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Econometrica, Vol. 60, No. 2 (March, 1992), 353-394 

STOCHASTIC DIFFERENTIAL UTILITY 

BY DARRELL DUFFIE AND LARRY G. EPSTEIN 
APPENDIX C WITH COSTIS SKIADAS1 

This paper presents a stochastic differential formulation of recursive utility. Sufficient 
conditions are given for existence, uniqueness, time consistency, monotonicity, continuity, 
risk aversion, concavity, and other properties. In the setting of Brownian information, 
recursive and intertemporal expected utility functions are observationally distinguishable. 
However, one cannot distinguish between a number of non-expected-utility theories of 
one-shot choice under uncertainty after they are suitably integrated into an intertemporal 
framework. In a "smooth" Markov setting, the stochastic differential utility model 
produces a generalization of the Hamilton-Jacobi-Bellman characterization of optimality. 
A companion paper explores the implications for asset prices. 

KEYWORDS: Choice under uncertainty, stochastic control, recursive utility, Bellman 
equation. 

1. INTRODUCTION 

THIS PAPER DESCRIBES an extension of the standard additive utility specification 
in which the utility at time t for a consumption process c is defined by 

(1) Vt E [ e-p6(S-t)u(cs) ds] t >O~ 

where Et denotes expectation given information available at time t. The more 
general utility functions, called recursive, exhibit intertemporal consistency and 
admit Bellman's characterization of optimality. Much of the tractability of (1) is 
therefore preserved. For example, a companion paper shows that the recursive 
utility specification implies a model of asset pricing that incorporates Breeden's 
(1979) consumption-based capital asset pricing model (CCAPM) as a special 
case. 

A special example of the utility model presented in this paper is obtained by 
making the assumption that information at time t is that generated by Brownian 
motion. In this case, after a simplifying change of variables, the utility process V 
for a consumption process c is determined by an "aggregator',' function f and is 
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shown to be the unique solution V to 

(1') Vt = Et[ f(cs, Vs) ds], t> O, 
sZt 

which reduces to the additive model (1) in the case f(c, v) = u(c) - 3uv. 
A discrete-time analogue of the utility model studied in this paper appears in 

Epstein and Zin (1989), which builds upon Kreps and Porteus (1978). The 
former paper pointed out the following advantage of recursive utility, which is 
present also in continuous time: It is well-known that in the standard specifica- 
tion (1), risk aversion and intertemporal substitutability are both reflected in the 
curvature of u(*). In contrast, these two aspects of preferences can be disentan- 
gled within the more general class of recursive utility functions (in the sense of 
Proposition 6 of this paper). The possibility of such a separation is useful in 
clarifying the determinants of asset prices (Epstein (1988) gives a discrete-time 
demonstration) and presumably for a number of other issues in capital theory 
and finance. In a continuous-time setting, the implications of recursive utility for 
asset pricing are simpler than is the case in discrete-time, as is amply demon- 
strated in Duffie and Epstein (1991). 

A continuous-time setting also allows one to more clearly connect the manner 
in which uncertainty is resolved over time with the ability to deduce axiomatic 
differences in preferences by observing actions. In order to be more precise, it is 
necessary to elaborate upon the structure of recursive utility functions. One 
component of the specification of a recursive utility function is a certainty 
equivalent functional that is defined on (a subset of) probability distributions on 
the real line. This functional represents preferences over a restricted set of 
consumption processes (see Section 4). The certainty equivalent could be 
specified according to any of a number of generalizations of expected utility 
theory that have been proposed recently in response to the experimental 
evidence against the expected utility model. The new theories all deal with static 
or one-shot choice environments and specify utility functionals for probability 
distributions on the real line. They may be integrated into our temporal 
framework via the specification of the certainty equivalent. One might wonder, 
however, whether such alternative specifications for the certainty equivalent 
have differing implications for behavior in a continuous-time setting. Indeed, we 
show that in settings of continuous information resolution (a special case being 
the information generated by Brownian motion), it is impossible to distinguish, 
by observing actions alone, whether the underlying preference order is deter- 
mined by an expected utility certainty equivalent or by one conforming to 
Machina's (1982) notion of smooth local expected utility. In particular, these 
two preference models cannot be empirically distinguished using security price 
data within the standard diffusion models of asset prices. Similarly, we show 
that suitably "smooth" functionals of the Chew (1983, 1989) and Dekel (1986) 
axiomatic class are empirically indistinguishable, given continuous information 
resolution, from expected-utility-based certainty equivalents. It is essential to 
realize that the latter specification does not imply an intertemporal expected 
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utility preference ordering. In particular, neither (1) nor (3) below is implied. 
Rather, one obtains a continuous-time version of a preference structure studied 
by Kreps and Porteus (1978) in discrete-time, where an expected utility ordering 
applies to a restricted domain of probability distributions. 

As a further incentive for exploring a continuous-time model for recursive 
preferences, we point to the literature on continuous-time general equilibrium 
in security markets. In Harrison and Kreps (1979), for example, an equivalence 
is shown between the existence of an optimal strategy and the existence of an 
equivalent martingale measure for security prices (under technical restrictions). 
In Duffie and Huang (1985), for another example, a continuous-time general 
equilibrium is obtained from an abstract static infinite-dimensional Arrow- 
Debreu style equilibrium, whose consumption allocation is dynamically imple- 
mented with appropriate price processes and security strategies. The apparent 
generality with regard to preference restrictions allowed in these two examples, 
as in much of this literature, is somewhat illusory. The optimality criterion for 
agents' choices is applied at the initial date of the economy, but not at 
intermediate dates, given the newly available information. With the additively- 
separable criterion (1), of course, any strategy that is initially optimal is always 
optimal. This follows from the fact that additively-separable utility functions 
induce time-consistent intertemporal preferences. Time-consistent preferences 
are defined by the property that, for any two consumption processes c and c 
and any stopping time i, if c and j are identical up to time i, and if the 
continuation of c is preferred to the continuation of j at time i, then c is 
preferred to j at time zero. The recursive preferences examined in this paper 
are shown to be time-consistent, and thus extend the range of application of 
continuous-time general equilibrium models. See Johnson and Donaldson (1985) 
for the link between consistency and the lack of market re-opening typically 
assumed in the Arrow-Debreu model of contingent commodity markets. They 
also clarify that consistency is an issue only if one requires, as we do implicitly, 
that preferences do not depend on unrealized alternatives. 

In order to elucidate and further motivate the nature of recursive utility, we 
conclude this introduction by considering choice among three hypothetical 
consumption programs, which are informally defined as follows. Consumption 
during the interval [0, 1) is fixed at the same level for all three programs. In the 
first program, cA, a fair coin is tossed at t = 1. If the outcome is a head, then 
consumption is constant at the level 1 for the entire remaining horizon [1, T]. 
Otherwise, it is constant at L > 1. For consumption program, cB, T - 1 indepen- 
dent fair coins are flipped, one for each integer time t E [1, T), and all coin 
tosses are revealed at time 1. If the tth toss yields a head (tail) then consump- 
tion over the interval [t, t + 1) is l(L). Finally, cC differs from CB only in that 
the tth coin toss is not revealed until time t. Given the standard utility 
specification (1), cA cB cc, while neither indifference is imposed by recur- 
sive utility. Moreover, introspection suggests that neither indifference is com- 
pelling. For example, in comparing cA and CB, the former involves perfect 
correlation between consumption at all times; that is, c A is high if and only if 
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cA is high for all t and T. In contrast, consumption levels in nonoverlapping 
intervals are serially independent in cB. Diversification motives suggest that cB 
may be strictly preferred to cA, although the psychic cost of serially fluctuating 
consumption would work in the opposite direction. The essential difference 
between cB and cC is that, in the former, all uncertainty is resolved at t = 1, 
while in CC uncertainty is resolved gradually on [1, T]. Indifference between cB 
and cC is thus not compelling and arguments, based on the psychic costs and 
benefits of early resolution, can be proposed for either preference direction. 
(See Kreps and Porteus (1978) and Chew and Epstein (1990) for details in a 
discrete-time setting. We have nothing to add in this paper with regard to 
attitudes towards the timing of the resolution of uncertainty.) 

We proceed as follows: Section 2 provides a definition of recursive utility in 
continuous time. A "morally equivalent" but mathematically more workable 
definition is presented in Section 3, along with a proof of existence. Section 4 
contains some examples and observations regarding the potential usefulness for 
continuous-time modeling of generalizations of expected utility that have been 
proposed recently (for example, Machina (1982)). Sufficient conditions for 
several desirable properties of recursive utility are established in Section 5. In 
Section 6, an extension of the usual Hamilton-Jacobi-Bellman equation is shown 
to characterize optimality. Section 7 includes some extensions. Readers inter- 
ested mainly in the asset pricing implications of stochastic differential utility 
could begin directly with Duffie and Epstein (1991). 

2. RECURSIVE UTILITY IN CONTINUOUS TIME 

This section defines recursive utility in a continuous-time stochastic setting 
that will be the basis for the remainder of the paper. Figure 1 relates our work 
to existing literature on recursive utility. Consider first a discrete-time frame- 
work, for which the seminal paper is Koopmans (1960). In a deterministic 
setting, Koopmans studied utility functions that satisfy the recursive relation (2), 

Setting Discrete-Time Continuous-Time 

Certainty V1= W(c,,V +1) (2) dVt= -f(ct,Vt)dt (5) 
W({C1, C2, . * *}) = VO WU({ct: t > 0) = Vo 
Koopmans (1960) Epstein (1987) 
Lucas and Stokey (1984) 

Uncertainty U({ct) = E[E,ou(ct)e- S=?p(cs)] (3) U({ct}) = E(foxu(ct)ef0 Pc(s)Ids dt (6) 
state-separable 

Epstein (1983) Uzawa (1968) 

Uncertainty V, = W[c,, m(V1+1)] (4) dVt = [-f(ct, Vt) -A(Vt)or2(t)/2]dt 
+ov(t) dB, (7) 

state-separable U({cd) = V0 U({c,) = V0 
or nonseparable Epstein and Zin (1989) This paper 

FIGURE 1.-Recursive utility. 
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where ct denotes consumption in period t and Vt = U(ct, + 1 The func- 
tion W is called an aggregator by Lucas and Stokey (1984), since it combines ct 
and the utility index Vt+1 of future consumption in order to compute the 
current utility Vt. 

If Koopmans' axioms are extended in a natural fashion to a model with 
uncertainty, and if expected utility is assumed, then one obtains the functional 
form (3). (See Epstein (1983).) The von Neumann-Morgenstern index in (3) is 
closely related to the functional form first proposed by Uzawa (1968) in a 
continuous-time deterministic setting. A limitation of (3), and the time-additive 
special case (in which j3Q) is a constant), is that risk aversion and intertemporal 
substitution are indistinguishable within this class. (See Epstein and Zin (1989) 
and Chew and Epstein (1990, Section 4).) 

