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In modelling competition among mechanism designers, it is necessary to specify
the set of feasible mechanisms. These specifications are often borrowed from the
optimal mechanism design literature and exclude mechanisms that are natural in a
competitive environment, for example, mechanisms that depend on the mechanisms
chosen by competitors. This paper constructs a set of mechanisms that is universal
in that any specific model of the feasible set can be embedded in it. An equilibrium
for a specific model is robust if and only if it is an equilibrium also for the universal
set of mechanisms. A key to the construction is a language for describing
mechanisms that is not tied to any preconceived notions of the nature of compe-
tition. Journal of Economic Literature Classification Numbers: D43, D89, C72.
� 1999 Academic Press

1. INTRODUCTION

Mechanism design problems are solved by restricting mechanism
designers to direct mechanisms that assign outcomes to agents' reports
about their private information. This approach is based on the revelation
principle, which states that for every indirect mechanism, there exists a
direct mechanism that (induces truthful reporting and) produces the same
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outcomes. In other words, the class of direct mechanisms forms a universal
class. Despite the important insights that the revelation principle generates
into problems with asymmetric information, questions have been raised
about its usefulness in environments where there are multiple principals
(sometimes referred to as sellers in what follows) competing for one or
more agents (sometimes called buyers). A series of examples presented in
Peck [20] and in Martimort and Stole [13] illustrate apparent failures of
the standard revelation principle. In their examples, allocations that are
supported as equilibria with indirect mechanisms are not supported when
sellers are restricted to using direct mechanisms where buyers report only
their private valuations and do so truthfully. In addition, [13] provides an
instance of an equilibrium relative to such direct mechanisms that is not
robust to the possibility that sellers might deviate to more complicated
mechanisms, illustrating another limitation of direct mechanisms that is
specific to the competitive setting.

The reason for such failures stems from the fact, pointed out in [14] and
[11], that in a multi-principal environment agents possess private informa-
tion not only about their own preferences or valuations, but also about
what different principals are doing, that is, about what is happening in the
market. Moreover, it is important that such market information be
included in the agent's type. When the principal attempts to make use of
this market information, he or she is essentially designing his mechanism in
a way that makes it responsive to what other mechanism designers are
doing.

An analogous problem arises in the discussion of ``meet the competition''
clauses [23] in the industrial organization literature. In a typical Bertrand
price competition between two firms, they bid down the price until it
equals marginal cost. This changes if firms are allowed to offer prices along
with promises to match a competitor's price if the latter is lower. In that
case, the monopoly price for both firms is an equilibrium because a firm
considering deviating by lowering price realizes that this will simply force
the other firm to cut price as well, resulting in no new customers. This meet
the competition argument illustrates the essential problem. The monopoly
outcome cannot be supported when firms are restricted to direct
mechanisms where buyers report only private valuations, because these
rule out the possibility that firms might write contracts that make their
price offers respond to what other firms are doing.

In principle it is clear how to deal with this��simply incorporate market
information into an agent's type. However, there are some serious obstacles
to doing so that we now outline.

An obvious way for a seller to learn a competitor's price is to ask buyers
to report it at the same time that they report their preference information.
However, limiting the seller to this specific form of price matching is
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restrictive. For example, the seller might wish to make his of her price
depend also on whether or not the opponent has made his or her price
depend on... and so on. Market information seems to involve an infinite
regress that must be resolved.

The problem of infinite regress associated with a type is now familiar
from the work of [15] or [4]. The hierarchy of dependencies that arises
here is outwardly similar to the hierarchies of beliefs that they study. The
infinite regress is basic, but it is only part of the problem in our setting.
Logically prior is the question of how to describe the competitor's
mechanism. A description based on the fact that price depends on whether
price depends on whether ... is inadequate because restricting the language
to prices is itself an ad hoc restriction. We are seeking a universal language,
one that is sufficiently rich to permit descriptions of mechanisms in a large
class that is not limited by preconceived notions of the nature of competi-
tion. In contrast, probability measures provide the obvious tool for describing
beliefs, which form the essence of a type in the setting of [15] and [4].

In the absence of any obvious way to deal with these problems, the
literature has respond by imposing ad hoc restrictions on the set of indirect
mechanisms from which sellers can choose. The literature on competing
mechanisms [14, 21, 22] restricts sellers to direct mechanisms in which
buyers report only private information about their preferences. Competi-
tion in price schedules is the common assumption in the financial literature
[2, 7, 12] and in the industrial organization literature [3, 24]. At first
glance this does not seem unreasonable. It is natural to model sellers as
competing in price when it is prices that are actually observed. However,
a complete positive theory needs to explain why sellers compete the way
that they do despite the fact that more imaginative mechanisms are
available to them. In some cases, it might be argued that institutional con-
straints justify the a priori restrictions on feasible mechanisms. However,
even when there is a law that explicitly restricts the set of mechanisms that
sellers can use, it is impossible to evaluate the impact of such a law without
knowing what would happen without it.

This leads finally to the contribution of this paper. We construct a
language for describing mechanisms that provides a way to incorporate
private market information into an agent's type. This language is the key
to the specification of a class of mechanisms having the property that any
well-behaved set of indirect mechanisms can be embedded within it. In this
sense any ad hoc model of competition among mechanism designers can be
viewed as a model that restricts sellers to offering mechanisms that lie in a
subset of this universal class. This provides a natural way of thinking about
the apparent restrictiveness of the usual sort of direct mechanisms, since
they constitute a relatively small subset of the universal class. The non-
robustness of equilibria in direct mechanisms and the failures of the
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standard revelation principle illustrated by the examples in [20] and [13]
then become transparent.

Furthermore, the existence of this universal class of mechanisms makes
it possible to show the sense in which the revelation principle does hold.
We show that equilibria relative to the universal class are robust in the
sense that there are no profitable deviations to more complicated
mechanisms, and that all robust equilibria can be represented as equilibria
relative to the universal class. Thus equilibria relative to the set of universal
mechanisms can never give rise to the problems identified by Martimort
and Stole [13] or by Peck [20]. Mechanisms in the universal class ask
buyers to report their type (including market information), and in this
sense they are ``direct'' mechanisms. We show that there is no loss of
generality in restricting sellers to this universal class of direct mechanisms.

Our formulation of the competing mechanisms problem is contained
in Section 2. Section 3 provides the statement of our main result
(Theorem 3.1), which verifies the existence of a universal set of
mechanisms. A discussion of robustness and the revelation principle follows
in Section 4. Section 5 provides some intuition for the nature of types, that
is, the language for describing mechanisms; this is accompanied by an
intuitive sketch of the proof of Theorem 3.1. Section 6 concludes with an
outline of some extensions. Most proofs are provided in a series of
appendices. The first appendix contains two examples that illustrate some
of the central concepts in the paper.

2. INDIRECT MECHANISMS

2.1. Primitives

Throughout the paper, where we refer to a set X as a ``space'', the inten-
tion is that X is a compact metric space. (See Section 5 for a description of
the ``small'' role played by metrizability.) Where only a weaker structure is
needed, that will be made explicit. Where a measurable structure is needed,
the corresponding Borel _-algebra, denoted B(X), is used.

For notational simplicity, we deal with the case of two buyers and two
sellers or firms. The trading process begins when sellers simultaneously
announce the mechanisms they plan to use. As is common in the search
literature, we assume that buyers search out the market beforehand and
consequently have better information than sellers. More particularly,
neither seller observes directly the mechanism chosen by the other seller
but buyers can observe both mechanisms.1 After seeing them, each buyer
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selects one of the firms. Once buyers have made their choices and these
have been revealed to the sellers, then seller's mechanisms are played out
with any participating buyers.

To accommodate the participation choice of buyers, let P=[0, 1],
where the intention is that pi=1 if and only if buyer i participates at the
firm under consideration.

The primitives for our model are

A0 : space of ``simple'' actions

0= valuations space (including the ``usual type'' of a buyer)

F: cdf according to which buyers' valuations are drawn (independ-
ently)

A simple action is a complete description of the allocation, including
possibly randomization. In our example of price matching (Appendix A), a
simple action is a lottery over buyers and the option to buy at a specified
price to be offered to the buyer that is ultimately selected. In an auction
environment, a simple action might be a set of (randomized) transfers paid
to and received from each bidder along with a specification of the probability
with which each bidder is allocated the commodity. The independence
assumption is made to simplify notation; correlated types can be accom-
modated as long as the distribution of types conditional on a realized own
type | varies continuously with |.

Sellers may condition their choice of simple actions on the participation
decisions of buyers. Thus we are led to consider the space (A0)P2

of
participation contingent simple actions. The value to the seller of any
participation contingent plan ac depends on the participation probabilities
of each buyer. In other words, the seller is concerned with the ``full'' action
(ac , ?, ?$), consisting of the contingent action and the probabilities with
which each buyer participates in the seller's mechanism. Thus we are led to
the actions space A=(A0)P2

_[0, 1]2.
Seller's payoffs are represented by v: A_02 � [0, 1], where the

dependence of v(a, |, |$) on the valuations of the two buyers allows us to
interpret each contingent action as an option to trade at a specified price.
The value of such an option depends on whether or not the buyer decides
to exercise the option and this depends on his valuation.

For buyers, payoffs are represented by the function u: A_0 � [0, 1].
Interpret u(a, |) as the expected payoff to a buyer (say buyer 1) with
valuation | who is participating at a given firm where action a is taken. It is
computed prior to his or her learning if the other buyer is also participating
there. By the definition of actions, each a in A has the form a=(ac , ?, ?$),
where ? and ?$ represent the respective probabilities with which buyers 1
and 2 choose the seller. Because u represents 1's utility conditional on his
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already having chosen the seller, we assume that u(a, |) is independent of
the ?-component of the action a. But it will in general depend on ?$,
because 1's payoff ex post may depend not only on the simple action
chosen but also on whether or not the other buyer is participating. Thus
the likelihood of such participation is important ex ante.

We assume that buyers who do not participate in either mechanism get
0 utility and that there is an action a

�
# A such that u(a

�
, } )=0. The action

a
�

may correspond to ``no trade'', implying the default utility level 0 regard-
less of valuation. For example, a seller might choose a price that he or she
knows no one could afford to pay. Because we assume that u( } )�0, the
utility obtained in the absence of participation, it follows that buyers
always do at least as well by participating in one of the mechanisms as they
would by staying out of the process. Assume also that v(a

�
, } )=0.

