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Abstract

The de Finetti Theorem is a cornerstone of the Bayesian approach. Bernardo [4,
p. 5] writes that its �message is very clear: if a sequence of observations is judged
to be exchangeable, then any subset of them must be regarded as a random sample
from some model, and there exists a prior distribution on the parameter of such
model, hence requiring a Bayesian approach.�We argue that while exchangeability,
interpreted as symmetry of evidence, is a weak assumption, when combined with
subjective expected utility theory, it implies also complete con�dence that experi-
ments are identical. When evidence is sparse, and there is little evidence of symme-
try, this implication of de Finetti�s hypotheses is not intuitive. This motivates our
adoption of multiple-priors utility as the benchmark model of preference. We pro-
vide two alternative generalizations of the de Finetti Theorem for this framework.
A model of updating is also provided.

1. INTRODUCTION

1.1. Motivation and Objectives

An individual is considering bets on the outcomes of a sequence of coin tosses. It is the
same coin being tossed repeatedly, but di¤erent tosses are performed by di¤erent people.
The individual believes that outcomes depend on both the (unknown) physical make-up
or bias of the coin and on the way in which the coin is tossed. Her understanding of tossing
technique is poor. However, she has no reason to distinguish between the techniques of
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di¤erent people and she views technique as being idiosyncratic. Given this perception,
how would she rank bets?
More generally, we are interested in modeling a decision-maker who is facing a sequence

of experiments, and whose perception is that outcomes are in�uenced by two factors - one
that is well understood and �xed across experiments (coin bias), and the other that is
poorly understood and thought to be unrelated across experiments. This description
would seem to apply to many choice settings, where the decision-maker has a theory or
model of her environment, but where she is sophisticated enough to realize that it is
�incomplete�- hence the second factor, which can be thought of as an �error term�for
her model.
We limit ourselves to situations where, in addition, there is symmetry of evidence

about the experiments - no information is given that would imply a distinction between
them. However, if little information is provided about any of the experiments, in which
case there is little evidence of symmetry, a sophisticated individual might very well admit
the possibility that the experiments may di¤er in some way, and this may in�uence her
ranking of bets. The distinction between the two forms of symmetry is due to Walley [37],
who also argued that this distinction is behaviorally meaningful and that it cannot be
accommodated within the Bayesian framework. Following the terminological distinction
introduced in Epstein and Schneider [15], we also refer to experiments as being indistin-
guishable but not necessarily identical.
A prime motivating example is where the decision-maker is a statistician or empiricist,

and an experiment is part of a statistical model of how data are generated. Invariably
symmetry is assumed at some level - perhaps after correcting for perceived asymmetries,
such as heteroscedasticity of errors in a regression model. Standard statistical meth-
ods presume that, after such corrections, the identical statistical model applies to all
experiments or observations. This practice has been criticized as being particularly inap-
propriate in the context of the literature attempting to explain cross-country di¤erences in
growth rates, in which case an �experiment�corresponds to a country. Brock and Durlauf
[5, p. 231] argue that it is �a major source of skepticism about the empirical growth
literature.�They write further that �where the analyst can be speci�c about potential
di¤erences [between countries], she can presumably (test and) correct for them by existing
statistical methods. However, the open-endedness of growth theories makes it impossible
to account in this way for all possible di¤erences.�Since they also emphasize the impor-
tance of having sound decision-theoretic foundations for statistical methods, particularly
for purposes of policy analysis, we interpret their paper as calling (�rst) for a model of
decision-making that would permit the analyst to express a judgement of �similarity�or
�indistinguishability,�but also a concern that countries or experiments may di¤er, even
if she cannot specify how. Such a model is our objective.

1.2. The De Finetti Bayesian Model

Some readers may be wondering why there is a need for a new model of choice - does
not the exchangeable Bayesian model due to de Finetti adequately capture beliefs and, in
conjunction with subjective expected utility, also choice, in the coin-tossing setting (and
more generally)?
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Recall de Finetti�s model and celebrated theorem [11, 23]. There is a countable in�nity
of experiments, indexed by the set N = f1; 2; :::g. Each experiment yields an outcome in
the set S and thus 
 = S1 is the set of all possible sample paths (technical details are
suppressed until later). A probability measure P on 
 is exchangeable if

P (A1 � A2 � :::::) = P (A��1(1) � A��1(2) � :::::),

for all �nite permutations � of N. De Finetti shows that exchangeability is equivalent to
the following representation: There exists a (necessarily unique) probability measure �
on �(S) such that

P (�) =
Z
�(S)

`1 (�) d� (`) , (1.1)

where, for any probability measure ` on S (written ` 2 �(S)), `1 denotes the corre-
sponding i.i.d. product measure on 
.1

Given a Bayesian prior, symmetry of evidence implies exchangeability and therefore de
Finetti�s representation, which admits the obvious interpretation: The individual is uncer-
tain about which probability law ` describes any single experiment. However, conditional
on any ` in the support of �, it is the i.i.d. product `1 that describes the implied probabil-
ity law on 
. This suggests that there is no room in the model to accommodate a concern
with experiments not being identical. In Section 4, we con�rm this suggestion at the
behavioral level by identifying behavior that is intuitive for an individual who is not com-
pletely con�dent that experiments are identical, but yet is ruled out by the Independence
axiom of subjective expected utility theory. Thus we propose a model that generalizes
the exchangeable Bayesian model by suitably relaxing the Independence axiom.
Speci�cally, we adopt the framework of multiple-priors utility (Gilboa and Schmeidler

[19]), and specialize it by adding axioms, forms of �exchangeability,� for example, that
capture alternative hypotheses about how the relationship between experiments is per-
ceived. Two alternative generalizations of de Finetti�s theorem are established. In the
�rst (Theorem 3.2), the decomposition (1.1) of a Bayesian prior is generalized so that the
individual�s set of priors P has the form

P =
�Z

`1 (�) d� (`) : � 2M
�
;

for some set of probability measuresM over �(S); equivalently, every measure in P is
exchangeable. An interpretation is that there is ex ante ambiguity about which likelihood
function applies, but certainty that the same likelihood function applies to all experiments.
Thus, just for the Bayesian case, experiments are perceived as identical.
The second generalization of de Finetti�s Theorem, (see Theorem 5.2), relaxes the lat-

ter feature and accommodates the absence of (overwhelming) evidence of symmetry. (On
the other hand, ex ante ambiguity is precluded, so that this result does not generalize
the �rst one.) The corresponding representation for P is more complicated - it retains

1Though the de Finetti theorem can be viewed as a result in probability theory alone, it is typically
understood in economics as describing the prior in the subjective expected utility model of choice. That
is how we view it in this paper.
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a counterpart of the single prior �, but where � is a probability measure over, roughly
speaking, nonsingleton sets of likelihoods, which sets are the unknown parameters in the
representation. The following informal description gives a sense of how �indistinguishable
but not identical�is captured. Consider the introductory coin-tossing setting for concrete-
ness, so that S = fH;Tg. In the Bayesian model, each experiment is characterized by a
single number in the unit interval - the probability of Heads. Here, instead an experiment
is characterized by an interval of probabilities for Heads, which is nondegenerate because
even given the physical bias of the coin, the in�uence of tossing technique is poorly under-
stood. Experiments are indistinguishable, because each is described by the same interval.
However, they are not identical, because any probability in the interval could apply to
any experiment. The length of the interval parametrizes the importance of idiosyncratic
poorly understood factors, and varies with preference, hence with the individual.

1.3. Updating

As indicated, one formal contribution of this paper is to generalize de Finetti�s Theorem
from probability measures to sets of priors. However, the importance of the de Finetti
Theorem extends beyond the representation to the connection it a¤ords between subjec-
tive beliefs and empirical frequencies, most notably through Bayesian updating of the
prior �. The combination of the de Finetti Theorem and Bayes�Rule gives the canonical
model of learning or inference in economics and statistics. Under well-known conditions,
it yields the important conclusion that priors will eventually be swamped by data and
that individuals will learn the truth (see Savage [33, Ch. 3.6], for example). Our second
major contribution is to show that (with some quali�cation) Bayesian updating extends
to the case where experiments may not be identical, as formalized by our second model
(Theorem 5.2).
It is well known that ambiguity poses di¢ culties for updating and that there is no

consensus updating rule analogous to Bayes�Rule. However, our second model admits
intuitive (and dynamically consistent) updating in a limited but still interesting class
of environments, namely, where an individual �rst samples and observes the outcomes of
some experiments, and then chooses how to bet on the outcomes of remaining experiments.
The essential point is that each experiment serves either as a signal or is payo¤ relevant,
but not both. For example, think of a statistical decision-maker who, after observing the
results of some experiments, is concerned with predicting the results of others because
he must take an action (estimation, or hypothesis testing perhaps) whose payo¤ depends
on their outcomes. Policy evaluation in the context of cross-country growth is a concrete
application, where choice between policies for a particular country is based on observations
of how these policies fared in others. Our model prescribes a way to use the latter
information that accommodates the policy-maker�s concern that countries may di¤er in
ways that are poorly understood and that are not taken into account in the model of
growth.
Besides being well-founded axiomatically, the model of updating is also tractable. This

aspect stems from the fact that given the model of Theorem 5.2, beliefs at every node
are completely de�ned by a (unique) probability measure over the unknown parameters.
Thus one need only describe how information is incorporated into an additive probability
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measure, rather than dealing with the thornier problem of updating a set of priors. As
shown in Theorem 6.1, this can be done in a way that mirrors standard Bayesian updating.
A consequence is that formal results from Bayesian learning theory can be translated
into our model, though with suitable reinterpretation. As one example, we establish
(Proposition 6.3) a counterpart of the Savage result that data eventually swamp the
prior. In the coin-tossing example, the individual asymptotically converges to certainty
about a particular bias, and hence about a speci�c probability interval, but since she may
still be left with an interval, she may remain ambiguous about tossing technique and thus
remain concerned that experiments di¤er. She learns all that she believes that she can,
given her ex ante perception of the experiments, which, in turn, underlies her preferences.
If the truth is that tossing technique is not important, and if that possibility is admitted
in her prior view, then she will converge to the truth asymptotically.

1.4. Related Literature

Kreps [25, Ch. 11] refers to the de Finetti Theorem as �the fundamental theorem of
(most) statistics,�because of the justi�cation it provides for the analyst to view samples
as being independent and identically distributed with unknown distribution function -
this is warranted if and only if samples are assessed ex ante as being exchangeable. As a
result, and also because similarity judgements naturally play a central role in statistical
analysis, the notion of exchangeability underlies much of common empirical practice.
Bayesians often refer to exchangeability as a weak assumption. Schervish [34, p. 8]

writes: �The motivation for the de�nition of exchangeability is to express symmetry of
beliefs ... in the weakest possible way. The de�nition ... does not require any judgement
of independence or that any limit of relative frequencies will exist. It merely says that the
labeling of random quantities is immaterial.�We agree that �symmetry of beliefs�, in the
sense of �symmetry of evidence�, is a weak assumption. Our objection is to the (implicit)
companion hypothesis of SEU preferences. To improve upon exchangeability, Bayesians
have proposed weaker notions that build in less symmetry, while maintaining SEU; see
Schervish�s Ch. 8, for example. Such extensions within the Bayesian framework do not
permit the separate modeling of a concern with evidence of symmetry in an environment
where evidence is symmetric.
Brock and Durlauf�s [5] critique of the empirical growth literature is in part expressed

as a critique of the assumption of (a conditional or partial form of) exchangeability. In
our view, the culprit is not symmetry, but rather the implicit assumption of expected
utility theory.
We have already acknowledged our debt to Walley [37] for the critique that motivates

this paper and for the distinction that we have adopted as a title. His contribution to
modeling the distinction is described brie�y in Section 3.
Finally, Epstein and Schneider [15] model the distinction between symmetry of evi-

dence and evidence of symmetry in the special case where experiments are viewed as being
completely unrelated (in the context of the above example of repeated tosses of a single
coin, they assume that the physical bias is known with certainty). In [16], those authors
study the more general case dealt with here (unknown physical bias). A major di¤erence
from this paper is that they describe functional forms and provide informal justi�cation,
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partly through applications, while here the focus is on axiomatic foundations.

2. PRELIMINARIES

2.1. The Bayesian Model

There exists a countable in�nity of experiments - they are ordered and indexed by the set
N = f1; 2; :::g. Each experiment yields an outcome in the �nite set S. The set of possible
outcomes for the ithexperiment is sometimes denoted Si, though Si = S for all i. The full
state space is


 = S1 = S1 � S2 � :::: = S1.

Denote by � the product �-algebra on 
. Probability measures on (
;�) are understood
to be countably additive unless speci�ed otherwise.
An act is a �-measurable function from 
 into [0; 1]. For example, when S = fH;Tg,

then the act f ,

f (s1; :::; si; :::) =

�
1 (s1; s2) = (H;T )
0 otherwise,

is the bet on Heads followed by Tails; below it will often be abbreviated by H1T2 (similar
abbreviations are adopted for other acts in the coin-tossing context). Preference, denoted
�, is de�ned on the set F of all acts.
For any subset I of N, �I denotes the product �-algebra on �i2ISi, also identi�ed

with a �-algebra on 
. Denote by FI the set of all acts that are �I-measurable. (When
I = fig, we write �i and f 2 Fi.) Such acts will be said to depend only on experiments
in I. Particularly important are acts that depend on �nitely many experiments, that is,
acts in

Ffin = [I �niteFI .
Refer to such acts as �nitely-based.
Denote by � the set of �nite permutations of N; all permutations appearing in the

paper should be understood to be �nite. For any � in � and probability measure P
on (S1;�), de�ne �P to be the unique probability measure on S1 satisfying (for all
rectangles)

(�P ) (A1 � A2 � :::::) = P (A��1(1) � A��1(2) � :::::).
Given an act f , de�ne the permuted act �f by (�f) (s1; :::; st; :::) = f

�
s�(1); :::; s�(t); :::

�
.

Abbreviate
Z
fdP by Pf , or P (f). Then, for all P; f and �,

(�P ) f = P (�f) .

The probability measure P is exchangeable if �P = P for all �. In behavioral terms,
assuming subjective expected utility preference with prior P , exchangeability of P is
equivalent to the universal indi¤erence between an act and any permuted variant, that is,

f � �f for all acts f and permutations �.

For any probability measure ` on S (write ` 2 �(S)), `1 denotes the corresponding
i.i.d. product measure on (
;�).
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Theorem 2.1 (de Finetti). The probability measure P on (
;�) is exchangeable if and
only if there exists a (necessarily unique) Borel probability measure � on �(S) such that

P (�) =
Z
�(S)

`1 (�) d� (`) .

A noteworthy and problematic feature of the framework, which we adopt also below,
is that payo¤s to acts depend on the outcomes of in�nitely many experiments, which is
problematic for a positive model. In particular, the domain of preference includes acts
whose payo¤s depend on the truth/falsity of tail events, which are not observed in �nite
time, and thus are, in fact, unobservable.2 This concern was emphasized also by de
Finetti; see [32] for extensive discussion of de Finetti�s view, and also [12]. However, a
decision-maker might be able to conceive of payo¤s that depend on tail events (receive
x� if the limiting empirical frequency of Heads in an in�nite sequence of tosses is greater
than 1

2
and x otherwise). Thus the de Finetti theorem and its generalizations below seem

useful in a normative context.3

Another objection to the de Finetti-Savage model is the one raised by Walley and
described in the introduction - that symmetry of evidence in their model implies also that
experiments are necessarily viewed as being identical. Elaborating upon and accommo-
dating this critique are the objectives of this paper, and is the reason that we move from
subjective expected utility (SEU) to the multiple-priors model.
For any compact metric space X, �(X) denotes the set of countably additive Borel

probability measures on X, endowed with the weak-convergence topology induced by
continuous functions. K (X) denotes the space of compact subsets of X, endowed with
the Hausdor¤metric topology, which renders it compact metric. When X is a lts, Kc (X)
denotes the subspace of compact and convex subsets of X.