In order to overcome this inflexibility of the (recursive) intertemporal ex- 
pected utility model, Epstein and Zin (1989) propose the general recursive 
structure (4), with the following interpretation: From the perspective of time t, 
the intertemporal utility Vt+1 for period t + 1 and beyond is a random variable. 
Thus the agent first computes the certainty equivalent m( -Vt+ I Yt) of the 
conditional distribution - Vt+i Yt of Vt+ 1 given information Ft at time t, and 
then combines the latter with ct via the aggregator W. This functional structure 
has two components: the aggregator W, which encodes the intertemporal 
substitutability of consumption; and the certainty equivalent function m, which 
encodes risk aversion in the sense described in Epstein and Zin (1989) and also 
below. In a finite-horizon setting, Kreps and Porteus (1978) study (4) under the 
assumption that m is an expected-utility-based certainty equivalent such as (8) 
below. 

Here, we develop the continuous-time formulation of Epstein and Zin's class 
of recursive utility. A parallel exercise for the deterministic case was undertaken 
in Epstein (1987), in which the continuous-time version of Koopmans' class of 
preferences is formulated. The key observation in the latter paper is that, for a 
given program, (2) could be viewed as a difference equation in the utility levels 
Vt. This observation led naturally to the differential equation (5). Similar 
intuition applies under uncertainty if we begin with (4). At time t, Vt is known 
with certainty and thus m( VtI t) = Vt. Relation (4) therefore defines a 
difference equation in the certainty equivalent utility. The continuous-time 
analogue, we argue in this paper, is the stochastic differential representation (7), 
at least in the case of information generated by Brownian motion. 

In the remainder of this section we give a definition of continuous-time 
recursive utility that, in the following section, will be used to justify the 
stochastic differential expression (7) for utility. We also introduce some notation 
and terminology to be used later on. 

The primitives for uncertainty in our model are: 
. a time set S7= [0, T], for some finite T, 
. a probability space (UI, , P), and 
. a filtration F = {,F: t E $} of sub-cr-algebras of F satisfying the usual 

conditions (right-continuous, increasing, and augmented). 
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For notational simplicity alone, we suppose throughout that 0 is trivial, in 
that it contains only events for probability zero or 1. For technical definitions, 
we refer the reader throughout to Protter (1990) or Chung and Williams (1990). 
An Appendix co-authored with Costis Skiadas treats the infinite time horizon 
case. 

Consumption processes are valued in a closed convex subset e of some 
separable Banach lattice, which, for concreteness, the reader can think of as R', 
for 1 commodities. We use llcll to denote the norm of a consumption choice 
c E X?. The space D of consumption processes is then taken to be the optional2 
e-valued square-integrable processes. (As usual, we equate any two consump- 
tion processes that are equal almost everywhere.) The optional restriction 
implies basically that the consumption rate ct can depend only on the informa- 
tion available at time t. The square-integrability restriction means that any c in 
D has finite norm ICIID = [E(f jTllCtl2 dt )]1/2. 

The utility process for a given consumption process c E D is defined by a 
semimartingale3 V; for any time t, the random variable Vt is treated as the 
utility for the "continuation" {cs: s > t} given $t, as with (1). Of course, V0 is 
the utility of the entire process c. 

For any interval X of the real line, let 3(X) denote the space of probability 
measures on X whose mean exists. By a certainty equivalent m, we mean a 
function m: R(X) -* DR that assigns to a probability measure p (representing 
the distribution of utility) its certainty equivalent m(p), satisfying: 

ASSUMPTION 1: (i) m(GS) = x, x e X, where Ax denotes the Dirac measure. (ii) 
(Monotonicity) m(p') > m(p) if p' exhibits first order stochastic dominance4 
over p. 

One example of such a function-others are provided below-is the ex- 
pected-utility based specification 

(8) m( V) = h-1(E[h(V)]), 

where V is a real-valued integrable random variable, V denotes its distribu- 
tion, and the von Neumann-Morgenstern index h is continuous, strictly increas- 
ing, and satisfies a growth condition.5 

Risk aversion for m does not necessarily correspond to risk aversion of 
intertemporal utility, and thus the former will not generally be assumed for a 
certainty equivalent. Occasionally, however, we will adopt the following assump- 
tion. 

2A e-valued process c is optional if c: n x 5-S e is measurable with respect to the c--algebra 
on n x Y generated by the space of right-continuous with left limits (cadlag) F-adapted processes, 
and the Borel c--algebra on e. 

3A semimartingale is an adapted process that can be written in the form H + Y, with Y a local 
martingale and H a finite variation process. 

4A distribution p' exhibits first order stochastic dominance over a distribution p, by definition, if 
the cumulative distribution function of p' is dominated by the cumulative distribution function of p. 

5That is, for some constant k, h(x) < k(t + Ix 1), implying integrability of h(V). 
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ASSUMPTION 2: For all p E 9(X), m(p) < mG5p), where fx = fx dp(x) is the 
mean of p. 

For purposes of motivating our formulation of recursive utility in continuous- 
time, we will suppose that V is the utility process for a consumption process c. 
In a discrete-time setting, with sufficient regularity on W, we can apply the 
implicit function theorem to (4) in order to obtain a representation of the form: 

(9) m(- Vt+1 I gt ) = G(ct, Vt), 

for some G: ex R -> R. Subtracting m(- Vt I E;) = m(= VM) = VK from each side 
of (9) leaves 

(10) m ( Vt+1 I1t)- m ( t 6t G(ct, Vt ) - Vt. 

Of course, the definition of G depends on the length of a time interval, so we 
could think in terms of discrete-time approximations to continuous time by 
writing G(c, v) -9(c, v, At), where At is the length of a time interval, and then 
re-expressing (10) as 

(11) m( - Vt +d At I -t m( Vtt I =grt !O(Ct, Vt , A t) - 
S(ct, Vt, 0) . 

Assuming differentiability with respect to At, we have 

d 
(12) - m(Vt +s' ItI )Is=O= -(ctX,Vt) a.s., 

where f(c, v) =d - (c, v, 0)/dA t. 
With this background, it is convenient to take as primitives for our continu- 

ous-time model of utility a certainty equivalent m and a measurable function 
f: ex R -+ R. The pair (f, m) is called an aggregator. 

Based on the informal derivation of (12), we have a definition: The recursive 
utility process for a consumption process c under an aggregator (f, m) (if it 
exists) is the unique integrable semimartingale V satisfying VT= 0 and, for all 
t < T, relation (12). 

This definition has some intuitive appeal. Since m satisfies Assumption 1(i), 
(12) reduces to (5) when c is deterministic. Thus, f determines the degree of 
intertemporal substitution of consumption and other aspects of "certainty 
preferences." Of course, just as with the additive special case, f also generates 
collateral risk attitudes under uncertainty. Given f, however, risk attitudes are 
finally fixed by the certainty equivalent m, which has no effect on intertemporal 
substitution. Some degree of separation is therefore achieved. 

Our next step is to derive an essentially equivalent definition of the utility 
process based on smoothness assumptions on the certainty equivalent m, show 
conditions for existence, and finally derive a number of properties of this utility 
function. The reverse direction of providing an axiomatic derivation of (12) is 
not pursued here. Our analysis therefore parallels Lucas and Stokey (1984), 
which begins with W and (2) and examines the implied utility functions, rather 
than Koopmans (1960), which axiomatizes (2). In the discrete-time case with 
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uncertainty, Epstein and Zin (1989) begin with the functional structure (4), 
while Chew and Epstein (1990) provide an axiomatic basis. A different ax- 
iomatic approach is given by Skiadas (1991). 

3. A STOCHASTIC DIFFERENTIAL MODEL OF RECURSIVE UTILITY 

In order to derive a stochastic differential model of utility based in spirit on 
the recursive definition (12), we adopt smoothness assumptions on the certainty 
equivalent function m. Our objective is to reach via informal arguments the 
model of utility defined by (18) and subsequently by (25). 

3.1. Smoothness Assumptions 

Consider the following smoothness hypothesis which is related to Machina's 
(1982) local expected utility hypothesis described in Example 4 of Section 4. The 
Gateaux derivative of a certainty equivalent m at a measure v in the direction 
of a measure p, when it exists, is defined by 

(13) Vm(v;p) = lim m(v + ap) - 
m(v) 

alO a 

(We take p of the form v - ,tu, where ,-t is a probability measure.) We define a 
certainty equivalent m to be smooth at certainty if, for each x in R, there is 
some M(-, x): 1R -+ R with two continuous derivatives such that, for any proba- 
bility measure p with compact support, Vm(8,; p) exists and 

(14) Vm(8,; p) = M(y, x) dp(y). 

We call M: R X R 9- - R the local gradient representation (LGR) of m. Since, for 
any x and y in R, we have 7m(8,; SY) = y, it is always the case that the first 
partial derivative of M(y, x) with respect to y at y = x is M1(x, x) = 1. 

For the expected-utility certainty equivalent m in (8), for instance, the LGR 
is defined by 

h(v) 
M(v,x) = h'(x) 

In order to see this, write (8) in the form h[m( V)] = E[h(V)] and note that 
the LGR of the right side is h(v) and that of the left is h'(x)M(v, x), by a 
suitable form of the chain rule. The required conditions for M are satisfied if h 
satisfies the standard assumptions of twice continuous differentiability with a 
positive first derivative. To see what is excluded by these assumptions, suppose 
that h has distinct right and left derivatives at some x*. Fix a random variable e 
having zero mean and positive (finite) variance, and for each scale factor t > 0, 
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define the risk premium 7r(t) by 

h[x* - r(t)] = E[h(x* + ts)]. 

Then 7r'(O) # 0, implying that for small gambles about x* the risk premium is 
proportional to the standard deviation of the gamble. Segal and Spivak (1990) 
refer to this property (for all, not only expected, utility functions) as 'first-order' 
local risk aversion (or risk loving if 7r' < 0), in order to contrast it with the more 
customary 'second-order' local risk aversion, for which the premium is pro- 
portional to the variance. We do not have a characterization of certainty 
equivalents that are smooth at certainty, but can refer to Allen (1987) for a 
characterization of smooth certainty equivalents. The examples in Section 4, 
however, show that this assumption is not overly restrictive and they suggest the 
conjecture that the essential property of preferences that is excluded by smooth- 
ness at certainty is "first-order" risk aversion. Section 7.3 sketches an example 
characterizing utility without a smooth certainty equivalent in terms of "local 
time" risk aversion. See Epstein and Zin (1990) and (1991) for some implica- 
tions of "first-order" risk aversion for asset pricing. 