At this stage it is useful to point out the difference between our formula-
tion and the better known problem of common agency [3], involving two
(or more) sellers dealing with a single buyer whose payoffs depend on the
actions of both sellers. In particular, the buyer's ranking of alternatives
offered by one seller depend on the action selected by the other seller. This
externality makes it possible to improve upon simple direct mechanisms in
the common agency environment. In our formulation, the payoff that a
buyer gets from one seller is independent of the other seller's action, but it
depends on whether or not the other buyer chooses to participate with the
same seller. The probability with which this occurs depends on the action
take by the other seller. This indirect dependence gives rise to the same sort
of contractual externality that appears in common agency��the buyer's
ranking of a menu of alternatives depends on the action taken by the other
seller. The added complexity that arises in the competing mechanism
problem is that this ranking of alternatives and the nature of the externality
are not unique (as in common agency), because they may vary with the
continuation equilibrium describing buyer behavior.

2.2. Standard Model of Competition

An ``ad hoc'' model of competition requires a specification of the set 1
of feasible indirect mechanisms from which sellers may choose. We outline
this modelling approach here.

To define indirect mechanisms, fix a space of message C that is used by
both firms. The message space is perfectly general in the sense of the degree
and nature of the communication about competing mechanisms that it per-
mits. An indirect mechanism # assigns an action to each of the messages
that might be communicated by buyers, that is, # is a measurable map from
C2 into A. Write #=(#c , #?1

, #?2
), where

#c : C2 � (A0)P2
and (#?1

, #?2
): C2 � [0, 1]2. (2.1)
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Thus, #c ( } ) describes the contingent simple action and (#?1
( } ), #?2

( } ))
describes the ``rest'' of the action prescribed by the mechanism #( } ). The
components #?i

( } ) can be interpreted as the seller's recommended participa-
tion probabilities for buyer i.2

This formulation admits two possible interpretations with respect to the
timing of communication. The set of feasible mechanisms 1 may or may
not allow the outcome that the seller specifies when only buyer 1 chooses
his or her mechanism to depend on the message sent by buyer 2. Such
dependence occurs in models where buyers communicate with sellers before
committing themselves to one of the mechanisms. The alternative and com-
mon assumption ([14], for example) is that buyers communicate after
committing themselves. This assumption can be accommodated within our
formalism by restricting mechanisms so that the action prescribed when
only buyer i participates is independent of buyer j 's message. (See
Section 6.2 for further discussion.)

Denote by 1 the set of feasible indirect mechanisms, endowed with some
topology. Unless specified otherwise, we assume below that 1 is compact
metric.

Turn to behavior. A communication strategy c~ is a measurable mapping
from 0_1 2 into C, with the interpretation that c~ (|, #, #$) is the message
sent to the firm using # by a buyer of valuation | when the other firm is
using #$. Similarly, a participation strategy is a measurable function
?~ : 0_1 2 � [0, 1], where ?~ (|, #, #$) is the probability of participating only
at the firm using # by a buyer of valuation | when the other firm is
using #$.

Say that the strategy pair (c~ , ?~ ) is a continuation equilibrium if no buyer
has any incentive to deviate from either the reporting strategy c~ or the
selection strategy ?~ , for any of his valuations and for any pair of
mechanisms offered by the two sellers. We assume the existence of con-
tinuation equilibria. We view this assumption as completely innocuous. Of
course it is not difficult to construct models of indirect competition where
continuation equilibrium do not exist (one mechanism might be ``I will
trade with the buyer who names the largest integer''). It is also easy to
think of models of indirect competition where sellers can offer mechanisms
that do not make sense (each seller offers a price equal to the price offered
by the other seller). There is no need to worry about whether such models
are good descriptions of competition between sellers��it is immediately
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apparent that they are not. Thus in the discussion that follows we restrict
attention to indirect models in which equilibrium exists. This restricts the
models 1 of indirect competition to which the analysis in this paper
applies. However, an analogous restriction is associated with the usual
revelation principle in single mechanism designer problems, since indirect
mechanisms that do not have equilibria cannot be replaced by direct
mechanisms.

It should also be noticed that when we assign a particular continuation
equilibrium c~ ( } , #, #$), ?~ ( } , #, #$) to a pair of mechanisms, we are not assum-
ing that it is unique. We view the value of a particular mechanism to be
partly determined by the continuation equilibrium that it delivers. Thus the
continuation equilibrium is part of the model of competition that we wish
to understand. If there are multiple continuation equilibria, these will
generate new models for which the set of indirect mechanisms can once
again be embedded in our universal set of mechanisms.

When we want to emphasize the underlying set of indirect mechanisms
1, we refer to (c~ , ?~ ) as a continuation equilibrium relative to 1 or we refer
to the triple (1, c~ , ?~ ) as a continuation equilibrium. When we wish to
emphasize a particular pair of mechanisms, we refer to (c~ ( } , #, #$),
?~ ( } , #, #$)) as a continuation equilibrium relative to (#, #$).

The key to the standard (one principal) revelation principle, is that com-
posing a mechanism with buyers' strategies yields a mapping from pairs of
valuations into actions, or in other words, a ``direct mechanism''. A corre-
sponding composition plays an important role in the present setting. To be
precise, given #, each communication and participation strategy (c~ , ?~ )
induces the mapping

m# : 02_1 2 � A, where

m# (|, |$, #$, #")=(#c (c~ (|, #, #$), c~ (|$, #, #")), ?~ (|, #, #$), ?~ (|$, #, #")). (2.2)

The expression m# (|, |$, #$, #") describes the action forthcoming at the
firm employing #, in the given continuation equilibrium, if the |-valuation
buyer acts as though the other firm is employing #$ and the |$-valuation
buyer acts as though the other firm in employing #". In equilibrium, #$=#"
and both equal the mechanism actually chosen by the other firm, but
allowing #${#" in principle will permit us later to express appropriate
incentive compatibility restrictions on direct mechanisms. The dependence
of the action chosen on the other firm's mechanism differentiates our
setting from the more familiar single seller setting, where valuations alone
matter.
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The preceding definition also simplifies the description of seller behavior.
Suppose that the competing firm chooses the randomization $$ # 2(1) and
that buyer behavior is described by the strategy pair (c~ , ?~ ).3 Then the seller
who chooses the randomization $ receives the payoff

V($; $$, c~ , ?~ )=| v(m# (|, |$, #$, #$), |, |$)

_dF(|) dF(|$) d$$(#$) d$(#). (2.3)

Say that (c~ , ?~ , $*) is a (symmetric) equilibrium relative to 1, or simply that
(1, c~ , ?~ , $*) is an equilibrium, if (c~ , ?~ ) is a continuation equilibrium and

$* # arg max
$ # 2(1)

V($; $*, c~ , ?~ ).

We impose symmetry on the strategies that buyers and sellers use in equi-
librium purely for the sake of the notational simplification that symmetry
permits.

Clearly equilibria of this kind depend on the specification of 1 including
the message space C. Typically 1 and C are selected for reasons of trac-
tability, both mathematical and economic. If one has data on prices, it is
natural to want to formulate a model in which firms compete in prices. We
are interested in analyzing the exact sense in which this might be restrictive.

3. A UNIVERSAL CLASS OF MECHANISMS

3.1. Addition Assumptions

Our objective is to show that there is a class of mechanism in which any
set 1 of indirect mechanisms (with a given continuation equilibrium) can
be embedded. We do this by constructing a ``universal'' set of mechanisms
having the property that the actions delivered by any pair of mechanisms
in 1 can also be delivered by a appropriate combination of mechanisms in
this universal class. The continuation equilibrium for the latter features
agents reporting their private information truthfully and obeying all par-
ticipation recommendations made to them by sellers.

We impose two additional assumptions on continuation equilibria.
Focus on a continuation equilibrium (1, c~ , ?~ ) and the corresponding func-
tion m# , defined by (2.2), that summarizes the actions produced by # # 1.
To express the assumptions on (1, c~ , ?~ ), introduce the payoff functions
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induced by mechanisms. To be precise, denote the expected utility of a
buyer facing # by

U(|, #$; #)=| u(m# (|, |$, #$, #$), |) dF(|$), (3.1)

where the buyer has valuation | and the other firm is using the mechanism #$.
We require first that the continuation equilibrium satisfy a two-faceted

continuity property. For any space S, U(S) denotes the set of upper semi-
continuous (usc) functions from S into [0, 1], endowed with the topology
described in Appendix B.

Definition. Say that the continuation equilibrium (1, c~ , ?~ ) is payoff
upper semi-continuous if (i) U( } ; #) is usc on 0_1 for each # in 1 and
(ii) the mapping # [ U( } ; #) # U(0_1 ) is continuous.

Upper semi-continuity (in fact continuity) of U( } ; #) in valuation alone
is implied by a continuation equilibrium (this is well known��[25], for
example). It follows that the condition (i) of payoff usc is innocuous if 1 is
finite. More generally, it can be shown that a sufficient condition for payoff
usc, including part (iii), is that U( } ) be continuous on 0_1 2.

The second restriction on continuation equilibria (called non-
redundancy) is more difficult to explain. We provide a formal (and possibly
impenetrable) definition of the property here and defer interpretation until
Section 5, after we have shown what the assumption of non-redundancy
delivers.

The formal definition follows. Given a continuation equilibrium (1, c~ , ?~ )
and the corresponding payoff function U, define a sequence [7n] of
_-algebras on 1, each contained in the Borel _-algebra. Let 70=[<, 1],
71=_-algebra generated by the mappings # [ sup[U(|, #$; #) : (|, #$) # E],
where E varies over B(0)_70 , and 7n+1=_-algebra generated by the
mappings # [ sup [U(|, #$; #): (|, #$) # E], where E varies over B(0)_7n .
Observe that 7nZn and that if 7n=7n+1 for some n, then 7n=7k for all
k>n. Say that (1, c~ , ?~ ) is non-redundant if any pair of distinct points in 1
can be separated by some 7n .4

The statement and interpretation of non-redundancy are simpler when 0
is finite (or countable). In that case, the _-algebras defined above are
unchanged if, for all n, E is restricted to vary only over [[|]_7n : | # 0].
The complicating need to rely on nonsingleton subsets of 0 in the infinite
case appears to be a ``technical matter.''
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3.2. The Main Result

Our main result is presented here. First, we explain some notation and
terminology used in the theorem.

Mechanisms in the universal class resemble the usual sorts of direct
mechanisms in that buyers are asked to report their private information
directly. To do this, buyers must be able to describe the mechanism that is
being used by the other seller. This description must be adequate to
describe every order in the hierarchy of dependencies built into the
mechanism. It must also be free of ad hoc terminology, like price, since the
mechanisms being described may not involve simple price offers. A major
contribution of the theorem is to provide a suitable language, in the form
of the set T. Buyers report their preference information by using an element
of the set 0 and they describe their market information by using an
element from T.