2.2. Multiple-Priors Preference

By a multiple-priors preference (or utility), we shall mean a preference � on F that has
a representation of the following form. There exists a convex set P � �(
), compact in
the weak-convergence topology, such that

U (f) = inf
P
Pf = inf

P

Z
fdP , f 2 F . (2.1)

In Section 7, we relate this speci�cation to the Gilboa and Schmeidler [19] formulation
- ours is a specialization - and we provide behavioral foundations for (2.1). Since we
suspect that some readers will consider this material to be largely �technical�, we defer
it to the end.
One di¤erence that may seem important, but that is in fact of minor signi�cance,

can be dealt with here. In this paper, acts are taken to be real-valued and they enter
linearly into the utility calculation in (2.1). In contrast, Gilboa and Schmeidler and much

2The tail �-algebra is de�ned by �tail = \1t=1�
�
_1j=tSj

�
.

3In fact, we have overstated the problem somewhat in as much as our central axioms concern only the
ranking of acts that depend on �nitely many experiments.
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of the related literature consider Anscombe-Aumann acts f that have lotteries in �(Z)
over a primitive set Z as outcomes. However, this speci�cation of objects of choice can
be reduced to ours as follows: Suppose also that there exist best and worst outcomes z
and z. Then, under weak conditions, for each state ! and act f , there exists a unique
probability p, so that the constant act f (!) is indi¤erent to the lottery (z; p; z; 1� p);
refer to such a lottery as (a bet on) the toss of an (objective) p-coin.4 One can de�ne
u (f (!)) to be this unique probability, so that

f (!) � (z; u (f (!)) ; z; 1� u (f (!))) . (2.2)

Such calibration renders the util-outcomes of any act observable, and these are the [0; 1]-
valued outcomes we assume herein and that justify writing utility as in (2.1). A further
consequence given (2.1) is that the utility U (f) is also scaled in probability units - it
satis�es

f � (z; U (f) ; z; 1� U (f)) . (2.3)

Thus f is indi¤erent to betting on the toss of a U (f)-coin.
The fact that outcomes are �equivalent�probabilities will be important below - multi-

plying outcomes, which may seem unnatural, will amount to the very natural operation
of multiplying probabilities.
We conclude this section with an elementary lemma that we use repeatedly. Say that

P 2 P is a minimizing, or supporting, measure for f if the in�mum in (2.1) is achieved at
P . If f is (lower semi-) continuous, such as if f is �nitely-based, then there is a minimizer
in P, but not so in general.

Lemma 2.2. Let fi 2 Ffin and �i > 0, i = 1; :::; n, with �ni=1�i = 1. Then

U (�ni=1�ifi) = �
n
i=1�iU (fi) (2.4)

if and only if every measure supporting �ni=1�ifi also supports every fi. In particular,
(2.4) implies that, for any m � n, �i > 0, and �mi=1�i = 1,

U (�mi=1�ifi) = �
m
i=1�iU (fi) .

Proof. Let P � support the mixed act. Then

U (�i�ifi) = �i�iP
�fi > �i�iU (fi) ,

if P � is not minimizing for some fi. The rest of the proof is obvious.

3. STRONG EXCHANGEABILITY

Turn �nally to the core question - how to model the distinction described in the title.
The �rst part is obvious - if evidence is symmetric, then it is intuitive that an individual

would satisfy:

4We will not always repeat �objective�below, but there should be no confusion between the motivating
coin-tossing experiment described in the introduction, where uncertainty is subjective, and these tosses
of an objective coin that de�ne lotteries used to calibrate utility outcomes.
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Axiom 1 (SYMMETRY). For all �nitely-based acts f and permutations �, f � �f .

Assuming subjective expected utility, Symmetry is equivalent to exchangeability of the
prior, as noted above. But Symmetry in itself is a relatively weak assumption following,
for example, from symmetry of information about all the experiments. The force of the
assumption of Symmetry, as re�ected in de Finetti�s theorem, stems largely from the
added assumption of expected utility theory, or a single prior, as will be evident shortly.
In a multiple-priors framework, relatively little structure is implied for the set of priors.
(See Section 7.1 for a proof.)

Proposition 3.1. Let � be represented by multiple-priors utility as in (2.1), with set of
priors P. Then � satis�es Symmetry i¤ for every �nite permutation �,

P 2 P =) �P 2 P. (3.1)

Say that P is symmetric if it satis�es (3.1).
The heart of the paper concerns modeling the perception of �limited evidence of sym-

metry.�Before arguing that the Independence Axiom excludes it, we state the axiom:

INDEPENDENCE : For all � in (0; 1),

f � g () �f + (1� �)h � �g + (1� �)h.

Consider bets in the coin-tossing example. Symmetry implies the indi¤erence

H1T2 � T1H2.

Here H1T2 is the bet that pays 1 util if the �rst toss yields Heads and the second Tails;
the bet T1H2 is interpreted similarly. Consider now the choice between either of the above
bets and the mixture 1

2
H1T2 +

1
2
T1H2, the bet paying 1

2
if fH1T2; T1H2g and 0 otherwise.

The Independence Axiom would imply that

1
2
H1T2 +

1
2
T1H2 � H1T2 � T1H2.

This is intuitive given certainty that tossing technique does not vary, since then there is
nothing to be gained by mixing; neither is there a cost because outcomes are denominated
in utils. On the other hand, if the individual admits the possibility that technique varies,
and hence that experiments are not identical, then she may strictly prefer the mixture
because the bets H1T2 and T1H2 hedge one another: the former pays well if the �rst
toss is biased towards Heads and the second towards Tails, pays poorly if the opposite
bias pattern is valid, and these �good� and �bad� scenarios are reversed for act T1H2.
Thus 1

2
H1T2 +

1
2
T1H2 hedges uncertainty about the bias pattern, and as such, suggests

the ranking
1
2
H1T2 +

1
2
T1H2 � H1T2 � T1H2, (3.2)

contrary to the Independence Axiom.5

5Gilboa and Schmeidler [19] suggest that since randomization smooths out payo¤s across ambiguous
states, a strict preference for randomization reveals an aversion to ambiguity. We rely heavily on similar
intuition.
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It merits emphasis that concern with the coins not being identical is not a (proba-
bilistic) risk - if it were, then, because payo¤s are in utils, there would be no value to
hedging the risk and hence to randomization. Put another way, it is not possible to model
the noted concern by using a single probability measure, since symmetry of information
suggests immediately that the associated probability measure is exchangeable, leaving no
room for possible di¤erences between coins. This is the heart of Walley�s criticism of the
exchangeable Bayesian model.
There is another motivation for randomizing which is not derived from the concern

that experiments may not be identical. Thus, for example, consider the rankings

1
2
H1 +

1
2
T2 � H1 � T2. (3.3)

Here we assume for simplicity that Heads and Tails are thought to be equally likely.
Suppose further that tossing technique is thought to be irrelevant. Nevertheless, the
mixed bet 1

2
H1 +

1
2
T2 may be strictly preferable if there is ambiguity about the physical

bias of the coin - this is the key intuition in Gilboa and Schmeidler [19].
Both reasons for randomizing, and hence both forms of violations of Independence,

seem important. We do not have a single model that accommodates both (see, however,
the remark at the end of Section 5.2). In this paper, we describe two models, each of
which accommodates one of (3.2) and (3.3) but not the other.
The next axiom permits only the second rationale for randomizing. Note that it is

redundant in the Bayesian case because it is implied by Symmetry and Independence.

STRONG EXCHANGEABILITY : For all �nitely-based acts f and all � in [0; 1],

�f + (1� �)�f � f:

Theorem 3.2. Let � be represented by a multiple-priors utility function as in (2.1), with
set of priors P. Then the following conditions are equivalent:
(i) � satis�es Strong Exchangeability.
(ii) Every prior P in P is exchangeable.
(iii) There existsM� �(� (S)) such that

P =
�Z

`1 (�) d� (`) : � 2M
�
. (3.4)

Proof. The equivalence of (ii) and (iii) follows from de Finetti�s Theorem.
(ii) =)(i): By assumption, for every P in P, act f and permutation �,

P (�f) = (�P ) f = Pf .

For any �nitely-based act f , U (f) = infP2P Pf = P �f for some P � in P. Then

U (�f) = inf
P2P

P (�f) = inf
P2P

(�P )f = inf
P2P

Pf = P �f ,

that is, P � is also minimizing for �f . Therefore, Lemma 2.2 gives the result.
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(i)=)(ii): Assume Strong Exchangeability. The indi¤erence asserted in the axiom
extends to all (not necessarily �nitely-based) acts (see Section 7.1). Refer to P � in P as
an exposed point if there exists a continuous act f such that

fP �g = argmin
P2P

Pf:

Then, �f +(1� �)�f � f =) there is a common minimizing measure for f and �f =)
P � = �P �, and this is true for every �. That is, P � is exchangeable.
Argue next that P equals the closed convex hull of its exposed points: Let c (
) be the

linear space generated by �(
); it is separable when endowed with the weak-convergence
topology. Therefore, C (
), the Banach space of continuous real-valued functions with
the sup norm, is an Asplund space [30, Theorem 2.12]. The assertion now follows from
Phelps [30, Theorem 5.12].
Finally, (ii) is implied by the fact that the set of all exchangeable measures in P is

closed and convex. (Convexity is obvious. P is exchangeable if and only if, for every �
and for every f 2 Ffin,

Pf = P (�f) .

Since f 2 Ffin is continuous, this equality is preserved in the weak-convergence limit.)

Part (iii) clari�es how a model with Strong Exchangeability di¤ers from the de Finetti
model. Con�rming the intuition described preceding the axiom, the representation (3.4)
suggests the interpretation whereby the individual is uncertain ex ante which likelihood
function applies, but she is certain that the same likelihood function applies to all experi-
ments. This is just as for the Bayesian case - experiments are perceived as identical. The
di¤erence here is that the ex ante uncertainty is in general not representable by a single
probability measure - there is ambiguity rather than risk regarding the true likelihood
function.

Remark 1. Walley [37, Ch. 9] de�nes and discusses exchangeability for �previsions��,
where � (f) is interpreted as the maximum price (in utils) the individual would be willing
to pay for the act f , that is, so that the act f � � (f) is just desirable. Symmetry of
evidence is expressed through indi¤erence between an act f and any permutation �f ,
in the sense that � (f) = � (�f). Walley suggests an additional axiom, which he calls
exchangeability, which states that

� (�f � f) = 0, for all f and �.

The axiom, and his representation result, bear some similarity to Strong Exchangeability
and Theorem 3.2. His formulation leads to results that follow almost by de�nition - for
example, the heavy machinery invoked in the proof of our theorem is not needed. Further
results for lower previsions appear in de Cooman and Miranda [9] and de Cooman et al
[10].
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4. NONIDENTICAL EXPERIMENTS

In this section, we describe a model that accommodates the strict preference for random-
ization in (3.2) and that accordingly, we interpret as capturing a concern that experiments
may di¤er. In terms of the implied representation to be described below (Theorem 5.2), it
has in common with de Finetti�s (1.1) a single prior, but it di¤ers from his in featuring (in
a suitable sense) multiple likelihoods. The model is based on two new axioms, alternatives
to Strong Exchangeability.

4.1. Orthogonal Independence

The �rst axiom is called Orthogonal Independence, and it expresses primarily that poorly
understood factors a¤ecting di¤erent experiments are unrelated.6 The point is that ran-
domization is a matter of indi¤erence for some bets, and precisely when such indi¤erence
prevails can be interpreted in terms of the individual�s perception of how experiments are
related to one another.
Say that the acts f and g do not hedge one another if, for every 0 < � < 1 and p in

[0; 1],
f � p() [�f + (1� �) g � �p+ (1� �) g]. (4.1)

It is easy to see that f and g do not hedge one another if and only if, for all �,

U (�f + (1� �)g) = �U (f) + (1� �)U (g) . (4.2)

We use this characterization repeatedly below (without reference).
Think of coin-tossing for concreteness. If tossing techniques are thought to be unre-

lated across experiments, then presumably the bets H1 and H2 do not hedge one another.
As pointed out in the discussion of (3.3), bets on di¤erent experiments can hedge one an-
other if there is ambiguity about the coin�s bias. Here we exclude such ambiguity. Then
the unrelatedness of experiments suggests also that H1T3 and H2T3, for example, do not
hedge one another. To illustrate the role of �unrelatedness,�suppose that there is concern
that outcomes on consecutive tosses could be either perfectly negatively correlated (for
example, Heads implies Tails on the next toss) or perfectly positively correlated (Heads
implies Heads on the next toss). Then, one would expect the strict preference

U
�
1
2
H1T3 +

1
2
H2T3

�
> 1

2
U (H1T3) +

1
2
U (H2T3) ,

and hence that H1T3 and H2T3 hedge one another.
Our axiom builds on this intuition. To express it we generalize �product bets�such

as H1T3, and consider �product acts.�Given any two acts f � and f , then f � � f denotes
the pointwise product, that is, the act given by

(f � � f) (!) = f � (!) f (!) for all ! 2 
.
6Since �independence�has a di¤erent meaning in an axiomatic context, we often refer to the �unre-

latedness�or �stochastic independence� of experiments, though the latter should not be understood in
the usual sense of probability theory.
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Recall from Section 2.2 that the outcome produced by f in state ! can be viewed as a
coin toss which gives the best �true�underlying outcome z, or utility 1, with objective
probability f (!), and the worst outcome z, or utility 0, with the complementary proba-
bility. Similarly, in state ! the product act f � � f gives a lottery where 1 util is received
with objective probability f � (!) f (!), corresponding to the independent tosses of the
two coins associated with f � and f .

ORTHOGONAL INDEPENDENCE (OI): If f; g 2 FI do not hedge one another, then
neither do f � � f and f � � g, for all f � 2 FI�, with I and I� �nite and disjoint.

The axiom weakens Independence since, by (4.2), nonhedging pairs are precisely those
for which utility exhibits the linearity implied by Independence. The reason for the
quali�er �Orthogonal� is that one might refer to acts f � and f as in the statement as
being orthogonal because they depend on di¤erent experiments. Formally, say that f �

and f are (mutually) orthogonal, written f � ? f , if f � 2 FI� and f 2 FI for some disjoint
I� and I. The diagram below illustrates the orthogonality assumed in the axiom. The
positioning of acts above the line indicates that f and g depend only on experiments in
I, and f � depends only on those in I�.

f�________
I�

� f; g___________________
I

�_____

Note that all the acts in the axiom statement are �nitely-based.
We will use the following lemma repeatedly, when invoking OI. It illustrates further

how Orthogonal Independence, given also multiple-priors utility, expresses the unrelated-
ness of experiments.

Lemma 4.1. Let � be represented by a multiple-priors utility function U and satisfy
Orthogonal Independence. Then, for all �nitely-based acts f � ? f and g� ? g:
i) f � and f are nonhedging.
ii) f � � f and f � are nonhedging.
iii) If f and g are nonhedging, and if f � and g� are either nonhedging, or orthogonal,

then f � � f and g� � g, are nonhedging.

By (i), acts that depend on di¤erent experiments are nonhedging. The remaining parts
specify conditions under which nonhedging prevails even where acts depend on overlapping
sets of experiments. Some illustrations of nonhedging pairs in the coin-tossing context
were provided above. Other examples of such pairs include fH1T2; T2g, fH1T3; H2H4g,
and fH1; T2g. The latter case implies, contrary to (3.3), (and assuming again for simplicity
that H1 � T2), that

1
2
H1 +

1
2
T2 � H1 � T2.
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Thus, in light of the discussion surrounding (3.3), Orthogonal Independence excludes
ambiguity about the coin�s bias. However, it does permit (3.2) and thus the concern that
experiments may not be identical.

Proof. ii): Since � is a multiple-priors preference, f and the constant act 1 are non-
hedging. Thus, ii) follows by OI.
i): Use ii) to derive

U
�
1
4
f � � f + 1

4
f � + 1

4
f + 1

4

�
= U

��
1
2
f � + 1

2

� �
1
2
f + 1

2

��
= 1

2
U
��

1
2
f � + 1

2

�
� f
�
+ 1

2
U
��

1
2
f � + 1

2

��
= 1

4
U (f � � f) + 1

4
U (f �) + 1

4
U (f) + 1

4
:

By Lemma 2.2 (existence of a common minimizer), i) follows.
iii): Suppose that f � and g� are nonhedging. Then, by OI,

U
�
1
4
f � � f + 1

4
f � � g + 1

4
g� � f + 1

4
g� � g

�
= U

��
1
2
f � + 1

2
g�
� �

1
2
f + 1

2
g
��
= 1

2
U
��

1
2
f � + 1

2
g�
�
� f
�
+ 1

2
U
��

1
2
f � + 1

2
g�
�
� g
�

= 1
4
U (f � � f) + 1

4
U (f � � g) + 1

4
U (g� � f) + 1

4
U (g� � g)

Apply Lemma 2.2 to conclude that f � � f and g� � g are nonhedging.
The case where f � and g� are orthogonal is straightforward by the preceding and i).

