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We analyse a single sector economy with H > 1 infinitely-lived agents that 
operate in a continuous-time framework. Utility functions are recursive but not 
additive. Both efficient and perfect foresight competitive equilibrium allocations are 
considered. The existence and stability of such allocations are investigated locally, 
i.e., in a neighbourhood of steady-state allocations. The model is shown to be useful 
for explaining the distribution of wealth and consumption across agents. and for 
analysing the way in which wealth redistribution can affect the dynamics of 
aggregate economic variables. Journal o/ Economic Literaiure Classification Num- 
bers: 021. 022, Ill. ‘1’ 1987 Academtc Pm,. Ins 

1. INTRODUCTION 

We analyse an economy with H > 1 infinitely-lived agents that operate in 
a continuous-time framework. The major simplification in the model is the 
assumption that there is only a single good,’ as in the Koopmans-Cass 
growth model. Both efficient and perfect foresight competitive equilibrium 
allocations are considered. The existence and stability of such allocations 
are investigated locally, i.e., in a neighbourhood of steady-state allocations. 
The local stability analysis provides information regarding the mode of 
convergence (cyclical or noncyclical) and the speed of convergence. Finally, 
the model is shown to be amenable to qualitative comparative dynamics 
analysis. 

The paper achieves two broad objectives, First, by investigating stability 
in a multiple-agent economy, the paper provides some perspective on the 
existing turnpike literature. In particular, some insight is provided into the 
importance for stability of the common assumption of the existence of a 
representative consumer. The single good framework is maintained in order 
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to focus on the consequences of the extension of the Koopmans-Cass 
model to many consumers. Of course, stability theorems are important 
because of the information they provide regarding the dynamics of efficient 
or competitive economies, and because they justify comparative statics 
analysis of steady states. 

The Koopmans-Cass model has been applied fruitfully in a variety of 
fields in economics, but the representative agent assumption limits its use 
in problems where distribution “matters.” The second objective of this 
paper is to provide a minimal extension of the Koopmans-Cass model that 
will be useful in such contexts. In particular, it is important that the model 
be tractable from the point of view of comparative dynamics analysis. 

Distributional concerns may enter in either of the following ways: First, 
one may be interested in the distribution of welfare or assets across agents.’ 
The model “explains” the distribution of assets, particularly in the long 
run-individual asset holdings converge to unique steady-state values. The 
limiting distribution is independent of initial conditions and depends in a 
simple and intuitive fashion [9, pp. 62886291 on how rates of time 
preference differ across agents. Specifically, individuals who are more 
patient in an appropriate sense, have larger asset holdings in the steady 
state. It is argued that the simplicity and tractability of this model of wealth 
distribution distinguish it from the more direct multiple-agent extension of 
the KoopmanssCass model that is investigated in [S]. 

Second, it may be important to recognize the effects of wealth dis- 
tribution on aggregate .demands. In static general equilibrium theory the 
consequences of differing income effects are well known. But the only 
dynamic models which explicitly consider the effect of distribution on 
aggregate savings are the two-class models in the early growth literature, 
where the savings propensities of two groups of agents are assumed to dif- 
fer. Of course, these models are not based on optimizing behaviour. In the 
present paper such distributional considerations are integrated into a 
dynamic general equilibrium model in which all agents optimize. 
Moreover, the qualitative comparative dynamics consequences of wealth 
redistribution may be analysed. 

Table I summarizes the highlights of existing turnpike literature as it 
relates to the present paper. Particularly noteworthy is that in this paper 
utility functions are assumed to be recursive [ 18, 281 and not additive. As 
a result the rate of time preference is not constrained to be constant, but 

’ Given the dynastic view implicit in the assumption of infinitely lived agents, the model can 
address interdynastic (but not intergenerational) distribution. For questions of 
intergenerational distribution, the overlapping generations model can be applied. Of course, 
agents need not literally live forever in order that the dynastic approach be of interest. It can 
provide a useful approximation if agents have finite lifetimes but bequests are important [2]. 
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rather can vary with the consumption path where it is evaluated. This 
flexibility eliminates the unappealing feature of the additive specification 
whereby more than one agent can own capital in a steady state only if 
those agents share a common discount rate [4, 5, 303. 

The additive utility specification has another important disadvan- 
tage--even if the discount rates of all consumers are equal, the long run 
distribution of consumption in a multiple agent economy depends on the 
initial distribution of capital stocks across agents, and in a complicated 
fashion [S, 30].* Thus even steady-state analysis requires solution of the 
full dynamic model and is not elementary as it is in a model where the 
turnpike property applies. In contrast, in the present model with the recur- 
sive utility specification, the steady state is unique and is independent of 
initial conditions. Thus the analysis of steady states is elementary. 
Moreover, since local stability is proven, a straightforward procedure for 
comparative dynamics is available: Linearize the dynamic system about the 
steady state. This yields a constant coefficient, linear differential equation 
system which can be solved explicitly. The explicit solution faithfully 
reflects the qualitative dynamics of the original nonlinear system in a 
neighbourhood of the steady state. It is worth emphasizing that this com- 
mon procedure is generally not available in the additive utility model. 

The continuous-time framework of this paper is appealing because of the 
sharp distinction between stocks and flows that it admits. But the for- 
mulation of recursive utility functionals is more difficult in continuous time 
and the Uzawa functionals are the only ones that have been defined in the 
literature. The Uzawa specification, with minor modifications, is adopted 
here. A rationale for this specification is provided in [S] where it is shown 
that the Uzawa class, broadly defined, is precisely that subset of recursive 
functionals which retain a recursive structure in a stochastic framework, 
when the utility functionals are taken to be von Neumann-Morgenstern 
utility indices. Since the extension of the analysis to a stochastic framework 
is a logical future step in the research agenda, the Uzawa specification is 
natural. Its tractability is another appealing feature. 

This paper proceeds as foilows: Utility functionals are described in 
Section 2. Efficient allocations are analysed in Section 3 and Section 4 
considers equilibrium allocations. Some qualitative properties of the 
equilibrium model are described in Section 5 and compared with those of 
the Koopmans-Cass model. Many proofs are omitted. (They may be found 
in the original working paper version which is available from the author 
upon request.) But brief outlines of some proofs and assorted technical 
details are collected in an Appendix. 

‘The long run consumption allocation is readily determined given knowledge of each 
agent’s marginal utility of wealth in equilibrium, but the latter can be obtained only upon 
analysis of the complete dynamic equilibrium. 
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2. RECURSIVE UTILITY 

There is a single consumption good available at each instant in an 
infinite horizon. A consumption path is denoted C, and maps [0, co) into 
(0, a). The positivity of consumption is imposed from the start since only 
interior paths and solutions will be considered. For present purposes there 
is no loss of generality in defining the consumption set to be /i = {C: C is a 
continuously differentiable map of [0, co) into (0, co)}, The tth period con- 
sumption level corresponding to C is denoted c(t), and for each T 3 0 .C 
denotes the appropriate “tail” of C, i.e., .C is the path having tth period 
consumption equal to L.( T + t). 

