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In the literature on multiperiod planning under uncertainty, it is generally 
postulated that preferences may be represented by a von Neumann-Morgenstern 
utility index that is additive over time. This paper accomplishes two objectives: 
First, an axiomatic basis is provided for a more general class of non-additive utility 
indices defined over infinite consumption streams. Second, this class of utility 
functions is applied to extend existing results (J. Econ. Theory 4 (1972). 479-513; 
J. Econ. Theory II (1975) 329-339) on the nature of optimal growth under uncer- 
tainty. Of particular interest are the existence and stability of a stochastic steady 
state. Journal of Economic Literature Classification Numbers 022, 026. 

I. INTR~OUCTI~N 

One way to understand the nature of the preferences we consider is as 
follows: Consider lotteries in which consumption in a subset N, of time 
periods is non-stochastic and common to all lotteries, and in which 
consumption in the set N, of remaining time periods is stochastic and varies 
across lotteries. Additivity of the utility index implies that for all N, and N, 
preferences over such lotteries are independent of the consumption levels in 
N, . By adapting the terminology of [ 13, 171 we may express this property in 
the form “consumption in N, is risk independent of consumption in N,, for 
all disjoint N, and Nz.” We generalize preferences by requiring only that 
consumption in N, be risk independent of consumption in periods that 
precede all times in N,, i.e., the future is risk independent of the past. A 
stationarity postulate is also imposed to derive a functional representation 
for the von Neumann-Morgenstern utility index. 

The term stationary cardinal utility is drawn from the obvious analogy 
between the present analysis and the ordinal analysis in [ 141. Indeed our 
postulates on preferences are natural extensions to a stochastic framework of 
those in [ 141. The extended choice framework permits us to generate 
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stronger results, with respect to the functional form of utility functions and 
the presence of impatience, than were obtained in the certainty framework. It 
is widely felt that the presence of uncertainty should strengthen the case for 
discounting. Our stronger result regarding the presence of impatience gives 
precise meaning to, and a rigorous basis for, this view. 

In common with additive utility, stationary cardinal utility implies the 
following simplification of intertemporal planning: Suppose the planner is 
free to revise his plans at some t > 0 upon the arrival of new information. 
Then his decisions at t will depend on the past through accumulated assets 
but will not depend directly on past consumption activities. (In fact such 
behaviour is equivalent to the risk independence of future consumption from 
the past.) Thus standard dynamic programming techniques may be applied 
to solve the planning problem. 

The paper proceeds as follows: Basic notation and definitions are 
presented next. Section 3 provides the axiomatic basis for stationary cardinal 
utility. Section 4 investigates optimal economic growth given such a utility 
index. Proofs are collected in appendices. 

II. BASIC NOTATION AND DEFINITIONS 

Y = ( 4’ = (c, )...) c, )... ): 0 < c, <L Vt} is the set of non-stochastic 
consumption streams. Endow Y with the topology induced by the product 
;;,rm !IyI/ = Cr cJ2’. If y = (co, c1 ,...) and, cl,.;., ck E [0, L], then 

,***1 c , y) represents the consumption stream (c ,..., c , cO, c, ,... ). For any 
c, yC denotes the constant consumption profile (c, c,...). 

M(Y) denotes the space of (countably additive) probability measures 
defined on the measurable space (Y, R(Y)), where R(Y) is the Bore1 o-field of 
Y. For each y E Y, p,, E M(Y) denotes the element that assigns probability 1 
to the set ( y}. D = ( py: y E Y} is a subspace of M(Y). Because of the 
obvious isomorphism we often identify D with Y and write y rather than py. 

For any c,, E [0, L] and p E M(Y), (c, ,p) denotes a new measure in M(Y) 
defined as follows: For any Bore1 set R, the probability of R given the 
measure (c,, p) is p(R,J where Rco = {(c,, c2 ,... ): (c,,, cl, c, ,...) E R }. In 
words, (c,, p) represents a consumption stream in which t = 0 consumption 
equals c0 with certainty while consumption in later periods is stochastic with 
probability distribution corresponding to p. 

For p E M(Y) and y E Y, (P~,~, y) is that measure in M(Y) which, to the 
Bore1 set R assigns the measure p(R,), where R, = {(F,, F,, ?,, c^,,...): 
(Co, F1,y)E R, E, E [0, L] Vt}. Thus (p ,,, , y) represents the consumption 
path in which consumption at time t + 2 is certain and equals consumption 
at time c in y, t > 0, and in which consumption at f = 0, 1 is stochastic and 
corresponds to the marginal distribution defined by p. 
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The preference ordering 2 defined on M(Y) is assumed to be reflexive, 
transitive and complete. Indifference is denoted by - and strict preference by 
>. The ordering induced by 2 on Y (i.e., on 0) is denoted 2’. A real valued 
function U with domain Y is called a von Neumann-Morgenstern utility 
index for 2 if I, Udp > Jr Udq is equivalent to p 2 q for all p, q E M(Y). 
Any such U is necessarily order preserving with respect to k’, i.e., 
U(y) > U(z) is equivalent to py k’p, for y, z E Y. 

If for all p, q E M(Y) and y, y’ E Y, (pO,i, y) 2 (qo,l, y) is equivalent to 
(p,,i , y’) 2 (q,,l, y’), we say that consumption at t = 0 and 1 is risk 
independent of consumption in all other periods. A similar meaning is 
attached to the statement that consumption in the set of periods N, c 
(0, 1, 2,...} is risk independent of consumption in all other periods. 

Finally, a function I+V is said to be increasing (decreasing) if x > x’ and 
x # x’ imply that I&) >(<) I,v(x’). If only weak inequalities are implied we 
use the terms non-decreasing and non-increasing, respectively. v/ is concave 
if v/C& + x’)P) > [v(x) + vG’)lP V x, x’ in the domain of v. If a strict 
inequality is always valid w is said to be strictly concave. 