To clarify the sense in which T constitutes a language, denote by A02_T 2

the set of all measurable maps m: 02_T 2 � A. Each such m can be viewed
as a direct mechanism employing message space 0_T for each buyer, that
assigns action m(|, |$, t$, t") directly to reports (|, t$) and (|$, t") by the
two buyers. Since T is a language that can be used to describe such
mechanisms, there is a one to one map �: T � A02_T 2

. Interpret �(t) as
the direct mechanism that is described by t # T. Thus T constitutes a
language for describing direct mechanisms that have as inputs reports from
this same language.

We have defined actions to include recommended probabilities. Thus the
action �(t)(|, |$, t$, t$) includes a recommended participation probability
to the buyer with valuation |, given that the other buyer has valuation |$
and that both buyers report the type t$ for the other seller. Denote that
recommended probability by �(t)? (|, |$, t$, t$), paralleling the notation in
(2.1).

The set �(T ) can be viewed also as a set of indirect mechanisms, that
is, a particular specification of 1 and one for which the message space
C is 0_T. This interpretation for �(T ) gives meaning to the
theorem's reference to (�(T ), c*, ?*), a continuation equilibrium relative
to �(T ).5

We can now state our main result.6
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Theorem 3.1. There exist a separable metric space T, a one-to-one map
�: T � A02_T 2

, and a payoff usc and non-redundant continuation equilibrium
(�(T ), c*, ?*) such that for any payoff usc and non-redundant continuation
equilibrium (1, c~ , ?~ ), with 1 compact metric, there exists an embedding
e: 1 � T satisfying:

(a) For all (|, |$, #, #$) # 02_1 2, m=�(e(#)) and m$=�(e(#$)),

#(c~ (|, #, #$), c~ (|$, #, #$))=m(c*(|, e(#), e(#$)), c*(|$, e(#), e(#$))) and

#$(c~ (|, #$, #), c~ (|$, #$, #))=m$(c*(|, e(#$), e(#)), c*(|$, e(#$), e(#))).

(b) For all (|, |$, t, t$) # 02_T 2,

c*(|, t, t$)=(|, t$) and

?*(|, t, t$)=�(t)? (|, |$, t$, t$).

We have explained the sense in which the space T constitutes a language.
The theorem establishes the universality of that language, in that, under the
conditions stated, indirect mechanisms in any given feasible set 1 can be
described in terms of T by means of the translation represented by e. In
particular, the same T applies for any continuation equilibrium (1, c~ , ?~ )
satisfying payoff usc and non-redundancy.7

The theorem also provides a continuation equilibrium (c*, ?*) relative
to the set �(T ) of indirect mechanisms. By part (a), the actions forthcom-
ing in this equilibrium replicate those in the given equilibrium (1, c~ , ?~ ).
(Because actions have been defined to include participation probabilities,
the latter are also replicated.) This establishes that �(T ) is a sufficiently
rich set of mechanisms. Part (b) states that the continuation equilibrium
(c*, ?*) has two natural properties��c* involves truthful reporting of the
other seller's type t$, and the probability ?*(|, t, t$) with which the |-buyer
chooses the seller of type t when the other seller has type t$ coincides with
the recommendation of the type t seller.8 A consequence is that any pair of
mechanisms in �(T ), here viewed as a pair of direct mechanisms, one for
each firm, can be implemented by the continuation equilibrium (c*, ?*).
The parallel with the standard single-firm setting is apparent���(T ) is the
counterpart for our competitive setting of the familiar class of incentive-
compatible direct mechanisms based on reports about valuations alone
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that is the key to the standard revelation principle. (See Appendix C for
more on the nature of the mechanisms in �(T ).)

We elaborate on the significance of the theorem in Section 4 and provide
an intuitive outline of its proof in Section 5. Here we offer a brief com-
parison with the case of a single mechanism designer where the revelation
principle appears tautological��``direct mechanisms'' can be constructed in
a straightforward way by composing equilibrium reporting strategies with
the rule that assigns actions to reports. Theorem 3.1 differs substantially
from the single agent result because we cannot assume that the types
describing buyers' private information lie in some known and well behaved
set. Instead this set of types must be constructed from ``scratch.'' Moreover,
this construction is complicated by the special nature of the multi-principal
setting. In the single mechanism designer problem, the belief hierarchy is a
natural candidate for a ``universal'' description of buyers' private informa-
tion only because it is independent of the modeler's notion of what indirect
mechanisms are available to the mechanism designer. Such independence is
not given in our setting, because private information includes market infor-
mation and this is expressed in terms of the modeler's conception of the
nature of competition. Independence from the modeler's conception is
restored by use of the universal language T, making its construction novel
and a central contribution.

3.3. Finitely Many Types

A possible concern with Theorem 3.1 is tractability. In problems with a
single mechanism designer, the set of types is theoretically very complex, an
infinite series of beliefs about beliefs to higher and higher orders, paralleling
the complexity of the types space T upon which our universal class of
mechanisms is based. Normative applications of the revelation principle
usually come from making assumptions that make the types space simple.
For example, buyers might have high or low marginal utility, or valuation
information may be expressed as an interval on the real line.

In order to bolster confidence that our approach may prove useful in
simple applied models of competing mechanism designers, we describe con-
ditions on primitives that are sufficient to deliver the finiteness of T. Given
the length of this paper, we content ourselves with illustrating the potential
for simplification in plausibly interesting environments, rather than
attempting to provide a general result. Thus we proceed under the assump-
tion that there is no private information, that is, 0 is a singleton which can
be suppressed in the notation. We also continue to assume that buyers
behave symmetrically.

Consider the following natural specialization of buyer's payoff functions
u. Let u0 : A0 _P � [0, 1], where u0 (a0 , p$) gives the payoff to a buyer par-
ticipating at a mechanism that has produced simple action a0 and where
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the other buyer's participation status is given by p$. Given any action
a=(ac , ?, ?$) in A=(A0)P2

_[0, 1]2, write

ac=(a (1, 0)
c , a (0, 1)

c , a (1, 1)
c );

a(1, 1)
c denotes the simple action prescribed by the plan ac if both buyers

participate (that is, ( p, p$)=(1, 1)) and so on. Suppose finally that u(a) is
given by

u(a)=?$u0 (a (1, 1)
c , 1)+(1&?$) u0 (a (1, 0)

c , 0), (3.2)

the expected payoff to the participating buyer when ?$ is the probability of
the other buyer also participating.

Finiteness of T is implied if u0 (A0_P) is finite (a fortiori if A0 is finite)
and if we assume that for all simple actions a0 and b0 ,

u0(a0 , 1){u0 (b0 , 0). (3.3)

Theorem 3.2. Suppose that there is no private information, that buyers'
payoff functions satisfy (3.2) and (3.3), and that u0 (A0 _P) is finite. Then
the set of type T provided by Theorem 3.1 is finite.

The proof is given at the end of Section 5. One drawback to finite action
spaces is that they do not permit sellers to use randomized actions (though
randomized strategies are permitted). This assumption may appear
innocuous, but randomized actions have strong incentive effects when
buyers are risk averse, making them desirable to sellers.

4. ROBUSTNESS AND THE REVELATION PRINCIPLE

If the restrictions imposed on the seller's ability to offer mechanisms are
unreasonable, then the predictions forthcoming from a model of indirect
competition will be unreliable. For this reason, we are interested in know-
ing when equilibria in particular models of indirect competition will survive
the possibility that sellers might invent mechanisms that are not considered
possible by the modeler. We have suggested that the universal class of
mechanisms �(T ) provides an appropriate framework for examining such
robustness of equilibria. Here we provide a formal result confirming this
suggestion. In the single principal setting, the revelation principle shows
that a mechanism that is optimal in the class of incentive compatible direct
mechanisms is also optimal in an unrestricted sense. The theorem to follow
may be thought of as a counterpart result for the present setting of compet-
ing mechanism designers.
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Given a continuation equilibrium (1, c, ?) and # # 1, denote by m# the
function defined in (2.2). Similarly, denote by m1

#1
the function correspond-

ing to the continuation equilibrium (11 , c1 , ?1), where #1 is an arbitrary
mechanism in 11 .

Say that the payoff usc and non-redundant continuation equilibrium
(11 , c1 , ?1) extends (1, c, ?) if there exists an embedding :: 1 � 11 such
that, for all #, #$ in 1,

m# ( } , #$, #$)=m1
:(#)( } , :(#$), :(#$)) on 02. (4.1)

In words, the actions implied by any pair of mechanisms # and #$ in 1 are
replicated by their translations :(#) and :(#$), mechanisms in 11 . As an
example, if 1 is compact metric, then the continuation equilibrium
(�(T ), c*, ?*) provided by Theorem 3.1 extends (1, c, ?), with embedding
:=� b e.

Say that an equilibrium (1, c, ?, $) is robust if for any extension
(11 , c1 , ?1) of (1, c, ?), where 11 is compact metric, then (11 , c1 , ?1 , :[$])
is an equilibrium, where :[$] is the randomization on 11 induced by $
and :.9

Theorem 4.1. (a) If the equilibrium (1, c, ?, $) is robust, where 1 is
compact metric, then (�(T ), c*, ?*, � b e[$]) is an equilibrium, where c*,
?*, e, and � are defined in Theorem 3.1.

(b) If (�(T ), c, ?, $) is an equilibrium, then the equilibrium is robust.

Proof. (a) If not, there exists m # �(T ) that is a profitable unilateral
deviation by a seller. Define 11=�(e(1 )) _ [m]. (Because � is a
homeomorphism, �(e(1)) is compact metric. Addition of the discrete point
m leaves 11 compact metric, as required by our definitions of ``extension''
and ``robustness.'') Further, (11 , c*, ?*) extends (1, c, ?) (take the restric-
tion of � b e as the required embedding :), and (11 , c*, ?*, � b e[$]) is not
an equilibrium, contradicting robustness.

(b) Observe that the continuation equilibrium (�(T ), c, ?) need not
feature truthful reporting. Let (11 , c1 , ?1) extend (�(T ), c, ?), with embed-
ding :. The appropriate form of (4.1) is

m�(t) ( } , �(t$), �(t$))=m1
:(�(t))( } , :(�(t$)), :(�(t$))) on 02.
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By Theorem 3.1, 11 may be embedded into �(T ) by � b e1 , with associated
truthtelling continuation equilibrium (�(T ), c*, ?*), such that

m1
#1

( } , #$1 , #$1)=�(e1 (#1))( } , e1 (#$1), e1 (#$1)) on 02.