In this paper U will be said to be recursive if 

where U, 11, and v satisfy the assumptions which follow. (See [S] for an 
axiomatization of the corresponding functional in discrete time.) 

ASSUMPTION 1. u and v are real valued and twice continuouslMv differen- 
tiable on (0, m ) and U is real valued on A. 

An essential feature of U is the rate of time preference implicit in its 
structure. To analyse this issue it is necessary to define marginal utilities 
and marginal rates of substitution. In continuous time this may be accom- 
plished by making use of the concept of a Volterra derivative. (See [29]. 
Heal and Ryder [ 171 make a similar application of the concept.) Denote 
by U,(C) the marginal utility of U with respect to a small increment in 
consumption along the path C and at times near T, in the sense made 
precise by the Volterra derivative. For the specification (1) U,(C) is given 

by 

U,(C) = e rO’U”“d’ [v,(c( T)) - u,.(c( T)). U( &‘)I, CEA. (2) 

The next assumption is a form of strong monotonicity for U. 

ASSUMPTION 2. For all T > 0 and C E A, U,(C) > 0. 

It is consistent with discrete time analysis to define the rate of time 
preference p as the negative of the logarithmic rate of change of marginal 
utility along a locally constant path. Precisely, 

p = -gTlog U,(C)licr,=o. (3) 
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For the specification (1 ), p depends on the particular path C through the 
consumption level c(T) at T and through aggregate future utility U( &‘). 
Thus, p = p( c( T), U( &‘)), where 

P(c; 9) = [u(c) u,.(c)- u(c) ~,.(~)llC&(C) - u,(c,l, L’> 0, 

4E U(A). (4) 

p( ., . ) defined by (4) is the rate of time preferertce function for U. Note that, 
because of (3), it describes properties of the preference ordering underlying 
U, rather than simply the particular numerical representation U of that 
ordering. 

ASSUMPTION 3. For all c > 0 and cj E U(A), p(c, 4) 3 pmin > 0, for some 
constant pmln. 

The rate of time preference function is positive and bounded away from 
zero on its domain. 

Along constant paths, the rate of time preference function simplifies con- 
siderably. Denote by G,. the path that is constant at the level c. Then from 
(1) and (4) it follows that 

P(C, UC, 1) = dc), c > 0. (5) 

Thus the function u defines the rate of time preference along constant 
paths. 

ASSUMPTION 4. u,(c)>Ofi)r all c>O. 

This assumption is critical for the analysis below and thus requires some 
comment, particularly since it is often supposed that the rate of time 
preference varies inversely with the stationary level of consumption [lo]. 
Friedman [ 11, p. 301 criticizes this latter hypothesis and argues that it is 
no more compeihng than u,. > 0. Assumption 4 is adopted by Uzawa, and 
Lucas and Stokey, who refer to it as “increasing marginal impatience of 
preferences.” 

Three arguments are offered here in support of Assumption 4. First, it 
follows from [3] and [23] that local stability of steady states may fail in 
standard environments, even in single agent models, if u, < 0. Thus 
Assumption 4, at least in the weak form u, 30, appears necessary to 
generate the appealing dynamics described below, though its empirical 
validity remains to be investigated. (This necessity is addressed further 
following Theorem 1.) This is the only apparent justification for 
Assumption 4 offered in [20] and [28]. 
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Secondly, note that u,. > 0 is implied by the hypothesis 

PJC, 4) > 0 forall c>O and b~U(/i), 

and this hypothesis is plausible on introspective grounds, i.e., an increase in 
4 indicates an increase in future consumption so that present consumption 
is given more weight3 To prove the implication, differentiate (4) and 
evaluate along a constant path G,., where 4 = U(G,.) = u(c)/u(c), to obtain 

The denominator is positive by (3) and Assumption 2. Thus 

Finally, it was noted in the introduction that the extension of the present 
analysis to a stochastic framework is desirable and that the specification of 
U as a von Neumann Morgenstern index is natural. Thus consider the 
properties of U as such an index. In a corresponding discrete time model, 
in [8, p. 1401, it is shown that u,. > 0 is equivalent to the implied preference 
ordering over random consumption paths exhibiting an aversion to 
correlation in the consumption levels of any two periods. Since such an 
aversion is plausible on introspective grounds, this observation provides 
further support for Assumption 4. 

To interpret the ‘next assumption it is useful to derive the following 
generalization of (3 ): 

$--log U,(C)=p(c(n u.C))-~(~).a(c(n U(.C)), (6) 

where a( c, 4) c [u,.,.(c) - &,,<( c)]/[ u, (c) - C&,.(C)]. The proportional rate of 
change of marginal utility is nonzero because of the systematic under- 
valuation of future consumption (p > 0), and because of the growth in con- 
sumption. This decomposition corresponds to Bohm-Bawerk’s two 
grounds for the existence of interest. (Frisch [12] provides such an inter- 
pretation for a similar equation.) Bohm-Bawerk’s hypothesis was that con- 
sumption growth reduces the marginal felicity of consumption. The next 
assumption captures the spirit of this hypothesis. 

3 Friedman’s (p. 30) discussion relates implicitly to the sign of the total derivative 
(d/k) p(c. (/(CC)), where an increase in c changes both current and future consumption and 
thus has no clear effect on the rate of time preference. In contrast, the argument here is based 
on the sign of the partial derivative p,(c, b)14= o,c,j which can be argued to be positive, and 
consequently a clearer case emerges for the sign of u,.. 
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ASSUMPTION 5. If C and T 3 0 are such that i’(T) > 0, then 

-;Tlog U,(C)>dc(T), U,C)). (7) 

This assumption, like its two immediate predecessors, is a statement about 
the ordinal properties of U. 

In the case of additive utility, i.e., u constant in (1 ), Assumption 5 is 
equivalent to the positivity of -u,.,/o, on its domain. Since u,. would be 
positive by Assumption 2, the (strong) concavity of u would be implied; 
and that would suffice to prove that the usual first order conditions, 
including transversality conditions, are sufficient for an optimum in stan- 
dard planning problems. But in the more general case of recursive utility an 
additional assumption appears to be necessary to prove sufficci~~c~* of first 
order conditions in the optimization problems considered below. The 
assumption takes the following form: 

ASSUMPTION 6. For al/ C, C* E A such that lim,, %, CT exists and is 
posititv. 

I 7 U,(C*)~(r(t)-t*(t))dr~O~U(C),<U(C*), 0 

with a strict inequality if C # C*. 