III. STATIONARY CARDINAL UTILITY 

Consider the following assumptions on 2, the preference ordering of 
probability measures: 

ASSUMPTION 1. There exist y, y’ E Y such that y >’ y’. 

ASSUMPTION 2. There exists c ,̂ E 10, L] such that for all p. q E M(Y), 
(?,,,p) 2 (&, q) if and only if p 2 q. 

ASSUMPTION 3. For all coTFoE [CAL] andp.qEM(Y). (q,,~)2(q,,q) 
if and only if (Cg, p) 2 (C,,,, q). 

The interpretation of these assumptions is clear. The first is a weak 
sensitivity requirement that rules out indifference between all consumption 
streams, and the second is a stationarity postulate. The latter states that the 
relative ranking of p and q is unaffected if the corresponding random 
consumption streams are postponed for one period and a particular certain 
consumption level & is placed into the initial period. (By the next 
assumption the same is true if any c, is substituted for to.) Assumption 3 
states that preferences over random consumption streams extending from 
t = 1 into the future are not affected by consumption at t = 0, i.e., 
consumption in periods t > 1 is risk independent of consumption in the 
initial period. (Risk independence has been investigated in [ 13, 171 though 
generally in finite horizon models and in symmetric form where consumption 
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in any subset of periods is risk independent of consumption in the remaining 
periods.) 

ASSUMPTION 4. There exists a von Neumann-Morgenstern utility index 
U for 2, which is a continuous function on its domain Y. 

The existence of U may be proven from more basic postulates on 2. 
Theorem 3 of [lo] may be applied directly to the present context because 
our choice of the product topology makes Y a separable metric space. 

The following is the central result of this section: 

THEOREM 1. The preference ordering 2 satisfies Assumptions 14 if and 
only if the van Neumann-Morgenstern utility index U can be expressed in the 
form ’ 

U(Y) = U(c,, Cl ,... ) = 2 v(c,) exp (- F’ z4(cz)), 
I=0 ,z* 

(1) 

where u and v are continuous real valued functions defined on [0, L ] such 
that u > 0 on [0, L] and u/(1 - eCU) is not constant on [0, L]. 

Say that the pair of functions u and v represents 2 if U defined in (1) is a 
von Neumann-Morgenstern utility index for 2. The representing pair (u, v) 
is, of course, not unique. 

COROLLARY. Let 2 satisfy Assumptions l-4. Then the two pairs (u, v) 
and (~2, fi) both represent 2 ifand only ifthere exist constants a and b, b > 0, 
such that on 10, L] 

u^=u and v^=a(l -e-“)+bv. (2) 

It is apparent from (1) that U and 2 exhibit some forms of discounting of 
the future. First, 2’ exhibits the following form of impatience: If the 
constant consumption stream y, is preferred to yC,, then the consumption in 
two successive periods of c, c’ in that order is preferred to consumption in 
the reverse order. More precisely, yC >’ y,, =P (c, c’, y) >’ (c’, c, y) Vy E Y. 
(Verification is straightforward; note that 

U( y,) = v(c)/[ I - eCuCc)], (3) 

and substitute (3) into (l).) If more consumption is preferred to less, 
impatience expresses a preference for advancement of higher consumption 
levels. 

I Note that stationary cardinal utility functional5 may be defined in continuous time as 
well; they take the form j? ~(c)exp(-jb u(c) dr)&. Also a minor notational point is that 
CO’EO. 
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A measure of impatience is readily constructed as in [ 15, p. 971. Assume 
the required differentiability and define p(c) + 1 to be the marginal rate of 
substitution between consumption in periods 0 and 1 ((&!J/&,)/(&!J/&,)) 
evaluated along the constant path y,. Then p is the rate of time preference, 
p > 0, and p is given by 

p(c) = eucc) - I. (4) 

It is interesting to compare our findings with respect to the presence of 
discounting with those in [ 15, 141. The latter studies establish the presence of 
impatience in certain zones in the program space. In contrast we have 
established that impatience prevails throughout Y. There are two major 
differences in the sets of postulates employed that might be expected to 
account for the difference in results. First we have topologized Y with the 
product topology rather than the topology generated by the sup norm. Since 
the former imposes the insignificance of the distant future the greater 
prevalence of impatience derived above would appear to be explained. In 
fact, however, we show in Appendix 2 that Theorem 1, suitably modified, 
remains valid if we substitute the sup topology for the product topology. 

The other major difference is that we extend the choice environment to 
include uncertainty. (Then Koopman’s postulate (3b) [ 14, p. 2921 translates 
into our risk independence assumption.) Our stronger result regarding 
impatience thus seems to follow from the presence of uncertainty in the 
decision maker’s environment. That is, we have an intriguing demonstration 
of the frequently expressed view that uncertainty contributes to impatience 
and discounting! 

The positivity of p is a statement about 2’ and thus about the ordinal 
properties of U. But there is a cardinal property of U which corresponds to 
the following form of discounting in the preference ordering 2 on probability 
measures: Let c E [0, L], y, y’ E Y. Let p E M(Y) assign probability l/2 to 
each of the sets ((c,y’)} and {y), and let p’ E M(Y) assign probability l/2 
to each of the sets ((c, y)) and ( y’ }, Then y >’ y’ implies that p >p’. 
Intuitively, p’ is inferior because in it the better stream y is pushed one 
period into the future, while in p it is the less preferred stream y’ that is 
receded into the future. (To establish this property, note that (1) implies 

w, Y> = dc> + B(c) U(Y), B(c) = exp(-u(c)). (5) 

Now u > 0 a B < 1 =j U(c,y) - U(c,y’) = B(c)[U(y) - U(y’)] < U(y) - 
U(y’) + U(c, y) + U(y’) < U(c, y’) + U(y). This inequality is called (strong) 
time perspective in [ 151.) 