For later reference it is convenient to note the following implication of 
Assumption 2, risk aversion of a certainty equivalent m with LGR M. Denoting 
M1(v, x) = a2M(v, x)/dv2, we have 

(15) M11(X, x) < O, x E- 0;k 

based on the same (Jensen Inequality) reasoning used by Machina (1982). 

3.2. The Brownian Case 

For now, we will restrict ourselves to the standard filtration F = {Y[} of a 
standard Brownian motion B in Rfd, for some dimension d E N. That is, F is 
the oa-algebra generated by the null sets of F and {Bs: 0 < s < t}. Based on this 
assumption of "Brownian information," we can deduce the form of the utility 
process V corresponding to a given consumption process c in D. At the end of 
the paper, we make some remarks concerning extensions to more general 
information. 

With Brownian information given an aggregator (f, m) with certainty equiva- 
lent m that is smooth at certainty, it is natural to conjecture that a utility 
process V is an Ito process. That is, we conjecture that V has a stochastic 
differential representation of the form 

dVt = ,Ut dt +otdBt, 

where ,u and a- are progressively measurable processes valued in lR and Rd, 

-respectively. At any time t, under strong technical conditions (that we avoid 
here since we have no need to rigorously justify the following calculation) we 



362 DARRELL DUFFIE AND LARRY G. EPSTEIN 

would have6 

d Mf Vt+Sl -9t )IS=? ds 

ds~~~ 
= 7m(8v(t); d ( tK+I )+S ) 

=im((t) + a(dlds)(m Vt+sl[t )Is=O) - M(S/)- 
acO a 

r lm m(8V() + a lims[ +sIt ) - 8 VM] /S) - m(8V(t)) 

alO a 

= lim lim m(Sv(t) +a[(-Vt+slqt)- 
5 

(0] /S) - M(s(t)) 

( 16) a O s aO a 

= lim Im (Sv(t) + a[(- Vt+slFt ) 5V(t)] Is) - 
m(6Zt) 

= lim-[(+, li) -MVt V)) 

s= 0almO a M(V t)y Ml 7Sv T 

1 
= lrn -E M S Vt+ ) - M( Vt (JJ) S _]ta 

s IO S 

1 (t +s[ UT /1 0M (VV]7W 

= lim -E1j Ml(VT Ivt) AT +-o7T 7 oMl(T t d 
t, 

1 
=A,LM1(Jt,Vt) +-MlV,V)ta o almost everywhere 

1 

= it + - A( Vt ) at * at almost everywhere, 

where A(x) M1l(x, x). From (12), this would imply that, almost everywhere 
on x[0,T], 

(17) V =-f(c,) -at. 

Since Jt - at is the derivative of the quadratic variation [V] of V, we henceforth 
write, d[VIt/dt = at * at. We will also refer to A as the variance multiplier of m. 
Since square-integrability of V implies that, for any t, E(VTIFt) = Vt + 

E(ftT -_ ds[) and since VT = 0, the above rough calculations suggest that 

6 The first equality is the chain rule for differentiation. (See, for example, Luenberger (1969) for 
sufficient technical conditions, essentially Frechet differentiability throughout.) The second equality 
is the definition of Vm. The third equality is the definition of the derivative of the distribution of 
Vt+s given YF with respect to s at s = 0. The fourth equality calls for continuity of m. The fifth 
equality, interchanging limits, calls for uniform convergence assumptions. The sixth equality uses the 
definition of smoothness of m at certainty, plus the linearity of v -* Vm(8v(t); v), which allows 1/s 
to reappear outside the expectation. The seventh equality is Ito's Lemma plus the fact that 
fM,(V7,,Vt)o-. dB, is a martingale under mild technical restrictions. The eighth equality follows 
(almost everywhere) by Fubini's Theorem for conditional expectation, as in Ethier and Kurtz (1986). 
The last equality uses M1(x, x) = 1. 
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we might characterize V as a solution to the integral equation 

(1) Vt =E [ sXt)+2A s s)ds |t ],t E- [0, T]. 

Technical conditions under which (18) and (12) could easily be proven 
equivalent would be much stronger and clumsier than those that we will 
ultimately use to prove existence and uniqueness of a solution V to (18). For our 
purposes, the following "morally equivalent" definition of the utility process is 
therefore proposed. 

DEFINITION: Let (f, m) be an aggregator such that m is smooth at certainty 
and has a measurable variance multiplier A. Then V is the stochastic differential 
utility (SDU) process for ce D under (f, m) if V is the unique square-integrable 
semimartingale satisfying (18). 

If there is an SDU process Vc for each c E D, then the function U: D -R 

defined by U(c) = Vo is the recursive utility function generated by (f, m). 
(Strictly speaking, Vo is a random variable taking a particular value, denoted 
U(c), with probability one.) The existence of a recursive utility function under 
conditions on (f, m) is established at the end of this section. The infinite-hori- 
zon case is treated in an appendix co-authored with Costis Skiadas. 

3.3. Ordinally Equivalent Utility Processes 

Only the ordinal properties of a utility function are of interest, and there may 
exist many different aggregators generating ordinally equivalent utility functions. 
In order to explore this, we define a change of variables as any p: R > R that is 
strictly increasing and continuous with 'p(0) = 0. Two utility functions U and U 
are ordinally equivalent if there is a change of variables 'p such that U = 'p o U. 
Two aggregators (f, m) and (f, mn) are then defined to be ordinally equivalent if 
they generate ordinally equivalent recursive utility functions. 

Consider two aggregators (f, m) and (f, m) generating utility functions, with 
m and mn smooth at certainty. We claim that (f, m) and (f, mn) are ordinally 
equivalent if there is a smooth (C2) change of variables 'p with 

(21) f (c, z ) = ,'( z I ( c, z) E @ 8 

m(- -) = f[c, 'p( )]) 

In order to show this, we use the fact that 'p[m( -)] =[-p(*)] and the 
properties of the respective LGR's m and mn to get, for (x, y) E R 

(22) 'p'(x)M(y, x) =A[Up(y), p(x)], 

A(x) = 'p'(x)A [p(x)] + 
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where A and A are the respective variance multipliers. For any consumption 
process c, let V and V denote the utility processes for c under (f, m) and (f, m) 
respectively. By Ito's Lemma, we then know that VK = p(V) since 

_ - ~ ~~~~1 d 
dV, = ft(Vt) -f (c, Vt) - -A(Vt) dt [ V]t 

2 dt 

+ -j"(VJ)1[V]t dt+ p'(Vt)otdBt 

= [(Ct, Vt) -A(Vt) dt [V]t] dt + St dBt, 

where cr V = '(/)Ot. Relying on the fact that both V and V are square-integrable 
by definition, this shows that U = p o U, so indeed (f, m) and (f, mF) are 
ordinally equivalent. 

We extend the ordinal equivalence relation on aggregators by defining (f, m) 
and (f, mn) to be ordinally equivalent if they generate ordinally equivalent utility 
functions, or (in case the existence of utility functions is unresolved) if there is a 
C2 change of variables p satisfying (21). In what follows, we will identify 
ordinally equivalent aggregators. 

At this point, it is evident why the risk-aversion Assumption 2 was not 
maintained for certainty equivalents-it is not preserved by the ordinal equiva- 
lence relation and hence is not a statement about the underlying intertemporal 
preference ordering. However, as mentioned near the end of Section 2, an 
assumption such as risk aversion for m is meaningful for intertemporal prefer- 
ences if f is fixed. See, for example, Propositions 6 and 7 below and the 
discussion preceding the latter. 

Even for fixed f, distinct certainty equivalents m and mn can generate 
ordinally equivalent aggregators (f,m) and (f,mn). Given our specialization 
here to Brownian information, the drift function ,-t depends on m only via its 
variance multiplier A. Thjis, we are justified in referring to (f, m) and (f, mth), or 
m and m as being observationally equivalent with Brownian information if their 
respective variance multipliers A and A are identical functions. In that case, an 
individual's choices between consumption processes would be identical given m 
or m?i. Some comments on the implications for "observability" with more general 
information structures are offered in Section 4. 

3.4. Normalization of Stochastic Differential Utility 

In this subsection we pursue conditions under which, for each consumption 
process c, there is a unique solution V to the defining equation (18). 

In order to reduce the existence issue to a standard fixed point problem, our 
first step is to design a change of variables 'p that eliminates the variance 
multiplier A from the formulation. That is, we consider the possibility of 
choosing a 'p so that the new variance multiplier A defined by (22) is zero. It is 
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enough that (p satisfies the differential equation 

(23) (p"(x) =A(x)(p'(x). 

Solutions to (23) are defined by 

(24) p(v) =C2+C, exp [ A(x) dx] du, 

where v0 is arbitrary and C2 and Cl are constants, with Cl > 0, chosen so that 
qp(0) = 0. This change of variables was developed in Duffie and Lions (1990) for 
the purpose of demonstrating PDE solutions of stochastic differential utility in a 
Markov setting as a function of the underlying Markov state. (The "upper" 
limits of the integrals defining (p may in fact be less than v0, in which case the 
direction of integration is reversed. If A is continuous, for example, these 
integrals exist.) If V = (p o V is square-integrable, it follows that V satisfies (18) if 
and only if 

(25) Vt =E[f T(cS,J)dst?], te [O,T]. 

By the above construction, any aggregator (f, m) with a continuous variance 
multiplier has an ordinally equivalent aggregator (f, mn) whose variance multi- 
plier is zero. For our purposes, this has the same effect as having mi(- V) = 

E(V). We refer to (f, mn), or f itself, as the normalized version of (f, m). We 
will henceforth place assumptions directly on a normalized aggregator, that is, a 
measurable function f: ex iR -+ R. 

We remind the reader once again that the reduction to a normalized 
aggregator (f, m?i) does not mean that intertemporal utility is risk-neutral or that 
we have lost the ability to disentangle substitution from risk aversion. The point 
is simply that the modeler can select which of the many ordinally equivalent 
aggregators to use depending on the question at hand. The normalized aggrega- 
tor is advantageous for proof of existence of stochastic differential utility, while 
the un-normalized aggregator (f, m) is convenient for achieving the desired 
disentangling by changing m with f fixed, as described in Section 5.6. Such a 
change in risk aversion is much less readily described in terms of a normalized 
aggregator. (For instance, consider the effect of a change in a on the normal- 
ized and un-normalized aggregators in Example 3 below.) 