The analogous condition for a finite horizon, discrete time model is 
equivalent to the (strict) quasiconcavity of the utility function. In the 
present infinite dimensional setting it has not been shown that Assumption 
6 is equivalent to the convexity of U’s upper contour sets. But it is 
evidently a statement about the underlying preference ordering, since 
Assumption 6 is true for U if and only if it is true for any (differentiable) 
monotonic transformation of U. The same applies to Assumptions 2-5 also. 
In contrast, the earlier literature employing recursive utility has not suc- 
ceeded to the same degree in maintaining only ordinal assumptions. (For 
example, see [3, p. 1014; 20, p. 142; 28, p. 4891.) 

To show that Assumptions l-6 are consistent with a large class of 
functionals, Lemma 1 describes a set of sufficient conditions, expressed in 
terms of u and u, in order that these assumptions are satisfied. 

LEMMA 1. On (0, co) let u and u be twice continuous[y dl$ferentiable, 
inf,. , 0 u(c)>O, u, >O, zf,.,.<O, -c0 <inf,.,,v(c)bsup,.,,u(c)<O, u,>O 
and iog( - D) convex. Then U defined by ( I ) satisfies Assumptions l-6. 
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Note that ( 1) reduces to a standard additive functional if u(c) = 6 > 0 for 
all L’ > 0. In that case Assumptions 1-3 and 5 are standard and Assumption 
6 is implied. Moreover, the expression -f<</J; reduces to -v,.,./u,, the 
common measure of concavity of the utility index LL But the strict 
inequality in Assumption 4 is violated, and a weak inequality is not suf- 
ficient for the local stability analysis that follows. Thus the strict form of 
Assumption 4 is critical. 

Finally, there is an alternative representation of the functional (1) which 
will be useful. Define the function f by 

.f(c, 0) = v(c) - t%(c), c>O and 8~U(ii). (8) 

Then for each given CE A, U(C) = 4(O), where d(. ) is any solution to the 
differential equation system 

Straightforward integration of (9) shows that d(t) = U( ,C), Vt defines the 
unique solution to (9). Thus d(t) has the interpretation as the utility 
associated with the t-th period tail of the given C. 

Equation (9) defines U(C) via the solution to a differential equation. In 
discrete time recursive utility is usually defined by means of a difference 
equation of the form 

where the obvious change in notation has been adopted. F is called an 
aggregator function [ 181 and it plays an important role in the analysis of 
optimal behaviour ([3] and [20]). The function f from (8) will play an 
important role in the present continuous time analysis. In particular, note 
that (because of Eqs. (2) and (6)) 

Assumptions 2 and 5 are jointly equivalent 
to “f,. > 0 and f,< < 0 on the domain off ." (10) 

Moreover, the functionS,,/f‘ plays a role in the stability analysis below. 
Since fcc/fc = c1 in (6), that equation provides an interpretation for f,,/f,; 
i.e., the latter function measures the effect of consumption growth on the 
proportional rate of change of “current valued” marginal utility 
eI: pdr U,(C). Thus it provides a measure of the desire to smooth con- 
sumption given U. 
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3. PARETO OPTIMAL ALLOCATIONS 

There are H3 1 consumers each of which has a utility function that 
satisfies Assumptions 1-6. Functions or variables that belong to consumer 
h will have a superscripted h. Each consumer supplies one unit of labour 
services inelastically at each instant. 

The technology is simple. The production process uses labour inputs, 
which are fixed in total supply at H and suppressed in the notation, and 
capital services which are proportional to the capital stock X. Given s, the 
flow of output net of depreciation is g(.v), where g(0) =O, g, ~0 and 
g.,, < 0 on the positive real line. (If g,(.u) is negative for .X sufficiently large, 
say for x > x, then the analysis to follow is valid as long as the initial 
capital stock is less than x.) Initial capital stock is .Y,, > 0. 

An allocation is a vector (Cl,..., CH) such that Ch E A for h = l,..., H. An 
allocation is feasible (relative to an initial endowment .yO > 0) if it lies in the 
set Y(x,,), where Y(.Y,,) is the disposable hull of Y(x,), and 

Y(s,) = 
i 

(Cl,..., C”): c” E A, h = I ,..., H and x(t)>0 forail I, 

where .u(. ) solves -t(t) =g(.u(r)) - i c”(t), x(O) = -y0 
h = I 

An allocation (C’ *,..., CH*) is efficient if it is feasible and if there does not 
exist another feasible allocation (Cl,..., C”) for which Uh( Ch) 3 Uh( Ch*) for 
all h = I,..., H with strict inequality for at least one h. 

The utilit)’ possibility set is S(x,,) = {( U’( Cl),..., UH(CH)): (Cl,..., C”) E 
Y((xO)).. S’(x,) z [(y’,..., “Jo): 3y’, (y’,..., yH) E S(.u,)} is a projection of this 
set. Efhcient allocations are precisely those that solve a problem of the 
following type: 

cra;H ( U’( C’ ): (Cl,..., CH)e Y(x,), Uh(Ch)=&, h=2 ,..., H}, 

where (&,..., &‘) E S’(X-,) is given. (The existence of the maximum, or 
equivalently of efficient allocations, is proven below.) 

Thus efficient allocations may be found by solving the following optimal 
control problem with integral constraints: 

s %I 
max u’(c’) e-=’ dt (11) o 

sub.ject to 
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p = u”( Ch) and zh(0)=O, h= l)...) H, 

.t=g(x-&h,X(t)>O, V’t and x(0)=x,, 

ch(t)>O, V’t and h= l,..., H, 

and 

I 
Ic 

v”(c”) czh dt = &j, h = 2 ,..., H. 
0 

(&,..., 4,“) is a typical point in S’(Q). The control variables in this problem 
are the ch’s, while the state variables are x and zh, h = l,..., H. The latter are 
artificial variables introduced into the problem in order to make it conform 
to an optimal control setting. Uzawa [28, p. 4901 employs this trick, but 
his subsequent solution procedure for his single agent optimization 
problem differs from the procedure followed here in that he uses z as the 
independent variable in place of time.) 

The optimization problem (11) is a problem of Hestenes [27, 
pp. 657-6591 and the necessary conditions are readily derived. It is con- 
venient to use Y as a state variable rather than x, where YE g,(x) is the 
implicit real interest rate. Let r. = g,(x,). Then, after application of (9), the 
following set of necessary conditions is obtained for efficient paths: 

h = l,..., H, 

(12) 
4” = -f”(C”, qjh), h = l,..., H, 

i=u,Y(n;l(rH~[ ucu.,‘(l))-&h]~ 

40) = ro, qbh(0) = 46. h = 2:.... H, 

and 

qSh(t)ep~~uh(ch)d7+0 as r+ cc for h= l,...,H. 