Consequently, � b e1 b : embeds �(T ) into itself and

m�(t) ( } , �(t$), �(t$))=�(e1:(�(t)))( } , e1:(�(t$)), e1:(�(t$))) on 02.

This identity states that the two continuation equilibria (�(T ), c, ?) and
(�(T ), c*, ?*) imply the same valuation and report contingent actions,
after suitable translation by the embedding � b e1 b : of �(T ) into itself. We
are given that (�(T ), c, ?, $) is an equilibrium. It follows that so is
(�(T ), c*, ?*, � b e1 b :[$]).

Suppose that (11 , c1 , ?1 , :[$]) is not an equilibrium. Then there exists
a profitable unilateral deviation to some # # 11 not in the support of :[$].
But then the deviation to �(e1 (#)) is profitable, contradicting the fact that
(�(T ), c*, ?*, � b e1 b :[$]) is an equilibrium. K

Robust equilibrium allocations (allocations supported by equilibria
relative to �(T )) constitute the primary normative contribution of our
analysis. However, in general, neither T nor �(T ) is compact, raising ques-
tions about the existence of robust equilibria. Comparison with the single
principal context provides a useful perspective. In the standard setting,
existence of an optimal mechanism is proven after imposing additional
structure corresponding to specific applied problems. Such a procedure
might succeed here as well. It is beyond the scope of this already lengthy
paper to pursue this much further, but we offer some supporting comments.

First note that if the set of simple actions is finite, there is no private
information, and preferences satisfy 3.2 and 3.3, then T is finite by
Theorem 3.2. This implies that the universal set of mechanisms is finite.
Then by Nash's theorem there exists an equilibrium (possibly in mixed
strategies) relative to (�(T ), c*, ?*). By Theorem 4.1, this equilibrium is
robust, which guarantees that there are robust equilibrium allocations or
such problems. Appendix A gives an example satisfying 3.2 and 3.3 (this is
readily checked by looking at the payoff matrices given there) and
explicitly characterizes a robust equilibrium.

5. THE NATURE OF T AND NON-REDUNDANCY

This section is devoted to providing some intuition for the proof of
Theorem 3.1, focusing primarily on the nature of T and the meaning of
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non-redundancy. At the end, we provide a proof of Theorem 3.2 (finiteness
of T ). For the technical details supporting this section the reader is referred
to Appendixes B�D.

Fix a continuation equilibrium (1, c~ , ?~ ) and consider the problem of try-
ing to describe mechanisms in 1 in a way that is not tied to the specific
view of competition embodied in 1. This is the heart of our problem. An
initial intuition is to use the payoff function generated by any mechanism
as a way to describe that mechanism. This approach, which is the one we
adopt, seems promising as a route to universality because mechanisms of
all sorts deliver payoff functions.

To be more precise, consider using the buyers' payoff function U( } ; #),
defined by (3.1), to describe the mechanism # used by firm 1. A difficulty
with doing so is that one of its arguments is the mechanism #$ in 1 used
by the other firm. Thus the above payoff function is tied by its very defini-
tion to the given class 1, (that is, its domain is 0_1 ), contrary to the
desired universality. The latter can be achieved, however, if we confine our
description of #1 to the way in which its payoffs vary with valuations, a
primitive of the model. The task, therefore, is to associate each U( } , } ; #),
a function on 0_1, with a ``marginal'' function that is defined on 0. This
is somewhat analogous to associating with each joint probability measure
a suitable marginal measure, though there is no compelling and unconten-
tious notion of marginal for our setting. Our choice is to define the
0-marginal to be sup#$ # 1 U( } , #$; #).10

We arrive at an initial description of # by means of 80 (#), the function
on 0 defined by

80 (#)( } )=sup
#$ # 1

U( } , #$; #). (5.1)

In words, our 0-level description of # is given by the best valuation-con-
tingent payoff that # delivers, where ``best'' is over all feasible mechanisms
#$ for the other firm. The latter supremum evidently makes this a coarse
description of # and thus we proceed to refine it. This is possible because
the 0-level description can be applied also to describe mechanisms used by
the other firm. Thus we can refine (5.1) by computing the best valuation-
contingent payoff that # delivers, where ``best'' is now over all feasible
mechanisms #$ for the other firm that have a given 0-level description. In
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other words, we arrive at a level 1 description in terms of the function
81 (#)( } ) defined by

81 (#)( } , h$0)=sup
#$ # 1

[U( } , #$; #): 80 (#$)=h$0], (5.2)

where h$0 varies over all possible 0-level descriptions. Proceeding induc-
tively in the obvious way, one obtains a sequence of progressively finer
descriptions 8n (#)( } ) of #, n�0. The complete description of # is provided
by the infinite sequence of all n th order descriptions.11

Thus we describe # by means of its ``type,''

e(#)=(8n (#)( } ))�
n=0 . (5.3)

The space T consists of all sequences of descriptions that can be constructed
in this way, varying over all possible continuation equilibria (1, c~ , ?~ ).12

Turn to the meaning of non-redundancy of (1, c~ , ?~ ). It is very ``close'' to
the assumption that distinct mechanisms #1 and #2 in 1 have distinct
descriptions of the sort just outlined, that is, e defined in (5.3) is one-to-
one.13 Some violations of this assumption are not troubling. For example,
non-redundancy is violated if there exist two distinct mechanisms in 1 that
are effectively identical, but one employs communication in English while
the other employs French. Our approach is to think of these mechanisms
as being equivalent.

However, there exist violations that are serious. For example, suppose that
0 is a singleton representing a single risk averse buyer type who is trying
to buy an insurance policy from a risk neutral seller. The set of simple
actions is then the set of outcome contingent transfers, and there are clearly
many distinct transfer functions that will yield the buyer the same expected
utility. In our formal statement of non-redundancy, and in our description of
mechanisms, only buyers' payoffs are used. It seems natural to include sellers'
payoffs also when describing and distinguishing between mechanisms.

This can be done by formally viewing sellers as buyers that have an
artificial valuation |� lying in the expanded space 0 _ [|� ]. Details are
provided in Section 6. The resulting form of non-redundancy is weaker
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of the assumption of metrizability, namely to permit a simpler statement of non-redundancy.



because it is easier to distinguish between mechanisms. For example, it can
be violated only if there exist distinct #1 and #2 satisfying both

sup
#$ # 1

U( } , #$; #1)=sup
#$ # 1

U( } , #$; #2) and

sup
#$ # 1

V(#$; #1)=sup
#$ # 1

V(#$; #2),

where V(#$; #) denotes the expected payoff to a seller using # when the
other firm is using #$. We have been unable to find any interesting examples
violating this notion of non-redundancy and our revelation principle is
readily generalized to accommodate it. The ``cost'' of this generalization is
added notational complexity because of the need to differentiate
throughout between the payoff functions of buyers and sellers. For this
reason, we have chosen to focus on the notationally simpler version and to
provide an outline of the generalization in Section 6.

Turn to other aspects of Theorem 3.1 and its proof.14 their explication
requires that we provide some additional formal detail regarding T. Level
0 descriptions are functions of valuation and thus are elements of U(0).
Level 1 descriptions are functions of valuation and level 0 descriptions and
thus lie in U(0_U(0)). Thus if one defines the sequence [Cn] inductively
by

C0=0, C1=0_U(0), Cn=Cn&1 _U(Cn&1), n�1, (5.4)

then level n descriptions are elements of U(Cn) and

T/ `
�

n=0

U(Cn).

Consequently, if e(#)=t=(hn)�
n=0 is the type of the indirect mechanism #,

then its level n description hn # U(Cn) gives a buyer's expected payoff from
# as a function of (|, h$0 , ..., h$n&1), the buyer's valuation and all lower level
descriptions of the other seller's mechanism. The problem of infinite regress
mentioned in the introduction takes the following form: given that we are
describing a mechanism by the sequence t of all its finite level descriptions,
does such a description uniquely determine a buyer's expected payoff from
# as a function of valuation and the sequence t$ of all finite level descriptions
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of the other firm? The answer is ``yes'' and the unique function that does the
job is

9(t)(|, t$)=inf
n

hn (|, h$0 , ..., h$n&1),

where t=(hn)�
n=0 and t$=(h$n)�

n=0 . This positive result relies heavily on
upper semi-continuity (see Appendix B).

The theorem asserts also that each type t may be associated with �(t),
a direct mechanism using message space 02_T 2. To see how this mapping
is constructed, suppose that t is the type of some # # 1 for the continuation
equilibrium (1, c~ , ?~ ). Then application of the translation of 1 into T
provided by e yields (recalling the notation m# defined in (2.2))

�(t)(|, |$, t$, t")={m# (|, |$, e&1 (t$), e&1 (t"))
a
�

if t$, t" # e(1 )
otherwise.

(5.5)

By way of interpretation, only types in e(1 ) are feasible given the continua-
tion equilibrium (1, c~ , ?~ ). Consequently, reports of types outside e(1 ) lead
to the ``no trade'' action a

�
. There remains the question ``what if the same

type t is associated with an indirect mechanism #1 coming from a different
continuation equilibrium (11 , c~ 1 , ?~ 1)?'' In that case, because #1 has the
same type t, using #1 in place of # as above would yield a direct mechanism
with the identical buyer's expected payoff function 9(t)( } ). Thus �(t) is
well-defined up to ``payoff equivalence'' and that suffices for our purposes.

The basis for the remaining claims in the theorem is now clear. Because
the direct mechanisms �(t) are constructed as above from some continua-
tion equilibrium in indirect mechanisms, they embody incentives for truth-
ful reporting of valuation and the other firm's type, as well as agreement
with the ``recommended'' choice probabilities. This ensures implementation
(part (b)). Replication (part (a)) follows from the construction (5.5).