3.5. Existence of Stochastic Differential Utility 

In summary, for the case of Brownian information, the utility process can be 
viewed without essential loss of generality as the solution V to an integral 
equation of the form (25). Once we have posed the problem in this normalized 
form, we do not actually need to assume Brownian information in order to 
prove existence and uniqueness of the utility process. Of course, for non- 
Brownian information, (25) characterizes recursive utility for only a sub-class of 
aggregators. 
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Our main result of this section is the following set of sufficient conditions on a 
normalized aggregator f for the existence of recursive utility: 

* f is Lipschitz in utility, in the sense that there exists some constant k such 
that, for all cEE e and all (v,w) E , we have If(c, v) -f(c,w)I kIv - wi. 

* f satisfies a growth condition in consumption, in the sense that there are 
constants k1 and k2 such that, for all c E e, we have If(c, 0)I < k1 + k211cII. 

The conditions allow, for example, f(c, v) = ca - 3v (for constants a E (0, 1) 
and ,3), which generates the additively separable specification (1) for u(c) = ca. 
The growth condition on f and square-integrability condition defining D can 
both be relaxed. It is actually enough for all of the results of the paper that 
lictila is integrable for some a> 1 and that f(c, 0) < k1 + k2C1IVy for some 
y <a. Our growth and Lipschitz conditions are typical for the existence of 
solutions to stochastic differential equations, a similar fixed point problem. 

THEOREM 1: Suppose (f2, 9, F, P) is a filtered probability space, where F = 

{(9t: t E [0, T]} satisfies the usual conditions. Let f: ex 1R -> OR be measurable, 
Lipschitz in utility, and satisfy a growth condition in consumption. Then, for any 
consumption process c E D, there is a unique square-integrable semimartingale V 
satisfying (25). 

Proof is shown in Appendix A and extended to the infinite horizon case in 
Appendix C. In Section 5, several properties are established for the recursive 
utility function U: D -> R defined by U(c) VJ', whose existence is guaranteed 
by Theorem 1. 

4. EXAMPLES 

We offer several examples of aggregators and, in some cases, the correspond- 
ing stochastic differential utility function. A closed-form expression for the 
utility function is not generally available. 

In order to clarify the examples and differences among them, we describe how 
they rank the three consumption programs described in the introduction. One 
can verify that, apart from the special cases of Examples 2 and 3 which coincide 
with (1), we have: 

cA A cB CC for Example 2, 

cA -. cB - CC for Example 3. 

That is, neither cA _ cB nor CB _ CC is implied by stochastic differential utility. 

EXAMPLE 1 (Standard Additive Utility): The standard additive expected util- 
ity function (1), with the utility process Vt = E[ fs> tu(c,)e p(st) ds I Ft ], corre- 
sponds to the aggregator (f, m), where 

(26) f(c,v)=u(c)-,3v and m('-V)=E(V). 

Suppose 6= R+ or e= R. If u(0)= 0 and u has the usual properties, then an 
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ordinally equivalent aggregator (f, mi) is given by 

(27) f(c(c)-u0{3 u'(v) a m( ) =u-1(E[u(V)]). f(c,v)==p u' (v) 

This aggregator satisfies (29) below. The corresponding utility process V satisfies 

V=U-1Ee U(cs)eP(st)ds Ft] 

EXAMPLE 2 (Uzawa Utility): Let f(c, v) = u(c) - 1(c)v and m( V) = E(V). 
The intertemporal expected utility functional (6) is generated by (f, m). The 
utility process is 

VK E[ u(cs)e , (/ P(t)d d ] 

EXAMPLE 3 (Example of Kreps-Porteus Utility): Let &= R+, 0 * p < 1, 0 < f, 
O a < 1, and define 

(28) f(c,u) =- 
up 

and m(-V)=[E(Va)]/a. 

The function f coincides with that in (27) if u(c) =cP/p. Thus, for deterministic 
consumption processes, the utility function is of the additive CES form, with 
elasticity of intertemporal substitution (1 - p) -. If a= p, then (28) and (26) 
coincide and the utility functions they generate are identical for stochastic 
consumption processes as well. This is not so, however, if a # p. It can be shown 
(by applying Ito's Lemma and taking limits as the length of a time interval goes 
to zero) that the corresponding stochastic differential equation for the utility 
process V is the continuous-time limit of the homogeneous CES specification 
examined in discrete time by Epstein and Zin (1989). It is shown there that risk 
aversion of the intertemporal ordering increases as a falls. A corresponding 
result for our continuous-time framework is shown in Proposition 6 below. An 
ordinally equivalent aggregator, for which the variance multiplier is 0, is given 
by 

cP- (au) pl 

f(c,v)=p (v)p/a and m( -QV)=E(V), a<1, a#0. 

Although f does not satisfy the Lipschitz condition for Theorem 1, existence 
and uniqueness is shown by PDE methods, in a Markov setting, by Duffie and 
Lions (1990). This ends Example 3. 

The certainty equivalents considered so far are all consistent with expected 
utility theory. A number of generalizations of the expected utility model have 
been proposed recently as rationalizations of behavior such as that exhibited in 
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the Allais paradox. In the final two examples, we integrate two of these 
generalizations into our model in order to examine their implications for choice 
in a continuous-time setting. The new theories all deal with static or one-shot 
choice environments, and specify utility or evaluation functionals for probability 
distributions on the real line. These functionals enter our model as alternative 
certainty-equivalent components of an aggregator. 

It will be convenient to consider real-valued consumption processes (v= R+) 
over an infinite time horizon, considered in Appendix C, and also to adopt a 
change of variables for which the constant path at level c has utility c. It follows 
that the utility of any consumption process c is equal to c if the constant 
consumption path at level c is indifferent to c. In other words, utility is 
measured in consumption units. This normalization of utility corresponds to the 
condition 

(29) f(c,c)=O, ceDR+. 

Of course, (18) defines the manner in which m affects intertemporal utility. 
Preference or behavioral interpretations of m are more explicit, however, if we 
temporarily extend beyond the case of Brownian information used in most of 
our analysis. Such an extension is also useful in understanding the discussion (in 
the following examples) of the extent to which different certainty equivalents are 
observationally equivalent. Consider consumption processes for which consump- 
tion is constant at co on [0, r) and such that, at time i, consumption jumps to a 
new random level c that persists thereafter. Both X and the probability distribu- 
tion c are known at t = 0, and no further information regarding the latter is 
obtained during (0, r). Suppose, further, that utility is measured in consumption 
units and is generated by an aggregator (f, m) satisfying (29). Then, by a natural 
extension of our analysis, for given X and co, the utility of the process described 
above is an increasing function of m( -). Thus m defines the preference 
ranking between suitable pairs of consumption processes. 

EXAMPLE 4 (Machina's Extension of Expected Utility): Machina (1982) pro- 
poses that the assumption of an expected-utility functional be replaced by the 
assumption of Frechet differentiability of the utility functional. Let IF be a 
real-valued function that is Frechet differentiable in a suitable norm on the set, 
say dom IF, of probability distributions on the real line having compact support. 
Let ,lr, defined by ,lr(x) 31'G), correspond to the restriction of ' to dirac 
measures. If 3 is increasing in the sense of first order stochastic dominance, 
then ,lr and 31 have effectively identical ranges, and we can define a certainty 
equivalent m by 

(30) m( ) -- -1[( )] 

Then m is Frechet differentiable; at each measure v in dom (31), let AF, v): 
DR 1R denote the Riesz representation of its Frechet derivative at v, as in 
Machina (1982). If for any dirac measure Ax, F1(-, Ax) is bounded and continu- 
ously differentiable and V is a process whose conditional distribution is a 
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Frechet differentiable function of time, then the local gradient representation 
M of m is defined by M(v, x) = F(u, ,). (These assumptions for (, 8) 
constitute additional restrictions on I1 or m beyond Frechet differentability. But 
they appear to be purely technical in nature and, moreover, are implied by the 
differentiability assumptions that Machina frequently (for instances, pp. 300 and 
307) adopts for his "local" utility functions.) The representation F of the 
Frechet derivative uniquely identifies m since, as Machina shows, the local 
information provided by F can be "pieced together" to make the global 
comparisons necessary to uncover m. But the same is not true for M, which 
provides local information about m only near dirac measures. Thus, there exists 
m distinct from m for which M and M coincide. 

Let f be arbitrary subject to (29), and consider the aggregator (f, m). Since 
the characterization (18) of the utility process involves m only via its variance 
multiplier A, we see from the above discussion that, in general, there exist many 
Frechet differentiable certainty equivalent functions that are observationally 
equivalent. For example, let h be any strictly increasing C2 function satisfying 

h"( x) 
(31) h()=A(x), x E [R+, 

and let mn be the corresponding expected-utility certainty equivalent defined by 
(8). It follows that (f, m) and (f, mn) imply identical choices among consumption 
processes adapted to Brownian information. In other words, in this environ- 
ment, Machina's extension of expected utility, suitably adapted and integrated 
into our intertemporal setting, is empirically indistinguishable from expected 
utility. 

The intuition for this finding is clear: Given recursivity, the choice between 
two consumption processes is determined, via "integration," by the certainty 
equivalent assigned at each t to the uncertainty to be faced over a "small" 
interval [t, t + ]. At t, VK is known with certainty, while the uncertainty 
represented by VK+8 is "small" given Brownian information. Thus, the only 
properties of mQ ) that are relevant are those that are reflected in evaluating 
small risks about certainty. Machina's local analysis and propositions extend 
expected utility analysis and results in a substantive way precisely because it is 
assumed that the relevant domain includes small gambles about arbitrary initial 
probability distributions. (Mathematically, therefore, one can identify the entire 
Frechet derivative rather than just the local gradient representation M.) Even if 
jumps in utility are allowed, as when a Poisson component is present, the 
uncertainty faced at any instant still represents a small risk about certainty. 
Though a discrete jump is possible, the size of the jump is deterministic and the 
conditional probability that one will occur in [t, t + E] is small (roughly 1 - e-AE 
where A is the intensity of the Poisson process). This explains why, even with 
mixed Brownian-Poisson information, one cannot uniquely identify m. Such 
identification can be achieved, however, if the more general jump processes 
described prior to this example are admitted into the domain. The gambles 
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defined by those processes are not small in any sense. Section 7 formulates a 
stochastic differential model of recursive utility in the presence of mixed 
Brownian-Poisson information. This ends Example 4. 

EXAMPLE 5 (Dekel-Chew Betweenness Certainty Equivalents): An axiomatic 
generalization of expected utility, which is not generally Frechet differentiable, 
is described by Dekel (1986) and Chew (1989). We say that m( ) is a between- 
ness certainty equivalent if there exists some continuous H: DR x RF -* 1R such 
that H(x, x) 0, H(-, x) is increasing and, for all p e (RA), m(p) is the 
unique solution to 

(32) fH[x, m(p)] dp(x) = 0. 