We provide two examples to illustrate what is excluded by Orthogonal Independence.

Example 4.2. Let P 0 be any countably additive (not necessarily exchangeable) measure
and de�ne P to be the closed convex hull of f�P 0 : � 2 �g. By construction, P is
symmetric. However, it violates OI.
There is a simple interpretation: P 0 re�ects some asymmetries across experiments,

for example, it might be believed that toss 1 is biased towards Heads and that the others
are unbiased. If beliefs are instead that there exists exactly one biased toss, though its
identity is completely unknown, one is led to f�P 0 : � 2 �g.7 Then the agent would
be indi¤erent between betting on Tails for any two coins, but, contrary to OI, she would
strictly prefer to randomize, that is,

1
2
T1 +

1
2
T2 � T1 � T2.

Since the worst case scenario for T1 (T2) is that the �rst (second) coin is the biased one,
the mixture smooths out these uncertainties and guarantees at least one coin that is not
biased against Tails. Hence it is strictly preferable. OI is violated because the poorly
understood factor - which toss is the biased one - relates the outcomes of the di¤erent
experiments since there is certainty that only one is biased.

7Taking the closed convex hull has no consequence for decisions.
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Example 4.3. Fix a probability measure `� in �(S) and let

P = fP 2 �(
) : mrgSiP = `� for all i g .
Thus P consists of all measures that agree with `� on each Si, with joint distributions
across di¤erent experiments being unrestricted. The interpretation is that there is no
ambiguity about the nature of any single experiment, but there is complete ignorance
about how experiments are correlated. This perception of the experiments is not covered
by our model. The individual in our model is uncertain that experiments are identical
because she views each experiment as being a¤ected also by poorly understood factors that
vary across experiments, but she is certain that these are unrelated across experiments.
Here, in contrast, she is concerned with the possible correlation of these factors across
experiments.8

Though P is obviously symmetric, compact and convex, it lies outside the scope of
our model because it violates OI as we now show.
For concreteness, let S = fH;Tg and let `� describe an unbiased coin toss. OI would

imply that

U
��

1
2
H1 +

1
2

� �
1
2
T2 +

1
2

� �
1
2
H3 +

1
2

��
= 1

2
U
��

1
2
H1 +

1
2

� �
1
2
T2 +

1
2

�
H3
�
+ 1

2
U
��

1
2
H1 +

1
2

� �
1
2
T2 +

1
2

��
:::

= 1
8

�
U (1) + U (H1) + U (T2) + U (H3)

+U (H1 � T2) + U (T2 �H3) + U (H1 �H3) + U (H1 � T2 �H3) .

�
:

Thus, there is a common minimizing measure, say P , for the acts H1; T2; H3; H1 � T2; T2 �
H3; H1 �H3 and H1 � T2 �H3. Compute that

U (H1) = U (T2) = U (H3) =
1
2
; and

U (H1 � T2) = U (T2 �H3) = U (H1 �H3) = U (H1 � T2 �H3) = 0;
where, for example, U (H1 � T2) = 0 because the worst-case scenario for this act is that
tosses 1 and 2 are perfectly positively correlated. Since P is a common minimizer, deduce
that

P (H1) = P (T2) = P (H3) =
1
2
; and

P (H1T2) = P (T2H3) = P (H1H3) = P (H1T2H3) = 0.

But there does not exist a probability measure satisfying these conditions. (Since
P (H1T2) = 0; P (H1H3) = 0 and P (H1) = 1

2
, it follows that

P (H1H2H3) = 0; P (H1H2T3) =
1
2
;

P (H1T2H3) = 0 and P (H1T2T3) = 0.

Combine these with P (T2) = 1
2
and P (T2H3) = 0 to deduce that

P (T1T2H3) = 0 and P (T1T2T3) = 1
2
.

Finally, use P (H3) = 1
2
to conclude that P (T1H2H3) = 1

2
. But then P (H1H2T3) +

P (T1T2T3) + P (T1H2H3) > 1.)
8In fact, the di¤erence is more subtle, since, as shown in the sequel, OI does permit the perception of

some degree of dependence between experiments.
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4.2. A Final Axiom: Super-Convexity

Denote by � the shift operator, so that, for any act,

(�f) (s1; s2; s3; :::) = f (s2; s3; ::) ;

�n denotes the n-fold replication of �. It is straightforward to show that Symmetry implies
also indi¤erence to shifts,9

�f � f for all f 2 F .
For any act g� 2 Ff1;:::;ng, the acts g� and �nf are orthogonal, and their product is given
by

(g� � �nf) (!) = g� (s1; :::; sn) f (sn+1; sn+2; :::) .
The �nal axiom strengthens the assumption of convexity of preference, one of the cen-

tral axioms in Gilboa and Schmeidler�s [19] characterization of multiple-priors (following
Schmeidler [35], they refer to it as uncertainty, or ambiguity, aversion). Convexity has
the standard meaning that sets of the form ff 2 F : f � gg are convex. Given also the
other axioms, (notably Certainty Independence), used to characterize the multiple-priors
model, the preceding convexity is equivalent to concavity of the utility function U that
represents preference via probability equivalents as in (2.3). For this reason we call our
stronger assumption Super-Convexity.

SUPER-CONVEXITY : Let U be the probability-equivalent utility function (as in (2.3))
representing the preference �. Then, for all g�; h� 2 Ff1;:::;ng, with g� and h� nonhedging,
and g� � h�, the function W : Ffin ! R de�ned by

W (f) = U (g� � �nf)� U (h� � �nf) ,

is concave.

In the special case g� = 1 and h� = 0, the axiom imposes concavity of U (�) on Ffin, as
in the Gilboa-Schmeidler model. We emphasize that Super-Convexity is an assumption
about preference: since the utility function U gives the probability equivalents of acts,
the axiom can be expressed explicitly and exclusively in terms of preference.
Finally, it can be understood as follows. For any F 0 and F , acts over experiments

beyond the nth, because of hedging gains, the individual prefers the mixed act �F 0 +
(1� �)F as expressed by the concavity of U (�). The same is true if the acts and the
mixed act are premultiplied by g� 2 Ff1;:::;ng, or by h� 2 Ff1;:::;ng. However, the value of
mixing is small if h� is �small�at every state, since then premultiplication by h� shrinks
di¤erences between F 0, F and �F 0 + (1� �)F . (In the extreme case where h� = 0,
compounding by h� wipes out all di¤erences between acts.) For this reason mixing has
greater value when premultiplication is by g�, g� � h�. The restriction that g� and h�

be nonhedging weakens the axiom; in fact, the stronger axiom without that restriction is
implied given the other axioms, as can be seen from the representation derived below.

9By Symmetry, U (�f) = U (f) on Ffin. By Epstein and Wang [17, Theorem D.2] and Lemma B.8,
the two functions coincide everywhere.
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Though we believed, at an earlier stage in this research, that Super-Convexity was
implied by the other axioms, that remains an open question. On the other hand, Super-
Convexity does not imply Orthogonal Independence, even given the other axioms, as
illustrated by the utility function (5.7) described below.

5. REPRESENTATIONS: �CONDITIONALLY IID�

5.1. A De�nition

Our next objective is to describe the representation implied by Symmetry, Orthogonal
Independence and Super-Convexity. It is our counterpart, or generalization, of the �con-
ditionally i.i.d.�representation in de Finetti�s theorem. Thus we begin with a de�nition
of �stochastic independence�of experiments for our framework. (Here we mean that ex-
periments are unrelated, not even by a common bias in the case of coin tossing - think
of the case where the bias is known with certainty.) In the Bayesian setting, it amounts
to beliefs being represented by a product measure. However, the situation is more com-
plicated in a multiple-priors framework - there are di¤erent ways of de�ning a �product�
set of priors consistent with given sets of marginals (for example, see Hendon et al [22]
and Ghirardato [18]).
We de�ne �product�in terms of utility functions rather than directly in terms of sets

of priors. Say that the multiple-priors utility function U , as in (2.1), is a product utility
function if

U (f � g) = U (f)U (g) for all orthogonal f; g 2 Ffin. (5.1)

If also preference represented by U satis�es Symmetry, then refer to an IID utility function,
and to the corresponding set of priors P as an IID set of priors. Following [15], the
acronym IID stands for �independently and indistinguishably (as opposed to identically)
distributed.�10

The rationale for (5.1) may seem obvious, but its behavioral meaning should be made
clear. Recall the probability-equivalence nature of outcomes and utility (see (2.2) and
(2.3)). The acts f and g are assumed to depend on di¤erent experiments - for con-
creteness, let f 2 F1 and g 2 F2. Then, in state (s1; s2), f � g yields (the equivalent
of) successive and independent tosses of an objective f (s1)-coin and an objective g (s2)-
coin.11 If experiments 1 and 2 are �stochastically independent,�it is intuitive to perceive
this prospect as though the �order�of coin tossing were: toss all f (s1)-coins as s1 varies
over S1, and separately and independently toss all g (s2)-coins as s2 varies over S2. But
the prospect consisting of the �rst set of coin tosses is equivalent to f , and the second to
g. Further, f is indi¤erent to a U (f)-coin and g is indi¤erent to a U (g)-coin. Conclude
that f � g is indi¤erent to winning 1 util if both the U (f)- and the U (g)-coins, tossed in-
dependently, produce favorable outcomes, which is equivalent to a U (f)U (g)-coin. This
�proves�that (5.1) is implied if experiments are seen to be independent. The converse
is similarly intuitive.
10We continue to use the lower case acronym iid when referring to single measures, with the usual

meaning of �independently and identically distributed.�
11A p-coin is one that yields 1 util (or the best outcome z) with objective probability p and 0 utils (or

the worst outcome z) with probability 1� p.
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Lemma 5.1. If U is an IID utility function, then U satis�es both Orthogonal Indepen-
dence and Super-Convexity.

Proof. Take f; g and f � as in the statement of Orthogonal Independence. Then,

U
�
1
2
f � � f + 1

2
f � � g

�
= U

�
f � �

�
1
2
f + 1

2
g
��

= U (f �)
�
1
2
U (f) + 1

2
U (g)

�
= 1

2
U (f � � f) + 1

2
U (f � � g) .

Thus f � � f and f � � g are nonhedging by (4.2).
Super-Convexity follows from the fact that

U (g� � �nf)� U (h� � �nf) = [U (g�)� U (h�)]U (�nf)
= [U (g�)� U (h�)]U (f) ,

and U (g�) � U (h�) if g� � h�.

To help �x ideas, we describe one example of an IID utility. Fix a (closed) set L
of probability measures on S, thought of as the set of priors applying to any single
experiment. Let12

PWF = clh (L1) , where L1 � f
i2N`i : `i 2 L for every ig . (5.2)

Since the utility of any �nitely-based act is a minimum over L1, which consists exclusively
of product measures, (5.1) is obvious; so is Symmetry. Therefore, UWF de�ned by

UWF (f) = inf
P2L1

Pf , f 2 F , (5.3)

is an IID utility function. This product is adapted from Walley and Fine [38], and has
been studied also by Gilboa and Schmeidler [19].
We emphasize that UWF is just one example of an IID utility function. It is well-

known in the decision theory literature (see Hendon et al [22] and Ghirardato [18]) that
stochastic independence is multi-faceted in the multiple-priors (or nonadditive probability)
framework, and hence that there is more than one way to form an independent product
from a given set L of priors over S. In other words, in general, and in contrast to
the Bayesian setting, there are many utility functions satisfying (5.1), and hence the
�stochastic independence�embodied in it, that also agree on the ranking of acts over any
single experiment.

5.2. A Representation Result

Some preliminaries are needed in order to state the representation. Any set of priors P
lies in Kc (� (
)), the space of compact and convex subsets of �(
); the Hausdor¤metric
topology renders it compact metric.

12
t2I`t denotes the unique countably additive product measure with marginals `t. Since L1 is not
convex, we take its closed convex hull, denoted by clh (L1), in order to conform to the normalization
that sets of priors be closed and convex. The sets clh (L1) and L1 generate the identical preference.
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Each P 2 Kc (� (
)) corresponds to a unique multiple-priors preference, or equiva-
lently, to a unique multiple-priors utility function UP : F ! R, given by

UP (f) = inf
P2P

Pf:

This correspondence induces a compact metric topology on

U = fUP : P 2 Kc (� (
))g :

The subset of IID utility functions,

V = fU 2 U : U is IIDg ,

inherits the induced topology.

Theorem 5.2. The preference � on F is a multiple-priors preference and satis�es Sym-
metry, Orthogonal Independence and Super-Convexity if and only if it admits represen-
tation by a utility function U of the form in (2.1) satisfying

U (f) =

Z
V
V (f) d� (V ) , for all f in F , (5.4)

for some Borel probability measure � on V. Moreover, � is unique.

The proof of su¢ ciency is relegated to Appendix B. Here consider brie�y necessity
(see Appendix B for further details). The �rst step is to verify that the integrand on the
right is well-de�ned for every f . This is done by showing that the function V 7�! V (f)
is universally measurable, and by making use of the fact that any measure � admits a
unique extension, also denoted �, to the universal completion of �. (A similar procedure is
used throughout, without explicit mention, to make sense of integrals where measurability
issues arise.)
Turn to axioms. Since U is a mixture of symmetric utility functions, it is also symmet-

ric. We showed above (Lemma 5.1) that Orthogonal Independence and Super-Convexity
are satis�ed by any IID utility function - the argument is readily extended to any mixture
of IID utility functions as in the representation.
The theorem generalizes de Finetti�s, wherein each IID utility function in the support

of � is an expected utility function with i.i.d. probabilistic beliefs. The more general
representation (5.4) suggests an interpretation similar to that familiar for a mixture of i.i.d.
beliefs. Any IID utility function re�ects the view that experiments are indistinguishable
(because of Symmetry) and unrelated or independent. Thus experiments would be IID
(indistinguishable and independent) if the individual knew which IID utility function were
appropriate or correct. However, she is uncertain of that, as re�ected by the measure �.
Overall, therefore, she views experiments as being IID conditionally on the correct V .
Because the possible functions V correspond to multiple-priors rather than to expected
utility, the individual may value randomization, as illustrated in (3.2), and accordingly
not view experiments as being identical.
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To illustrate, suppose that each IID function in the support of � has the form in (5.3).
Then, in a slight abuse of notation, where the uncertainty modeled by � is translated into
uncertainty about the true set L,

U (f) =

Z �
inf
L1
Pf
�
d� (L) . (5.5)

Given resolution of that uncertainty and thus a speci�c L, the same set is assumed to
describe each experiment (because the minimum is over L1). This implies that exper-
iments are indistinguishable (or viewed symmetrically). However, experiments are not
viewed as identical because L1 admits that di¤erent likelihoods from L apply to di¤erent
experiments.
In the concrete setting of coin-tossing, any (convex) set L of likelihoods can be identi-

�ed with an interval I = [Im; IM ] � [0; 1], interpreted as a set of possible probabilities for
Heads. There is ex ante uncertainty about which interval is the correct one, but condi-
tional on knowing I, coin tosses are viewed as indistinguishable ambiguous experiments,
independent from one another in the speci�c sense of (5.2). It is easily seen how the model
can accommodate the value of randomization in (3.2), and this is so even when there is
certainty about I. Suppose Im < 1

2
< IM . Then

U
�
1
2
H1T2 +

1
2
T1H2

�
= min

P2L2
P
�
1
2
H1T2 +

1
2
T1H2

�
= min

`1;`22L
1
2

�
`1(H1)`2(T2) +

1
2
`1(T1)`2(H2)

�
= min

`1;`22L
1
2
[`1(H1)(1� `2(H2)) + (1� `1(H1))`2(H2)]

= min fIm (1� Im) ; IM (1� IM)g
� Im (1� IM) = U (H1T2) = U (T1H2) .