Turn finally to the proof of Theorem 3.2. Consider the continuation equi-
librium (�(T ), c*, ?*) provided by Theorem 3.1 and fix the types t and t$
for sellers 1 and 2. In the absence of private information, both buyers com-
municate the identical message c*(t, t$)=t$ to the seller of type t and visit
him with the common probability ?*(t, t$); similarly for behavior vis-a� -vis
the seller of type t$. Buyers know the types t and t$ and the communication
strategy c* and therefore can foresee the simple actions that will be taken
at each seller, contingent on how many buyers participate. Thus in choos-
ing where to participate, buyers play a game G(a0 , b0 , a$0 , b$0) of the form

1 2

1 u0 (a0 , 1), u0 (a0 , 1) u0 (b0 , 0), u0 (b$0 , 0)
2 u0 (b$0 , 0), u0 (b0 , 0) u0 (a$0 , 1), u0 (a$0 , 1)
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The interpretation is that the row buyer and column buyer choose whether
to participate at firm 1, where simple action a0 is taken if both buyers
appear and b0 is taken if only one appears, or at firm 2, where simple
actions a$0 and b$0 are taken in corresponding circumstances. These simple
actions are those prescribed by the mechanisms �(t) at seller 1 and �(t$)
at seller 2 for each possible participation status of the two buyers. Because
in the continuation equilibrium, ?* is a best response to the other buyer's
use of ?*, it follows that (?*(t, t$), ?*(t, t$)) is a Nash equilibrium for the
above game. It is also important to observe that, in terms of the notation
introduced earlier in this section, U(t$; �(t)) is the expected payoff to a
buyer from choosing seller 1 given that the other buyer chooses that seller
with probability ?*(t, t$); similarly for U(t; �(t$)).

As outlined earlier, mechanisms are described by the payoffs that they
deliver. Moreover, non-redundancy of (�(T ), c*, ?*) means that payoffs
must be sufficiently diverse to permit any two distinct mechanisms in �(T ),
or equivalently any two distinct types in T, to be distinguished. On the
other hand, our assumptions, including the finiteness of u0 (A0 _P), imply
that only finitely many types can be distinguished. Thus T must be finite.

A more detailed argument is as follows: If ?*(t, t$)=0 or 1, then
U(t$; �(t)) is equal to one of the payoffs to the row buyer in the first row
of G(a0 , b0 , a$0 , b$0). Hence it lies in u0 (A0 _P). Similarly for U(t; �(t$)). In
the other case, where 0<?*(t, t$)<1, then one can compute directly, using
(3.3), that ?*(t, t$) is unique.15 This implies finiteness of the set of all Nash
equilibrium payoffs for any game G(a0 , b0 , a$0 , b$0), of which there are only
finitely many. Because U(t$; �(t)) is a Nash equilibrium payoff, it must lie
in a finite set that is independent of the particular t and t$.

This proves that [U(t$; �(t)): (t$, t) # T 2] is a finite set, with cardinality
*U. For any n, the number of distinct descriptions of level n cannot exceed
*U. Non-redundancy of (�(T ), c*, ?*) requires that any two distinct
mechanisms can be distinguished by descriptions of some level. Finally,
descriptions become progressively finer the higher the level-mechanisms
that have distinct descriptions of level n also have distinct descriptions of
all higher levels. The conclusion is that there can be at most *U types.

6. EXTENSIONS

6.1. Sellers' Payoffs

We mentioned in Section 5 that it was both feasible and desirable to
extend our analysis so that sellers' payoffs, in addition to buyers' payoffs,
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are used to describe mechanisms. Here we outline how such an extension
can be accomplished.

The first step is to reformulate the assumptions for a continuation equi-
librium (1, c~ , ?~ ). A seller using # and whose competitor is using #$ receives
expected payoff

V(#$; #)=| v(m# (|, |$, #$, #$), |, |$) dF dF. (6.1)

In order to unify the notation for dealing with buyers and sellers, add a dis-
crete point [|� ] to 0 and define 0� =0 _ [|� ]. Then proceed roughly as
before with 0� replacing 0 as the primitive valuations space. In order to do
so, define U: 0� _12 � [0, 1] so that for | # 0, U(|, #$; #) retains the inter-
pretation as the buyer's payoff function, while U(|� , #$; #)#V(#$; #),
representing the seller's payoff function. Expand the domain of the direct
mechanism (2.2), m# so that

m# (|, |$, } )=a
�

if (|, |$) � 02, (6.2)

reflecting the fact that only valuations in 0 are conceivable for buyers.
Then the assumptions payoff usc and non-redundancy, expressed relative
to the expanded valuations space 0� , are both meaningful and appropriate.
Theorem 3.1, with 0� replacing 0, is valid; the existing proof requires only
trivial notational modifications. In the universal class of mechanisms,
buyers report a valuation in 0, (because it doesn't pay to report |� ), and
the other seller's type, now expanded to include payoffs to sellers. This
reformulation of non-redundancy delivers a weaker assumption than that
used previously because the use of sellers' payoffs makes it easier to dis-
tinguish between distinct mechanisms. In that sense, the reformulated
revelation principle generalizes the one stated in the text.

6.2. More Specialized Models of Competition

It has been our intention to assume as little as possible a priori about the
nature of competition. However, there may be situations where additional
restrictions would be acceptable to some readers. Here we indicate briefly
how these may be handled in our formal framework.

Our indirect mechanisms assume that the reporting strategy c~ is a func-
tion of the buyer's type and the mechanism that the buyer has seen offered
at the other firm. One alternative that was mentioned in Section 2.2 is to
allow communication only after the buyer has chosen where to participate.
Such a restriction on communication can be imposed using or formalism.
Let C=C P

0 , in which case a message in C is a pair c=(c0 , c1) in C 2
0 ,

representing communication in the event of nonparticipation ( p=0) and
participation ( p=1). Then restrict mechanisms so that only the messages
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of participants affect the action that is taken. To express this formally, use
the notation in (2.1) and denote by # ( p, p$)

c (c, c$) the simple action
prescribed by the indirect mechanism # when p and p$ describe the par-
ticipation status of buyers 1 and 2. Then assume that # (1, 0)

c (c0 , c1 , c$0 , c$1)
depends only on c1 , # (1, 1)

c (c0 , c1 , c$0 , c$1) depends only on (c1 , c$1) and so on.
The resulting formal model specializes ours both by restricting message
spaces C to the special form indicated and by restricting indirect
mechanisms as just described.

Theorem 3.1 is valid also for this specialization of our model. The proof
is similar, though the types space T� is smaller, because there are fewer
mechanisms that require descriptions. Similarly, other specializations of
our model lead to suitable subspaces of T as the relevant types space for
describing mechanisms, with the revelation principle intact.16 We view this
generality and flexibility as attractive features of our analysis.

APPENDIX A: EXAMPLES

A.1. A Robust Equilibrium

The example in this section is inspired by the work of [13] and [20].
It exhibits a robust equilibrium that cannot be supported as an equilibrium
in direct mechanisms. This illustrates that the Martimort and Stole result
does not arise because of artificial restrictions on the strategy spaces
available to sellers. In addition to providing a robust equilibrium, the
example shows how the externalities between sellers (that are critical to the
Martimort and Stole example) can emerge from properties of the continua-
tion equilibrium to the buyers' selection game. Finally, the example
illustrates some of the abstract properties of indirect mechanisms discussed
in the text.

Payoffs are given in the following table

0 1 2

A &1 2, &1 1, 3+2=
B &2 0, 2 2, 0

The columns in this table represent the payoffs to a seller conditional on
the number of buyers who choose to participate in his mechanism. So a
seller who gets no buyers gets a payoff &1 if he or she chooses action A
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and the seller gets &2 if he or she chooses action B. Here = is a small
positive number. Action A is good (bad) for the seller (buyer) when only
one buyer chooses to participate, but bad (good) when both buyers par-
ticipate. Action B has the opposite property��the seller prefers both buyers
to participate, while each buyer prefers to be the sole participant. Notice
that neither seller's payoff depends directly on what the other seller does.
Of course there is an indirect dependence because the other seller's action
affects the continuation equilibrium played by the buyers.

Suppose first that sellers are restricted to employing direct mechanisms,
that is, to choosing an action A or B. The following table describes one
possible continuation equilibrium (consisting exclusively of participation
probabilities).

A B

A mix equally both to 2
B both to 1 mix equally

This buyer behavior implies the following (expected) payoffs for each pair
of actions:

A B

A 1, 1, 1+= &1, 2, 0
B 2, &1, 0 0, 0, 1

Focusing once again on the first two payoffs in each cell, there is unique
equilibrium in direct mechanisms where each firm offers the action B.17

However, the outcome corresponding to each seller using A can be supported
through the use of more complex mechanisms. To see this, suppose that
sellers are free to use indirect mechanisms in which buyers communicate
messages from [s, t]. We will show that there is an equilibrium for this
game in which each seller uses the mechanism m, where m specifies action
A if both buyers report t and action B otherwise.

The continuation equilibrium (buyer behavior) that supports AA as an
equilibrium play is given as follows: If both sellers offer m, then buyers
report t to both sellers and randomize equally between them. (There is no
incentive for either buyer to deviate from this by sending the message s to
either seller. Such a message would change the action taken by the seller
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from A to B. The best the deviating buyer can achieve is a payoff 1<1+=
which he gets by reporting s to both of the sellers.)

Suppose next that seller 2 offers m and seller 1 deviates to m$. If there
exists a message pair (c, c$) in [s, t]2 for which m$ prescribes the action A,
then let the buyers communicate c and c$ respectively to the deviator and
each send t to the nondeviating seller 1. This leads to the action A by each
seller. Consequently, buyers randomize equally between them. (As in the
earlier continuation equilibrium, neither buyer has an incentive to induce
the action B by either seller.) Finally, if m$ delivers only the action B, let
buyers send the message s to the nondeviator and randomize equally
between sellers. This generates the payoff 0 for each seller and 1 for each
buyer.

This description of buyer behavior is sufficient to permit examination of
the profitability of a unilateral deviation from m. Any deviation generates
either 1 or 0 as the deviator's payoff, neither of which exceeds the payoff
received in the putative equilibrium outcome. We conclude that AA is sup-
ported as an equilibrium outcome by this continuation equilibrium. When-
ever the deviator tries to induce the action B using some indirect
mechanism in the feasible set, buyers send messages to the nondeviator that
induce him to change actions as well, making a profitable deviation
impossible. In this way, AA is supported along an equilibrium path even
though it is not supported with competition in direct mechanisms.

The outcome AA can be supported by a robust equilibrium. From
Theorem 3.2, the universal set of mechanisms consists of all mechanisms
mapping from some finite set T into the two actions available to the seller.
Thus every deviation in the universal set of mechanisms involves an alter-
native assignment of the elements of T to the two actions A and B. Since
T is finite, the set of all such assignments is finite. Such deviations by seller
1, say, induce two potentially profitable outcomes. They might induce
buyers in the continuation equilibrium to change the messages they send to
seller 2 in a way that changes the action that seller 2 chooses, and they may
alter the selection strategies that buyers use in the continuation equi-
librium. In the example, the set of alternative pairs of actions for the sellers
and the set of continuation equilibrium selection strategies associated with
these is small, so we can check for robustness by exhaustively checking the
potential outcomes associated with a deviation.