If H(x, y) = h(x) - h(y), then m reduces to the expected utility form 
h- (E[h( )]) of (8). Suppose that, for each y, the partial H1(, y) is positive and 
continuously differentiable. Then, by Ito's Lemma, m is -smooth near certainty, 
with LGR 

(33) M(., Y) = H(.,y) 
Hj( y,y) 

In the case of Brownian information, it follows as in the preceding example 
that betweenness and expected utility certainty equivalents are empirically 
indistinguishable from one another. But a caveat must be applied to this 
assertion since the above differentiability assumptions for H(, y) rule out some 
economically interesting betweenness functionals, called semi-weighted utility 
by Chew (1989). Such utility functions exhibit 'first-order' local risk aversion, as 
explained in Section 3. First-order local risk aversion is also a generic property 
of rank-dependent utility theory, which is an alternative axiomatic generaliza- 
tion of expected utility due to Quiggin (1982), Yaari (1987), and Segal (1989). 
The integration of such -th&ories into a continuous-time framework is addressed 
briefly in Section 7.3. 

To conclude this example, we briefly anticipate the calculations in Section 7.1 
dealing with mixed Brownian-Poisson information. If (f, m) and (f, m*) are two 
aggregators, then the corresponding stochastic differential utility functions coin- 
cide if and only if M = M*. But for certainty equivalents in the betweenness 
class, M = M* if and only if m = m*. (To see this, let m* and H* also satisfy 
(32) with M* = M. Then (33) implies that, for all x and y, H(x, y) = 

a(y)H*(x, y), where a(y) H1(y, y)/H*(y, y) * 0. It is therefore immediate 
from (32) that m = m*. The converse is evident.) In other words, given f, the 
betweenness certainty equivalent is uniquely determined by preferences over 
consumption processes under the information generated by combinations of 
Brownian and Poisson processes. In particular, betweenness and expected utility 
certainty equivalents can be distinguished from one another on the basis of 
observed choices in such an environment. This ends Example 5. 
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Our statements concerning the observational equivalence or inequivalence of 
various forms of preferences in a continuous-time setting apply, in particular, to 
any distinctions that can be drawn from empirical studies of asset prices. In this 
regard, our statements of observational equivalence also go beyond those of 
Kocherlakota (1987), which apply to asset pricing in static or i.i.d. settings. 

5. PROPERTIES OF STOCHASTIC DIFFERENTIAL UTILITY 

This section shows that the stochastic differential utility function defined in 
Section 3 has a range of natural properties, under natural conditions. We will 
provide sufficient conditions for: (i) continuity; (ii) monotonicity with respect to 
terminal value VT; (iii) monotonicity with respect to consumption c; (iv) time 
consistency; (v) concavity; (vi) comparative risk aversion; (vii) risk aversion; (viii) 
homotheticity. 

Unless otherwise stated, throughout this section (f2, S, P, F) is general; we 
require only that the filtration F = {,5,: t E [0, T]} satisfies the usual conditions, 
is augmented, and that Y0 is trivial (has only events of probability zero or 1). 
We define f: ex RF -* ll to be regular if f is continuous, Lipschitz in utility, and 
satisfies a growth in condition in consumption. It is a maintained hypothesis of 
this section that the given normalized aggregator f is regular. This ensures (by 
Theorem 1) existence of the associated utility function U. 

5.1. Continuity 

PROPOSITION 1 (Continuity): The stochastic differential utility function U: 
D -* llR is continuous. 

PROOF: Given c and j in D, let V= Vc and V = Vc be the associated utility 
processes. For any t, 

IVt-t I, t E ft |( CS , Vs) - f(is , Vs) I ds| 6t] 

I I ~E[ffl(cs~ VS) -f(js,JVs) ] 

TEhs (h fi(CcG B Se)m sIVs) l +(kpe Vsn-i )s yds t] 

The stochastic Gronwall-Bellman Inequality (Appendix B) yields 

, T kt A/ 
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If {cn} is a sequence converging in D to c, then for all n, 

|U(c ) - U(c) I < E[ e tf(Ct Vt) -ft(ct, ) Idtl. 

Since Cn converges to D to c (and therefore, along some subsequence of every 
subsequence, pointwise almost everywhere on !2 x [0, T] with respect to the 
optional o-algebra) and f is continuous and satisfies a growth condition 
in consumption, the dominated convergence theorem (Ethier and Kurtz 
(1987, p. 492)) and Cauchy-Schwartz inequality imply that the integral on the 
right-hand side converges with n to zero, proving continuity of U. Q.E.D. 

5.2. Monotonicity For Terminal Value 

We momentarily extend the definition of stochastic differential utility func- 
tions so that there is a terminal reward at some [0, T]-valued stopping time r. 
The terminal reward is defined by some 5?measurable Ye L1(P). Proposition 
Al (Appendix A) implies that there is a unique integrable semimartingale Vc Y 

solving the equation 

(34) VtC/Y=E[ff(Cs,vSc,Y)ds+Y$tj te[O,T]. 

PROPOSITION 2 (Monotonicity for Terminal Value): Let r be a [O, T]-valued 
stopping time. Suppose Y> W, for $;;-measurable Y and W in L'(P). For any 
given c E D, let V= VC,Y and V= VC, w be defined by equation (34). Then V) V. 

PROOF: For starters, suppose r = T. We have 

Vt - Vt = E[ ff(cs 9 Vs) -f (CS, VS) + Y- WY ], 

and since f is Lipschitz in utility, 

f(cs,Vs) -f (cs, V ) > -kls - Vs. 
The result follows by Appendix Lemma B2. For general T, we can replace 
f(cS, Vs) by 1{S <Tf(cS, Vs) throughout the above and get the same answer. 

Q.E.D. 

5.3. Monotonicity For Consumption 

Now we show monotonicity of recursive utility with respect to consumption 
under the assumption that f is increasing in consumption, meaning that, for any 
v E lR, f(*, v) is an increasing function. We say that f is strictly increasing in 
consumption if, for all v, the function f( , v) is strictly increasing. Likewise, we 
say that the stochastic differential utility function U: D -I lR is increasing if 
c > c implies that U(c) > U(c), and that U is strictly increasing if U(c) > U(c) 
whenever c > c and c * 8. 



STOCHASTIC DIFFERENTIAL UTILITY 373 

PROPOSITION 3 (Monotonicity in Consumption): Iff is increasing in consump- 
tion, then U is increasing. If f is strictly increasing in consumption, then U is 
strictly increasing. 

PROOF: Pick any c and c in D with c > c. Let V be the utility process for c 
under f, and V be the utility process for c under f. We have, for all t, 

Vt - Vt = E [f(cs,V5) -f(J5,JK)] ds ), 

and 

f (c, Vs) -f (is, Vs) =f(Cs, Vs) -f (is Vs) + f (js Vs)-f (js VS) 

f (cs, Vs) -f (is, Vs) - k I Vs - Jsl 

The result follows by Lemma B2 (Appendix B). Q.E.D. 

5.4. Time Consistency 

An important property of recursive utility functions is that they exhibit 
intertemporal consistency. Consider the following axiom on a family > = 
{ >o,t: (G, t) E 12 x [0, T]} of binary orders on D. We let c at j denote the 
event {w e 12: c >hO t J}, and say that a is adapted if (c at C) E t for all 
(c, J) E D x D and all t E [0, T]. As usual, >- denotes the corresponding family 
of strict preference orders. For example, for each c in D, let Vc denote the 
utility process generated by c under f. Then f generates a family a of 
complete transitive preference orders defined by c at C if and only if Vtc > VtC. 

DEFINITION (Consistency): An adapted family a = { >-(Ot } of binary orders on 
D is consistent under the following condition. For each stopping time X E Y 
and each pair c and c of consumption processes in D, if the restrictions of c 
and c to 10O, ] coincide, then 

(35) P(c c) = 1 =c 0 c 

and 

P(c j) = 1 and P(c >- ) > 0= c >-0 c. 

Consistency requires that, for c and c as above, an unambiguous preference 
for c over c at time X is respected at time 0. By the nature of recursive utility, 
VJc = V,C if c and c coincide on Rr, T]; that is, past consumption does not affect 
preferences. Once consistency or recursive preferences is established, it follows 
that one can apply dynamic programming to optimization problems in such a 
way that state variables reflecting past consumption are unnecessary. See Section 
6 for our dynamic programming results and Section 8.2 for an extension 
allowing an additional state-variable for "habit persistence" in the sense of 
Constantinides (1988). For additional utility models in which past consumption 
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plays a role in determining utility, see Heaton (1988), Sundaresan (1989), Hindy 
and Huang (1989a and b), Detemple and Zapatero (1989). 

That recursive utility functions satisfy consistency is a simple consequence 
of monotonicity with respect to terminal value (Proposition 2). The follow- 
ing theorem of consistency actually applies under any conditions leading 
to a stochastic differential representation of utility of the form VJ= 

E(fsTg Go, t, c, Vt)dt I F). 

PROPOSITION 4 (Consistency): The family of preference orders generated by f is 
consistent. 

PROOF: Pick r, c, and c as in the definition of consistency. Using the notation 
of Proposition 2, we have V0 = Vo() and VO = VO v(T). The result then follows 
from Proposition 2. Q.E.D. 

5.5. Concavity 

The following conditions for concavity provide, along with the previously 
shown continuity and monotonicity conditions, sufficient regularity to apply 
certain general equilibrium results. For existence of general equilibrium in D, 
however, an additional condition such as uniform properness may be required, 
as shown by Mas-Colell (1986). See, also, Duffie and Skiadas (1990). 

PROPOSITION 5 (Concavity): Suppose f is a concave function. Then the stochas- 
tic differential utility function generated by f is concave. 

PROOF: Let c and b be consumption processes and, for any a E [0,1], let VA 
be the utility process for ac + (1 - a)b, and let Vc and Vb be the utility 
processes for c and b, respectively. 

For t E [0, TI, let at = Vta - [alVc + (1 - ab]. Then 

at= E[ (f [acs + (1 -a)b, Vsa] 

-af(cs, V, )(1 -a)f (bs, Vsb d t] 

= E[| (f [ac +(1-at)bs9Vsa] 

-f[acs+(1-a)bs,aKsc+(1-a) sb]+gs)ds|5?j, 

where 

g f =f[acS + (1-a)bs, aVsc + (1- a)Js/] 

- af (C9 .Vsc)-(1 - a)f (bs sV 
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The integrand in the last expression dominates g, - k i5 1, and, by concavity of 
f g, > 0. The result follows by Lemma B2 (Appendix B). Q.E.D. 

5.6. Comparative Risk Aversion 

In order to justify our claim that the generalization from additively separable 
expected utility to recursive utility makes possible a degree of separation 
between intertemporal substitution and risk aversion, we need the following 
definition: 

DEFINITION- (Comparative Risk Aversion): Let U* and U be two stochastic 
differential utility functions. We say that U* is more risk averse than U if U* 
rejects any gamble that is rejected by U, that is, for any c E D and any 
deterministic process c in D, 

U(c) < U(c) =>U*(c) < U*(c)'. 