To conclude this section we determine the restrictions on preferences 
implicit in the standard additive utility index beyond those corresponding to 
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stationary cardinal utility. Additivity corresonds to the following additional 
risk independence assumption: 

ASSUMPTION 5. For all Y,YE Y and P, 9 E WY), (P~,~ ,Y> 2 (qo,1 ,Y) if 
and only if (P,,,, Y ~3 Z (qO, 1 Y 71. 

Recall that (P,,~, y) is a probability measure for which consumption is 
uncertain only at t = 0, 1. Assumption 5 states that preferences over such 
stochastic consumption streams are independent of consumption in periods 
beyond t = 1. Therefore, the “past” (t = 0, 1) is risk independent of future 
consumption. Combined with our earlier assumption that the future is risk 
independent of the past one might expect additivity to follow. The next 
theorem confirms that expectation. 

THEOREM 2. Let 2 satisfy Assumptions l-4. Then 2 satisJies 
Assumption 5 if and only $2 has a von Neumann-Morgenstern utility index 
which has the form 

U(y) = c a’v(c,) 0 (6) 

for 0 < a < 1, v continuous and not constant on (0, L]. 

Maintain Assumptions 14. Then Assumption 5 is an “efftcient” charac- 
terization of additivity in the sense that weakened versions will not imply 
(6). For example, if it is required only that t = 0 consumption be risk 
independent of consumption in all other periods, then (1) will do if e-““) = 
a + bv(c) for some constants a and b. The “tightness” of our theorem 
differentiates it from the characterizations in [ 161.’ 

While Assumption 5 may apear to be a mild additional restriction given 
our earlier postulates, the difference between (1) and (6) is severe. First, for 
additive utility consumption in any set of time periods is risk independent of 
consumption in all other periods. Second, in the case of stationary cardinal 
utility the rate of time preference p, defined in (4). is not restricted to be 
constant. Since a variable rate of time preference constitutes an appealing 
generalization of (6), it is of interest to investigate whether existing results on 
intertemporal planning under uncertainty are robust to this generalization. 
Moreover, one may wonder whether any interesting new propositions may 
emerge. We turn now to these questions.3 

* Another difference is that the ambiguity between additive and multiplicative utility 
functions present in [ 16, Theorem 2) vanishes in our infinite horizon framework. There does 
not exist a multiplicative utility index consiSteM with Assumptions l-4. 

3 For analyses of deterministic models see 12, 3, 12, 81. 
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IV. OPTIMAL GROWTH UNDER UNCERTAINTY 

The model of growth under uncertainty considered in this section is 
similar to the models in 15, 181; hence only essential features will be 
described: 

A central planner solves the following problem: 

max EU(c,, c, ,..., c, ,...) (7) 

subject to the constraints 

c,+x,=f(x,-,9r;-1), t = 1, 2,..., 

co + x0 = s > 0, X,.C(>O. 

Here cI and x, are consumption and capital stock at period t, respectively. s 
is the initial stock. f is a production function which at time t is affected by 
the random variable ft. The I;‘s are independently distributed and have the 
same distribution as the random variable ?. The latter is defined on the 
probability space (fi,X, P). (Realizations of ?t and r’ are denoted by rl and 
r, respectively.) The problem of the planner is to divide the available stock at 
the beginning of each period between consumption and investment. Decisions 
are determined by the preference ordering of stochastic consumption streams 
which is represented by the von Neumann-Morgenstern utility index U in 
(1). 

The production function is assumed to satisfy the following properties: 
f(., r) is an increasing, concave differentiable function for all r, with 
f(0, r) = 0 for all 1. It is assumed that f(x, .) is increasing for all x, i.e., the 
production function is ordered.4 Further properties are specified below. 

Realizations of r’ lie in the interval [ar, p]. The mapping E B + [OL, /?I 
generates in the usual fashion a measure v on the Bore1 subsets of [a,P]. 

Only minimal assumptions on 2 and U were made in the last section. In 
this section we add the following: 

ASSUMPTION 6. U is increasing and strictly concave. 
The question of existence of a solution to (7) is substantially the same as 

the corresponding existence question given additive utility. Henceforth 
assume the existence of a solution for (7). (In the case of Theorem 3 below 
existence follows from our assumptions as in [S, pp. 4874881. Otherwise 
existence may be proven by adapting the very general analysis in [6] to 
stationary cardinal utility.) By the strict concavity of U the solution is 
unique. 

4 The role of this assumption is discussed in the proof of Theorem 3. 
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Denote by J(s) the value of the problem (7). Since U and f(., r) are 
concave, so is J. Because of (5) a dynamic programming argument yields 

J(s) = oy, {u(c) + B(c) . EJ[f(s - c, r”)] }, B = exp(-u). (8) 

Optimal behaviour in (14) is summarized by the consumption function 
c = g(s) which also solves (8). 

Two additional assumptions are adopted: 

ASSUMPTION 7. g(s) and s -g(s) are both positive and increasing in s. 

ASSUMPTION 8. u and v are continuously differentiable and U’ > 0. 
Interior solutions, i.e., g(s), s -g(s) > 0, are easily guaranteed as shown 

below. The second part of Assumption 7 expresses the fact that both 
consumption and investment are “normal” goods in (7). In contrast with the 
additive utility model, that is not necessarily the case for stationary cardinal 
utility. Below we provide conditions on u and u sufficient for such normalcy. 

The assumption that U’ > 0 requires some comment. From (4) it requires 
that the rate of time preference along a constant consumption path increase 
with the level of consumption. A priori this hypothesis appears to be as 
reasonable as the opposite hypothesis that p’(c) ( 0. In fact a stronger 
justification may be provided for our assumption-it follows from 12, 31 that 
if p’ < 0 then, in general, in deterministic versions of the model (7), there 
exist many steady states and some of them are locally unstable. Thus p’ > 0 
(u’ > 0) is necessary if we are to establish even local stability results in our 
stochastic model. When u and p are constant existing analyses with additive 
utility apply. For simplicity we rule out any points where U’ and p’ vanish. 