The representation result leads to an interesting implication about the perceived value
of repetition, which, at a mathematical level, extends the fact that for any random se-
quence (Xt) having an exchangeable probability law, Xi and Xj are positively correlated
if i 6= j.13

Theorem 5.3. If the multiple-priors preference � satis�es Symmetry, Orthogonal Inde-
pendence and Super-Convexity, then, for any act f 2 Ff1;:::;ng,

f � p =) f � �nf � p2. (5.6)

Proof. By the representation,

U (f � �nf) =
Z
V (f � �nf) d� (V ) =

Z
V (f)V (�nf) d� (V )

=

Z
(V (f))2 d� (V ) �

�Z
V (f) d� (V )

�2
= (U (f))2 = p2,

13In Hewitt and Savage [23], see their Theorem 5.1.
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where we use the fact that every V is symmetric (and hence also invariant to shifts) and
a product utility function, and also the familiar property that the geometric average is at
least as large as the arithmetic average.

For simplicity, consider the special case of bets (binary acts). Suppose that a bet
on A is indi¤erent to the bet on a coin with known objective probability p. How would
an individual rank two-fold repetitions of each? In the case of the coin, the two tosses
would be independent and thus have probability p2 of success. For the subjective bet,
the repetitions are not plausibly viewed as independent in general, as de Finetti pointed
out in the Bayesian setting. Where there is a common element connecting experiments -
like the uncertain bias of a coin that is tossed repeatedly - experiments are presumably
viewed as �positively correlated�, which makes bets such as A� A more attractive than
two-fold independent replicas of the bet on A. This intuition relies only on the individual
having a �conditionally i.i.d. (or IID)�view of experiments and not on the experiments
conforming to a Bayesian (probabilistic) model.14

Remark 2. A more general functional form that is likely to have occurred to many
readers is:

U (f) = inf
�2M

Z
V
V (f) d�, (5.7)

whereM� �(V) is a set of probability measures over the set V of IID utility functions.
It is not di¢ cult to see that this functional form, with each V being a Walley-Fine IID
utility function, for example, can accommodate both of the motivating behaviors (3.2)
and (3.3). More generally, it includes both of our models as special cases and seems
like an obvious candidate as the missing unifying model. The model satis�es Symmetry
and Super-Convexity, but not Orthogonal Independence.15 We do not have an axiomatic
characterization of (5.7).

5.3. The Representation of Sets of Priors

The representation given in Theorem 5.2 is for utility functions, while de Finetti�s theorem
is about beliefs. The former seems more appropriate for a decision-theoretic model, but it
is interesting to consider also a formulation that is closer to de Finetti�s. In his theorem,
every exchangeable measure is represented as a mixture of i.i.d. measures. Here, every set
of priors consistent with our axioms is a (suitably de�ned) mixture of IID sets of priors.
To state this formally, de�ne

� = fQ 2 Kc (� (
)) : Q is an IID setg .

Since � is homeomorphic to V, each measure on V corresponds to a unique measure on �,
and we use the same symbol to denote both. Given � 2 �(�), use Aumann�s integral for
a correspondence to de�ne the set of priors

R
�
Qd� (Q). (Technical details are provided

in Appendix B, which also contains, in Section B.1, all the ingredients of a proof of the
following Corollary.)

14Even in the Bayesian case, we have not found intuition for (5.6) that relies solely on the axioms,
without recourse to the representation.
15Details are omitted.
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Corollary 5.4. Let � be represented by multiple-priors utility U as in (2.1) with set of
priors P. Then each hypothesis in Theorem 5.2 is equivalent to P being expressible in
the form16

P = cl
�Z

�

Qd� (Q)
�
,

for the Borel probability measure � on � corresponding to the measure on V appearing
in (5.4).

When all IID sets have the form in (5.2), one obtains a representation even closer to
de Finetti�s. Then, with the obvious abuse of notation,

P = cl
�Z

clh (L1) d� (L)
�
.

De Finetti�s representation (1.1) is the special case where there is certainty that each set
of likelihoods is a singleton, and hence that each experiment is described by the same
likelihood. Here, by contrast, multiple likelihoods are associated with each experiment.17

5.4. Ambiguity and Dissimilarity

The next theorem describes axiomatically the gap between de Finetti�s model and ours.

Theorem 5.5. Let the multiple priors preference � satisfy Symmetry, Orthogonal Inde-
pendence and Super-Convexity. Then the following statements are equivalent:
(i) � is an expected utility preference.
(ii) � satis�es Strong Exchangeability on the subdomain of acts over S1� S2, that is,

�f + (1� �)�f � f for all f 2 Ff1;2g.

(iii) � satis�es the Independence Axiom on the subdomain F1 of acts over S1.

(i) is the de Finetti model. The other conditions describe alternative characterizations
of how it di¤ers from ours. According to intuition given earlier, (ii) says that the �rst
two experiments, and hence also any other pair, are perceived as identical. Following
Gilboa and Schmeidler, we think of violations of Independence as re�ecting (aversion to)
ambiguity. Therefore, (iii) says that the �rst experiment is unambiguous. Conclude that
our model permits any two experiments to be nonidentical by allowing ambiguity about
any single experiment. This connection seems to us to be intuitive (however, see Example
4.3, for a speci�cation where it is violated).

Proof. (i)=)(ii) : clear.
16cl (�) denotes closure. Below clh (�) denotes closed convex hull.
17Contrast also with the representation (3.4), corresponding to Strong Exchangeability, where every

experiment is described by the same likelihood but where there is ambiguity about which likelihood is
the correct one.
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(ii)=)(iii) : Let U represent � and assume (ii). For f; g 2 F1,

U
�
1
8
[f � �g + �g + f + 1 + g � �f + �f + g + 1]

�
= U

�
1
2

�
1
2
f + 1

2

�
�
�
1
2
�g + 1

2

�
+ 1

2

�
1
2
g + 1

2

�
�
�
1
2
�f + 1

2

��
= U

��
1
2
f + 1

2

�
�
�
1
2
�g + 1

2

��
(by (ii))

= 1
2
U
��

1
2
f + 1

2

�
�
�
1
2
�g + 1

2

��
+ 1

2
U
��

1
2
g + 1

2

�
�
�
1
2
�f + 1

2

��
(by Symmetry)

= 1
8
[U (f � �g) + U (�g) + U (f) + U (1) + U (g � �f) + U (�f) + U (g) + U (1)] :
(by Orthogonal Independence)

Thus, by Lemma 2.2, there is a common minimizing measure for f and g, and (iii) follows.

(iii)=)(i) : By Theorem 5.2, there exists � 2 �(V) such that U (f) =
R
V (f) d� (V ),

for all f in F . By (iii),Z
[V (�f + (1� �) g)� �V (f)� (1� �)V (g)] d� (V ) = 0 for all f; g 2 F1.

Since the integrand is nonnegative for all V 2 V, conclude that: for all f; g 2 F1, a:s:-
� [V ],

V (�f + (1� �) g) = �V (f) + (1� �)V (g) . (5.8)

Thus it su¢ ces to show that if V 2 V satis�es (5.8), then V is an expected utility function.
Assume V satis�es (5.8) and let P be the corresponding set of measures for V . Write

V (B) instead of V (1B). By the assumption, there exists ` 2 �(S) such that, for all
A 2 �1,

V (A) = ` (A) .

Claim: If P 2 P, then P (A1 � A2 � � � � � An) = V (A1 � A2 � � � � � An) for all Ai 2
�i, i � n.
Let A = A1 � A2 � � � � � An. Since S is �nite,

P (A) = 1� P (
nA) � 1� V (
nA)
� 1�

P
(s1;:::sn)=2A

V (f(s1; :::; sn)g)

= 1�
P

(s1;:::sn)=2A

nQ
i=1

V (fsig) = 1�
P

(s1;:::sn)=2A

nQ
i=1

` (fsig)

=
P

(s1;:::sn)2A

nQ
i=1

` (fsig) =
nQ
i=1

` (fAig) =
nQ
i=1

V (fAig)

= V (A) .

But, P (A) � minP 02P P 0 (A) = V (A). Thus, P (A) = V (A).
Conclude that all P 2 P agree with V , and therefore, with one another, on �nite

rectangles. Since �nite rectangles generate the Borel �-algebra �, P is a singleton.
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6. UPDATING

There is a given ordering of experiments (which need not be temporal); sn1 = (s1; :::; sn)
denotes a generic sample or history of length n. Ex ante preference on F is �0 , and
�n;sn1 denotes preference on F conditional on the sample sn1 . (When there is no need to
emphasize the sample, we suppress it in the notation and write �n; similarly for other
random variables.) We seek a model that describes how preferences evolve along a sample.
There is an implicit assumption in this set up which should be made explicit. We have

de�ned outcomes in terms of util/probability equivalents, which obviously depends on
how the individual ranks lotteries (constant acts) over the underlying physical outcomes
(represented earlier by the set Z). This rescaling of outcomes is straightforward when
dealing with a single preference order. However, when there are several preferences, as
is the case here, in general they may disagree on how to rank lotteries, and thus any
given physical action would translate into a di¤erent act depending on which preference
order was being considered. Our implicit assumption is that �0 and every conditional
preference �n agree on the ranking of lotteries. That justi�es interpreting any given f in
F as representing the same physical action for all the noted preferences.
Our model of updating applies to the second model above, where experiments are

not necessarily identical. Thus assume that �0 and every �n satisfy the axioms of The-
orem 5.2, namely Symmetry, Orthogonal Independence and Super-Convexity. Call this
composite axiom BASIC.
We assume also Consequentialism - the conditional ranking given the sample sn1 does

not take into account what the acts might have delivered had a di¤erent sample been
realized. Formally, we assume:

CONSEQUENTIALISM : f 0 �n;sn1 f if f
0 (sn1 ; �) = f (sn1 ; �).

6.1. Weak Dynamic Consistency

We postulate the following weak form of dynamic consistency. Abbreviate Ffn+1;n+2;:::g
by F>n.

WEAK DYNAMIC CONSISTENCY (WDC): For any n � 1, sample sn�11 , and acts
f 0; f 2 F>n,

f 0 �n;(sn�11 ;sn)
f for all sn =) f 0 �n�1;sn�11

f , and

f 0 �n;(sn�11 ;sn)
f for some sn =) f 0 �n�1;sn�11

f .

If the de�ning conditions are assumed to hold for all acts f 0 and f , then one obtains
the usual notion of dynamic consistency that we abbreviate DC. In that case, when the
acts f 0 and f can depend on all experiments, each si is both a signal and a payo¤-relevant
state. In contrast, for each comparison in WDC, states are either signals (s1; :::; sn), or
payo¤-relevant (sn+1; :::), but not both. Thus WDC requires dynamic consistency in the
ranking of terminal payo¤s as �pure signals�are received and beliefs and rankings of future
prospects are updated.
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Note that WDC is weaker than DC even in the Bayesian context. DC implies Bayes�
Rule, but, as will become evident below, WDC does not. On the other hand, as argued
in the introduction, it is strong enough to accommodate important settings. There are
many cases where an individual observes signals and uses them to learn about a payo¤
relevant �parameter�. Here the signals are (s1; :::; sn) for some n, and the parameter is
(sn+1; sn+2; :::).
Since all utility functions satisfy the axioms in Theorem 5.2, each admits a represen-

tation in terms of a unique measure over V, the set of IID utility functions. Their utility
functions are U0 and Un (� j sn1 ), for �0 and �n;sn1 respectively; frequently, dependence on
the sample is suppressed and we write simply �n and Un. Then

U0 (f) =
R
V
V (f) d�0 (V ) , for all f 2 F ,

and, imposing Consequentialism,

Un (f j sn1 ) =
R
V
V (f (sn1 ; �)) d�n (V ) , for all f 2 F ,

for some probability measure �n that depends on the realized sample s
n
1 . The updating

problem thus reduces to describing the evolution of �n as a function of �0 and the realized
sample.
The implications of WDC and the other axioms are described in terms of a likelihood

function L : V ! �(
), where V 7�! L (B j V ) is (Borel) measurable for each measurable
subset B of 
. Think of L (B j V ) as the likelihood of B � 
, a set of in�nite samples,
conditional on V describing the perception of experiments. These likelihoods are used
in describing inferences drawn after observing a sample; they are not to be thought of
as describing ex ante beliefs. For each n and likelihood function L, Ln is its one-step-
ahead conditional at stage n, Ln : Sn�1 � V ! �(S).18 Thus for each sample sn�11 ,
Ln (� j V ) 2 �(S) gives the probability distribution, or likelihood, for the nth experiment,
conditional on sn�11 and the given V .
The central result in our model of updating follows.

Theorem 6.1. The axioms Basic, Consequentialism and WDC are satis�ed if and only if
the representing probability measures f�ng are related as follows: there exists a likelihood
function L such that, for all n � 1,

d�n (V ) =
Ln (sn j V )
Ln (sn)

d�n�1 (V ) , (6.1)

where
Ln (�) =

R
Ln (� j V ) d�n�1 (V ) , (6.2)

is a probability measure on S having full support.

18More precisely, Ln (� j V ) is a regular conditional probability on Sn given sn1 (suppressed in the
notation), which exists as long as S is Polish.
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The proof of necessity is straightforward. We verify only WDC. For any f 2 F>n,

�snLn (sn)Un (f j sn) = �sn
�R
V (f)Ln (sn j V ) d�n�1

�
=

R
V (f) (�snLn (sn j V )) d�n�1

=
R
V (f) d�n�1 = Un�1 (f) ,

or
Un�1 (f) = �snLn (sn)Un (f j sn) , f 2 F>n; (6.3)

which implies WDC.
See Appendix D for the proof of su¢ ciency. The argument amounts to showing that

the problem is a special case of a¢ ne aggregation (see de Meyer and Mongin [27]); other
special cases include Harsanyi�s aggregation theorem [21] and probability aggregation [29].
The theorem may be surprising at �rst glance and some discussion is in order. Two

features stand out: (i) likelihood functions are not tied to the ex ante preference �;
and (ii) the implied process of posteriors f�ng is identical to that implied by a suitable
Bayesian model. We elaborate on each in turn.
In the absence of ambiguity, when prior beliefs are probabilistic, it is standard practice

to use them to de�ne likelihood functions for updating, as in Bayes�Rule. The normative
argument for doing so is that Bayesian updating delivers DC. However, if only WDC is
sought, then even under subjective expected utility, one can use any likelihood function to
de�ne updating. Also more generally, any likelihood function L can be used for updating
in such a way as to satisfy WDC. In particular, though L is derived from the entire set of
(conditional) preferences, it plays no role in the representation of ex ante preference. Its
role is exclusively to represent updating. The divorce from prior beliefs of the likelihoods
used for updating does not contradict WDC: prior beliefs about signals underlie choice,
but since in WDC signals are assumed not to be payo¤ relevant, consistency across time
does not require that they play a role when processing signals.
Turn to the connection with updating in a Bayesian model. Given a likelihood function

L and prior � as in the theorem, de�ne L 2 �(
) by

L (�) =
R
L (� j V ) d� (V ) . (6.4)

Note that then the one-step-ahead conditional of L at stage n is Ln de�ned by (6.2). It
follows that the identical process f�ng arises in an expected utility model where L (�) is
the Bayesian prior.19 This is not to say that our model is observationally equivalent to the
corresponding Bayesian model - they involve the identical process of posteriors but the two
models of choice are distinct. For example, only in the shadow Bayesian model do ex ante
and conditional preferences satisfy the Independence axiom; in our model preferences at
node n are represented by the mutliple-priors utility function

R
V d�n (V ). The existence

of a shadow Bayesian model is an advantage in terms of tractability, since it permits
application of results from the Bayesian literature about the dynamics of posteriors.
The emergence of additive likelihood functions in spite of the presence of ambiguity

should by now not be surprising. At the functional form level, it is a consequence of

19Without further assumptions, L need not be exchangeable. Thus the shadow Bayesian model is not
de Finetti�s in general.
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preferences being represented by additive measures �n. The latter, in turn, emerges as
a consequence of Orthogonal Independence. We pointed out when discussing OI that
it rules out (in the coin-tossing example) ambiguity about the physical bias of the coin
- hedging gains arise only from the poorly understood idiosyncratic factors that a¤ect
experiments and render them nonidentical.
Finally, consider brie�y uniqueness properties. De�ne the process fwng by

wn (sn;V ) =
Ln (sn j V )
Ln(sn)

=
d�n
d�n�1

. (6.5)

Refer to wn (sn; V ) as the weight of evidence for V provided by sn (and the suppressed
sn�11 ). Then the weight of evidence process is unique (up to nullity), because f�ng is
unique and hence so are the Radon-Nikodym densities d�n

d�n�1
.