If U* and U are comparable according to this definition, then they must rank 
deterministic programs identically. After a change of variables, they must be 
identical on the set of deterministic consumption processes, from which it 
follows that they share the same function f as the first component of their 
aggregators. Thus the following theorem restricts attention to the case f* = f. 

PROPOSITION 6 (Comparative Risk Aversion): Suppose F is the standard 
filtration of a standard Brownian motion in some Euclidean space. Let U* and U 
be the stochastic differential utility functions generated by aggregators (f, m*) and 
(f, m) respectively, where m* and m have continuous variance multipliers A* and 
A. Suppose the respective normalized aggregators are regular. Then U* is more 
risk averse than U if A* AA. 

The reader will note from the proof that A* AA is also close to a necessary 
condition for U* to be more risk averse than U. 

PROOF: Let Sp be defined by (24), the change of variables that eliminates A. 
This normalizes (f, m) to the aggregator (f, mn) whose variance multiplier is 
zero. Since A* AA, applying the same change of variables sp to the aggregator 
(f, m*) results in a new aggregator (f, mn*), with a variance multiplier A* < 0. 
(This is checked by a calculation, using (24) and (22).) Let U and U* be the 
recursive utility functions generated by (f, mn) and (f, mn*), respectively. 

In order to prove the result, it is enough to show, for an arbitrary c E D, that 
U(c) > U*(c). To this end, let c E D be arbitrary. Let V* be the utility process 
associated with c under (f, mW*). (Its existence is implied by Theorem 1 and the 
assumptions of this proposition, after inverting the change of variables normaliz- 
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ing (f, m*).) The result is the solution V* to the equation 

T ~~~~d1 
JK =E fCScVss) + 2A*(Vi )sd-[V*]s ds s1, t E[O,T]. 

Letting V be the utility process for c under f, we also have 

Vt = E[ f (cS, Vs) dsJt] t E [0,T]T 

Subtracting, 

T ~~~d 
Vt-Vt = E[| _-A*(V*)s d -[V*Is 

+f(cs,Vs*) -f(cs,JVs) ds t ], t E [0, T] 

The integrand dominates 

1 _ d 
- 2A*(V*)s -[V*]s -kl s - Vs- , 

while 

1 _ d 
- 2A*(V*)s-jj[V*]s >0. 

Lemma B2 then implies that U(c) > U*(c), and the result follows. Q.E.D. 

According to Proposition 6, we can increase the degree of risk aversion of the 
intertemporal preference ordering without affecting "certainty preferences" by 
keeping the f-component of the aggregator unchanged and changing the cer- 
tainty equivalent so that the variance multiplier falls. A sufficient condition for 
A* < A is that m*() < m(); that is, m* is smaller and hence the more risk 
averse certainty equivalent. This can be proved by applying Ito's Lemma to a 
judiciously chosen consumption process, and extending the argument used to 
prove (15). If m(- V) =h-'(E[h(V)]) and m*(& V) =h*-(E[h*(V)]), then 
m* < m if and only if h* is more concave than h on the range of the utility 
process. 

5.7. Risk Aversion 

We may not only want to compare the degrees of risk aversion of two 
recursive utility functions, but also to determine whether a given utility function 
is risk averse in an absolute sense. For any consumption process c, let E(c) 
denote the deterministic process defined, almost everywhere, by E(c)t = E(ct). 
(The separability assumption on e and definition of D imply that ct is 
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integrable for almost every t.) A utility function U is risk averse if, for all c 
in D, 

(36) U(c) < U [E(C)] . 

Suppose, momentarily, that F is the standard filtration of a standard Brownian 
motion. If (f, m) is an aggregator whose certainty equivalent is risk averse in the 
sense of Assumption 2, then its variance multiplier A is nonpositive, as shown 
by (15). This implies, subject to the technical regularity conditions of Proposi- 
tion 6, that the utility function generated by (f, m) is more risk averse than that 
generated by (f, m*), where m* is merely the expected value function. The 
following proposition therefore shows, again subject to the technical restrictions 
of Proposition 6, that (f, m) is risk averse if m is risk averse and f(, v) is 
concave for all v. The proposition does not in fact assume Brownian informa- 
tion, but begins with the given regular normalized aggregator f. 

PROPOSITION 7 (Risk Aversion): Suppose, for all v E R, that f(, v): e-*> RF is 
concave. Then the recursive utility function generated by f is risk averse. 

PROOF: Let c be arbitrary in D, and let c = E(c). Let V be the utility process 
for c under f and let V be the utility process for c under f. We have 

VtV =E[f [ f( V -f (c, Vs)] ds|t] 

Using Fubini's Theorem for conditional expectations, 

V-Vt = E[ (E[f( VS-f (c VS5)] 

+f (cs,Fs) f (cs, Vs) dsl ].t 

The integrand dominates 

E[f(EsSvs -f(c , V5)ts -t- k l-s - Vs I 

while, by Jensen's Inequality for conditional expectations, 

E[f(cS, J)-f (cS J1)15t] > 0. 

The result follows by Lemma B2. Q.E.D. 

5.8. Homotheticity 

A utility function U is homothetic if, for any consumption processes c and c' 
and any scalar A > 0, 

(37) U(Ac') > U(Ac) U(c') > U(c). 

This leads to the following definition for aggregators. 
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DEFINITION (Homotheticity): Suppose T? is a cone and the aggregator (f, m) 
generates a recursive utility function. Then (f, m) is homothetic if, for any 
consumption processes c and c and any scalar A > 0, 

(38) VAC>VAC*VC>VC. 

Throughout this subsection, we restrict ourselves to positive-valued utility 
processes. The function f: ex [0, oo) - [0, oo), where e is a cone, is linearly 
homogeneous of degree one (a definition) if, for any scalar A > 0 and any 
(c, v) E- t'x (0, oo), we have f(Ac, Av) = Af(c, v). A variance multiplier A is 
linearly homogeneous of degree - 1 if, for some k, A(v) = k/v for all v > 0. 
Homothetic aggregators can be characterized as follows. 

PROPOSITION 8 (Homotheticity): An aggregator (f, m) that generates a recur- 
sive utility function U is homothetic if there exists an aggregator (f*, m*) 
generating an ordinally equivalent utility function such that f * is linearly homoge- 
neous of degree one and the variance multiplier A* of m* is linearly homogeneous 
of degree -1. 

PROOF: The linear homogeneity conditions on f* and A* imply that the 
utility process map c -* Vc generated by (f *, m*) is linearly homogeneous of 
degree one, which yields homotheticity. Q.E.D. 

We can sketch out an argument that the linear homogeneity conditions (on an 
ordinally equivalent aggregator) are also necessary for homotheticity. For neces- 
sity, we assume that (f, m) is homothetic, which implies that there is an 
ordinally equivalent aggregator (f *, m*) such that the resulting utility process 
map c |-* Vc is linearly homogeneous of degree one; that is, for any scalar A > 0 
and consumption process c, VAC = AVC. For deterministic c in D, we have 

d 
(39) d Vtc f*(ct, vtc) 

Applying the linear homogeneity of c >- Vc and (39) to Ac produces the linear 
homogeneity of f. For general c E D and scalar A > 0, if we let {t} denote the 
drift process of VC, then the homogeneity of c >- Vc implies that the drift of 
VAC is A,ctt. Since f *(Act, VtAc) =f *(Act, AVtC) = Af *(ct, Vtc), we have 

1 d 1 d 
(40) A,t - Af *(ct,Vtc) = -A*(VtAC) [VAC]t =A-A*(Vtc)d [VC]t. 

Since the quadratic variation of VAC = AVC is merely A2 multiplied by the 
quadratic variation of V, we then have 

A* ( Vtc) 
(41) A* (VtAC) =A*(AVtc) = A 

This implies the desired homogeneity of A*, at least in the range of the utility 
processes. 
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6. THE BELLMAN EQUATION 

This section shows that optimality for a continuous-time recursive utility 
function is characterized by Bellman's equation, which, in this setting, is an 
extended version of the Hamilton-Jacobi-Bellman equation. 

The setting chosen is a finite time horizon, a controlled state process {XJ, 
and a regular normalized aggregator f. Let F: ; X 3-2C define the admissi- 
ble set of controls, in the sense that ct must be chosen from the set F(x, t) at 
time t when the current state Xt is xE l'R'. For a given control c E D, the state 
process {XtJ exists if it uniquely solves the equation 

(42) dXt =b(Xt,t,ct) dt a(X,, tct) dBtI 

where XO is given and b :R x 37x ?e l-nR and a: RW x 7x 4-+ nxd are 
measurable. 

A process c in D is an admissible control if: (i) there is an integrable state 
process {XtJ solving (42); (ii) for all t, c Ee A(Xt, t). Let Dr denote the set of 
admissible control processes, let U denote the recursive utility function on D 
generated by f, and consider the control problem 

(43) sup U(c). 
c e Dr 

An admissible control c* is optimal if U(c*) = supce Dr U(c). 
We will show a version of the sufficiency of the Bellman equation for 

optimality. First, for any c E - and any J E C2' 1(Rn X 5), let 

(44) _9zl(x,t) = Jt(x, t) +Jx(x, t)b(x, t, c) 

+ 2 tr |a(x, t, c)a(x, tc)TXX(X' t)] 

We define J E C2, 1(Rn X 37) to be the value function of the control problem, 
when there exists an optimal control c, if Vtc = J(Xt, t), t E [0, T], where Vc is 
the utility process for c and Xc is the state process determined by c. By our 
consistency result, Proposition 4, if c and c are both optimal controls, then 
Vc= V6, so we may refer to vc as the value process. 

Despite the strength of the technical conditions in the following characteriza- 
tion of the Bellman equation as a sufficient condition for optimality, the basic 
nature of the result is quite natural. 

PROPOSITION 9 (Bellman's Equation): Suppose j e C2' 1(Rn x 3S) has a 
bounded derivative Jx and that, for all (x, t) E 8 X 3 

(45) sup 3C.J(X, t) + f [c, J(x, t)] =0, 
cEG(X, t) 

with boundary condition J(x, T) = 0, x E R8n Suppose, moreover, there exists a 
measurable function C: RIz X e ? such that, for all (x, t) E Iz X 3 

(46) Cx, t) E argmax _cJ(x, t) +f [c-, J(x, t)]. 
eF(x, t) 
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Finally, suppose that X* is the unique square-integrable process solving the 
stochastic differential equation 

(47) dXt* = b [Xt*, t, C(X*, t) ] dt + a [Xt*, t, C(Xt*, t) ] dBt, X0O =XO. 