This is a (2H + 1)-dimensional first order differential equation system with 
H initial conditions and H boundary constraints at co. In general 
additional constraints (transversality conditions) are required to determine 
a unique solution to (12). Below these conditions will take the form of con- 
vergence to a steady state. 

Note that d’(O) is unrestricted. In fact it is determined as part of the 
solution to (12) and the imminent transversality conditions. By relating the 
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optimal d’(O) to each given (#,..., 4,“) E S’(x,), the utility possibility fron- 
tier for the economy is determined. 

A steady state solution to (12) is (T’,..., CH, $I,..., 4”. Y) such that Ch > 0 
for all h and 

Uh(Th) = r, h = I,..., H, 

f &gig, l(i)), 
(13) 

I 

and 

$5” = uh( Ch )/Uh( Ch ), h = I,... H. 

The existence of a steady state may be proven with some additional Inada- 
type assumptions as in Lucas and Stokey [20, pp. 16@163]. If it exists, the 
steady state is unique since, for example, F is the unique solution to the 
equation C(~?)‘(+g(g;~(F))=0, where the function on the left is 
strictly increasing in F. Henceforth, existence of a steady state is assumed 
and its properties (i.e., optimality and local stability) investigated. 

Though steady states solve (12) it does not follow from what has been 
established to this point that they are efficient. To show this, (12) must be 
expanded to a set of conditions that are sufficient for optimality in (11). 

LEMMA 2. Let Ch, dh, h = l,..., H and r solve (12) and suppose that for 
each h, ch(t) + C”, @(t) + 6” and r(t) + F as t + m. Then (Cl,..., C”) is the 
unique optimal consumption prqfile in ( 11 ) and is an efficient allocation given 
the initiul stock x,,, g,(x,) = rO. 

As an immediate implication of the Lemma deduce that the stationary 
consumption paths in ( 13) define an efficient allocation if .Y” = .U = g, ‘(Y). 
Thus a steady state allocation consistent with (13) is Pareto optimal if it is 
feasible. 

Consider next the local stability of this allocation, i.e., do efficient 
allocations from initial stock x0 necessarily converge to the steady state 
allocation if Ix0 -Xl is sufficiently small? The answer is “yes” for those 
efficient allocations (Cl,..., C”) for which 1 Uh(Ch) - $“I is sufficiently small 
for h = 2,..., H, as established in Theorem 1. 

Local stability analysis proceeds in the usual fashion by linearization of 
(12) about the steady state. Thus consider the following linear system 

-.f, l.f‘ c 
Fl HrH 0 Hx I (14) 

-&yeIxH OlxH r 
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where: c and 4 are H-dimensional vectors with typical components ch and 

tih> respectively; C and $ are defined in the natural way; e, x ,, is an H- 
dimensional row vector consisting of l’s; 

f,= j 0 
" L :... 0 1. .r‘: ' 

and where all functions are evaluated at the steady state. (To derive (14) 
note that p,.(c, 4) = 0 and pJc, 4) = uu,./fc along a constant path, i.e., if 
4 = U(G,.). This, in turn, may be proven by differentiating (4)) Henceforth, 
denote the coefficient matrix in (14) by A. 

LEMMA 3. There exists I: > 0 such that if in (12) it is the case that 
Ir, - 71 < c and 10; - @I d E, h = 2,..., H, then there exist unique initial values 
c’(O),..., en(O) and d’(O) such that the trajectory defined by (12) converges to 
the .rteads state. 

It is shown in the Appendix that (if A has H (real) negative eigenvalues 
and (H + 1) positive (real) eigenvalues. Thus there is an H-dimensional 
linear stable manifold MF, passing through the steady state. It is also 
shown that (ii) the projection of MF, onto the subspace defined by the 
c#‘,..., 4” and r coordinates coincides with that subspace. Therefore ([16, 
pp. 242-2441 and [ 15, pp. 1 1 1-l 123) the nonlinear system has a stable 
manifold MF,,> which is tangent to MF, at the steady state. This proves 
Lemma 3. 

Lemmas 2 and 3 combine to prove the following central result of this 
section: 

THEOREM I. There exists c>O such that the following statements are 

valid: [f Ir,, - rl d E and I#$ - 4”I < E, h = 2,..., H, then there exists a unique 
ejjicient allocation (Cl,..., C”) jbr the initial stock x0 =g-; ‘(r,), which 
satisfies lJh( Ck) = &, h = 2 ,..., H. Moreover, the allocation converges to the 
stead.&> state, i.e., ch( t) + c’, U”(,C”) -+ ik, h = I,..., H, and r(t) -P r, where r 
is the corresponding (implicit) interest rate. 

Note that the theorem establishes not only stability, but also existence of 
efficient allocations. Of course the Theorem does not prove that all efficient 
allocations for q, near .U converge to the steady state. Stability is ensured 
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only if the associated lifetime utilities of agents 2 through H are near their 
steady state values. A global analysis would be required to determine if this 
qualification could be dropped. But the presence of the qualification is not 
surprising since for recursive (nonadditive) utility, the future utilities 4” 
constitute relevant state variables. 

Remark. Since A in (14) has only real eigenvalues, efficient paths are 
noncyclical near the steady state. Thus the presence of many agents alone, 
in a single good model, does not lead to the possibility of cycles. This is in 
contrast to single agent models with additive utility and many goods. (See 
C221.) 

Remark. The maintained assumptions in Theorem 1 do not restrict 
individual discount rates to be small. This is in contrast to the n-good 
single agent model where local stability is often proven under the 
assumption of a small discount rate ([26, Part II] and [21]). The stability 
propositions in the multiple good-multiple agent models in [S] and [30] 
also maintain small discount rates. 

Remark. Theorem 1 shows that the maintained assumptions on 
preferences and technology are sgfficient for local stability. Consider briefly 
whether they are necessary. Epstein and Hynes [9, pp. 621-6221 show by 
example that (weakly) diminishing marginal productivity is not necessary 
for stability, as long as impatience is sufficiently increasing. Lucas and 
Stokey [ZO, pp. 16881691 suggest that convergence to an interior 
stationary point should be possible if some consumers’ preferences fail to 
exhibit ut>O, provided the others’ had it in a strong enough way to be 
offsetting. But in fact, local stability fails if there exist two individuals for 
which u:! < 0. (See the Appendix.) Thus increasing marginal impatience for 
all but at most one consumer is necessar~~ for stability. 

Given that the convergence of efficient allocations has been established, 
it is natural to consider the speed of convergence and its determinants. 
Such an investigation concludes this section. 