Another perspective on Assumption 7 is possible. It is immediate from (5) 
and Assumption 6 that the second order partial derivative UCoC,, and all other 
mixed second order partials of U when they exist, have the sign of --u’. Thus 
24’ > 0 implies UCIC, < 0 Vt # r. By [7] this corresponds to an aversion to 
(generalized) correlation in the random consumption in any two periods.5 Of 
course, additive utility imposes indifference to correlation. 

Denote by F,(x) the cumulative distribution function of xp, the capital 
stock at time t when the planner acts optimally, i.e., according to the 
consumption function g. The following theorem establishes the existence and 
stability of a steady state distribution and generalizes (5, Theorem 4.11 and 
[ 18, Theorem 21. 

’ The ?ts are independently distributed but along random consumption paths that are 
feasible in (7), consumption is not independently distributed across time periods. Thus 
attitudes towards correlation play a role in determining optimal consumption paths. 
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THEOREM 3. In addition to the properties for f spectsed above, assume 
that f(., r) is strictly concave Vr and that f’(0, r) = 00, f’(oo, r) = 0 Vr. 
Then, under Assumptions l-4 and 6-8, there exists a distribution function 
F(x) such that F,(x) + F(x), as t -+ XI, untformly for all x. Furthermore, F(x) 
does not depend on the initial stock s, and it does not carry an atom at x = 0. 

We assumed above that f(., r) is strictly concave for all r, though it 
suffices that {r: f(., r) is strictly concave} have positive measure. Otherwise, 
it is clear that with additive utility and a constant rate of discount a stable 
steady state distribution, which does not assign all mass to zero or infinite 
capital stock size, does not in general exist;6 simply think of the certainty 
model. But with utility specified by (1) a stable steady state “frequently” 
exists in the certainty version of model (7) even if f is linear in x. (See 
[3,8].) Thus the following theorem should not be totally surprising: 

THEOREM 4. Consider problem (7), where f (x, r) = rx, r E [a, /I]. 
Maintain Assumptions l-4 and 6-8 and suppose that 

e It(O) < a, /I < lim e”“). (9) c+m 

Then there exists a distribution function F(x) satisfying the conditions in 
Theorem 3. 

The inequality eUCo’ < a implies that for small levels of consumption c the 
rate of time preference p(c) is less than (a - l), the least favourable net 
return to investment. Similarly, the other inequality states that for large 
consumption levels p(c) is less than /3 - 1, the most favourable net return to 
investment. These inequalities replace the Inada conditions in the proof of 
existence of a steady state for the case of a linear production function. 

It remains to specify restrictions on u and v sufficient to imply 
Assumptions 6 and 7. 

THEOREM 5. Let the production function f be such that f (., r) is 
increasing and concave for each r. Then U and /t satisfy Assumptions 6-8 if 

v < 0, v’ > 0, v’(0) = 00, log(-v) is convex, 

u>O,u’>O, u is strictly concave, 

v’e’ is non-increasing.’ 

(10) 

(11) 

(12) 

6 Schectman and Escudero prove the existence of a steady state distribution in a model with 
f(x, r) = ax + r, where a > 0 is a constant. But their result is possible only because of their 
assumption of no borrowing against future income. 

’ If u’ exp(u) is decreasing, concavity of u may be substituted for the assumption of strict 
concavity of U. Iff(.. r) is strictly concave for all r, u’ > 0 may be weakened to u’ > 0. 
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The postulates for v imply that v may be written in the form 

u = -e-@ for some concave function 4, 4’ > 0. (13) 

Thus v is increasing and concave, standard properties. In fact v is an 
increasing and concave transformation of a concave function 4 and so is 
“more than concave.” The stronger requirement for v is needed not to prove 
that U is concave. It is used to establish that consumption and investment 
are normal as in Assumption 7. The concavity of u and (12) are used for the 
same purpose. Given the required differentiability the latter condition states 
that -v”/v’ > u’; in a sense this requires that the variability of the rate of 
time preference, and hence the divergence from the standard additive utility 
model, not be too great. But (IO)-( 12) leave a great deal of scope for 
specifying stationary cardinal utility functions. One simple example is v(c) s 
clPA/(l -A), A > 1 and u any positive, increasing and strictly concave 
function such that u’(c) ,< A/c for all c. 

The conditions in (10) and (12) are not invariant to the “admissible” 
transformations defined in the Corollary. Nevertheless, as shown by the 
Theorem, their conjunction with (11) constitute meaningful statements about 
the cardinal index U and hence about 2. (Individual conditions that are each 
invariant to such transformations are complex and difficult to determine. For 
example, define w(c) E U( y,) = v(c)/1 1 -B(c)], B = eP”. Then by (5), U is 
increasing if and only if v(cJ + B(c,)B is increasing in c0 for every B in the 
range of w. This constitutes an invariant restriction on the (u, v) pair, which 
is implied by the assumptions v < 0 (3 w < 0), v’ > 0 and U’ > 0. The 
analysis of curvature is much more complex.) 

EXAMPLE. It may be useful to provide an example to illustrate the above 
results, in particular Theorem 4. Concrete examples are difficult to construct. 
The following example conforms with all but one of the hypotheses of 
Theorem 4 but still provides an instance where a stable steady state 
distribution exists. 

Let v(c) = -1 for all c and 

u(c) = 2 log(c”2 + 1) - log(9/4), c > 0.36, 

a3, c < 0.36. 