Let c* be the process defined by c* = C(Xt*, t), t E [0, T]. If c* is a square-inte- 
grable process, then J is the value function of the control problem and c* is an 
optimal control. 

REMARK: The bound on Jx can be relaxed; we need only that 
fJx(Xt,t)a(Xt,t,ct)dBt be a martingale. A key technical issue is the strong 
(pathwise unique) existence of a solution X* to (47). It is enough that 
x -* b(x, t, C(x, t)) and x |-* a(x, t, C(x, t)) satisfy a uniform Lipschitz condition, 
locally in x, and a uniform growth condition. This is difficult to verify since 
there is little advance information about the feedback control C. The same 
issues arise in the traditional additive setting; for one result of this type, see 
Fleming and Rishel (1975, p. 197). Alternatively, one may look for a "weak" 
solution to (47), as in Krylov (1980, p. 87). Likewise, it is difficult to know in 
advance the differentiability of J. On this, see, for example, Krylov (1980, 
Chapter 4), Lions (1981), and Crandall and Lions (1983). 

PROOF: Let c be any admissible control, and let V be the utility process for c 
under f. Let Xc denote the solution of the state process equation (42) for 
control c. By Ito's Lemma, since JX is bounded and J(Xc, T) = 0, 

(48) J(Xtc, t) = E -CSJXCsdt] t E[0T 

We also have 

Vt = E[ f(cs Vs) dstj] t E [0, T]. 

The Bellman equation (45) implies that, for all t, 

J(X,c,t) - V/=E[f [gc(s)J(Xc,s) -f(cC, Vs)] ds $?t 

where 

.g1C(s)J(XSc,5) -f(cs,VsD 
= _gC(S)J(XC,S) -f [cs,J(XS S)] 

-kl J(Xsc, s) - Vs I 
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Since - _c(s)J(Xc, s)-f[c5, J(Xs cs)] is nonnegative, Appendix Lemma B2 
implies that U(c) = VO < J(xo, 0), where xo is the starting value of the con- 
trolled state process. If we take the particular case of c = c*, (46) implies that 
U(c*)= J(xo, 0). Since c and xo are arbitrary, c* is therefore optimal. Q.E.D. 

It may often be convenient to begin with an un-normalized aggregator (f, m), 
for example, for the purpose of comparative risk aversion analysis (Proposition 
6). Thus we note the following generalization of (45): 

(49) sup ?iJ(x,t)+f[c,J(x,t)] 
cEF(X,t) 

+'A [J(x,t)]IIJx(x,t)a(x,c,t)I 12=0. 

Provided the normalized aggregator is regular, this extension of the Bellman 
equation (45) follows from Ito's Lemma and (22). 

Trudinger (1983) has a limited result on the existence of solutions to the 
Bellman equation in a related setting. Duffie and Lions (1990) remark how the 
theory of viscosity solutions due to Crandall and Lions (1983) extends naturally 
to the case of stochastic differential utility. 

7. CONCLUDING REMARKS 

This section briefly discusses some extensions of the model. 

7.1. Mixed Poisson-Brownian Information 

Suppose that F is the filtration generated by a standard Brownian motion B 
in Rd and an independent martingale compensated point process N with 
predictable jump intensity A, and unit size jumps. (For example, N could be a 
compensated Poisson process, meaning that A is a constant.) In this case we 
conjecture that a utility process V is of the form 

dVt t dt+atdBt+GtdNt, 

for some ,ut, o-, and G. Following by analogy the arguments in the pure 
Brownian case, 

(50) t = (ct, Vt)-2'( t)t2-At[M(Vt +Gt, - M(Vt_ Vt_A 

We leave further analysis of recursive utility in this more general information 
environment for separate research, which should help elucidate the potential 
importance of static non-expected-utility theories for continuous-time modeling. 
(See Examples 4 and 5 of Section 4.) 

7.2. Habit Formation 

For a model combining the features of recursive utility with those of "habit 
formation," in the sense of Constantinides (1990), we could define V to be the 
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utility process for c E D if V is the unique solution to 

(51) VJ=E[f T(c,zf,JVSds ) t 

where zt is a "weighted average" of {c5: 0 < s < t), say zt = ftg(t - 
s)cs ds, for 

some continuous function g: DR- R such as t -* e-t. See also Sundaresan 
(1989), Detemple and Zapatero (1989), as well as Heaton (1988). 

Alternatively, we could connect with the results of Hindy and Huang (1989a, b) 
by defining V as the unique solution to 

(52) Vt=E[f T(z,V) dsAt ], 

where zt = fog(t - s) dCs, and where C is a cumulative-to-date total consump- 
tion process drawn from the set of increasing, nonnegative, right-continuous 
adapted processes satisfying 

llCII = E[ C(t) dt+ CT] < X0 

In this case, the utility function automatically inherits the continuity properties 
with respect to intertemporal substitution as well as the duality results that are 
studied by Hindy and Huang (1989a, b). This example is further extended in 
Duffie and Skiadas (1990). 

For either (51) or (52), existence and uniqueness of V follow immediately 
from Appendix Proposition Al, provided only that f is measurable, satisfies a 
growth condition with respect to the consumption-related variables (that is, with 
respect to (c, z) for (51), or with respect to z for (52)), and satisfies a Lipschitz 
condition with respect to utility. The Bellman equation corresponding to (51) is 
the obvious extension of (45) obtained by adjoining the "habit" process {zt} to 
the state description. 

7.3. Utility with a Kinked Certainty Equivalent 

In principle, it is not necessary to have a smooth certainty equivalent m( ) in 
order to characterize a recursive utility process {Vt = VO + fo,t-s ds + fJots dBs). 
For example, an extension of Ito's Lemma for convex (and not necessarily C2) 
functions gives a definition of the utility process, one that replaces the quadratic 
"risk penalty" fA(Vt)JJot 112 in (17) with a natural "local time risk penalty." 

Take for instance the Dekel-Chew betweenness certainty equivalent m de- 
fined by (32) with the special "kinked" case of H(x, y) = cp(x/y), where 
*O(x)=x-1 for x<1 and *O(x)=y(x-1) for x>1, where ye(0,1). The 
motivation for examining this sort of extension may be apparent from the 
discussion in Example 5 of Section 4 of "first-order" local risk aversion. Putting 
aside existence and uniqueness questions, the following calculations character- 
ize the utility process V for a consumption process c under (f, m), for arbitrary 
well-behaved f. 
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We suppose that Vt = Kt + f0sr dBs for some finite variation process K and 
progressively measurable o- with E(fo'llItI112 dt) < oo. We let Xt = Vt/Zt, t > 0, 
where Zt = m( V). By Ito's Lemma for convex functions (Karatzas and Shreve 
(1989)), 

(53) p(Xt) =p(X0) + ftDso(Xs) dXs + f_AX(a) dv,p(a), 
0 

= ) 

where D-?p is the left-derivative of Sp, AXt(x) is the local time of X at x up to 
time t, and P is the measure on BR defined by vq,([a, b)) = D-?p(b) - D?-p(a). In 
our case, vP, is a dirac measure of mass y - 1 at 1. The definition E[p(Vt/Zt)] = 0 
of Zt and the mild assumption that Z is differentiable in t imply, taking 
expectations through (53), that 

0=0+E(f D-(p(Xs) - dKs- ds) +E[(y1- (1)]. 

More generally, for each t let Xt = Vs/Zt, where Zt = m(- Vsl I), s > t, and 
let lt be the local time process of Xt. Reinterpreting the last displayed equation 
at time t, conditional on Ft, leaves 

1 _ _ _t 

t K- ztK dt + (y - 1) dLt = ? 
t t 

where dLt =dlt. Since Zt = m( ) 91t-) = Vt, we would have dKt = Zt dt + 
(y - M)Jt dLt. We put aside the issue of the existence of a process L whose 
increments are defined by "sewing together" the increments7 of It at time t, t 
by t, and continue on a purely formal basis. With f(ct, Vt) = -Zt from (12), we 
have 

(54) dKt = (1-y)Vt dLt-f(ct, Vt) dt, 

which replaces the "risk penalty" 2A(Jt)11o-t I2 dt in (17) with the "local-time 
risk penalty" (y - 1)1t dLt. We have loosely characterized the utility process V 
as the unique solution to 

(55) Vt=E(fT (y- 1)VsdLs+f(cs, Vs)dst t) E [0,T]T 

The measurement of risk by local time can also be viewed in terms of risk 
measured by "local mean absolute deviation" with the aid of the Tanaka-Meyer 
formula (Karatzas and Shreve (1989, p. 220)). This has been a purely formal 
analysis, without rigorous justification. 

7One approach would be to construct L from (1t: t > O} by taking a sequence {t'} of time grids 
with mesh size supn tni - tn-I I going to zero with i. Letting L' be piecewise constant as defined by 

the jumps AL'(t, + =ltn(t+) - lt'(t,), the objective would be weak convergence of {Li} to a 
uniquely defined process L. This construction is well beyond our objectives here, especially as this is 
merely one part of the utility existence problem. 
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7.4. Other Extensions 

We could allow almost arbitrary state and time dependence of a generalized 
aggregator f: ex [I x [0, T] x lR -* R, as well as a terminal reward. For exis- 
tence and uniqueness of the utility process, we need only check the integrability 
and Lipschitz conditions of Appendix Proposition Al. Under natural assump- 
tions, the properties of such extended recursive utility functions, even with the 
addition of "habit persistence," are easily studied with the aid of Appendix B, 
Lemma B2. 

Finally, for the infinite time horizon case, see Appendix C, co-authored with 
Costis Skiadas. 
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APPENDIX A: FIXED POINTS OF RECURSIVE INTEGRAL EQUATIONS 

Recall that (f2, Y, F, P) is our (abstract) filtered probability space, where F = {(: te [0, T] 
satisfies the usual conditions. Let -e be a closed convex subset of a Banach lattice (which is usually 
WRe, representing bundles of 1 commodities) with norm 11 11, and let D denote the space of {-valued 
optional square-integrable processes. Let 11 IID be defined on D by 

IICIID = [E fJ lic t112 dt )] , c E- D. 

For each given c E D, we will establish the existence and uniqueness of a square-integrable 
semimartingale Vc satisfying the equation 

(al) Vt E f T(c, VIC) ds -t ], t E [O, T], 

provided f: -ex R -4 R is measurable, uniformly Lipschitz in its second (utility) argument, and 
satisfies a growth condition in its first (consumption) argument. (The Lipschitz condition can be 
weakened.) 