Denote by Cr, ,..., 4, the H negative eigenvalues of A, repeated according 
to multiplicity. Say that convergent solutions of (14) converge at the rate 
- csp if tsp = max _ _ 1 <,cH t,, i.e., if tsp is the least negative eigenvalue. 

First, suppose there is only a single consumer. Then 

4 
=P=(,=$[J- r2 -4( f’/f’ )(vuf -g,,)]. <. cc 

Thus the convergence speed is greater the larger is U: or (-g,,). Both 
increasing impatience and diminishing marginal productivity contribute to 
stability. Also, the convergence speed depends inversely on -,ff(/f f. which 
was interpretated in the Iast section. The inverse relationship is 
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intuitive-the larger is (-f:.,./ff) the stronger is the preference for a 
smooth consumption profile and hence the smaller is the rate of adjustment 
towards the steady state. In the case of additive utility, -f J,,/f i, = -uJJu:, 
and the above inverse relationship is well known. 

Similar qualitative relationships between tsp and the underlying 
preference and technology parameters prevail in the case of many con- 
sumers. 

THEOREM 2. Let A he the coefficient matrix in (14) and suppose that A is 
perturbed by any number of changes of the following type: 

(i) uf is increased for some h, h = l,..., H; 

(ii) ( -g.,,,) is increased; 

(iii) -,f: /.f:,. is increased for some h, h = I,..., H. (Of course, it is the 
values of these functions at the given stead-v state which are to be increased.) 
Then the speed qf convergence for the new matrix is at least as farge as that 
qf A, i.e., 

-6SP 3 - SP 
5 3 

where tSp denotes the maximum negative eigenvalue of the new matrix. 

Remark. As a special case of the theorem compare an economy in 
which g,,(2) < 0 with one in which g,,(m) = 0. In the latter case the H 
negative eigenvalues of A are 

sh= ;{r-JGi7}, vh = t%;,f;/f ;,., h = I,..., H. (15) 

The speed of convergence in such an economy is --ax, <h < H sh, and the . . 
theorem implies that 

tsp < max sh, (16) 

where tsp is the largest negative eigenvalue of A when g.,, ~0. The right 
side of (16) reflects properties of preferences only (at least for given J), 
whereas tsp includes the effect of diminishing marginal productivity. Thus 
the inequality is consistent with the anticipated stabilizing influence of 

g V.Y < 0. 
The preference parameters sh will play an important role in the com- 

parative dynamics analysis of Section 5. To interpret them note that in a 
life cycle framework where the interest rate is constant and exogenous at 
the level F, -sh gives the speed at which consumer h optimally adjusts his 
consumption to its steady state value. Thus call -sh the partial equilibrium 
adjustment speed for person h. 
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Remark. In the single consumer case, the convergence speed is strictly 
monotonic in the noted preference and technology parameters. But only 
the weak inequality in Theorem 2 is valid in general. 

Changes in -g,, provide an intriguing demonstration of the need for a 
weak inequality in Theorem 2. In the Appendix it is proven that if there are 
at least two individuals, such that 

sh = sh = max .?, 
I<i<H 

(17) 

then 

(18) 

The significance of (18) is that the right side is independent of the value of 

s . Thus the speed of convergence of the economy is independent of the 
rite of declining marginal productivity. This is true if (and only if) there 
exist two agents that share the smallest partial equilibrium adjustment 
speed max, shGH ( -sh). 

Some rough intuition may be provided. For simplicity suppose that 
sh = s, V’h. Planning decisions may be divided conceptually into two stages: 

(i) the determination of aggregate consumption and capital 
accumulation profiles, and 

(ii) the distribution of the chosen total consumption across con- 
sumers at each instant. 

When all consumers share a common sh these planning functions can be 
separated; in particular, distributional concerns can be ignored in (i) 
because there exists a representative consumer for the economy. (This is 
demonstrated in the analysis of decentralized economies below.) Moreover, 
the magnitude of -g,, affects the adjustment speed of the activities in (i) 
but not those in (ii). Thus if the convergence of the distribution activities is 
slower, then it will determine the overall speed of adjustment -tsp, which 
will be independent of -g,,. Finally, note that the adjustment in (ii) is 
slower essentially because of (16). 

4. EQUILIBRIUM ALLOCATIONS 

Preferences and the technology satisfy the same assumptions as main- 
tained in the last section. Consumers and a representative firm interact in a 
continuum of spot markets for consumption, labour, capital and bonds.The 
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firm does not incur adjustment costs and simply maximizes profits at each 
instant. Consumer h solves 

J 
XI 

max U”(P) 
c’t E .A 

subject to .$ = e-J~rfyCh(f)- w(t)) dt, (19) 
0 

where ~6 is his initial endowment of capital, v(. ) is the real interest rate 
profile for bonds that he expects and w(. ) is the expected wage rate profile. 
(For simplicity it is maintained that consumers possess identical labour 
endowments and face identical wage rates.) The budget constraint indicates 
that borrowing and lending are allowed. Also, .Y: may be negative for some 
Ms. 

Given .Y: ,,,.., XL’ and x0 = CF .XY: > 0, a competitive equilibrium is 
(Cl,.... C”, r(. ), w(. )) such that 

C” solves (19) given r(. ), M’( .) and 

r(t)=g,(.u(t)) and wjt)=k[a(-r(t))-x(t)g&x(t 

.K;, h = l...., H, (20a) 

))I, vtaa (2Ob) 

where x(. ) > 0 solves 

H 

.~(t)=g(.u(t))-Cc”(t), t20 and x(0) =x(). (2Oc) 

Equations (20b) are profit maximization conditions. In conjunction with 
(20~) they guarantee that interest rate and wage rate expectations are 
fulfilled in an equilibrium. Given an equilibrium as above, refer to 
(Cl,..., C”) as an equilibrium allocation. 

A competitive equilibrium is stationary if the consumption, interest rate 
and wage rate profiles are stationary. The corresponding consumption 
protiles are referred to as a stationary equilibrium allocation. 

Of interest are both the existence and asymptotic properties of a com- 
petitive equilibrium. To pursue these questions, the utility maximization 
problems must be analysed more closely. First, note that (19) can be trans- 
formed into the following equivalent problem: 

s CC 
max vh(ch) epzh dt, subject to 

0 

jh = Uh( C’J), zh(0) = 0 

Ih = rxh + w - 2, d’(0) = .x; 
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and 

as 1-W. (21) 

Necessary first order conditions for this problem can be derived as in the 
analysis of [ 1 l] in the last section. Combine these conditions for all con- 
sumers to obtain the following necessary conditions for a competitive 
equilibrium: 

h = l,..., H 

p = -,I‘“( (.‘I) (j” ), h = l,..., H 

.t” = r.? + w - c”, h = l,..., H , x-“(O) = x:; and sh exp - Lj 1 rdr -+ 0, h = l,..., H, 
0 

2 X’Jf t ) > 0, vt, 

where 

r=g, 2.~” 
i > 

and 
I 

These conditions are also sz&cient for a competitive equilibrium if all the 
variables involved converge to their steady-state values. 