On the other hand, the likelihood function L is typically not unique. Suppose, for
example, that signals are perceived to be uninformative, so that �n = � for all n. Then any
speci�cation with Ln (�;V ) = Ln (�), where the latter measures are arbitrary, satis�es (6.1).
On the other hand, if for each history sn�11 , the conditional utility functions Un (� j sn),
sn 2 Sn, are linearly independent, then it follows immediately from (6.3) that fLn (�)g is
unique; and thus the conditional likelihoods Ln (�;V ) = wn (�;V )Ln (�) are also unique for
each sn. Uniqueness of L follows (up to �-nullity).
We summarize the preceding more formally. First, we add the axiom:20

NON-COLLINEARITY : For each n, the collection fUn (� j sn1 ) : sn1 2 Sng is linearly
independent, where each function Un (� j sn1 ) is viewed as a function on F>n.

Corollary 6.2. Let L0 and L be two likelihood functions that satisfy the conditions in
Theorem 6.1. Then, for every n,

w0n (�; v) = wn (�; v) �n�1-a.s.

where the weights processes fw0ng and fwng are de�ned as in (6.5). Moreover, if Non-
Collinearity is satis�ed, then L0 (� j V ) = L (� j V ) �-a.s.

6.2. The Dynamics of Beliefs

The preceding section de�nes a rich framework for modeling updating - there is room
for more structure to be imposed on updating via additional axioms on preferences that
restrict the likelihood function L provided by Theorem 6.1. Rather than pursuing further
axiomatizations here, we turn instead to illustrating what the model can deliver.
Two properties are immediate and apply at a very general level: (i) Ambiguity is in

general not monotonic along a sample. Posterior probabilities �n (V ) are not monotonic
under Bayesian updating. Thus, for example, if � has two points of support V 0 and V ,
and if V 0 (�) � V (�), (the set of priors for V 0 includes that for V ), then the set of priors
20Recall that utilities are �probability equivalents�, and thus it is legitimate to use Un (� j sn1 ) in an

axiom for conditional preference.
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corresponding to Un decreases with n (in the sense of set inclusion) if �n (V ) increases
but increases in size if �n (V ) decreases. (ii) Ambiguity need not vanish asymptotically
(this is illustrated and discussed further below).21

To say more, and by way of illustration, we adopt a number of specializations. First,
we assume that �0, representing ex ante beliefs, has support on Walley-Fine IID utility
functions, that is, ex ante utility is given, as in (5.5), by

U0 (f) =

Z �
inf
L1
Pf
�
d�0 (L) .

For concreteness, and to aid interpretation, we consider coin-tossing, S = fH;Tg, though
considerable generalization is possible. Then, as pointed out following (5.5), each set L
can be identi�ed with a probability interval IL for Heads, and beliefs �n are de�ned over
the set of all intervals contained in [0; 1]. Above, the likelihood function L (� j V ) used for
updating was conditioned on the IID utility function V . Here, the latter is in one-to-one
correspondence with a set L, and hence with a probability interval for Heads. Thus we
can write the updating rule (6.1) in the form:

d�n (I 0)
d�n (I)

=
Ln (sn j I 0)
Ln (sn j I)

d�n�1 (I 0)
d�n�1 (I)

,

for all intervals I 0; I. The interpretation is that beliefs about the probability intervals
evolve according to the reweighting described by the likelihood ratio Ln(snjI0)

Ln(snjI) . This is just
as in Bayesian updating of beliefs about the relevant parameter, which here is a probability
interval for Heads. (To remind the reader, the coin is represented by an interval because
the physical bias of the coin is only part of the story - tossing technique is thought to be
important to a degree corresponding to the length of the probability interval.)
We specialize the likelihood function by assuming that for �0-almost every I (or L):

L1 L (� j I) is exchangeable. Then, by the de Finetti Theorem,

L (� j I) =
Z
�(fH;Tg)

`1 (�) d�I (`) , (6.6)

for a unique probability measure �I on �(fH;Tg).

L2 �I has support equal to I. (Here and below we identify �I also with a measure on
[0; 1] in the obvious way.)

L1 asserts that even conditional on the probability interval I, there is still uncertainty,
represented by �I , about which i.i.d. law describes experiments. Acemoglu et al [1] study
updating in a completely Bayesian model where likelihoods are speci�ed as in (6.6) in
order to capture situations where, for agents trying to learn about I, signals are di¢ cult
to interpret. In their case, I is an abstract parameter rather than a probability interval.
Here signals are di¢ cult to interpret exactly because experiments are not identical.

21Though our model does not permit in�nite samples, asymptotic results can be interpreted as approx-
imations for large �nite samples.
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L2 asserts that when drawing inferences from a signal about a particular interval I,
that is, when conditioning on I, the i.i.d. laws taken into account are precisely those for
which the probability of Heads lies in the interval. (An immediate implication is that
L (� j I) 2 clh (L1).)
If I is the degenerate interval at p 2 [0; 1], then L1 implies that L (� j p) is the i.i.d.

measure with probability of Heads equal to p. If the preceding obtains for every I in the
support of �0, de Finetti�s model, including Bayesian updating, is obtained.
We can now state a counterpart for our framework of the Savage result that data

eventually swamp the prior.

Proposition 6.3. Suppose that the likelihood function L satis�es L1 and L2, and that
�0 has �nite support. (i) Suppose further that for any I 0 6= I in the support, I 0 and I
are disjoint. Then, for every I with �0 (I) > 0,

�n (I)! 1 L (� j I) -a.s.

(ii) Let �0 have support fI; pg, where p (H) 2 I is permitted. If p is not an atom of �I ,
that is, if �I (p) = 0, then

�n (p)! 1 p1-a.s.

Part (i) is the indicated counterpart. The assumption of disjoint intervals is an intuitive
identi�cation assumption. The set G of samples along which �n (I) converges to 1 satis�es
L (G j I) = 1, and hence also

`1 (G) = 1 �I-a.s.

Since �I has full support (L2), this clari�es the sense in which G is a large set.
Note that even given certainty about I, in general there remains ambiguity when

predicting future experiments and ranking bets over their outcomes. For example, an
individual could become certain about the physical bias of the coin, but in general remain
ambiguous about the outcomes of future experiments because of her limited understanding
of the e¤ects of tossing technique, particularly her view that these are unrelated across
tosses. On the other hand, if the truth is that experiments are i.i.d. with probability of
Heads equal to p, if the truth has positive subjective probability ex ante (p is in the support
of �0), and if the identi�cation condition is satis�ed, then the individual asymptotically
becomes certain of the true law with probability 1 according to the truth, and there is
no ambiguity remaining (she uses the i.i.d. measure corresponding to p to predict future
outcomes).
Part (ii) is an illustrative result for the case when intervals may overlap. Here there is

convergence to the truth, though the prior attaches positive probability to I, and hence
to experiments di¤ering. The overall message is that whether or not ambiguity persists
asymptotically depends (on the sample and) on the prior view of experiments. If the
individual is certain that each new coin-toss is in�uenced by a di¤erent and hard-to-
understand technique, then, even after learning the coin�s bias, it is rational to take this
limited understanding into account for further prediction and choice. On the other hand,
the model does not force ambiguity to persist in all circumstances.
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A �nal example exploits the fact that the �parameters� I being learned about are
probability intervals. Let �0 have support fI 0; Ig, where

I 0 = [p� �0; p+ �0]; I = [p� �; p+ �] and �0 > � > 0.

Thus the intervals have a common midpoint but di¤er in length. Accordingly, we interpret
the individual as entertaining two hypotheses that di¤er only in how similar experiments
are seen to be; obviously, they are more similar according to I. We ask how the posterior
probability �n (I) behaves in large samples.
Specialize L1-L2 by assuming further that �I0 and �I are uniform on their respective

intervals. Though we do this for concreteness, the uniform distribution seems natural. It
delivers the following result for the limiting probability of I:22 Denote by 
I the set of
samples ! for which lim	n (!) 2 I. Then, for every ! in 
I ,

�1 (I) =
1

1 + �0(I0)
�0(I)

�
�0

. (6.7)

Note that, by (D.1) and the full support property L2, the set of samples 
I has positive
probability according to both L (� j I 0) and L (� j I).
For samples in 
I , the limiting empirical frequency of Heads is consistent with both

I and I 0. This identi�cation problem leads to the result that 0 < �1 (I) < 1 - neither
hypothesis is dismissed entirely along such samples, even in the limit. This is an instance
of the identi�cation problem studied by Acemoglu et al [1]. In spite of di¤erences between
the two models, some of their other results also translate into our setting. In particular,
one could use concern about nonidentical experiments to justify asymptotic disagreement
between individuals.
Another noteworthy implication of (6.7) is that �1 (I) > �0 (I), that is, any sample

that is consistent with both hypotheses leads eventually to a shift in probability mass
towards the �more precise�hypothesis. Given a sample, the di¢ culty in making inferences
about future experiments is that they are not seen to be identical. Here experiments may
di¤er according to both I 0 and I, but they di¤er more according to I 0. Thus the sample
provides less information about future experiments under I 0 than under I. This leads to
a shift in weight towards I.

7. REGULARITY OR MONOTONE CONTINUITY?

Return to the static or one-shot choice setting. With the convention that outcomes are
measured in utils, the multiple-priors model is usually written in the form

U (f) = min
P2C

Z



fdP = min
P2C

Pf , f 2 F , (7.1)

22The claim (6.7) to follow is adapted from Acemoglu et al [1, Lemma 1]. The latter implies also that
for the lack of asymptotic learning, it would be enough for �I0 and �I to have positive and continuous
Lebesgue densities on their intervals.
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where C � ba1+ (
) is a convex and weak*-compact set of �nitely additive probability
measures on (
;�).23 Gilboa and Schmeidler [19] prove that this model is characterized
by a simple set of axioms.
At the functional form level, our version of multiple-priors (2.1) is evidently the special

case where the Gilboa-Schmeidler set of priors C is the weak*-closure of a convex and
weak-convergence closed set P of countably additive priors. Our main objective in this
section is to describe the behavioral meaning of this specialization.
The rationale for the specialization is straightforward - just as countable additivity is

assumed widely in the central theorems of probability theory, including in the de Finetti
Theorem that concerns us here, we specialize multiple-priors utility to provide a counter-
part of countable additivity.24 Since Chateauneuf et al [7] put forth a more restrictive
way to express �countable additivity�for a set of priors, we examine it in some detail and
argue that, though it is in some sense simpler, it is unduly restrictive particularly for a
setting with repeated experiments.

7.1. Regularity

The added axiom that we impose on preference, or utility, is Regularity, a property �rst
studied in Epstein and Wang [17]. Roughly, it extends to preferences the well-known
property of regularity of probability measures.25 A connection to countable additivity
is that any measure on a compact metric space is countably additive if and only if it is
regular [14, p. 138]. Thus it is not easy to distinguish between these properties within the
space of measures. However, as will become evident, they lead to substantially di¤erent
notions more generally, and we argue that there is a distinct advantage to using regularity
to de�ne the ambient technical framework.
The set of all [0; 1]-valued acts on 
 is F . Denote by Fu the set of all upper semicontin-

uous (usc) and simple (�nite-ranged) acts, and by F ` the set of lower semicontinuous (lsc)
and simple acts. As shown above, under suitable conditions there is a unique probability-
equivalent utility function U , de�ned in (2.3), that represents preference. Thus we can
state the sought-after condition in terms of that utility function.26

REGULARITY : A utility function U : F ! [0; 1], and the corresponding preference
order, are regular if both of the following conditions are satis�ed:

Inner Regularity U(h) = supfU(g) : g � h; g 2 Fug, 8h 2 F `; and

23The following additional notation is needed here. For any compact metric space X, ba (X) and ca (X)
denote the spaces of �nite variation set functions on the Borel �-algebra that are �nitely additive (charges)
and countably additive respectively; ba1+ (X) and ca

1
+ (X) are the corresponding subsets of positive and

normalized measures. The notation ca1+ (X), in place of �(X), is useful when it is important to draw a
distinction between �nitely and countably additive probability measures. Unless otherwise speci�ed, the
weak-convergence topology is used for ca1+ (X). By the weak* topology on ba(
), we mean the topology
induced by bounded measurable functions.
24See Regazzini et al [32] and Dubins [12, 13] for approaches assuming only �nite additivity.
25The reader is referred to [17] for detailed discussion of regularity of preferences and the formal

relationship to regular probability measures and also regular capacities.
26We state Regularity for any utility function U . As shown in [17], the axiom is readily expressed

explicitly in terms of preference for a large class of preferences.
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Outer Regularity U(f) = inffU(h) : h � f; h 2 F `g, 8f 2 F :

To see the parallel with the notion of regularity for a measure, think of the special case
of acts that are indicator functions, and note that the indicator 1A is simple and usc (lsc)
if A is closed (open). This parallel inspired the closely related, but distinct, de�nition of
regularity of preference in [17]. The relation is that U is regular in the above sense if and
only if its conjugate U�,

U� (f) = 1� U (1� f) , f 2 F ,

is regular in the sense of Epstein and Wang. For another perspective on the di¤erence
between the two de�nitions of regularity, observe that the Epstein-Wang notion requires
that

U(f) = supfU(g) : g � f; g 2 Fug;8f 2 F ;
that is, the utility of arbitrary acts can be approximated from below (by simple usc acts).
In contrast, Outer Regularity above postulates that the utility of arbitrary acts can be
approximated from above (by simple lsc acts). Approximation from above seems more
intuitive given the conservatism inherent in aversion to ambiguity or to limited evidence.
Since any probability measure coincides with its conjugate (P (A) = 1 � P (
nA)), the
two notions of regularity coincide in the SEU case, where U (f) = Pf for a �xed P , with
the usual notion of regularity of the measure P .27

We can now state the main result of this subsection, which shows that Regularity
characterizes our specialization of the Gilboa-Schmeidler model.28

Theorem 7.1. Let U be a multiple-priors utility as in (7.1). Then U satis�es Regularity
if and only if it can be expressed in the form (2.1) for some P � ca1+ (
) that is convex
and (weak-convergence) compact. Moreover, the set P is unique.

An important implication of Regularity is that utility is completely determined by its
values on �nitely-based acts. Much as the Kolmogorov Extension Theorem tells us that a
probability measure on 
 = S1, (which is necessarily regular given that 
 is metric), is
completely determined by its values on �nite cylinders, a generalized extension theorem
proven in [17, Theorem D.2] implies that a regular utility is uniquely determined by its
values on Ffin.29 This feature of our model of multiple-priors utility was behind the scenes
of a number of results stated above.
For example, consider the proof of Proposition 3.1. Symmetry implies that preference

over Ffin is represented both by P and by f�P : � 2 �; P 2 Pg. Hence they represent
27More precisely, it follows from [17, Theorem 4.1] that: an SEU preference with prior P is regular in

the sense of Epstein-Wang if and only if it is regular in the sense of this paper if and only if P is a regular
measure.
28See Appendix A for a proof; it relies, for one direction, on a result by Chen [8]. We remind the reader

that since the probability-equivalent utility U corresponds uniquely to preference, the theorem could be
restated in terms of the latter. Finally, see Philippe et al [31, Proposition 1] for a related result dealing
with lower envelopes of sets of priors rather than with preferences over acts.
29The di¤erent meaning of �regularity,�explained above, does not a¤ect the validity of the Kolmogorov-

style theorem.
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the same preference over F by [17, Theorem D.2]. Therefore, they must be identical by
the uniqueness of the representing set of priors (Theorem 7.1).
As a second example, consider a gap in the proof that (i) implies (ii) in Theorem

3.2. Let bU (f) = U (�f + (1� �)�f). Strong Exchangeability implies bU = U on Ffin.
Lemma A.1 shows that bU satis�es Regularity. Therefore, bU (f) = U (f) for all f 2 F by
Epstein and Wang [17, Theorem D.2].