The various possibilities are described in the following table. The first
two columns list the possible actions that the sellers might choose along
the continuation equilibrium path associated with the deviation. The third
column gives the payoff to seller 1 (the deviator) if the continuation equi-
librium specifies that both buyers choose seller 1 along the continuation
equilibrium path (* indicates that there is no continuation equilibrium of
this kind). The fourth column gives the payoff to seller 1 when both buyers
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select seller 2 on the continuation equilibrium path, while the final column
gives seller 1's payoff in the case where buyers use a mixed selection
strategy on the continuation equilibrium path.

Seller 1's action Seller 2's action Seller 1 Seller 2 mixed

A A 1 &1 &
B B * * 0

A B 1 &1 &
&1&=+=2

(1+=)2 <1

B A 2 &2 2
=

1+=

In the final two rows of the matrix, the probability with which the seller
whose action is A is chose equals 1�2(1+=).18 , 19

As is apparent from the table, the only way for the deviating seller to
increase his or her profits (equal to 1 in the equilibrium) is if the new
mechanism induces seller 2 to play A while he or she plays B. This is
profitable for seller 1 only if both buyers choose seller 1. This result,
however, cannot be part of any continuation equilibrium path. The reason
is that seller 2 takes action A only when both buyers report t to him or her.
The mechanism that seller 2 is offering is such that either buyer can
unilaterally induce him or her to switch to B by sending the message s.
Either buyer can improve upon the 0 payoff received along the equilibrium
path by sending the message s to seller 2 and then choosing seller 2 with
probability 1. Since the payoff a buyer gets from B when he or she is alone
is 2, this deviation is profitable.

This rules out the possibility that seller 1 can achieve this payoff by
deviating. Now from the table, each of the other possible outcomes that
seller 1 could achieve by deviating yield profits that are no higher than the
profit (equal to 1) achieved in the original equilibrium. Thus there is no
deviation in the set of universal mechanisms that will improve upon the
original mechanism, making AA a robust equilibrium allocation. By the
definition of robustness there will be no extension of the set of mechanisms
within which seller 1 can raise his or her payoff if seller 2 sticks to his or
her original mechanism.
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may no be an equilibrium for buyers to send messages that lead them to expect the deviator
to use A and the non-deviator to use B when the buyers expect one another to mix.



A.2. Price Matching

In order to clarify notation and other aspects of our formalism, consider
a simple competitive environment in which each of the two sellers has a
single indivisible unit of output to sell and each buyer wishes to acquire
exactly one unit if the price is low enough. We suppose that the feasible set
1 of indirect mechanisms consists of price matching mechanisms. Then we
describe a continuation equilibrium that satisfies the assumptions required
by Theorem 3.1. (We have conducted a similar exercise and verified the
assumptions of Theorem 3.1 also for an alternative specification of 1 in
which sellers compete in auctions. Details are available from the authors
upon request.)

The environment is more completely described as follows: Buyer's valua-
tions are independently drawn from the interval 0=[0, 1] using the con-
tinuous probability distribution function F. The set of simple actions
A0=[0, 1]_22, where 22=[+ # R2

+ : +1++2�1]. The generic simple
action a0=(q, +) indicates that the seller chooses buyer i with probability
+i and offers him the option to trade at price q. Examples of ``full'' actions,
elements a of A, include tuples of the form

a=((q, 1, 0), (q, 0, 1), (q, .5, .5), ?, ?$). (A.1)

To clarify, (q, .5, .5) indicates that if both buyers participate (( p, p$)=
(1, 1)), then each buyer receives, with probability 1�2, the option to buy the
good at price q. The other two triples describe the simple action undertaken
if ( p, p$)=(1, 0) or (0,1).

The class of feasible indirect mechanisms is described as follows. Sellers
initially announce a price. Buyers are asked to tell the seller what price the
other seller has offered by naming a price from the message space
C=[0, 1]. There are then two possibilities. If only one of the buyers selects
the seller, his or her report about the other firm is ignored and that buyer
is offered the option to trade at the price that the seller announced. If two
buyers select the seller, the seller takes the maximum of the two reported
prices. If this maximum exceeds the price that the seller has offered, the
seller ignores the reports. The seller chooses one of the buyers randomly
and offers him or her the opportunity to trade at the price that the seller
originally announced. If the maximum of the prices reported by the two
buyers is below the price that the seller has announced, the seller picks one
of the buyers at random and offers him or her the option to trade at this
maximum price.

The only real option that the seller has in this class of mechanisms is the
price that he or she sets. By using buyers' messages, it is possible to vary
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the price charged according to the price offered by the other firm.20

However, the price cannot vary in response to the number of participants.
Thus the actions described in (A.1) are the only ones in A=
(A0)P2

_[0, 1]2 that are relevant.
Turn to payoffs. A buyer with valuation | who trades at a price q

receives utility |&q, while the seller in the same situation receives payoff
q. This leads to the following specification of payoff functions (a is given by
(A.1)):

u(a, |)=?$ max[|&q, 0]�2+(1&?$) max[|&q, 0] and (A.2)

(1&(1&?)(1&?$)) q if |, |$�q

v(a, |, |$)={?q if |�q, |$<q

?$q if |<q, |$�q.

The action that the seller chooses is allowed to depend on the messages
received from buyers. Formally 1=[#q : q # [0, 1]], where #q : C2 � A is
defined by

#q (c, c$)=((q, 1, 0), (q, 0, 1), (min[q, max[c, c$]], .5, .5), ?� , ?� ).

Because firms make no attempt to influence buyers' participation choices,
we assign a recommendation ?� arbitrarily and refer to #q simply as q.

Turn to continuation equilibria. There will evidently be many continua-
tion equilibria. We focus on the one in which buyers report the other firm's
price truthfully, that is,

c~ (|, q, q$)=q$.

It is straightforward to show that this is an equilibrium: When a buyer is
the only one to visit a seller, the buyer's report does not affect the price.
Thus the best report that the buyer can make is the one that is best when
the other buyer selects the same seller and reports truthfully. In that case,
the buyer cannot affect the price paid if he or she reports a lower price for
the other firm than the true one. If the buyer reports a price above the true
price, he or she will either have no effect on the price or raise it.
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The continuation equilibrium participation strategy is characterized by a
cutoff valuation |*(q, q$) with the property that buyers whose valuations
are below |*(q, q$) choose the lower priced seller, while buyers with valua-
tions in the other interval choose the higher priced seller. That is,

1 if |�|*(q, q$) and q�q$

?~ (|, q, q$)={1 if |>|*(q, q$) and q>q$ (A.3)

0 otherwise.

The cutoff valuation |*(q, q$) is given by the solution | to

1
2F(|)

=
(|&max[q, q$])
(|&min[q, q$])

, (A.4)

when his equation has a solution. Otherwise the cutoff is equal to 1 and all
buyers select the lower priced seller. As a result, |*( } ) is a continuous
function.

The direct mechanism mq corresponding to this equilibrium as in (2.2),
(and imposing q$=q") is given by mq (|, |$, q$, q$)=

((q, 1, 0), (q, 0, 1), (min[q, q$], .5, .5), ?~ (|, q, q$), ?~ (|$, q, q$)). (A.5)

The seller's payoff for any pair of mechanisms q�q$ is given by

{[1&(1&F(|*(q, q$))+F(q))2] q
2(1&F(|*(q, q$))) F(|*(q, q$)) q+(1&F(|*(q, q$)))2 q$

if q�q$
otherwise.

From (A.4), this payoff function is continuous.21 Because 1 is compact,
there exists an equilibrium in mixed strategies.

Next we verify some properties of the continuation equilibrium (1, c~ , ?~ ).
It follows from (A.2) and (A.5) that U(|, q$; q)=

{
F(|*(q, q$))

max[|&q, 0]
2

(A.6)
+(1&F(|*(q, q$))) max[|&q, 0] if q�q$

F(|*(q, q$)) max[|&q, 0]

+(1&F(|*(q, q$)))
max[|&q$, 0]

2
otherwise.
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switch to the low-priced seller for fear of being rationed. Thus when a seller cuts price he or
she raises continuously the probability with which each buyer comes to him or her.



By the continuity of |*(q, q$), this is evidently jointly continuous in
(|, q, q$) and this implies payoff upper-semicontinuity for (1, c~ , ?~ ).

We prove non-redundancy as follows: Evidently, supq$ U(|, q$; q) is
achieved at q$=0. Therefore, it suffices to show that q1 {q2 O
U( } , 0; q1){U( } , 0; q2). If q2>q1 , then

U( } , 0; q1)=U( } , 0; q2) on (q1 , q2) O

F(|*(q1 , 0))(|&q1)+(1&F(|*(q1 , 0)))
|
2

=(1&F(|*(q2 , 0)))
|
2

on the same interval, implying

F(|*(q1 , 0))+
(1&F(|*(q1 , 0)))

2
=

(1&F(|*(q2 , 0)))
2

,

and hence that F(|*(q1 , 0))=F(|*(q2 , 0))=0. This contradicts the defini-
tion of the cutoff values, whereby either (A.4) or |*(q1 , 0)=|( q2 , 0)=1.

APPENDIX B: USC FUNCTIONS AND HIERARCHIES

For any topological space S, denote by U(S) the set of upper semi-con-
tinuous (usc) functions from S into [0, 1]. Adopt the topology { for U(S)
that is generated by the following subbasis:

[g: _s # G, g(s)>}], [g: \s # K, g(s)<}], (B.1)

where G and K vary over the open and compact subsets of S and where
} varies over [0, 1]. This is the weakest topology such that the mapping
g [ sups # A g(s) is lower semi-continuous (lsc) for each open A and usc for
each compact A.

The topology { is consistent with topologies that have been widely
employed. Denote by F(S) the set of all closed subsets of S endowed with
the closed convergence topology [10, pp. 18�21]. Each closed set F can be
identified with its indicator function, an usc function. Secondly, let Cap(S)
denote the collection of all (regular Borel) capacities on S, endowed with
the vague topology. Each usc g can be associated uniquely with the
capacity &g ,

&g (A)=sup
s # A

g(s), (B.2)
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for Borel measurable set A. Therefore, we have

F(S)/U(S)/Cap(S). (B.3)

More to the point, the three topologies are consistent with one another in
the sense that these set inclusions are topological embeddings.22

The association in (B.2) of any usc function with a set function may be
helpful for clarifying the intuition underlying some of the analysis to follow.
This is particularly true if the non-additive nature of &g is overlooked and
if the reader thinks in terms of additive measures. Such an association
should help to interpret what follows in more familiar terms such as
marginals of measures, the weak convergence topology, and so on. For
example, the meaning of Theorem B.1 and B.2 is clearer if one thinks of
their well-known counterparts for measures.