An immediate corollary is that a steady state solution of (22) (assumed 
to exist” and denoted by bars over the variables) defines a stationary 
equilibrium. A second corollary is a form of the second theorem of welfare 
economics. 

COROLLARY. Let (Cl,..., C”) he an efficient allocation, given x,, >O, 
which converges to a stationary efficient allocation as described in Section 3. 
Let r( ) and w!(. ) be the interest and wage profiles implicit in this allocation, 
and define .Y: = j: exp [ - lh rdz] . ( ch - w) dt, h = l,..., H. Then (Cl,..., C”, 
r( ). II’( ( ))) is a competitive equilibrium given x;,.... .x0”. 

This corollary and the analysis of efficient allocations in Section 3 provide 
some insight into the nature of competitive equilibria from the constructed 

a The equations defining the steady state values Cl,..., C”. V and 1?, are identical to those 
encountered in the analysis of efficient paths. Once these variables are determined, then 
.C” = (7” - C)/F. h = l,..., H, completes the specification of the steady state. 
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initial endowments (x6 ). But one is typically more interested in analysing 
equilibrium for given initial endowments as is done in the remainder of this 
section. 

If existence of an equilibrium for given initial endowments is granted, the 
problem of local stability of equilibrium paths could be approached as 
follows: First, note that equilibrium allocations are efficient, i.e., the first 
welfare theorem is valid, as in [7]. Second, apply the stability result of Sec- 
tion 3 for efficient allocations. But the local stability result Theorem I can 
be applied only if it is first shown that the map taking individual initial 
endowments into lifetime utilities along an equilibrium path is continuous 
in a neighborhood of steady-state endowments. Unfortunately, it is not 
evident that this map is continuous or even that the continuity constitutes 
a more elementary proposition than the desired local stability result. 
(Araujo and Scheinkman [ 1 ] show that there exists a close relationship 
between certain smoothness [continuity and differentiability] properties of 
optimal paths and turnpike properties.) Thus a direct approach to the 
analysis of local stability, based on the system (22), is adopted here. This 
approach has the advantage of providing an existence result for equilibrium 
paths, as well as a straightforward procedure for local comparative 
dynamics analysis. 

Therefore, consider the linearization of (22) around a steady state. As in 
the analysis of efficient paths, it is convenient to use the rate of interest as a 
state variable. Thus use r, .x1,... and .Y” as state variables, instead of 
.Y , , s, )...) XH, where r = g,(Cy .Y~). The following 3H-dimensional linear 
system is obtained: 

(2Hfl)OH- I) 
-------- (23) 

where A is the coefficient matrix from (14), other notation is also adopted 
from (14), 

x2 
2xz : 

iI 
. 1 

xH 
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?-Y is the corresponding steady state vector, D is the 

O-l o... 0 

0 -1 0 0 
(H-1)x Hmatrix 

and 

87 

where for each h, dh = .Yh -C,“= , .i?/H measures the deviation of individual 
/z’s capital stock from the average holdings in the steady state. 

Denote by B the coefficient matrix in (23). It’s eigenvalues are 
readily determined. (In computing the characteristic polynomial, note that 
because of the block partitioned structure of B, det(B- E.1 3,,x 3H) = 
det(A - 11 ,21,+1,x,2H+II).(J-~)H ‘.) In particular the eigenvalues of B 
are F and the eigenvalues of A. Thus B has H (real) negative eigenvalues 
and 2H positive eigenvalues. This provides precisely the correct number of 
negative eigenvalues for stability, since there are H predetermined variables 
in (26). In particular, there exists an H-dimensional linear stable manifold 
MF,* passing through the steady state. 

But another condition [26, p. 201 must be satisfied to prove stability by 
this line of argument. Here that condition takes the following form: 

REGULARITY. The projection of MF, onto the subspace of R’H defined 
by the r, .x2 ,..., .xH co-ordinates coincides with that subspace. 

B depends on the preference and technology parameters that enter into 
A and also on the distribution of steady state stocks as reflected by d. Thus 
the regularity condition is a joint requirement on all of these parameters. In 
a sense made precise in the Appendix, Regularity fails only for a “small and 
insignificant set of economies.” But since there exist economies where it 
does fail, they must be ruled out in the following theorem: 

THEOREM 3. If Regularity is satisfied, then there exists E > 0 such that 
the folIowing is true: If 1.~: - Xhl < E, h = l,..., H, then there exists a unique 
competitive equilibrium (C’,..., CH, r(. ), N’(’ )) which converges to the stead? 
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.rtate equilibrium, i.e., ch( t) + Ch, r(t) + f, w(t) + W and xh(t) + X” as t + co, 
for h = 1 ,..., H. 

Remark. Since the matrices A and B (see (23)) share the same negative 
eigenvalues, the results regarding the speed of convergence of efficient 
allocations translate directly to the present context of equilibrium 
allocations. 

5. SOME QUALITATIVE PREDICTIONS’ 

A model with more than one consumer is appealing on the basis of 
realism, and is necessary for addressing distributional issues. But if only 
aggregate variables are of interest, then perhaps not much is lost in predic- 
tive accuracy by using a single agent model. The preceding two sections 
have shown that local turnpike propositions are largely robust to our 
extension of the Cass-Koopmans model to many consumers. The only 
exceptions arise in the case of many consumers of a single type when the 
economy’s speed of convergence to the steady state may be independent of 
the concavity of the production function, and possibly in decentralized 
economies which violate Regularity. 

In this section the robustness of other well-known qualitative results of 
the Koopmans-Cass model are investigated. Of critical importance are the 
.si7 parameters, the partial equilibrium adjustment speeds defined in Section 
3, and more precisely whether or not they differ across consumers. Their 
significance in this section stems from their relationship with the income 
effect on the demand for consumption. More precisely, imagine consumer h 
in a life cycle framework facing an exogenous and constant interest rate E 
Let ~“(0) denote his consumption demand at t = 0 and let X; be his initial 
stock of wealth. Then, when the derivative is evaluated at the steady state 
.Y{; = S”, it is the case that 

ach(o)/cl.x; g r- sh. 

Thus the marginal propensity to consume (m.p.c.) is greater the larger is 
-s”, i.e., the larger the speed of adjustment. 

For simplicity, a model with two consumers is employed since that suf- 
fices to make the desired points. When m.p.c.‘s are identical for both 
individuals (s’ =s’), the predictions of the Koopmans-Cass model for 

LThe results in this section are based on the explicit solution of (23) and hence on the 
structure of the eigen vectors for B. The block structure of A is important here. Detailed 
proofs are available from the author. Regularity is maintained throughout. The restriction this 
imposes on the parameters of the economy is described in the Appendix. 