For c > 0.36, u is positive, increasing and strictly concave. c = 0.36 is a 
subsistence level; if consumption is less than 0.36 in any period then lifetime 
utility, as defined in (l), equals -co. Thus in the planning problem (7) only 
feasible paths that provide ct > 0.36 for all t, with probability 1, need be 
considered. It can be verified that Theorems 3 and 4 may be extended to 
include such utility functions. 
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The production function is f(x, r) = TX, where ? varies over the interval 
[2,3], ET-’ = 4/9. (The probability distribution of r” is otherwise 
unrestricted.) For any initial stock s, s > 0.96, the problem (7) possesses a 
solution. Optimal consumption is given by g(s) = [-1 + d-]/2, which 
satisfies Assumption 7. Thus Theorem 4 (suitably modified) implies that the 
distribution of capital stock converges to a steady state distribution F. 
Capital stock evolves according to the rule xt+, = H(x,, r), H(x, I) = 
f{[l +4rx]l’2- 1). The support of the steady state distribution lies in the 
interval [x,, x,,,], where H(x,, 2) = x, and H(x,,, 3) = x,~. Thus [xmr x,+,] = 
[1,21. 

To prove these assertions argue as follows: let J(S) = -1 - 9s-l/4. Verify 
that J(s) = Max0.36GcGs{-1 + e -pCc)EJ(?(s - c))} for s > 0.96, and that g(s) 
yields the maximizing consumption level. Stochastic consumption streams 
that are feasible in (7) may be represented by the measurable functions 
(c,, F, ,***, c;,...), where for t > 1, C(: )(j:i[2, 31 + [0.36. co); C, maps 
(ro,..., r,-, ) into C;(I~,..., r,- 1 ) for t > 0, c0 E [0.36, co) is a constant. The 
corresponding sequence of capital stocks is represented by the functions 
S;:)(::A[2, 31 + [0.48, co), S;(r, ,..., rtP1) = T~-~(S;-, --c?~,), t> 1, and 
Co = s. (Note that if capital stock is less than 0.48, then the constraint 
C; > 0.36 is violated with certainty for some t.) Repeated application of the 
dynamic programming equation implies that 

(14) 

But the last term is bounded above by zero and below by 
J(0.48) exp(-CT,, ~(0.36)) which converges to zero as T-+ 00. Thus as 
T-+ cc in (14) we conclude that expected lifetime utility along any feasible 
path cannot exceed J(s). Equality holds in (14) for each T and in the limit if 
the random consumption sequence chosen is that corresponding to the 
function g, i.e., c0 = g(s), C1(r,) = g(s;(r,)), wo> r,) = g(r,(s’,(r,) - 
ds; (rt,)))), FIG-o) = rob - g(s)>>, an so on. Thus the consumption function d 
g solves the planning problem (7) and yields lifetime utility J(s). g defines 
the unique solution because U is strictly concave. 

APPENDIX 1 

Proof of Theorem 1. First prove the necessity of (1). 
For all P,qEM(Y) and c,E [O,Ll, IYU(cO,~)dp~ivU(co,r)dq iff 
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(co, P) Z (co, q) iff (0,~) Z (0, q) (by risk independence), iff .f, U(0, Y) dp > 
J’, U(0, y) dq, i.e., U(c,, a) and U(0, a) are von Neumann-Morgenstern utility 
indices for the same preference ordering on M(Y). Thus they must be related 
by a linear transformation, i.e., there exist functions a and b, b > 0 so that 

Wo, Y) = a(co> + b(co) UP, Y> vc, E [O, L], y E Y. (15) 

(Uniqueness of the von Neumann-Morgenstern utility index up to a positive 
linear transformation follows from standard arguments. See [ 11, 
pp. 221-2221, for example. The infinite dimensionality of Y is of no conse- 
quence.) 

Similar reasoning applied to Assumption 2 yields 

U(0, y) = a  ̂+ 6U( y> VY E K (16) 

where a  ̂and 6 are constants, fi > 0. Combine (15) and (16) and deduce that 

WOTY) = 4co) + Wo) WY> vc, E [O, L],Y E K (17) 

for some functions u and B defined on [0, L], B > 0. 
Suppose B(c) > 1 for some c and pick y, y’ E Y such that U(y) > U( y’). 

Then repeated application of (17) implies that U( y”) - U( y’“) > 

[W)l”[WY) - WY’)1 + 00 as II + co, where 

y” E (k, y) and y’” = (c%, y’). 

But that contradicts the boundedness of U. (U is bounded because it is 
continuous and Y is compact in the product topology.) 

Thus B < 1. Suppose B(c) = 1 for some c. From (17), U(y,)[ 1 -B(c)] = 
V(C) + V(C) = 0, and so U( y”) = U(y) for all y, where 

But Y” +Yc * U(Y”) + WY,) * U(Y) = U(Y,> for all yEY. By 
Assumption 4, p w q Vp, q E M(Y), which contradicts Assumptions 1 and 2. 
Therefore 0 < B < 1 on [0, L] and 

WY,) = GM1 - B(c)1 vc E [O, L]. (181 

Now show that u and B are continuous. Let c” + co. For any y and y’, 
U(c”, y) -+ U(c”, y) and U(c”, y’) + U(c”, y’). By (17), 

[u(P) - u(co)] + U(y>[B(c”) - B(c’)] + 0, 

[u(P) - u(c”)] + U(j’)[B(c”) - B(c’)] + 0. 
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We can pick y and y’ so that U(y) # U(y’). Therefore B(P) + B(c”) and 
u(P) -+ u(c”). 

To prove (l), define 

u(c) 55 -log B(c) or B(c) = e -u(e) VCE [O,L]. (19) 

Apply (17) repeatedly and obtain 

U(y) = $ u(c,> exp (-7 I@,)) 

+exp (-$44) - WT+I,~T+Z3..-), (20) 

for all T> 0. Y is continuous and hence bounded on [O,L] and min{u(c): 
c E [0, L]} exists and is positive. Therefore the first term on the right side of 
(20) converges as T -+ co. The second term approaches zero since U is 
bounded. 