7.2. An Alternative: Monotone Continuity

An alternative way to express �countable additivity� for a set of priors, put forth by
Chateauneuf et al [7], is to assume that P itself is weak*-compact, and hence that C
(equals P and) consists exclusively of countably additive measures. What could be a more
natural way to formulate the counterpart of countable additivity of single measures?
It may seem plausible also at the more meaningful behavioral level. Chateauneuf et al

show that weak*-compactness of P is characterized behaviorally by Monotone Continuity:

MONOTONE CONTINUITY : Given f � g, outcome x, and a sequence fAng in �, with
An & ?, then, there existsN such that (x;AN ; f (�) ;
nAN) � g and f � (x;AN ; g (�) ;
nAN).

As the cited authors point out, this axiom is used by Arrow [3] to characterize countable
additivity of the Savage prior. Moreover, Monotone Continuity is arguably simpler than
Regularity.30

On the other hand, Monotone Continuity is stronger than Regularity, (weak*-compactness
implies weak-convergence compactness for any set of priors), and we argue that the
di¤erence is signi�cant.
For example, Monotone Continuity implies that31

U (Bn)% U (B) for all sequences Bn % B. (7.2)

In contrast, Regularity (via Inner Regularity) imposes only that U (B) can be approxi-
mated from below by U (Bn) by some sequence Bn that increases to B. (In fact, this is
required only if B is open, which notably excludes B being a tail event; on the other hand,
the approximating sets must be compact.) To see that the di¤erence between �for all�
and �for some�can be signi�cant, consider the following coin-tossing example. The coin is
known to be unbiased, but there remains uncertainty surrounding the tossing techniques
of di¤erent people. You believe that every person imparts an (idiosyncratic) e¤ective
bias lying in f0; 1

2
; 1
3
; :::; 1

n
; :::g, but are completely ignorant within this set. A model that

captures this perception is the IID utility function corresponding to L1, where

L = f�0g [ f�1=n : n > 1g � �(fH;Tg) .
30Monotone Continuity is de�nitely easier to state, but it is not clear that its meaning is easier to grasp.

For example, the Borel �-algebra includes many complicated events that are di¢ cult even to describe.
Hence the scope of a condition that applies to all (measurable) acts is hard to understand. The surprising
Theorem 7.2 below illustrates this point.
31Let Bn % B. De�ne An = BnBn & ?, f = 1B and fn = 1Bn = (0; An; f;
nAn). Then Monotone

Continuity implies that, for every � > 0, there exists N such that V (BN ) = V (fN ) > (1� �)V (B).
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Let
Bn = f! : lim

k
	k (!) = 0, or lim sup

k
	k (!) �

1

n
g,

where 	k (!) denotes the empirical frequency of Heads in the �rst k tosses along the
sample !. Observe that Bn % 
. However, U (Bn) = 0 for every n: the set of priors L1
includes an i.i.d. measure Q where Heads has probability � in

�
0; 1

n

�
, and thus according

to which the empirical frequency of Heads converges with certainty to �. Therefore,

U (Bn) = inf
P2L1

P (Bn) � Q (Bn) = 0.

You would not be willing to bet on Bn because, no matter how large is n, the worst-case
scenario is that many people impart a bias smaller than 1

n
, and this would lead to a sample

path not in Bn. On the other hand, of course, U (
) = 1, violating Monotone Continuity.
In contrast, there is no contradiction to Regularity, since 
 can be approximated from
below by some sequence fKng of compact sets - Kn = 
 for all n works trivially.
More generally, while Regularity is consistent with the Walley-Fine IID utility function

(5.3), that model is excluded if Monotone Continuity is assumed, because L1 is not weak*-
compact unless L is a singleton. Here is a proof: For simplicity, consider S = fH;Tg. Let
`0; `1 2 L and `0 6= `1: For any r 2 [0; 1], we can �nd fitg1t=1 2 f0; 1g

1 such that 1
N

P
it

converges to r. Then, by Hall and Heyde [20, Theorem 2.19], the measure 
t`it 2 L1
assigns 1 to the event Ar; where Ar is the set that the limiting empirical frequency of
Head is (1� r) `0 (H) + r`1 (H). If L1 were weak*-compact, there would be Q 2 �(S1)
such that Q (A) = 0 implies P (A) = 0 for all P 2 L1, by [7, Lemma 3]. Thus, Q (Ar) > 0
for all r 2 [0; 1], which cannot be true.
The Walley-Fine utility function (5.3) is only one example of an IID utility function,

that is, a function satisfying Symmetry and the product rule (5.1). Finally, we show that
Monotone Continuity excludes all IID utility functions, other than expected utility func-
tions. Thus in the setting of in�nitely many experiments that are viewed symmetrically,
Monotone Continuity excludes modeling the perception that experiments are unrelated
in the natural sense of (5.1).

Theorem 7.2. If V is an IID utility function that satis�es Monotone Continuity, then
V is an expected utility function (with an i.i.d. prior).

The key to the proof of the theorem (found in Appendix C) is to show that Monotone
Continuity, plus Symmetry and the stochastic independence condition (5.1), imply that
V is 0-1 valued and additive on �tail. That implies that all measures in P are 0-1 valued
and that they agree on �tail. The rest is straightforward.
The restrictiveness of Monotone Continuity is not limited to settings with repeated

experiments. For example, let the state space be [0; 1] and consider the set of priors P
equal to the weak-convergence closed convex hull of f�0g [ f�1=n : n > 1g. Thus the
true state is known to lie in f0; 1

2
; :::; 1

n
:::g, but there is complete ignorance within the set.

Then Monotone Continuity is violated along the sequence Bn = f0g[ [ 1n ; 1]% [0; 1], since
U (Bn) = 0 6�! 1 = U (
). This re�ects an inherent discontinuity arising from ignorance.
Again, Inner Regularity is trivially satis�ed at 
.

34



A. Appendix: Regularity

Proof of Theorem 7.1:
(=: Chen [8, Proposition 1] proves that V is regular in the sense of Epstein-Wang, where

V (f) = sup
P2P

Pf = max
P2cl(P)

Pf , f 2 F .

(cl�(P) denotes the weak*-closure of P in ba1+ (
).) Therefore, U = V �, the conjugate of
V , satis�es Regularity.
=) : The multiple-priors utility function U can be extended in the obvious way to

C (
), the set of all continuous real-valued functions on 
, and the extension is norm-
continuous, superadditive, monotone, and U (1) = 1. Therefore, it is a support function
for a unique compact and convex set P � ca1+ (
). In particular,

U (f) = min
P
Pf , for every continuous act f .

Let g 2 Fu. By Outer Regularity, there exist hi 2 F ` such that

hi � g and U (hi) < U (g) + 2�i.

Further, there exist continuous acts fi such that

hi � fi � g.

(When hi = 1Gi and g = 1K are indicator acts, this follows from Urysohn�s Lemma. More
generally, the assertion follows from a straightforward extension of Urysohn�s Lemma for
simple acts - see [17, Lemma A.1].) Finally, it is wlog to assume that fi & g (see Aliprantis
and Border [2, Theorem 3.13]). It follows that

U (g) = inf
i
U (fi) = inf

i
inf
P
Pfi = inf

P
inf
i
Pfi = inf

P
Pg;

the last equality follows because infi Pfi = Pg for every P by the Monotone Convergence
Theorem.
De�ne

U (f) = inf
P
Pf = min

cl(P)
Pf , f 2 F .

By the �rst part of the proof, U is regular, while U is regular by assumption. As just
shown, the two utility functions agree on Fu. It follows immediately from Regularity that
they must agree on all of F . By the uniqueness of the (weak*-compact and convex) set
of priors, proven by Gilboa and Schmeidler, C is the weak* closure of P.

The following lemma was used in the proof of Theorem 3.2.

Lemma A.1. If U is regular, then so is bU , where bU (f) = U (�f + (1� �)�f), f 2 F ,
for any �xed � and �.
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Proof. Inner Regularity: Take h 2 F `. It is clear that U(h) � supfU(g) : g � h; g 2
Fug. Next show equality. By [2, Theorem 3.13], we can take continuous fn such that
fn (!) % h (!) for each ! 2 
. By [17, Lemma D.3], there exist �nitely-based h0n such
that fn � h0n � h. Thus,

lim
n
U (�h0n + (1� �)�h0n) = lim

n
min
P2P

Z
(�h0n + (1� �)�h0n) dP

= min
P2P

lim
n

Z
(�h0n + (1� �)�h0n) dP

= min
P2P

Z
(�h+ (1� �)�h) dP

= U (�h+ (1� �)�h) :

The second equality follows from Terkelsen�s minimax theorem [36, Corollary, p.407] and
the third by the Monotone Convergence Theorem for each P .
Outer Regularity: Note that

U (�f + (1� �)�f) = inf
P2P

Z
(�f + (1� �)�f) dP

= inf
P2P

inf
f�h2F`

Z
(�h+ (1� �)�h) dP

= inf
f�h2F`

inf
P2P

Z
(�h+ (1� �)�h) dP

= inf
f�h2F`

U (�h+ (1� �)�h) :

The second equality follows because f 7�!
R
(�f + (1� �)�f) dP satis�es Regularity.

B. Appendix: Proof of Theorem 5.2

After proving necessity, the bulk of the proof concerns su¢ ciency of the axioms. Here we
adapt the Hewitt-Savage [23] proof strategy for the de Finetti theorem to our setting. In
broad terms, it amounts to showing that the set U� of multiple-priors utility functions
satisfying Symmetry, OI and Super-Convexity is compact and convex, and then using the
Choquet Theorem (Phelps [30, p.14]) to express any such utility function as an integral
over extreme points of U�. The proof of uniqueness concludes.

B.1. Necessity

Show �rst that the integral
R
V V (f) d� (V ) is well-de�ned for all f in F . Denote by

QIID = fP 2 Kc (� (
)) : UP 2 Vg

the set of all IID sets of priors. We show below that V, and hence also QIID, are compact,
hence Borel measurable. Since � is well-de�ned on �, the universal completion of �, it
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su¢ ces to show that the function V 7�! V (f) is universally measurable. This is true if
every set of the form �

P 2 QIID : 9P 2 P ; Pf < c
	
=

proj�(
)
��
(P ; P ) 2 Kc (� (
))��(
) : P 2 QIID; P 2 P ; Pf < c

	�
lies in �. But the set being projected is Borel-measurable (in the product �-algebra).
Therefore, the projection is universally measurable by the Lusin-Choquet-Meyer Theorem
[24, Theorem A.1.8, p. 457].
De�ne U by (5.4), that is,

U (f) =

Z
V
V (f) d� (V ) , for all f in F .

The Gilboa-Schmeidler axioms are clearly satis�ed. OI and Super-Convexity can be
proven as in the proof of Lemma 5.1. We need to show that U is a (regular) multiple-priors
utility function. To do so, we establish a suitable set of priors for U .
Since U is homeomorphic to Kc (� (
)), � 2 �(V) can be viewed as a measure on

Kc (� (
)). Thus, we can write

U (f) =

Z
UQ (f) d� (Q) . (B.1)

We de�ne the Aumann integral
R
Qd� (Q) as follows: For a measurable � : Kc (� (
))!

�(
), de�ne
R
� (Q) d� (Q) =

R
�d� 2 �(
), by32�Z

� (Q) d� (Q)
�
(A) =

Z
� (Q) (A) d� (Q) for all A 2 �.

Let � be the identity function from Kc (� (
)) to Kc (� (
)) and Sel � the set of all
measurable selections from �, that is, � 2 � i¤� is a measurable function from Kc (� (
))
to �(
) satisfying � (Q) 2 Q. ThenZ

Qd� (Q) �
�Z

�d� : � 2 Sel �
�
:

Below we use the next lemma, which can be proven by a standard argument using the
Lebesgue Dominated Convergence Theorem.

Lemma B.1. Let � : Kc (� (
))! �(
) be measurable and P =
R
�d�. Then, for any

f 2 F , Z
Kc(�(
))

�Z



fd� (Q)
�
d� (Q) =

Z
fdP:

32The right side is well-de�ned because Q 7�! Q (A) is measurable by [2, Lemma 15.16]. It is easy to
see that one obtains a countably additive measure.
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Lemma B.2. Let � 2 �(Kc (� (
))). Then, for all f 2 F ,

inf
P2

R
Qd�(Q)

Z
fdP =

Z
Kc(�(
))

�
inf
P2Q

Z
fdP

�
d� (Q) :

=

Z
Kc(�(
))

UQ (f) d� (Q) � U (f) ,

where U is de�ned by (B.1).

Proof. We use a result of Castaldo et al [6, Theorem 3.2], which translated into our
setup, states

inf
�2Sel �

Z
�(
)

f̂ (P ) d(� � ��1) (P ) =
Z
inf
P2Q

f̂ (P ) d� (Q)

for any measurable f̂ : � (
)! R. Given f 2 F , de�ne f̂ (P ) =
R
fdP . Then

inf
P2

R
Qd�(Q)

Z
fdP = inf

�2Sel�

Z
Kc(�(
))

�Z



fd� (Q)
�
d� (Q)

= inf
�2Sel �

Z
Kc(�(
))

f̂ (� (Q)) d� (Q)

= inf
�2Sel �

Z
�(
)

f̂ (P ) d(� � ��1) (P )

=

Z
inf
P2Q

f̂ (P ) d� (Q) =
Z
Kc(�(
))

�
inf
P2Q

Z
fdP

�
d� (Q) ;

where the third equality follows by the Change of Variable Theorem [2, Theorem 13.46],
and the fourth by the result cited above.

Lemma B.3. Let � denote the weak-convergence closure of
R
Qd� (Q). Then:

(i) � 2 Kc (� (
)); and
(ii)

R
UQ (f) d� (Q) = infP2�

R
fdP for all f 2 F .

In other words, the utility function U de�ned as in (5.4), or equivalently, as in (B.1),
is a regular multiple-priors utility function with set of priors �.

Proof. (i) Convexity is clear because if �; �0 are measurable selections, then so is any
convex combination. The set � is closed by construction.
(ii) De�ne

U (f) = inf
P2�

Z
fdP , f 2 F :

By (i) and Theorem 7.1, U is regular.
Step 1: By the preceding lemma,

U (f) �
Z
UQ (f) d� (Q) = inf

P2
R
Qd�(Q)

Z
fdP , for every f 2 F :
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Step 2:

U (f) = inf
P2

R
Qd�(Q)

Z
fdP , for every lsc f .

It is enough to show that minP2R Qd�(Q) R fdP exists for every lsc f . By the preceding
lemma,

inf
P2

R
Qd�(Q)

Z
fdP =

Z �
min
P2Q

Z
fdP

�
d� (Q) .

By the Measurable Maximum Theorem [2, Theorem 18.19], there is a measurable selection
�, � (Q) 2 argminP2Q

R
fdP for each Q. Then P =

R
�d� 2

R
Qd� (Q), andZ �

min
P2Q

Z
fdP

�
d� (Q) =

Z
fdP .

Step 3:

U (f) = inf
P2

R
Qd�(Q)

Z
fdP , for every f 2 F .

Argue as follows: Z
Qd� (Q) � � =) inf

P2
R
Qd�(Q)

Z
fdP � U (f) :

Next prove the reverse inequality. Since U is regular, by Outer Regularity, given any f
and �, there exists a simple lsc h such that

h � f and U (h) < U (f) + �.

But then Step 2 and h � f =)

inf
P2

R
Qd�(Q)

Z
fdP � inf

P2
R
Qd�(Q)

Z
hdP = U (h) < U (f) + �,

which proves the desired inequality

inf
P2

R
Qd�(Q)

Z
fdP � U (f) :

Combine Steps 1 and 3 to complete the proof.

B.2. Su¢ ciency: The Hewitt-Savage Strategy Adapted

We turn to the su¢ ciency part of the theorem. Assume Symmetry, OI and Super-
Convexity.
We exploit heavily the homeomorphism between Kc (� (
)), the space of sets of priors,

and U = fUP : P 2 Kc (� (
))g, the space of (regular) multiple-priors utility functions.
We pass freely between them. Recall also that Kc (� (
)), and hence also U , are compact
metric.
The following preliminary results are straightforward.
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Lemma B.4. P 7�! minP2P Pf is continuous for any continuous act f .