DYNAMIC EQUlLIBRIUM MODEL 89 

aggregate variables are confirmed. In fact a representative consumer exists. 
If m.p.c.‘s differ, then the dynamics of aggregate variables are affected also 
by distribution and predictions based on a single agent model can be mis- 
leading. The consequences of redistribution for prices and welfare are 
examined. In particular, the two-person model is used to demonstrate the 
possibility of the transfer paradox occurring in an infinite horizon model 
with the turnpike property. 

The qualitative dynamics of the economy near the steady state are 
faithfully reflected by the linear system (23).’ Therefore, for present pur- 
poses the latter can be taken to represent the dynamics of the economy. It 
is a &dimensional first order system with predetermined variables r and .Y’ 
having initial values r(, an $,, respectively. An explicit solution for (23) is 
possible and implies the following dynamics for the interest rate 

i(t)=rn,(r(t)-r)+m,(.u’(t)-so), (24) 

where the W,‘S are adjustment coefficients. In general, IPI? # 0 and the 
dynamics of the interest rate depend on both aggregate capital stock 
(.t-(f)=.~‘(f)+~~(t)=g~ ‘(r(t))) and on the distribution of that stock (as 
detined by .u’(t)). The latter distributional effect is the source of all the 
novel results to be described shortly. This effect vanishes (mz = 0) if and 
on/~, ifs' = s’. In that case, the dynamics of r (and aggregate consumption) 
are determined by the total capital stock only and are qualitatively iden- 
tical to the dynamics predicted by the single agent Koopmans-Cass model. 

Now consider in turn three predictions of the Koopmans-Cass model. 

PREDICTION I. The rate c?f interest is monotonic along an equilibrium 
path. 

In particular, in the KoopmansMZass model i(t) and r- r(t) have the 
same signs for all t. It is evident from (24) that this need not be the case in 
a two-consumer model as long as the distribution of capital affects the 
dynamics of r (mZ # 0). For example, if m, > 0 then i(0) > 0 even though 
r,, - ! > 0, as long as (.Y; - S’))/( r. - V) is sufficiently large. (Of course, 

‘To be precise, the variational derivatives of solutions to (22). evaluated along a steady 
state path, are equal to the corresponding variational derivatives of the linear system (23). 
Thus statements which follow are based on the values of derivatives such as 

where r( -: .v:. r,,) and ch( ‘; .x5. r,,), h = I. 2, solve the appropriate version of (22) given the 
initial values xi and r. for the state variables. 
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.x; - .U” and y0 - F can still be as small as necessary to make (23) a good 
approximation.) 

But note that even when s’ # .s’ the Koopmans-Cass prediction is valid 
asymptotically, in the sense that lim,, % i(t)/(r(f) - Y) exists and is 
negative. 

PREDICTION 2. The time rate of change qf aggregate consumption is 
positive (negative) (f aggregate capital stock is being accumulated 
(decumulatedi. 

This is generally false when distribution “matters” and the dynamics 
involve .Y’. In particular, for “almost all” economies, as specified by steady 
state preference and technology parameters, there exist initial conditions r,, 
and XT: (with Irg- Fl and jsi-X”I arbitrarily small) such that x ?(O) and 
i(0) have identical signs. 

But even when s’ # s2 Prediction 2 is valid asymptotically in the sense 
that lim,, r Cf C”(r)/i(t) exists and is negative. 

PREDICTION 3. Aggregate consumption is an increasing fitnction of the 
existing aggregate stock of tapital. 

Once again, this prediction is generally false in an economy with more 
than one consumer.’ One might be tempted to explain this difference in 
predictions by suggesting that the recursive specification (1) permits con- 
sumption to be an inferior good, while of course, for additive utility con- 
sumption is normal. But in fact consumption is a normal good also for (1) 
given Assumptions 1-6. (See [8, Theorem 51 for a proof in a corresponding 
discrete time model.) Moreover, the prediction is valid in a single agent 
economy with recursive utility. The proper explanation is the following: An 
increase in the capital endowment of one consumer will increase the 
aggregate demand for current consumption at current interest rates. To 
restore equilibrium interest rates for t E (0, cc) may increase, and this to 
such an extent that aggregate consumption will be lower in the new 
equilibrium. 

To conclude, consider some price and welfare effects of wealth 
redistribution within the two consumer model. (Of course these questions 
cannot be addressed in the Koopman-Cass model.) In particular, consider 
a transfer of wealth from consumer 1 to consumer 2. Since aggregate stock 
is kept fixed, the effects of such a transfer may be determined by partial dif- 

’ With many consumers there are many ways of increasing the total initial stock depending 
upon how the increase is distributed across consumers. In the particular experiment referred 
to here all of the increment is given to one consumer. 
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ferentiation of the dynamic system (23) with respect to xi, keeping r0 fixed. 
It can be shown that 

where ?~s”(!-s”), k= 1, 2 

u, h > 0 and independent of 8. (25) 

The sign of the derivative is ambiguous in general and depends on the signs 
of both Z’ -? (equivalently S’ - s2) and d’. For example, the interest rate 
is induced to rise along the initial portion of an equilibrium path if: 

(i) S’ <.s’, and 

(ii) il’ d 0. 

The intuition behind (i) is clear-redistribution towards the high m.p.c. 
individual will increase aggregate consumption demand, reduce future 
capital stock and hence increase future interest rates. But intuition for the 
significance of (ii) has not yet been found. 

A zero value for the square bracket in (25) corresponds to a violation of 
Regularity. As d” -+ U(Z’ ~- z’) l/h, a~(O)/Ss~ + f~. Thus derivatives of 
interest in comparative dynamics analysis are discontinuous in the 
economy’s parameters at a “singular” economy, or else fail to exist there. 

Finally, consider the welfare effects of a transfer of wealth from agent 1 
to agent 2. It can be shown that &j’(O)/?si and ;i@(O)/;l.ui are oppositely 
signed, and 

where r” s ~“(6 s’), h = 1, 2 and K > 0. Thus the so-called transfer 
paradox, &j2(0)/a$ ~0 and @‘(0)/?.~~>0, occurs in this model if, for 
example, c?i(O)/?xi < 0 and s’ <s’, i.e., if aggregate consumption and 
interest rates fall as a result of a transfer to the high m.p.c. individual.’ 