Finally, suppose that u(c) = K[ 1 -e-“(‘)I Vc and establish a 
contradiction. Equation (17) takes the form U(c, y) - K = B(c)(U(y) - K). 
Repeated application of the latter equation implies that Vy E Y, y = 

( co, Cl,... ), U(y) -K = exp(-2, u(c,)) . [ U(c,+, ,...) - K]. Take the limit as 
T -+ co and apply the boundedness of U to deduce that U(y) = K Vy E Y. 
But this contradicts Assumption 1. 

The proof of the sufficiency of (I ) is straightforward. I 

Proof of Corollary. Let U correspond to u^ and z? as in (1). If (2), then 
U= a + bU so (u^, i?) represents 2. For the converse, suppose we are given 
U = a + bU. We need to prove (8). Make repeated use of (17). Let B = e-‘, 
8 E e-u^. For any (GY) E K 
&>b + WY)1 * 

ri(c, y) = a + bU(c, y) = G(c) + 

w> 
u(c,Y)=-g+b + g B(c) + B(c) U(y). (21) 

Combine (2 1) with the equation U(c, y) = u(c) + B(c) U(y) to derive 

[B(c) -B(c)] U(y) = [-a + c(c) -I d(c) - u(c)b]/b. (22) 

Equation (22) is valid also if y is replaced by 7 such that U(y) # U(y). 
Subtract the two versions of (22) to deduce that [B(c) -l?(c)] [U(y) - 
U(y)] = 0, or B(c) = B(E). Therefore u = u^. The rest of (2) now follows from 
(22). I 

Proof of Theorem 2. The sufficiency of (6) is clear. Turn to the proof of 
necessity. 

Suppose first that 3y E Y such that (c, y) my (5,~) Vc, FE [0, L]. By 
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stationarity and Assumption 5 it follows that (c, y) wy (?, y) Vc. C and 
Vy E Y. Use (17) to deduce that [B(F) - B(c)] [ U( Jo) - U(y)] = 0 Vc, C and 
Vy, JOE Y. By Assumption 1 it must be the case that B(c) is constant and (6) 
follows from (1). Therefore we may proceed on the assumption (*) that 
Vy E Y 3c, F such that (c, y) >’ (I?, y). 

When restricted to nonstochastic consumption streams, the risk indepen- 
dence assumptions imply separability restrictions on 2’. In particular, 
Assumption 5 implies that (co, c,) is weakly separable and Assumption 3 
implies that (c, , c2 ,...) is weakly separable. Apply Gorman’s overlapping 
theorem [9, Theorem l] to deduce that U may be expressed in the form 

U(c,, c,, c,,...) = F[#O(c,) + f(q) + 4*(c2, C,Y>L (23) 

where G is increasing and all functions are continuous. (The hypotheses in 
Gorman’s theorem concerning essential and strictly essential sectors are 
satisfied because of (*) above. Note that Gorman’s theorem is not restricted 
to finite dimensional spaces; it is applicable here because Y is topologically 
separable and arc connected.) Since consumption at t = 0, 1 is risk 
independent of consumption in other periods, it follows that U(c,, c, , y) = 

4Y> + WY) v[4°(co) + !w,>l f or some functions a, b > 0 and w and for all 
(co, c, , y) E Y. Combine this equation with (23) to deduce that F satisfies the 
functional equation W"(co) + 4%~) + I = 4~) + Kv) v[$“(co> f 
@‘(c,)] = Q’(y)) t &d*(y)) w($O(c,) + $‘(c,)] for some functions a  ̂and 6. 
The functions @‘, 4’ and 4’ are continuous by the above arguments and are 
not constant because of (*) and Assumption 2. Thus the ranges of these 
functions are nondegenerate intervals and F satisfies the following functional 
equation for all z, z’ lying in some interval on the real line: F(z + z') = 
a (̂z) + 6(z) u/(z’). By [ 1, Corollary 1, p. 1501 there exist only two systems of 
solutions F (increasing) to this functional equation. We consider each 
possibility in turn. 

Case 1. F(z) = ye”’ + ŷ , a # 0. With no loss of generality assume y = 1. 
f = 0. By (23) we see that 

WC,, clyy> = exp@4”(co) t 4(cl)> + expW’(y))- (24) 

By stationarity (Assumption 2) it must be the case that exp(c@‘(y)) is a 
positive linear transformation of U(y). Thus there exist a and A > 0 such 
that 

WC,, cl,Y> = exp(a@“(co> + a$‘(cA> * V + AXv)l. 

By similar reasoning (24) * 

(25) 

WAY> = exp(a4”(c>) . ie + GU(Y)L e > 0, V(c,y) E Y. (26) 
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Apply (26) again to derive 

U(co, cl, Y) = G ev(a4”(co)> + dG ew(a~“(cl)) + G’U(y) 

a evk4”tco) + a#‘tcJl. (27) 

Equate (25) and (27) for two choices of y with different utilities according 
to u. Deduce that Vc,, G* exp(a$“(ci)) = A exp(a#‘(c,)), G + 
GG exp(a#“(c_l)) = a exp(ad’(c,)) and therefore that d = exp(a#“(cl)) . 
[G”a/A - GG]. Since 4” is not constant, G = 0 necessarily. Now (26) 
* U(c, y) = G exp(a$“(c)) . U(y). In combination with (17) this implies 
v(c) = 0 Vc, which contradicts Theorem 1. Thus Case 1 is impossible. 

Cnse 2. F is linear, F(z) = AZ + a, A > 0. Without loss of generality 
suppose A = 1 and a = 0. By (23), U(c,, c, ,y) = #‘(co) + #‘(c,) + #‘(u) + 
(by stationarity) U(c, y) = 4”(c) + [G + GU(y)], G > 0. Combine this 
equation with (17) to derive d”(c) + G + GU(y) = V(C) + B(c) U(y) 
V(c, v) E Y. Apply this equation also for y’ such that U(f) # U(y) and 
conclude that B(c) = G Vc E [0, L]. Thus B is constant and (6) is implied by 
(1). I 

Proof of Theorem 3. Consider problem (7) with value J(s). We argued 
above that J is concave and that (8) is satisfied. We proceed by adapting the 
arguments in [S, 181 to prove a series of preliminary results. (Alternatively, 
the results in [4J could be invoked. But to justify the hypotheses in the latter 
study much of the following argument would still be necessary, particularly 
in proving Theorem 4.) 