Proof. This is implied by the Maximum Theorem [2, Theorem 17.31].
De�ne

U� = fU 2 U : U satis�es Symmetry, OI and Super-Convexityg .

Lemma B.5. U� is compact and convex, and V, the subset of IID utility functions, is
compact.

Proof. As noted, U is compact. The further de�ning properties of U� and V deal with
�nitely-based, and hence continuous, acts only. Therefore, the preceding lemma implies
that each set is closed. Convexity of U� is obvious.

The following lemma is the key to identifying the extreme points of U�. Much of the
next subsection is concerned with proving the lemma. We continue here assuming the
lemma is true.

Lemma B.6. For any U 2 U� and f � 2 Ff1;:::;mg satisfying U (f �) 2 (0; 1), de�ne the
functions U� and U�� by: for all f 2 F ,

U� (f) =
U (f � � �mf)
U (f �)

, and

U�� (f) =
U (�mf)� U (f � � �mf)

1� U (f �) : (B.2)

Then U�; U�� 2 U�.

Proposition B.7. If U is an extreme point of U�, written U 2 ext (U�), then U 2 V.33

Proof. Let U 2 ext (U�). It su¢ ces to show that

U (f � � �mf) = U (f �)U (f) , (B.3)

for every f � 2 Ff1;:::;mg and f 2 Ffin.
Let P 2 Kc (� (S1)) be the set of priors corresponding to U . Consider three cases.
Case 1: U (f �) = 0. Then

R
f �dP = 0 for some P 2 P. Therefore,

f � � 0 =) f � (!) = 0; P -a:s: =) (f � � �mf) (!) = 0; P -a:s:,

which implies (B.3).
Case 2: U (f �) = 1. Then

R
f �dP = 1 for all P 2 P, and, again for all P ,

f � � 1 =) f � (!) = 1; P -a:s: =) (f � � �mf) (!) = �mf (!) ; P -a:s:
33We show later that the converse is also true - ext (U�) = V - though we use only the fact that all

extreme points lie in V.
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Therefore,
U (f � � �mf) = U (�mf) = U (f) = U (f �)U (f) ,

where use has been made of the fact that Symmetry implies �shift invariance�:

f � �f for every f 2 Ffin.

Case 3: U (f �) 2 (0; 1). For every f 2 F ,

U (f) = U (�mf) = U (f �)U� (f) + (1� U (f �))U�� (f) ,

where U� and U�� are de�ned in Lemma B.6. Thus

U = �U� + (1� �)U��

where � = U (f �). Since U is an extreme point of U� and U�; U�� 2 U�, we have U = U�,
and hence

U (f) =
U (f � � �mf)
U (f �)

;

especially for f 2 FI with �nite I. This proves (B.3).

We wish to apply the Choquet theorem [30, p.14]. For that purpose, note that U �
E � f�U : � 2 /R; U 2 Ug, where E is a locally convex (vector) space under the topology
generated by sets of the form f�U : a < � < b; U 2 G, G open in Ug. Now take U 2
U�. Then Lemma B.5 and Choquet�s theorem imply the existence of a Borel probability
measure � on the set of extreme points of U� such that L (U) =

R
L (V ) d� (V ) for every

continuous linear functional L on E. Since �U 7�! �U (f) is linear and continuous on E
for every continuous f , it follows that

U (f) =

Z
V (f) d� (V ) (B.4)

for every continuous f . This, in fact, holds for any f 2 F : From the necessity proof,
we know that f 7�!

R
V (f) d� (V ) de�nes a utility function satisfying Regularity. In

addition, U satis�es Regularity by assumption. Finitely-based acts are continuous since
S is �nite. Thus we can invoke the generalized Kolmogorov extension theorem in Epstein
and Wang [17, Theorem D.2] to conclude that (B.4) holds for any f 2 F .
This completes the proof of su¢ ciency in Theorem 5.2, once we have proven Lemma

B.6.

B.3. Remaining Arguments Re Extreme Points of U�

The main objective in this section is to prove Lemma B.6, namely that the two functions
U� and U�� de�ned there lie in U�.
That U� 2 U� is straightforward. First, we show that it is regular.

Lemma B.8. For any f � 2 Ff1;:::;mg with U (f �) > 0, the function U� : F ! [0; 1],
de�ned by

U� (f) =
U(f � � �mf)
U (f �)

, f 2 F ,

satis�es Regularity.
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Proof. Show Outer Regularity. Inner Regularity can be shown in the same way.
View f � also as a function of (s1; :::; sm) 2 Sm. By Regularity for U , there exist

hn 2 F ` such that hn � f � � �mf and U (hn)& U (f � � �mf). De�ne

h0n (!) = min
s01;::;s

0
m2S

�
hn (s

0
1; ::; s

0
m; !)

f � (s01; ::; s
0
m)

: f � (s01; ::; s
0
m) > 0

�
, ! 2 S1.

Then h0n 2 F ` by [2, Lemma 17.30]. We will show that

hn (!) � f � (!) � �mh0n (!) � (f � � �mf) (!) for each ! 2 S1. (B.5)

Fix !. If f � (!) = 0, the inequality is clear. Assume f � (!) > 0.
The �rst inequality in (B.5) holds because

f � (!) � �mh0n (!) = f � (s1; :::; sm) � h0n (sm+1; :::)

� f � (s1; :::; sm) �
hn (s1; ::; sm; sm+1; :::)

f � (s1; ::; sm)

= hn (s1; ::; sm; sm+1; :::) :

For the second inequality, f � (s01; :::; s
0
m)�f

�
s0m+1; :::

�
� hn (!0) for each !0 = (s01; s02; :::).

Therefore,

f (sm+1; :::) �
hn (s1; s2; :::)

f � (s1; :::; sm)

whenever f � (s1; :::; sm) > 0, and

f (sm+1; :::) � min
s1;::;sm2S

hn (s1; s2; :::)

f � (s1; :::; sm)
= h0n (sm+1; :::) ,

which completes the proof of (B.5).
Finally, since U is monotone, U (hn) � U (f � � �mh0n) � U (f � � �mf). Thus,

[U (hn)& U (f � � �mf)] =) [U (f � � �mh0n)& U (f � � �mf)],

which proves Outer Regularity for U�.

It is evident that U� (or the preference that it represents) satis�es the Gilboa-Schmeidler
axioms. Symmetry is satis�ed because U (f � � �mf) = U (f � � (�m (�f))) for any permu-
tation �, by Symmetry for U . For Orthogonal Independence, let f; f 0 be nonhedging,
f; f 0 2 FI and f �� 2 FI�� with �nite and disjoint I and I��. Then

U (f � � �m [� (f �� � f) + (1� �) (f �� � f 0)])
= U (� (f � � �mf ��) � �mf + (1� �) (f � � �mf ��) � �mf 0)
= �U ((f � � �mf ��) � �mf) + (1� �)U ((f � � �mf ��) � �mf 0)
= �U (f � � �m (f �� � f)) + (1� �)U (f � � �m (f �� � f 0)) :

This implies OI for U�. Super-Convexity is also immediate. Conclude that U� 2 U�.

It remains to prove that U�� 2 U�. This is more di¢ cult because U�� is a di¤erence of
two functions derived from U . We show that U�� is suitably monotone and concave and
that it satis�es Regularity. Other properties are immediate.
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Lemma B.9. The function U�� de�ned in (B.2) is monotone on Ffin, that is, for all f 0; f
in Ffin,

f 0 � f =) U�� (f 0) � U�� (f) .

Proof. Take f � 2 Fm and f; f 0 2 Fn. For each � 2 [0; 1], there is a common minimizing
measure P� for f � � �m (�f 0 + (1� �) f) and �m (�f 0 + (1� �) f), by OI and Lemma 4.1.
Let ' (P; �) =

R
f � � �m (�f 0 + (1� �) f) dP . Then

U (f � � �m (�f 0 + (1� �) f)) = min
P2P

' (P; �) =

Z
f � � �m (�f 0 + (1� �) f) dP� .

The partial derivative with respect to � is '� (P; �) =
R
f � ��m (f 0 � f) dP . Therefore,

by [28, Theorem 2],

U (f � � �mf 0)� U (f � � �mf) =
Z 1

0

�Z
f � � �m (f 0 � f) dP�

�
d� :

Similarly,

U (�mf 0)� U (�mf) =
Z 1

0

�Z
�m (f 0 � f) dP�

�
d� :

Therefore,

(1� U (f �)) (U�� (f 0)� U�� (f))
= U (�mf 0)� U (f � � �mf 0)� U (�mf) + U (f � � �mf)

=

Z 1

0

�Z
(1� f �) � �m (f 0 � f) dP�

�
d� :

Conclude that if f 0 � f , then
R
(1� f �) � �m (f 0 � f) dP� � 0 for all � 2 [0; 1], and

U�� (f 0) � U�� (f).

Lemma B.10. If F 2 Ff1;:::;ng and if g� and h� are nonhedging, then so are

g�� = 1
2
�ng� + 1

2
F � �nh� and h�� = 1

2
�nh� + 1

2
F � �ng�. (B.6)

Proof. Compute, using OI and Lemma 4.1 repeatedly, that

U
�
1
2
g�� + 1

2
h��
�
= U

��
1
2
1+ 1

2
F
�
� �n

�
1
2
g� + 1

2
h�
��

= 1
2
U
��

1
2
1+ 1

2
F
�
� �ng�

�
+1
2
U
��

1
2
1+ 1

2
F
�
� �nh�

�
= 1

4
U (�ng�) + 1

4
U (F � �ng�)

+1
4
U (�nh�) + 1

4
U (F � �nh�)

= 1
2

�
1
2
U (�ng�) + 1

2
U (F � �nh�)

�
+1
2

�
1
2
U (�nh�) + 1

2
U (F � �ng�)

�
= 1

2
U
�
1
2
�ng� + 1

2
F � �nh�

�
+1
2
U
�
1
2
�nh� + 1

2
F � �ng�

�
= 1

2
U (g��) + 1

2
U (h��) .
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Lemma B.11. The function U�� de�ned in (B.2) satis�es Super-Convexity.

Proof. Let g� � h� 2 Ff1;:::;mg be nonhedging. Since the denominator 1 � U (f �) is not
important, consider the function U2 de�ned by the numerator. Then

U2 (g
� � �mf)� U2 (h� � �mf) = U (g� � �mf)� U (f � � �n (g� � �mf))

� [U (h� � �mf)� U (f � � �n (h� � �mf))]
= [U (g� � �mf) + U (f � � �n (h� � �mf))]

� [U (h� � �mf) + U (f � � �n (g� � �mf))]
=

�
U (g� � �mf) + U

�
f � � �nh� � �n+mf

��
�
�
U (h� � �mf) + U

�
f � � �ng� � �n+mf

��
(by Symmetry) =

�
U
�
�ng� � �n+mf

�
+ U

�
f � � �nh� � �n+mf

��
�
�
U
�
�nh� � �n+mf

�
+ U

�
f � � �ng� � �n+mf

��
(by OI) = 2U

�
(1
2
�ng� + 1

2
f � � �nh�) � �n+mf

�
�2U

�
(1
2
�nh� + 1

2
f � � �ng�) � �n+mf

�
= 2

�
U
�
g�� � �n+mf

�
� U

�
h�� � �n+mf

��
,

where g�� and h�� are de�ned in (B.6). Note that g�� and h�� are nonhedging by Lemma
B.10. Also, g�� � h��. Therefore, Super-Convexity for U implies that it is satis�ed also
by U��.

It remains to prove regularity and also that monotonicity and concavity obtain on
all of F . For this purpose we exploit the regularity of U , as described in the following
lemmas. As the surrounding arguments are routine, many details are omitted.
Let F `

fin = F ` \ Ffin, the set of (simple) lsc acts that are �nitely-based.34

Lemma B.12. Let f � 2 Ff1;:::;mg. Then, for any f 0; f 2 F and � 2 [0; 1],

U (f � � �m (�f + (1� �) f 0)) = inf
f�h2F`
f 0�h02F`

U (f � � �m (�h+ (1� �)h0)) :

Proof. P denotes the set of priors corresponding to U . Note that

U (� (f � � �mf) + (1� �) (f � � �mf 0))

= inf
P2P

�
�

Z
(f � � �mf) dP + (1� �)

Z
(f � � �mf 0) dP

�
34Since S is �nite, every �nitely-based act is continuous, hence lsc. However, we use the notation F`fin

in order to emphasize that we are using the lower semi-continuity of such acts, which would be important
in any future generalization to in�nite S.
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= inf
P2P

�
� inf
f�h2F`

Z
(f � � �mh) dP + (1� �) inf

f 0�h02F`

Z
(f � � �mh0) dP

�
= inf

P2P
inf

f�h2F`
f 0�h02F`

Z
[� (f � � �mh) + (1� �) (f � � �mh0)] dP

= inf
f�h2F`
f 0�h02F`

inf
P2P

Z
[� (f � � �mh) + (1� �) (f � � �mh0)] dP

= inf
f�h2F`
f 0�h02F`

U (� (f � � �mh) + (1� �) (f � � �mh0)) :

The second equality follows because f 7�!
R
fdP , for P 2 �(S1), is monotone and

satis�es Regularity; hence Lemma B.8 implies
R
f � � �mfdP =

inff�h2F`
R
f � � �mhdP .

Lemma B.13. Let f � 2 Ff1;:::;mg.
(a) For any h 2 F `, there exist hn 2 F `

fin such that hn � h,

U (hn)% U (h) and U (f � � �mhn)% U (f � � �mh) :

(b) For any f 0; f 2 F and � 2 [0; 1], there exist hn; h0n 2 F ` such that

f � hn, f � h0n , U (hn)& U (f) , U (h0n)& U (f 0) ,

U (f � � �mhn)& U (f � � �mh) , U (f � � �mh0n)& U (f � � �mh0) ,
U (�hn + (1� �)h0n)& U (�f + (1� �) f 0) and
U (f � � �m (�hn + (1� �)h0n))& U (f � � �m (�f + (1� �) f 0)) .

Proof. (a) By Inner Regularity, there is a sequence gn 2 Fu such that gn � h and
U (gn) % U (h). By [17, Lemma D.3], there exists h0n 2 F `

fin such that gn � h0n � h.
Then U (h0n)% U (h). Similarly, by the regularity established in Lemma B.8, there exist
h00n 2 F `

fin such that h
00
n � h and U(f � � �mh00n) % U (f � � �mh). De�ne hn = max fh0n; h00ng

and hn does the job.
(b) By Regularity of U , there is chn 2 F ` such that chn � f and U

�chn� & U (f).

By the regularity established in Lemma B.8, there exist
cchn 2 F ` such that

cchn � f and
U(f � � �mcchn)& U (f � � �mf). De�ne hn 2 F ` by

hn = min

�chn;cchn� .
Then hn 2 F `, hn � f and

U (hn)& U (f) and U (f � � �mhn)& U (f � � �mf) :

The preceding argument is readily extended to prove the remainder of (b), when
combined with Lemma B.12.
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We can �nally complete the proof of Lemma B.6.
Monotonicity: U�� (f 0) � U�� (f) if f 0 � f and f 0; f 2 F . By Lemma B.9, this is true if
f 0 and f are �nitely-based. The inequality is readily extended to all simple lsc acts, and
then to arbitrary acts, by using Lemma B.13.
Regularity: Since U�� is increasing, U�� (f) � inf

�
U��(h) : h � f; h 2 F `

	
. Lemma B.13

implies equality, which proves Outer Regularity. Inner Regularity can be shown similarly.
Concavity: We have to show that

U�� (�f + (1� �) f 0) � �U�� (f) + (1� �)U�� (f 0) , for all f 0; f 2 F :

For �nitely-based f 0 and f , the inequality follows from Lemma B.11. It is readily extended
to all simple lsc acts, and then to arbitrary acts, by using Lemma B.13.

We o¤er a remark related to the proof. Above we showed that every extreme point of
U� lies in V. In fact, we can prove, using the representation, that the other direction is
also true.

Lemma B.14. V is the set of all extreme points of U�.