’ The transfer paradox was first observed by Leontief [ 191 in an exchange model. Galor 
and Polemarchakis [ 131 investigate its occurence in an overlapping generations model with 
production. In particular they consider the theoretical presumption, due to Samuelson [El. 
against the compatibility of the transfer paradox with Walrasian stability. The latter has not 
been determined in the present model with a continuum of goods (consumption at each I), but 
another form of stability. namely turnpike stability, does coexist with the transfer paradox in 
the present model. 
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APPENDIX 

Some proofs are omitted and in many cases, only brief outlines of proofs 
are presented. A complete set of detailed proofs is available from the author 
upon request. 

Proof qf Lemma -3. Let (Cl,..., C”) be an allocation, with associated 
capital profile x(. ), that is feasible in problem (11) and show that 
U’(C’ ) < U’(C’ ). By Assumption 6, it suffices to prove that 
l< (i~(C’).(c’(t)--‘(t))dtdO, which in turn is implied by 

(i) Ur(C”)= @(C”).K Ibrcrlrrr, t>O,h= l,..., H, 

(ii) jI; U:‘(C”). (c”(t) - c.“(t)) dt 3 0, h = 2,..., H, and 

(iii) 1,; LJ S:,““‘/‘.(C:‘C’~(t)--C:~(.~~(f))dt~O. 

Thus it remains only to prove (i))(iii). First, (i) is obtained by 
integrating (12). Feasibility in (11) requires U”(C”) = U”( Ch), V//z > 2. Thus 
(ii) is implied by Assumption 6. Finally, (iii) is implied by the capital 
accumulation equation in (1 1 ), the concavity of g and the boundedness of 
s(.). 1 

Theorem I is implied by Lemmas 2 and 3. Lemma 3, in turn is implied 
by the following two lemmas whose proofs are omitted. 

LEMMA A.1. Let M = A(!1 - A), n,here A is the coqfficieni matrix in 

( 14) and 1 is the identit)’ matrix of the appropriate dimension. Then. 

M= 
M, OH~,H+I) 

0 1Htl)rII M, 1 
fbr .some square matrices MI and M, 

(b) Ml = DP, where 

D = 

1 

-f :.xk _ _ -f i),,.,, 
0 ‘ ..I 
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(c) h4, can be diagonalized and ull its eigenvalues are real and 
negative. 

LEMMA A.2. (a) F is un eigenvalue of‘ A with multiplicity 1. 

(b) Let 17, ,..., 11,~ he the distinct eigenvalues qf M, and define t,+ and 
{, h)! 

Then each i,” and 5, is un eigenvalue qf A with common multiplicity equal 
to the multiplicity of v, as an eigenvalue of M, 

(c) ~f’eigenvalues we counted as man-v times as their multiplicity, then 
A bus (2H + 1 ) reul eigenvalues, of uhich H are negative und ( H + 1 ) are 
positive. 

(d ) Let V (A) he the linear subspace cV’ (2H + 1 )-dimensional 
Euclideun space R”!’ f ’ ’ spanned h~a the set qf all eigenvectors that corre- 
spond fo some <, Let 7~: R’“‘+ ” + R ” he the projection that maps u typical 
iwtor (~a, ,..., J‘~,, + , ) into (J’ ,,+? ,..., yrll+,). Then nV (A)= RH. 

Proof’of Theorem 2. Let V, ,..., II!, be the eigenvalues of M, (see Lemmas 
A.1 and A.2) and denote by 5 ,...., tf, the corresponding negative eigen- 
values of A. Since 

<,=f(+,,/-I, i=l,..., H, 

<, < 5, o 11, < v,. Thus it suffices to prove the inequality indicated in the 
statement of the theorem for the eigenvalues of M, rather than those of A. 

Denote by J%?, the matrix obtained from M, as a result of any of the per- 
turbations described in the theorem. Then A, - M, is negative 
semidefinite. That the largest eigenvalue of &?, cannot exceed max, <, < H v, , . 
now follows from the extremal characterization of eigenvalues 
[ 14, Theorem 10, p. 3191. 1 

In a remark following Theorem 2 it is claimed that an increase in (-g,.,) 
may leave the speed of convergence unaffected. To see this, suppose that 
agents /I and k have s” = s” = s. Then rows 11 and k of the matrix 
M, -.Y(Y-,s). l,,., are scalar multiples of one another. Thus the matrix is 
singular, v = s(Y- s) is an eigen value of M, , and s=t{i-,/m) is a 
negative eigenvalue of A. That implies that tsP= max{ 5,: ti is a negative 
eigenvalue of A ) 3 s. On the other hand, tsp < max, < ,< H .s’ by (16). Thus 
(‘p = .s if s = max I (, ( ,, s’, . . as required by ( 17), and ;h& regardless of the 
value of g,, 

These observations can be used to prove the remark following Theorem 
1 regarding nec’essav). conditions for local stability. Argue as follows: If 
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of < 0 and u,’ < 0, then s’ > 0 and s2 > 0. Suppose first that s’ = s’ = s > 0. 
Then, by the above argument, M, has the positive eigenvalue S(Y- s). 
Therefore, A has at most (H - 1) negative eigenvalues and local stability 
fails. More generally suppose that 0 < s’ ,< 3’. It is possible to perturb this 
economy by increasing appropriately both u,J and u: until, in the new 
economy, uf ,f,‘/f’,!, = uz,f'z/f', and so 0 6 s’ = s’ = s. (Boldfaced symbols 
indicate values for the new economy.) By above M, has a positive eigen- 
value. By the proof of Theorem 2, therefore, M, also has a positive eigen- 
value and local stability fails in the original economy. 

One suspects that Regularity (defined in Sect. 4) is generic in an 
appropriate sense. To give some precision to this statement proceed as 
follows: Represent an economy by the steady state properties captured in 
the vector (e, d) where: d from (23) specifies the distribution of the steady 
state capital stock and e E RZH+ ’ is a vector of the form 

The components of e represent steady state values of the indicated 
functions, and they are assumed to reflect the maintained assumptions on 
preferences and technologyPF > 0, g,, < 0, ut > 0 and .f F/f f, < 0. 6 denotes 
the set of economies. It inherits the induced Euclidean topology. 

THEOREM A.1. The set of economies which satisJk Regularity is an open 
dense subset of’ 8. In fact, V(e, d) E 8 for Mlhich the partial equilibrium 
adjustment speed.7 s’,..., s” are all distinct, and ‘d6 > 0, 32~ RH I, 
Ia- dl < 6, such that the economy (e, 2) satisfies Regularit?>. 

For the two-person model of Section 5. Regularity is satisfied if and only 
if either s1 =s2, or .Y’ fs’ and 

where rh-.sh(~-s”) and v,=ti(G<,), h, i= 1,2, and ti, i== 1,2, are the 
negative eigenvalues of A. A sufficient condition for Regularity is 

This is true for example if d2 > 0 (X” > 2’) and s’ < s7 (consumer 1 has a 
larger partial equilibrium adjustment speed and m.p.c. ). 
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