First, use (5) and the argument in [ 18, Lemma l] to prove that J is 
differentiable and that 

J’(s) = u’(g(s)) = u’(g(s)) ec”(g(s))EJ(f(s -g(s), r”)), s > 0. (28) 

Combine (28) and the first order condition for an interior optimum in (8) 
to derive 

J’(s) = eC”(g(s))E[J’(f(s -g(s), 7)) .f’(s -g(s); ?)I, s > 0. (29) 

J concave * J’ is non-increasing. But by Assumption 7 the right side of (29) 
is decreasing in s as long as U’ > 0 and f is concave. Thus J’ is decreasing. 

Let h(x) E x -g(x), x > 0. By the argument in [5, Lemma 1.21 g and h 
are continuous, g(0) = h(0) = 0. 

Define f,(x) -f(x, a), f,(x) -f(x, P>. ff(x, r> = WI-c r>>, H,(x) = 
h&(x)), H,(x) = h(f,(x)). Let d(x, r) = J’(f(x, r)). Then d(., r) is 
decreasing for all r and (29) may be rewritten in the form 



148 LARRY G.EPSTEIN 

Define x, = max{x > 0: H,(x) =x} and x,,, E min{x > 0: H,(x) =x}. x, 
could equal zero. (See [ 191.) Brock and Mirman (p. 498) prove that x, is 
well defined, by using the hypothesis that the production functions are 
ordered. Mirman and Zilcha [ 181 delete the latter hypothesis but do not 
address the question of whether x, is well defined. It is not clear whether 
their other hypotheses imply the existence of even one positive fixed point for 
HIM. Note that if 0 is the only fixed point of H, and if X~ = 0, the remaining 
arguments in [ 181 imply that the steady state distribution has support in 

L%?l~ x~] = {0}, i.e., capital stock converges to 0 with probability 1. Since we 
have made the assumption of ordered production functions we may use the 
argument of 15, Lemma 3.11, adapted to apply to (30) above, to prove that 
x, > 0 is well defined. 

The next critical step in the proof is to show that 

a = H,(a) and b = H,,,(b) 3 a < b. 

As in [5, Lemma 3.41 we can show that a = H,(a), b = H,(b) =Y 

(31) 

expb(g(f(b, P)>)l~ f’@, 4 @9 

Suppose that b < a. Then b = H,(b) = hdf(b, /.I)) < a = H,(u) = h(f(u, a)) a 
f(b, p) <f(u, a) + -u(g(f(b, p))) > -u(g(f(u, a))) since u is increasing. 
Since f’(b, r) >f’(u, r) Vr, (32) cannot hold. Thus b > a necessarily. 

Subsequent arguments in [5, 181 rely only on the results derived above 
and not explicitly on the structure of the utility function. Thus they apply 
here unaltered to complete the proof. That there cannot be an atom at 0 was 
pointed out in [19, pp. 112. 1271. 1 

Proof of Theorem 4. In the proof of Theorem 3, strict concavity off was 
not used at all. The Inada conditions (f’(0, r) = co and f’(co, r) = 0 Vr) 
were used only in the proof that X~ > 0 is well defined. But it is 
straightforward to rewrite the proof when (9) is substituted for the Inada 
conditions and f(x, r) = TX. I 

The proof of Theorem 5 requires two preliminary lemmas: 

LEMMA 1. Define the function. V on consumption sequences by 
II = -e-‘, U defined in (1). Zf (10) and (11) are valid, then V is concave. 
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Proof From (lo), v = -e-@, 4 concave. For each T> 0 define 
U’(C o,..., c,) G -2,’ exp{4(cl) - 2b-l u(c,)}, VT = -log(-UT). 

First we prove by induction that for each T the function that maps 
(co ,..., cT) into VT(cO,..., cT) - #(c,) is concave. That is certainly true for 
T = 0 since v”(c,) - g(c,,) = 0. Assume for T and prove for T + 1. Because 
of (5), VT-t l(C oy”‘3 CT+ ,) = -log[exp(-@(co)) + exp(-u(co) - VT(cl ,..., CT))] 
and so 

vT+‘(Co,..., c =+ J - #(co) = -log{ 1 + ev[--u(c,) - VT - 4(cd>l I. (33) 

By the induction hypothesis -log{exp[-u(c,) - (VT - #(c,))] } is concave. 
But that implies the concavity of the right side of (33). (For any function w, 
-log w concave * -log( 1 + w) concave, essentially because the logarithm 
function exhibits declining absolute risk aversion.) Thus the left side of (33) 
also defines a concave map. 

Hence VT is concave for each T. The concavity of V follows since 
V(c,, ci ,...) = lim,,, VT(c, ,..., c,). I 

LEMMA 2. Assume (10) and (11). Let J(s) denote the value of(7). Then 
J’/J is an increasing function. 

Proof. It is enough to prove that G(s) z log(-J(s)) defines a convex 
function G. (Note that v < 0 3 J < 0.) 

