
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The function g is strictly convex on (0, 1) and achieves a minimum at

p̂k =
er

f/k − e−σ/
√
k

eσ/
√
k − e−σ/

√
k
. (16)

The minimizer p̂k is in the unit interval because we have assumed that rf < σ. It
is precisely the probability at which the one-step-ahead conditional equity premium
E
£
R
¡
st+1/k

¢¤ − Rf is equal to zero. The conditional premium appears also as the
bracketed term in the numerator of (13), so that w (p̂k) = 0. It follows that the solution
to the minimization step is

p∗k (r̄t) =


p̄k (r̄t) if p̂k > p̄k (r̄t)

p̂k if p̂k ∈
h
p
k
(r̄t) , p̄k (r̄t)

i
p
k
(r̄t) if p̂k > p̄k (r̄t) .

Substituting into (13) and using w (p̂k) = 0, we can express the optimal portfolio weight
as a function of the sample mean:

ω∗t,k,1/k (r̄t) =


w (p̄k (r̄t)) if p̂k > p̄k (r̄t)

0 if p̂k ∈
h
p
k
(r̄t) , p̄k (r̄t)

i
w
³
p
k
(r̄t)
´

if p̂k < p
k
(r̄t) .

We now compute limk→∞ ω∗t,k,1/k (r̄) . Since the functions pk and p̄k are strictly in-
creasing, the nonparticipation region of the state space can be represented by an interval
of sample means [r̄lo (k) , r̄up (k)]. If r̄t > r̄up (k) the evidence about the equity premium is
so positive that investment in stocks is positive even under the lowest probability for the
high state. The upper bound r̄up (k) is the unique solution to pk (r̄t) = p̂k or, equivalently,³

2p
k
(r̄t)− 1

´
σ/
√
k = (2p̂k − 1)σ/

√
k (17)

Use (12) and 11) above to rewrite the left hand side as:

³
2p

k
(r̄t)− 1

´
σ/
√
k =

1

k

Ã
r̄t − λ̄−

r
σ2
−2 logα

t
+O

³
k−

1
2

´!
=

1

k

³
r̄t − σbα/

√
t− λ̄

´
+O

³
k−

5
4

´
. (18)

Substitute (18) and (16) into (17) to obtain

1

k

³
r̄t − σbα/

√
t− λ̄

´
+O

³
k−

5
4

´
=
2er

f/k − eσ/
√
k − e−σ/

√
k

eσ/
√
k − e−σ/

√
k

σ√
k
.

Taylor expansions of the exponential terms on the right side around 1 lead to
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1

k

³
r̄t − σbα/

√
t− λ̄

´
+O

³
k−

5
4

´
=
2rf/k − σ2/k

2σ/
√
k

σ√
k
,

so that the upper bound of the nonparticipation region can be written as

r̄up (k) = σbα/
√
t+ λ̄+ rf − 1

2
σ2 +O

³
k−

1
4

´
. (19)

The lower bound r̄lo (k) is the unique solution to p̄k (r̄t) = p̂k. By an argument similar
to the one above, it can be written as

r̄lo (k) = −σbα/
√
t− λ̄+ rf − 1

2
σ2 +O

³
k−

1
4

´
. (20)

Consider next the optimal weight in the case p
k
(r̄t) > p̂k. Evaluating w (p) from (15)

at p = p
k
(r̄t) and replacing the first term in the numerator using (18) yields

w
³
p
k
(r̄t)
´
=

r̄t − σbα/
√
t− λ̄+ 1

2
σ2 − rf +O

³
k−

1
4

´
σ2 +O

³
k−

1
2

´ =
r̄t − r̄up (k) +O

³
k−

1
4

´
σ2 +O

³
k−

1
2

´ . (21)

The case p̂k > p̄k (r̄t) is analogous, but with r̄up (k) replaced by r̄lo (k).

Combine the bounds (19)-(20) and the formulas for the optimal weight to deduce that

the sequence of functions
n
ω∗t,k,1/k (r̄t)

o
converges pointwise to

lim
k→∞

ω∗t,k,1/k (r̄) =


r̄t+σbα/

√
t+λ̄ 1

2
σ2−r

σ2
if r̄t < rf − 1

2
σ2 − σbα/

√
t− λ̄

0 if |r̄t + 1
2
σ2 − rf | < σbα/

√
t+ λ̄

r̄t−σbα/
√
t−λ̄+ 1

2
σ2−r

σ2
if r̄t > rf − 1

2
σ2 + σbα/

√
t+ λ̄.

¥
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