Theorem B.1. If S is compact Hausdorff, then so is U(S). If S is also
metric, then so is U(S).

Proof. See [19, Theorems 2.2�3, Cor. 2.5]. For the second claim, use
also [5, Theorem XI.4.1]. K

Theorem B.2. Let S be compact Hausdorff. Then,

(a) If e: S$ � S is continuous for some space S$ and if ê is defined by

(êg)(s)=sup [g(s$) : e(s$)=s], (B.4)

and the sup is understood to equal zero where the constraint set is empty,
then ê: U(S$) � U(S) is continuous. In the special case where S$=A/S,
then ê takes g into êg, where êg(s)= g(s) if s # A and 0 otherwise, and ê is
a homeomorphism of U(A) onto U(S | A)#[h # U(S) : h=0 on S"A].

(b) Let S=S1_S2 _S3 and let !: S3 ^ S2 be a compact-valued
correspondence such that !(A3) is open (closed ) for every open (closed ) set
A3 /S3 . Then g [ g1 , g1 (s1 , s3)=maxs2 # !(s3) g(s1 , s2), is a continuous map
from U(S1_S2) into U(S1_S3).

(c) The mapping (s, g) [ g(s) is usc on S_U(S).

These properties are exploited heavily. For (b), two special cases are
exploited. In the special case where !( } )=S2 , (b) can be rewritten to say
that the mapping from U(S1_S2) into U(S1) taking g into g1 , g1 (s1)=
maxs2 # S2

g(s1 , s2), is continuous. It is useful to think of g1 as the S1 -
marginal of g. With this terminology, the operation of taking a marginal is
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continuous, as it is in the more familiar setting of measures with the weak
convergence topology. For the second special case, let f: S2 � S3 be a con-
tinuous function and != f &1. The hypothesized properties for ! are
implied by the continuity of f. These hypotheses cannot be deleted in (b).
For example, if !(s3)=[s� 2] for all s3 , then g1 (s1 , s3)= g(s1 , s� 2), but the
mapping from g into the restriction g( } , s� 2) is generally not continuous (see
[19, Theorem 4.5] for related results).

Proof of Theorem B.2. (a) Routine.

(b) Denote the indicated mapping by 8. The maximum theorem [1,
Lemma 14.29] implies that 8(g) is usc. For the continuity of 8, suppose
that

8(g) # N1 #[h1 # U(S1_S3) : sup
G1_G3

h1>}],

for open sets G1 /S1 and G3 /S3 . Then

g # N#[h # U(S1_S2) : sup
G

h>}],

where G=G1_!(G3), an open set. Moreover, 8(N)/N1 .
If the neighborhood of 8(g) is of the form

8(g) # N1 #[h1 # U(S1_S3) : sup
K1_K3

h1<}],

for compact sets K1 and K3 , then 8(N)/N1 where

g # N#[h # U(S1_S2) : sup
K1_K2

h<}],

and K2=!(K3), a compact set.

(c) Let g: � g, s: � s, g: (s:)�} all : and show that g(s)�}. For
any open neighborhood G of S, _:0 , s: # G for :>:0 . Let G� denote the
closure. Then \:>:0 , supG� g:�g: (s:)�}. By the nature of convergence
in U(S), it follows that supG� g�}. Any compact Hausdorff space is
normal. Therefore, the relatively compact neighborhoods G of s define a
directed set D such that sG � s and g(sG)=supG� g�}. Conclude that
g(s)�} because g is usc. K

Turn to hierarchies of usc functions, which provide the first step in the
construction of T from Theorem 3.1. The following analysis parallels the
analysis of hierarchies of probability measures (see [15] and [4], for
example) and is a special case of the analysis in [6].
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Theorem B.3. There exists a non-empty compact metric space T

satisfying

Tthmeo U(0_T). (B.5)

Proof. We observed above that U(S) is homeomorphic to a subspace of
capacities. Hierarchies of capacities are a special case of the class of
hierarchies studied in [6]. To be precise, the proof follows from
Theorem B.1 above and from Theorems 4.2, 4.3 and 6.1 of [6]. K

Some details from the proof, which is constructive, will be useful and so
are outlined here. Define by (5.4) the spaces [Cn], thought of as suc-
cessively richer message spaces. Let T0=>�

0 U(Cn) with generic element
t=(g0 , g1 , ..., gn , ...). Refer to the type t as coherent if

max
U(Cn&1)

gn (cn&1 , } )= gn&1 (cn&1),

for all n�1 and cn&1 # Cn&1 . The subspace of T0 consisting of coherent
types is denoted T1 .

An important first step in the construction of T is to note that T1 is
homeomorphic to U(0_T0), with homeomorphism 9: T1 � U(0_T0)
constructed as follows: Let t=(g0 , ..., gn , ...) # >�

n=0 U(Cn) be a coherent
type. For any z # 0_T0=0_>�

n=0 U(Cn), let zN be the projection of z
onto 0_>N&1

n=0 U(Cn)=CN and define

9(t)(z)=inf
N

gN(zN). (B.6)

Next consider the decreasing sequence of types spaces [Tk], where

Tk=[t # T1 : 9(t)=0 on 8_(T0"Tk&1)], k�2.

Finally, define T=� Tk . To prove (B.5), observe first that

T=� Tk=[t # T1 : 9(t)=0 on 0_(T0"T)].

The latter set is homeomorphic to U(0_T); see Theorem B.2. K

APPENDIX C: CONSTRUCTION OF T AND �

The construction of T dealt with arbitrary usc functions without any
formal reference to mechanisms. Thus the relevance of T to mechanisms
may not be evident. However, we will identify a subset T/T that satisfies
the claims made in Theorem 3.1. In this appendix, we define T and �.
Remaining assertions in the Theorem are proven in the next appendix.
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There are some obvious restrictions on the pair (T, �). Recall the inter-
pretation whereby t describes a direct mechanism, denoted �(t), that
assigns an action to reports by buyers of valuations and the type of the
other firm's mechanism. Formally, �(t) # A02_T 2

, the set of measurable
maps from 02_T 2 into A. Direct mechanisms are of interest only if they
possess all the properties (incentive compatibility, for example) possessed
by indirect mechanisms. Therefore, (T, �) should deliver all such proper-
ties. To express these, note that by the nature of the space AP2

0 _[0, 1]2

of actions, we can describe any direct mechanism m # �(T )/A02_T 2
in the

form

m( } )=(mc ( } ), m?1
( } ), m?2

( } )),

where mc ( } ) describes the participation contingent simple action and
m?i

( } ) describes the probability with which the firm recommends that
buyer i choose to participate.

The recommended choice probabilities must satisfy three constraints.
First, in order that they represent symmetric continuation equilibria,
require that

m?1
( } )=m?2

( } )#m? ( } ). (C.1)

Buyer 1 does not learn the valuation of buyer 2 before making a choice.
Therefore, require that

m? (|, |$, t$, t")=m? (|; |� $, t$t") \|, |$, |� $, t$, t", t$$$ (C.2)

and we can write simply m? (|, t$).
Finally, since we assume that with probability 1 each buyer selects a

seller, m should satisfy: If m=�(t), then for each m$=�(t$) in �(T ),

m? (|, t$)=1&m$? (|, t). (C.3)

We refer to the preceding restrictions, (C.1) through (C.3) as strong
measurability constraints.23

Second, any direct mechanism should satisfy the following incentive com-
patibility constraints:

(i) For each |, |$ and |r in 0 and for each triple t, t$, t" # T,

| u(m(|, |$, t", t"), |) dF(|$)�| u(m(|r, |$, t$, t"), |) dF(|$). (C.4)
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If m=�(t), then for each |, |$ # 0 and m$=�(t$),

m? (|, t$) | u(m(|, |$, t$, t$), |) dF(|$)

+[1&m? (|, t$)] | u(m$(|, |$, t, t), |) dF(|$)

�max _| u(m(|, |$, t$, t$), |) dF(|$), | u(m$(|, |$, t, t), |) dF(|$)& .

(C.5)

Constraint (C.4) says that buyers will not have an incentive to lie to either
seller about their own type, or the mechanism that has been offered by the
other seller, provided that they expect the other buyer not to lie. This con-
straint is standard. Constraint (C.5) imposes that buyers have no incentive
to deviate from the recommended choice probability announced by the
seller.

Two self-explanatory ``technical'' conditions follow.

USC. m # A02_T 2
is USC if U( } ; m) is usc on 0_T, where

U(|, t$; m)=| u(m(|, |$, t$, t$), |) dF(|$).

Compact support. m # A02_T 2
has compact support if there exists com-

pact Y/T such that U( } , t$; m)=0 for t$ # T"Y.

Assuming for the moment that (T, �) has been constructed, denote by
M(02_T 2) the set of all direct mechanisms m # A02_T 2

satisfying strong
measurability, incentive compatibility, and USC and having compact sup-
port. To this point we have argued that it is natural to require that

�(T )/M(02_T 2). (C.6)

We turn to an iterative construction of a suitable pair (T, �).24

Let

Y 0=9 &1 ([U( } ; m) # U(0_T) : m # A02_T2]).

Let M0 (02_T2) consist of those mechanisms m in A02_T2
such that m

satisfies the strong measurability constraints (C.1)�(C.2), incentive com-
patible (in the sense of (C.4)), USC, has compact support and satisfies the
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variations of (C.3) and (C.5) for which the qualifiers ``m=�(t) and
m$=�(t$)'' are replaced by ``m$ # A02_T2

, t$ # Y 0, 9(t)=U( } ; m) and
9(t$)=U( } ; m$).''

Use cep (conditional expected payoff) to denote the map taking
m # M0 (02_T2) into U( } ; m). Then for each k�0, let

Y k+1=9 &1[U(0_T | 0_Y k) & cep(M0 (02_T2))].

Finally, define

T= ,
�

k=0

Y k. (C.7)

Informally, the above recursive construction ``suggests'' the limiting
property that

T=9&1[U(0_T | 0_T ) & cep(M0 (02_T2))]. (C.8)

(This can be verified as follows: That T contains the set on the right is
immediate. For the converse, let t # ��

k=0 Y k. Then 9(t) knows each Y k. It
follows that 9(t) knows their intersection, which is T. In addition,
9(t)=U( } ; m0) for some m0 # M0 (02_T2).) Because T/T and the latter
is compact metric, conclude that T is separable metric [5, pp. 176, 233].