Let X= )(E”=,[a,P]. The probability measure v on [a,/?] induces the 
product measure P on X. As in the discussion of the example in the text we 
may represent a feasible stochastic consumption stream by the vector 
random variable F= (co, ti,..., C;,...), where 9 maps a typical element 

( ro, rl ,... ) into the infinite dimensional vector whose tth component is 
E,(r, ,..., rf- ,). Denote by EU(j) the expected value integral 

kc UMw)) v”(dw). 
Let y’ and y* be two non-stochastic consumption streams. Lemma 1 

implies that 

-U((y’ +y*yq,< [-u(y1)]1’2[-u(y2)]1’2. (34) 

Let y” and 9’ be any two stochastic consumption streams. Integration of 
(34) implies that --EU(y’ +-~?‘)/2) SE{ [-U(y’1)]1’2[-U(y’)]1’2}. Now 
apply the Cauchy-Schwartz inequality to deduce that 

--EU((y +y’“)/2)< [--EU(Jq]“*[--EU(~*)]“*. (35) 

Let s’ and s* be two different initial stocks and y’ and y’ the 
corresponding optimal stochastic consumption streams. It is immediate that 
(-9’ + y”)/2 is feasible in the problem with initial stock (s, + s,)/2. Therefore 
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J((s, + sJ2) >EU((y-’ +y”2)/2). Finally, apply (35) to obtain 
log[-J((s, + 4/2)1 < l@z--EU((Y + J7w)l < t log[--Eq.F’)l + 
; log[-EU(jq = ; log[-J(d)] + ; log(-J(?)]. Thus log(-J) is 
convex. I 

Proof of Theorem 5. By Lemma 1, U = -e- “, where V is concave. 
Therefore U is strictly concave. Monotonicity is obvious. Thus Assumption 6 
is satisfied. Assumption 8 is trivially true. That g(s) and s - g(s) are positive 
follows from v’(O) = co. Thus it remains only to show that g(s) and h(s) = 
s - g(s) are both increasing. 

Consider the dynamic programming equation (8). We wish to show that 
the objective function M, M(c) z V(C) + B(c) EJ[f(s - c, ?)I, is strictly 
concave. By Lemma 2, -log[--J(s)] is concave (and increasing). Sincef(.. r) 
is concave, it follows that -log(-J(f(s -c, r))) is concave in c Vr. Use 
precisely the arguments employed above in passing from (34) to (35) to 
show that -log(--EJ(f(s - c, 3)) E G(s - c), defines a concave function G. 
But now M(c) = u(c) - exp{-[u(c) + G(s - c)]} 3 it4 is strictly concave. 

g is increasing: Let s < S; c = g(s). The first order condition for (8) is 

u’(c) -B(c) EJ(f(s - c, ?))[u’(c) - G’(s - c)] = 0, (36) 

where G is defined above. Because of the strict concavity of M proved above, 
it is sufficient to show that the left side of (36) is positive if S is substituted 
for s. But u’(c)-B(c)EJ(f(s-c, f))[u’(c)- G’(S-c)] 2 u’(c) - 
B(c) EJ(f(F- c, q)[u’(c) - G’(s - c)], (since G’ is non-increasing and 
J < 0), = v’(c){ 1 - [EJ(f(S- c, ?))/EJ(f(s - c, r”))] } (by substitution of 
(36)) 2 0 since J < 0, J and f are increasing and u’ > 0. 

h is increasing, where h(s) E s -g(s): Use the notation of the last two 
paragraphs. h(s) is the solution to the problem max(N(z): 0 < z < s}, where 
N(z) E M(s - z). M strictly concave 3 N strictly concave. Let s < S and 
z = h(s). The first order condition for the problem is 

-u’(s - z) - B(s - z) EJ(f(z, ?)) [ G’(z) - u’(s - z) 1 = 0. (37) 

Because of the strict concavity of N it is sufficient to show that the left side 
of (37) is positive if B is substituted for s, since then r= h(f) > h(s) = z. But 
-u’(S- z) - B(S- z)EJ(f(z, f))[G’(z) - u’(S- z)] 3 -u’(S- z) - 
B(5 - z) EJ(f(z, I”))[ G’(z) - u’(s - z)], (since u is strictly concave), 
=B(s- z)( [u’(s - z)/B(s -z)] - [u’(F- z)/B(S- z)]} > 0 by (12). I! 

APPENDIX 2 

In this appendix we describe how Theorem 1 is modified if the sup 
topology is substituted for the product topology on I’. 
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Replace Assumption 4 by the following: 

ASSUMPTION 4’. There exists a von Neumann-Morgenstern utility index 
U for 2 such that U is continuous on Y topologized with the sup topology. 

Koopmans adopts a stronger assumption (Postulate 1) which imposes a 
form of uniform continuity of U. 

Two additional assumptions are required. 

ASSUMPTION 9. The utility function U in Assumption 4’ is bounded on 

ASSUMPTION 1’. For every c E [0, L] 3y E Y such that (c, y) and y are 
not indifferent under 2’. 

The latter assumption strengthens Assumption 1 and imposes a form of 
sensitivity to consumption in the initial period. Assumption 9 is weaker than 
Koopman’s Postulate 5 (p. 295), which requires that there exist upper and 
lower bounds for U which are actually attained, i.e., there exist y and J’ in Y 
such thatys’y<‘jjVyE Y. 

THEOREM 1’. The preference ordering 2 satisfies Assumptions 1 I, 2, 3, 
4’, and 9 if and only if U can be expressed in the form (1) where u and L 
sati@ the conditions of Theorem 1. 

Refer to the discussion in the text of the greater prevalence of impatience 
in our analysis as compared to Koopmans’. The only sensitivity postulate 
adopted by Koopmans is, in our notation, that 3c, c’ 3y such that (c, y) >’ 
(c’, y’). In contrast we have maintained Assumption 1’. But that difference 
appears an unlikely explanation of the differing results. The major difference 
in the two analyses is the consideration in this paper of choice between 
stochastic, in addition to certain, consumption streams. 

Proof of Theorem 1 I. Refer to the proof of Theorem 1. Given that U is 
bounded the product topology for Y is used in the argument only to rule out 
the existence of c such that B(c) = 1 and U(C) = 0. But in the latter case, (17) 
implies U(c, y) = U(y) Vy, contradicting Assumption 1’. 1 
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