Proof. Let U 2 V and show that U is an extreme point of U�.
The proof of Theorem 5.2, speci�cally, application of Choquet�s Theorem, implies that

U (f) =
R
V (f) d� (V ) for some � that is supported by the set of extreme points of U�

(and not only by its superset V). Therefore, for f 2 Ff1;:::;mg,�Z
V (f) d� (V )

�2
= [U (f)]2 = U (f � �mf)

=

Z
V (f � �mf) d� (V ) =

Z
[V (f)]2 d� (V ) :

But
�R
V (f) d� (V )

�2
=
R
[V (f)]2 d� (V ) if and only if

V (f) is constant �-a:s:[V ].

The exceptional set depends on f . But since F1 is separable, there exists a �-null set
of V �s that works for all acts. Conclude that a:s:-� [V ], V (�) = U (�) on Ff1;:::;mg. Since
this is true for any m, the equality holds a:s: on all of F by the generalized Kolmogorov
extension theorem [17, Theorem D.2]. Thus, � is degenerate and U is an extreme point
of U�.

B.4. Uniqueness

Let �0 and �, Borel measures on the compact metric space V, satisfyR
V (f) d�0 =

R
V (f) d� for all f 2 F .

We show that
�0 = �.
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Each �nitely-based act f induces (by Lemma B.4) the continuous map bf : V ! [0; 1],
given by bf (V ) = V (f) .
Let bFfin be the set of all such maps and A = sp

� bFfin�, the linear span of bFfin within
C (V), the set of continuous real-valued functions on V. Then,R bf(V )d�0 = R bf(V )d� for all bf 2 bFfin.
This equality extends also to the linear span:R

�(V )d�0 =
R
�(V )d� for all � 2 A.

It is enough to show thatR
�(V )d�0 =

R
�(V )d� for all � 2 C (V) . (B.7)

We do this by verifying the conditions of the Stone-Weierstrass Theorem, which implies
that A is sup-norm dense in C (V), and hence also (B.7).
Obviously A contains the constant functions and it separates points; in fact, since

every IID utility is regular, if V 0 6= V , then � (V 0) 6= � (V ) for some � 2 bFfin � A. We
need only show that

�0; � 2 A =) �0� 2 A,
which follows from Steps 1 and 2.

Step 1. Any �nite linear combination of elements in bFfin can be expressed as a linear
combination of two such elements, that is,

�iaibfi = �bh� �0bh0. (B.8)

Clearly, �
�iaibfi� (V ) = �iaibfi (V ) = �iaiV (fi).

Suppose that every ai is positive. We can shift each of the acts fi so that they are
mutually orthogonal and V is additive over them (since every IID utility satis�es OI).
Because weights may not sum to 1, we obtain �V (h) for some �nitely based act h and
� > 0, that is,

�iaibfi = �bh.
If one or more of the coe¢ cients ai is negative, then one can collect those acts having
similarly signed weights, and derive (B.8).

Step 2. Verify that (a bf + bbg)(a0 bf 0 + b0bg0) 2 A:
[(a bf + bbg)(V )] [(a0 bf 0 + b0bg0) (V )]

= [aV (f) + bV (g)] [a0V (f 0) + b0V (g0)]

= aa0V (f � �nf 0) + ab0V (f � �ng0) + ba0V (g � �nf 0) + bb0V (g � �ng0)
=

�
aa0 \(f � �nf 0) + ab0 \(f � �ng0) + ba0 \(g � �nf 0) + bb0 \(g � �ng0)

�
(V ) ,
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where n is large enough so that all paired acts are orthogonal to one another. The
last equality is derived by shifting each of the product acts so that they are mutually
orthogonal, so that V is additive over them, and then applying shift invariance. Thus
(B.8) implies

(a bf + bbg)(a0 bf 0 + b0bg0) = �bh� �0bh0 2 A.

C. Appendix: Proof of Theorem 7.2

Step 1 : V (g � f) = V (g)V (f) for all g 2 Ff1;:::;mg and f 2 Ffm+1;m+2;:::g.
The equality is true by (5.1) if f is �nitely-based. Extend it to all acts f indicated

by applying Regularity.

Step 2 : Fix A 2 �tail and de�ne, (where A denotes 1A and so on),

B =
�
B 2 � : V

��
1
2
B + 1

2

�
�
�
1
2
A+ 1

2

��
= V

�
1
2
B + 1

2

�
V
�
1
2
A+ 1

2

�	
.

Then B is a monotone class.
(a) Assume Bn 2 B, Bn % B and show B 2 B, that is,

V
��

1
2
B + 1

2

�
�
�
1
2
A+ 1

2

��
= V

�
1
2
B + 1

2

�
V
�
1
2
A+ 1

2

�
:

Let Cn = BnBn & ?, and de�ne, for a �xed tail event A0,

f =
�
1
2
B + 1

2

�
�
�
1
2
A0 + 1

2

�
;

fn =
�
1
2
Bn +

1
2

�
�
�
1
2
A0 + 1

2

�
and

gn =
�
1
4
; Cn; fn;
nCn

�
.

(a.i) If s 2 Cn, then s =2 Bn and fn (s) = 1
2

�
1
2
A0 + 1

2

�
(s) 2

�
1
4
; 1
2

	
.

(a.ii) By (a.i), gn � fn. Therefore, V (gn) � V (fn).
(a.iii) fn (s) 6= f (s) =)��

1
2
Bn +

1
2

� �
1
2
A0 + 1

2

��
(s) 6=

��
1
2
B + 1

2

� �
1
2
A0 + 1

2

��
(s)

=)
�
1
2
Bn +

1
2

�
(s) 6=

�
1
2
B + 1

2

�
(s) =) s 2 BnBn = Cn:

Therefore, s =2 Cn =) fn (s) = f (s).
(a.iv) gn =

�
1
4
; Cn; f;
nCn

�
. This is clear by (a.iii).

(a.v) By Monotone Continuity, for any � > 0, there exists N such that V (gN) > V (f)��.
Therefore, by (a.ii), V (fN) > V (f)� �. But fn

n

% f . Conclude that

V (fn)% V (f) : (C.1)

We can now complete the proof of (a) and show that B 2 B: (C.1) implies that

limV
��

1
2
Bn +

1
2

�
�
�
1
2
A0 + 1

2

��
= V

��
1
2
B + 1

2

� �
1
2
A0 + 1

2

��
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for all A0 2 �tail. Thus

V
��

1
2
B + 1

2

�
�
�
1
2
A+ 1

2

��
= limV

��
1
2
Bn +

1
2

� �
1
2
A+ 1

2

��
(set A0 = A)

= limV
�
1
2
Bn +

1
2

�
V
�
1
2
A+ 1

2

�
(since Bn 2 B)

= V
�
1
2
B + 1

2

�
V
�
1
2
A+ 1

2

�
: (set A0 = 
)

(b) Assume Bn 2 B, Bn & B and show that B 2 B. The argument is similar to that
in (a). We provide an outline for completeness.
Let Cn = BnnB & ?, and de�ne, for a �xed tail event A0,

f =
�
1
2
B + 1

2

�
�
�
1
2
A0 + 1

2

�
;

fn =
�
1
2
Bn +

1
2

�
�
�
1
2
A0 + 1

2

�
and

gn = (1; Cn; fn;
nCn) .

(b.i) If s 2 Cn, then s 2 Bn and fn (s) =
�
1
2
A0 + 1

2

�
(s) 2

�
1
2
; 1
	
.

(b.ii) By (b.i), gn � fn. Therefore, V (gn) � V (fn).
(b.iii) fn (s) 6= f (s) =)��

1
2
Bn +

1
2

�
�
�
1
2
A0 + 1

2

��
(s) 6=

��
1
2
B + 1

2

�
�
�
1
2
A0 + 1

2

��
(s)

=)
�
1
2
Bn +

1
2

�
(s) 6=

�
1
2
B + 1

2

�
(s) =) s 2 BnnB = Cn:

Therefore, s =2 Cn =) fn (s) = f (s).
(b.iv) gn = (1; Cn; f;
nCn). This is clear by (b.iii).
(b.v) V (fn)& V (f) :
The rest of the argument is exactly as in (a).

Step 3 : By Step 1, [m�f1;:::;mg � B. Thus the Monotone Class Lemma [2, p. 137] implies
that B = �, that is, for all A 2 �tail and B 2 �,

V
��

1
2
B + 1

2

�
�
�
1
2
A+ 1

2

��
= V

�
1
2
B + 1

2

�
V
�
1
2
A+ 1

2

�
.

In the same way we can show that, for all A 2 �tail and B 2 �,

V (1A � 1B) = V (1A\B) = V (A \B) = V (A)V (B) . (C.2)

The rest of the proof uses these properties and not Monotone Continuity directly.

Step 4 : Apply Step 3 to two tail events A and B to derive

V
�
1
4
1B � 1A + 1

4
1A +

1
4
1B +

1
4

�
= V

��
1
2
1B +

1
2

�
�
�
1
2
1A +

1
2

��
= V

�
1
2
1B +

1
2

�
V
�
1
2
1A +

1
2

�
= 1

4
[V (A)V (B) + V (A) + V (B) + 1]

= 1
4
[V (A \B) + V (A) + V (B) + 1] .

By Lemma 2.2,
V
�
1
2
1A +

1
2
1B
�
= 1

2
V (A) + 1

2
V (B) .
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Step 5 : A 7�! V (A) de�nes a �nitely additive 0-1 valued measure (or charge) on �tail:
The 0-1 property follows from (C.2). For disjoint A;B 2 �tail, by Step 4,

V (A [B) = V (1A[B) = V (1A + 1B)

= 2V
�
1
2
1A +

1
2
1B
�
= V (A) + V (B) .

Step 6 : Let P be the set of priors corresponding to V . For A 2 �tail, V (A)+V (
nA) = 1.
Thus, V (A) = 0 =) V (
nA) = 1. Further, V (A) = 1 =) P (A) = 1 for all P 2 P.
Since V (A) = 0 or 1, it follows that

fP (A) : P 2 Pg = f0g or f1g .

Step 7 : For each f 2 F1, there is an exchangeable measure P � that is minimizing for f .
To see this, note that

V
�
1
4
f � �f + 1

4
f + 1

4
�f + 1

4

�
= V

��
1
2
f + 1

2

�
�
�
1
2
�f + 1

2

��
= V

�
1
2
f + 1

2

�
V
�
1
2
�f + 1

2

�
= 1

4
[V (f � �f) + V (f) + V (�f) + 1] .

By Lemma 2.2, there is a common minimizing measure P for f and �f . Let � be the
permutation that switches experiments 1 and 2. Then, using Symmetry,

(�P ) f = P (�f) = P (�f) = V (�f) = V (f) .

Therefore, P and �P are both minimizing for f . Finally, P 1 � 1
2
P+1

2
�P is also minimizing

(it lies in P because P is convex) and it satis�es �P 1 = P 1.
Apply a similar argument to

�
1
2
f + 1

2

�
�
�
1
2
�f + 1

2

�
::: �
�
1
2
�nf + 1

2

�
to deduce that there

is a common minimizing measure P n for ff; �f; :::; �nfg that satis�es �P n = P n for all
� 2 �n, the set of permutations on f1; :::; ng. Since P is compact, wlog (after relabelling),
P n ! P � 2 P. Then P � is exchangeable and minimizing for f .

Step 8 : The measure P � in Step 8 is i.i.d.: By Step 6, P � is 0-1 valued on �tail. But,
using the de Finetti Theorem, it is straightforward to show that the only exchangeable
measures with this property are i.i.d. measures.

Step 9. V (�f 0 + (1� �) f) = �V (f 0) + (1� �)V (f), for all f 0; f 2 F1.
Take i.i.d. measures P 0 for f 0 and P for f . Since both P 0 and P are i.i.d. measures,

and they agree on tail events (Step 6), they must coincide. Thus, there is a common
minimizing measure for f 0 and f .

Step 10. V (�f 0 + (1� �) f) = �V (f 0) + (1� �)V (f), for all f 0; f 2 F .
For any n, view Sn as corresponding to one experiment and repeat the above to derive

additivity for all f 0; f 2 Ff1;:::;ng. Finally, apply Regularity to extend additivity to all
acts.
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D. Appendix: Proofs for Updating

Proof of Theorem 6.1: Prove su¢ ciency of the axioms. We prove (6.1) for n = 1; the
general argument is similar.
We use Proposition 1 in de Meyer and Mongin [27], for which the main step is to show

that D is convex, where

D =
�
(U (f) ; U1 (f j s1))s12S1 : f 2 F>1

	
� RS+1.

A preliminary result concerns shifted acts. Recall that � is the shift operator, so that,
for any act,

(�f) (s1; s2; s3; :::) = f (s2; s3; ::) ;

�n denotes the n-fold replication of �. Symmetry implies also indi¤erence to shifts, that
is, �f � f for all acts f ( see Section 4.2).
Now let x; y 2 D,

x = (U (f) ; U1 (f j s1))s12S1 and y = (U (g) ; U1 (g j s1))s12S1 ,

and prove that �x + (1� �) y 2 D. Suppose �rst that f and g �nitely-based. Then
there exists N large enough so that f and the shifted act �Ng are orthogonal, that is,
they depend on disjoint sets of experiments. For such an N , because each utility function
satis�es OI and shift-invariance,

�x+ (1� �) y = � (U (f) ; U1 (f j s1))s12S1 + (1� �) (U (g) ; U1 (g j s1))s12S1
= � (U (f) ; U1 (f j s1))s12S1 + (1� �)

�
U
�
�Ng

�
; U1

�
�Ng j s1

��
s12S1

=
�
U
�
�f + (1� �) �Ng

�
; U1

�
�f + (1� �) �Ng j s1

��
s12S1

2 D,

where the last equality follows from OI. Finally, the preceding can be extended to general
(not only �nitely-based) acts f and g by Regularity.
The other conditions in Proposition 1 of de Meyer and Mongin [27] are readily veri-

�ed.35 Therefore, there exist positive numbers as1 > 0 such that

U (f) = �s1as1U1 (f j s1) , f 2 F>1.

Since U (p) = U1 (p j s1) = p for all (constant acts) p, it follows that �s1as1 = 1.
Deduce that, for all f 2 F>1,Z

V (f) d� (V ) = �s1as1

Z
V (f) d�s1 (V ) =

Z
V (f)

�
�s1as1d�s1 (V )

�
.

By uniqueness of the representing measure,

� (�) = �s1as1�s1 (�) .
35De Meyer and Mongin�s condition (C) is satis�ed here because U (p) = U1 (p j s1) = p for all s1 and

0 � p � 1. Therefore, WDC implies their condition P4, and the Proposition�s conclusion follows.
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Because as1 > 0 for each s1, it follows that �s1 << �, and

1 = �s1as1
�
d�s1 (�) =d� (�)

�
.

Equation (6.1) is satis�ed for n = 1 if

L1 (s1 j V ) = as1
�
d�s1 (V ) =d� (V )

�
.

Similarly for n > 1.
Argue similarly for every n to obtain a family fLn (� j V )g of conditional one-step-

ahead likelihoods. These can be combined in the standard way to yield a unique likelihood
function L (� j V ) on 
.

Proof of Proposition 6.3: (i) We adapt a result of Doob as described in LeCam and Yang
[26, Propositions 2,3, p. 243]. For simplicity, consider the special case of coin-tossing.
Because each L (� j I) is exchangeable, lim	n (!) exists L (� j I)-a.s., and, for any

interval I � [0; 1],
�I (I) = L (� j I) (f! : lim	n (!) 2 Ig) . (D.1)

Since �I has support in I, �I (I) = 1. Because intervals are disjoint, for each !, there is
at most one I such that lim	n (!) 2 I. De�ne F : 
! Supp (�), by

F (!) = I, if lim	n (!) 2 I,

and de�ne F (!) = I, with I an arbitrary �xed interval in the support of �, if lim	n (!) 62
[Supp(�)I. Then, Z

Supp(�)

Z



j I � F (!) j dL (! j I) d� (I) = 0,

which establishes the condition in Le Cam and Yang [26, Proposition 2]. Their Proposition
3 completes the proof.

(ii) De�ne F : 
! fI; pg, by F (!) = p if lim	n (!) = p, and = I otherwise. ThenZ



j I � F (!) j dL (! j I) = 0, and

Z



j p� F (!) j dp1 (!) = 0.

The former is valid because L (f! : lim	n (!) = pg j I) = �I (fpg) = 0. Thus Le Cam
and Yang [26, Proposition 3] completes the proof.
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