Having thus defined T, turn to the definition of �. From (C.8), it follows
that for any t # T, there exists m # M0 (02_T2) such that 9(t)=U( } ; m)
and 9(t) knows Y/T for some compact subset Y. Define �(t) as the
restriction of m to 02_T 2. Then (C.6) follows. Because 9 is one-to-one,
so is �.

The following additional property is worth noting:

[U( } ; m) : m # �(T )]=[U( } ; m) : m # M(02_T 2)],

indicating that if we identify mechanisms that deliver the same expected
payoff functions, then �(T ) ``equals'' M(02_T 2).

APPENDIX D: PROOF OF EMBEDDING

Let (1, c~ , ?~ ) be a continuation equilibrium as in Theorem 3.1. Here we
construct the embedding e and the continuation equilibrium (�(T ), c*, ?*).
Notation introduced in the preceding appendices, including the message
spaces Cn defined in (5.4), is used freely.
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Denote by % the map taking each # # 1 into m# # A02_1 2
(see (2.2)).

Endow %(1) with the weak topology induced by the map into U(0_1 )
that takes # into U( } ; %(#)). Thus two mechanisms m1 and m2 are ``close''
if their payoff functions U( } ; m1) and U( } ; m2) are ``close'' as elements of
U(0_1 ). This topology is not Hausdorff��two mechanisms that imply the
same payoff functions cannot be separated. This reflects the view that there
is no reason to distinguish between such mechanisms. Observe that this
topology makes % a continuous map, because of the assumption that
(1, c~ , ?~ ) is payoff usc.

The following commutative diagram may provide a useful guide. The
maps %, �, 9 and cep have already been defined, while 8 and e will be
defined here.

e 9

% 8 � cep

1 T/T U(0_T )

%(1)/A02_12 �(T )/A02_T2

Lemma D.1. For each V # U(0_T), 9&1 (V)=(3n (V))�
0 # >�

0 U(Cn),
where

30 (V)(|)=sup[V(|, t$) : t$ # T],

3n (V)(|, g$0 , ..., g$n&1)=supt$[V(|, t$) : 3k (9(t$))= g$k , k<n].

Proof. In light of (B.3), this is a special case of [6, Theorem D.1]. An
interpretation is that 3n (V) is a projection of V onto >n

0 U(Ci). K

Lemma D.2. (a) [U( } ; m) : m # %(1 )]/U(0_1) is compact; (b) %(1 )
is compact; (c) [sup#$U( } , #$; m) : m # %(1)] is compact in U(0).

Proof. By payoff usc, # [ U( } ; %(#)) # U(0_1 ) is continuous. Thus (a)
follows from the compactness of 1. Part (c) follows from Theorem B.2.
Part (b) is a consequence of the weak topology used for the space of
mechanisms. K

Define 8: %(1 ) � ?�
0 U(Cn), where 8=(8n)�

0 , by

80 (m)(|)=sup[U(|, #$; m) : #$ # 1],

8n (m)(|, g$0 , ..., g$n&1)=sup[U(|, #$; m) :

_m$, %(#$)=m$, 8k (m$)= g$k , k<n].
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Lemma D.3. 8: %(1) � T and 8 is continuous.

Proof. Recall that T/T/>�
0 U(Cn). Prove by induction that

8n : %(1) � U(Cn) continuously.

Theorem B.2 is used repeatedly.
n=0: The only complication is in the proof that 80 is continuous: Let

[m:]: # I be a net in %(1 ) converging to m. Given the weak topology on
%(1 ), this yields

U( } ; m:) � U( } ; m) in U(0_1).

This implies (by Theorem B.2(b)) that

sup
#$

U( } , #$; m:) � sup
#$

U( } , #$; m) in U(0),

proving continuity of 80 .
n>0: Assuming that 8k is continuous for each k<n, Theorem B.2(a)

and (b) deliver the desired conclusion for 8n .
Claim t=(8n (m))�

0 # T for any m=%(#): Recall the outline of the proof
of Theorem B.3. It suffices to show that

9(t)=0 on 0_(T0"T), (D.1)

because then 9(t) # U(0_T) and thus t # T.
From (B.6), 9(t)(z)=infN 8N(m)(zN), where z # 0_>�

n=0 U(Cn) and
zN#?N(z) equals the projection of z onto 0_>N&1

n=0 U(Cn). It follows,
therefore, from the recursive definition of the function s8n , that

9(t)(z)=0 if z � ,
�

N=0
\0_?N(TN)_ `

�

N=1

U(Cn)+ .

But

,
�

N=0
\0_?N(TN)_ `

�

N+1

U(Cn)+/0_ ,
�

N=0

TN=0_T, (D.2)

proving (D.1). (The routine proof of (D.2) exploits the fact that TN is
compact and declines with N. The weak set inclusion is actually an
equality.) K
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The following lemma is a special case (by (B.3)) of [19, p. 55]:

Lemma D.4. Let .: (X, B(X)) � (U(S), B(U(S))), where X is an
arbitrary topological space and S is locally compact and separable (e.g., com-
pact metric). Then . is measurable if and only if the map from X into [0, 1]
defined by

x [ sup
s # A

.(x)(s),

is measurable for each A # B(S).

Lemma D.5. Define e as the composition 8 b %. Then e is continuous,
one-to-one and e(1)/T.

Proof. 8 is continuous on e(1) by a previous lemma and % is con-
tinuous.

Let [7n] be the _-algebras on 1 appearing in the definition of non-
redundancy. Recall again that T/>�

0 U(Cn), where C0=0 and
Cn=Cn&1 _U(Cn&1). Denote by Bn the Borel _-algebra on U(Cn). By
Lemma D.4, 7n is the weakest _-algebra such that 8n&1 b %: 1 �
(U(Cn&1), Bn&1) is measurable. Therefore, non-redundancy implies that
e=8 b %: 1 � >�

0 U(Cn) is one-to-one.
Define !: A02_1 2

� A02_T2
by

(!m)(|, |$, t$, t")#{m(|, |$, e&1 (t$), e&1 (t"))
a
�

if t$, t" # e(1)
otherwise.

Claim. 9(8 b %(#))=U( } ; ! b %(#)), # # 1: By Lemma D.1, it suffices to
show that 8 b %(#)=3(U( } ; !%(#))). But this is verified by applying the
equality U( } , #$; %#)=U( } , e#$; !%#), #$ # 1.

Show that e(1 )/T: Recall the definition (C.7), whereby T=� Y k. Let
# # 1. Then, by the claim, 9(e#)=9(8 b %(#))=U( } ; ! b %(#)), implying
that

e(1)/Y 0.

Show next that e(#) # Y1: First, !%(#) # M0 (0_T), because incentive
compatibility and the other constraints that define the latter set of
mechanisms are inherited from the corresponding properties of %#, a direct
mechanism over 0_1. (The fact that e(1 )/Y0 is also relevant here.)
Second, 9(e#) # U(0_T | 0_Y0) if 9(e#)( } )=0 on 0_(T"Y) for some
compact Y/Y0. Let Y=e(1). Then Y is compact and, by above, Y/Y0.
Moreover, t$ # T"Y O !(%#)( } , t$)=a

�
O 9(e#)( } , t$)=0. Conclude that

e(#) # Y1. The proof may be completed by induction. K
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Turn to the continuation equilibrium described in Theorem 3.1. View
�(T ) as a feasible set of indirect mechanisms using message space
C=0_T. We constructed T and � to satisfy (C.6). Thus every mechanism
in �(T ) is payoff usc, strongly measurable and incentive compatible. Adopt
the notation in (2.1) and express any indirect mechanism #=�(t) in the
form

#( } )=(#c ( } ), #?1
( } ), #?2

( } )).

By strong measurability, the recommended probabilities satisfy #?1
( } )=

#?2
( } )=#? ( } ) and the latter can be viewed as a function of (|, t$). The

candidate continuation equilibrium strategies are defined by

c*(|, t, t$)=(|, t$) and ?*(|, t, t$)=#? (|, t$),

where #=�(t).
We show that this defines a suitable continuation equilibrium. For any

deviation cr=(|r, tr),

| u(#c (cr, c*(|$, t, t$)), ?*(|, t, t$), ?*(|$, t, t$), |) dF(|$)=

(because u( } , ?1 , ?2) is independent of ?1)

| u(#c (cr, c*(|$, t, t$)), ?*(|r, t, tr), ?*(|$, t, t$), |) dF(|$)=

(by definition of ?*)

| u(#c (cr, c*(|$, t, t$)), #?1
(|r, tr), #?2

(|$, t$), |) dF(|$)=

(because the message space is 0_T )

| u(#(|r, tr, |$, t$), |) dF(|$)�| u(#(|, t$, |$, t$), |) dF(|$).

The last inequality follows from the incentive compatibility of the
mechanism #.
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To see that the choice strategy constitutes a continuation equilibrium
relative to (#, #$), where #=�(t) and #$=�(t$), observe that

?*(|, t, t$) | u([#c (c*(|, t, t$), c*(|$, t, t$)), ?*(|, t, t$), ?*(|$, t, t$)], |)

_dF(|$)+[1&?*(|, t, t$)] |
_u([#c (c*(|, t$, t), c*(|$, t$, t)), ?*(|, t$, t), ?*(|$, t$, t)], |) dF(|$)

=#?1
(|, t$) | u(#(|, |$, t$, t$), |) dF(|$)

+(1&#?1
(|, t$)) | u(#$(|, |$, t, t), |) dF(|$)

�max _| u(#(|, |$, t$, t), |) dF(|$), | u(#$(|, |$, t, t), |) dF(|$)& ,

by incentive compatibility for #. The optimality of the choice strategy can
be seen by expanding the expression involving the maximum of the two
functions.

Finally, prove that (�(T ), c*, ?*) is non-redundant: Let [7n] be the
sequence of _-algebras on �(T ) as in the definition of non-redundancy.
We have to show that they separate any distinct �(t1) and �(t2). But �(t1)
{�(t2) O t1=(g1

n){(g2
n)=t2 O (by Lemma D.1) _N such that

3N(U( } ; �(t1))( } )){3N(U( } ; �(t2))( } )). If N=0, then �(t1) and �(t2) are
separated by 7$1 /71 defined as the weakest _-algebra such that
�(t) [ 30 (U( } ; �(t))( } ) is measurable. (In other words, modify the
measurability constraint in the definition of non-redundancy to consider
singleton sets E/0 rather than all Borel measurable subsets.) Proceed by
induction on N.
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