First, for 1 Sp < Xo and each semimartingale X, let 

11X||,P= supIXtI || 

Let c/'P denote the space of semimartingales (always taken to be cadlag) that are finite in 
_l llP-norm. This space is shown in Protter (1990) to have a convenient relationship with the usual 
space A?P of p-integrable semimartingales, especially for the purpose of establishing the existence 
and uniqueness of stochastic differential equations driven by semimartingales. (See Protter (1990, 
Theorem V.2 and Lemma V.1).) 

Let g: [O,T]xfnxl R -*R be measurable and such that, for each t and v, gt(v) g(t, ,v): 
Q lR is t-measurable. We usually have in mind gt(v) = f(ct, v) for some c E D. We will use the 
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regularity conditions: 
(i) g is k-lipschitz: The scalar k is such that, for any t E [0, T] and (w, v) E R2, 

|g,(v) -g,(w)|I SkIv - w 

(ii) g is p-integrable: The scalar p E [1,oo] is such that foTIg,(O)I dt is in LP. 

LEMMA Al: Suppose there is some p e [1, oo) and constant k such that g is k-lipschitz and 
p-integrable. Then, for any ST-measurable Yin LP and any Ve Y"P, the process F(V) defined by 

(a2) F(V), =E[ fTgs(Vs)ds+YS-,tj, te[O,T], 

is also in 1P. 

PROOF: By the Lipschitz assumption, 

sup I F(V)t I < supE[ fT Ig(Vs)Ids + IYI Yit 

< supE[fT (jgs(0) +kIVsJI)ds+ IYI|t 

<kTsupIVtI + supE[ f Igs(0)Ids+ IYI 5t]. 

The LP norm of the left-hand side is finite because the LP norm of the first term on the right is 
finite by assumption, and because the LP norm of the second term on the right is finite by Theorem 
V.2 of Protter (1990) and the definition of the 6YP-norm (Dellacherie and Meyer (1982)). Q.E.D. 

The main result of this appendix is the following fixed point theorem for recursive integral 
equations. The method of proof is similar to that for stochastic differential equations, as in Chung 
and Williams (1990). 

PROPOSITION Al: Suppose g is k-lipschitz for some k and p-integrable for some p E (1, oo). Then F: 
,7P -* 1P defined by (a2) has a unique fixed point (that is, a unique Vin YP such that F(V) = V). 

PROOF: For any U and V in /?P, 

F(U)t - F(V)t Et fT I gs(Us) -gs(Vs) I ds -t 

<kE[f Us Vs J ds -F] 

< k(T-t)E[ sup IUs- VsI t ] 

Let8 Z supO < s < T I Us -Vs I and Zt E(Z 1t). Since I F(U)t - F(V),I ?k(T -t)Z, we have, 
using Fubini's Theorem for conditional expectation, 

IF (2)(U)t - F(2)(V)t I < E f[ Tkl F(U)s - F(V)s I ds t 

< k2E [f T(T - s)Zs ds -Y] 

=k2f7T(T- s)E(ZsI t ) ds 

[k(T- t)]2 

2! 

8 could also take z = iI Us - SI ds. 
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In general, 

( [)(U)tk-F(n)(V)t (T- t)] Zt ',~~~~~~Jt 
1'~~~~n1 

sup IF(n)(U)t -F(n)(V)t n sup Z 

But, Doob's inequality gives (for p > 1 and (l/p) + (l/q) = 1) 

|| Supztl < qsupIIZt,ILP 

and 

iiZtllPp = E(E(ZI Yt- ) ) 6 Et E(ZPI -9 t ) E(ZP). 

Therefore 

IIZtllLP < IIZIILP IIU - VIl,y'P. 

We can conclude that 

II n)(U)-F(n)(V) IL7v q(kT) , 
n!IIU-VIs. 

So, for n large enough, F(n) is a contraction and hence has a unique fixed point V. Since 
Fn(V) = V, we have Fn(FV) = (FV), and by uniqueness, V= F(V). Finally, F has a unique fixed 
point since F(n) does. Q.E.D. 

The assumption that f is Lipschitz in utility and satisfies a growth condition in consumption is 
enough to meet the sufficient conditions of Proposition Al for gt(v) =f(ct, v) and p = 2, which 
proves Theorem 1. 

Recently and independently, Pardoux and Peng (1990) have given a related result which is more 
general than Proposition Al in the special case of Brownian filtrations. Their method of proof is 
quite different and relies on the martingale representation property of Brownian filtrations. 

APPENDIX B: EXTENSIONS OF GRONWALL'S INEQUALITY 

Except for homotheticity, each of the properties in Section 5, as well as Proposition 9 (Bellman's 
equation) is shown by appealing to stochastic extensions of Gronwall's inequality. The first is an 
extension of what Fleming and Rishel (1975) call the Gronwall-Bellman inequality. 

THE GRONwALL-BELLMAN INEQUALITY: Suppose h: [0, T] --* R is continuous, a is a constant, and 
g: [0,T] ->R is integrable. If h16fJT(g+ ahs)ds+hT for all te[0,TJ then, for any t, ht < 
ea(T-t)hT + ftTea(s-)gS ds. If ht > ftT(g, + a hs) ds + hT, then ht > ea(T-t)hT + ftTea(s-)g. ds. 

PROOF: For the first part of the result, let Ht = JtT(gs + aHs) ds + hT. We know that Ht = 
ea(T-t)hT+ ftTea(s-t)gS ds. Now let pt = ht - Ht, implying PT = 0. Let G = tTp ds. Then G = 
-pt> -aGt, which implies that d/dt(eaIGt)> O, which implies that GtS<O. This implies that 

Pt < 0 for all t, for otherwise there is an interval [to, tl] c [0, T] such that p(tl) = 0 and Pt > 0 on 
(to, t1). We could then apply the previous arguments on [0, t1], however, and deduce that ftt1ps ds S 0 
for t S t1, which would be a contradiction. Thus Pt S 0 for all t, and we are done. A like argument 
shows the opposite inequality. Q.E.D. 

COROLLARY Bi (The Stochastic Gronwall-Bellman Inequality): Let (Q, Y, F, P) be a filtered 
probability space whose filtration F = {t: t E [0, T]} satisfies the usual conditions. Suppose {Y() and 
{X,} are optional integrable processes and a is a constant. Suppose, for all t, that s - E(Ys I -5t7) is 
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continuous almost surely. If, for all t, Yt < E(ftT(X, + aY5) ds I Yt) + YT, then, for all t, 

Y<ea(Tt)E(YTIS ) +E[fT ea(s t)Xsds |9 j a.s. 

Alternatively, if, for all t, Yt > E(ftT(Xs + aYs) ds I Yt) + YT' then, for all t, 

t> e a(T-t)E(YTI F ) + E[fTea(s -t)Xs ds y91] a.s. 
[tI ] 

PROOF: For each t and s E [t, T], let ht, = E(YS I Yt) and gt, = E(X I Y). We can then apply 
Fubini's Theorem for conditional expectations, as in Proposition 4.6, page 74, of Ethier and Kurtz 
(1987), and the law of iterated expectations, followed by the Gronwall-Bellman inequality applied to 
the interval [t, T], in order to deduce the result. Q.E.D. 

The stochastic Gronwall-Bellman inequality was the basis for most of the proofs in the first draft 
of the paper. Costis Skiadas then provided the authors with the following consequence of Gronwall's 
inequality, which has allowed us to simplify the structure of most of the proofs in Section 5. 

LEMMA B2: Let (Q, Y1, F, P) be a filtered probability space whose filtration F = {E,: t e [0, T]} 
satisfies the usual conditions. Suppose {Xs} and {Ys} are integrable optional processes, a is a constant, 
and {Gs} is a measurable process. Suppose, for all t, that s -* Ys is right continuous and s -* E(Ys I R9 ) 
is continuous almost surely. If YT>O a.s. and, for all t, Gt> - aIYtI a.s. and Yt=E[ftTGsds+ 
YTI Yt] a.s. then, for all t, Yt > 0 a.s. 

PROOF: Fix t E [0, T] and define the stopping time r = inf {s > t: Ys > O}. Since YT > 0 a.s., 
P{t <?r < T} = 1. Using Doob's Optional Sampling Theorem, it is easy to show that, for all 
u E [t, T], we have Ya = E[ fJGs ds + Y,I U] whenever r > u, written as 

Yu{r }E[Gsl{,r> u} ds+Y, a.s. YU {T> U} E f X G1{ > U} sYT{ u>u as 

By right continuity of Y, YT > 0 a.s. Also, for given s and on {Z: t < s < r(G)}, we have 

Gs > -a IYsjI =aYs a.s. 

Therefore, for all u E [t, T], 

Yu1{T>u}> E[f faYs1{r>u}u ds ] =E [ YS1 {r> s dsS] 

By the stochastic Gronwall-Bellman inequality, applied on [t, T], Yt1{, > t} > 0 a.s. Since Yt1{,=, t> 0 
a.s. by the definition of r, it follows that Yt > 0 a.s. Q.E.D. 

APPENDIX C: THE INFINITE HORIZON CASE 

WITH COSTIS SKIADAS 

This appendix9 addresses the definition, existence, and properties of an infinite horizon stochas- 
tic differential utility function. The issue of existence is analogous to that of stability of a nonlinear 
feedback system. Stability is guaranteed by imposing a "uniform sector condition" on the "feedback 
function." The basic properties of the finite horizon recursive utility presented in the body of the 
paper generalize directly to the infinite horizon case. For the finite time horizon T, given a 
consumption process c, and under regularity conditions on f, the main body of the paper shows the 
existence of a unique integrable semimartingale, VT, the recursive utility process corresponding to 

9A version of this appendix appeared originally as a short paper by Duffie, Epstein, and Skiadas. 
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c, defined by 

(c) VtT=E[ Tf(cVT) dssj a.s., t E[O,T] 

A utility function, UT, is then defined by letting UT(c) = Vjj. In this appendix it is shown that, under 
regularity conditions on f and c, the finite horizon recursive utility process corresponding to c 
converges to an integrable semimartingale as the horizon length goes to infinity: 

(c2) V,= lim VT as. 
T--+oo 

Furthermore, Vt satisfies, for all t and T > t, 

(c3) Vt =E[ Tf(Cs Vs) ds + VT| -j a.s. 

It is also shown that V is the unique integrable semimartingale satisfying (c3) and a transversality 
condition of the form: 

(c4) lim e vE(I V, I) = 0, 

for a suitable constant v. We call V the infinite horizon recursive utility process corresponding to c. 
An infinite horizon stochastic differential utility function, U, is then defined by letting U(c)= VO, 
and is shown to possess all of the elementary properties of UT discussed in the body of the paper. 
Duffie and Lions (1990) show existence of infinite-horizon stochastic differential utility by partial 
differential equation techniques in a Markov diffusion setting, admitting some weakening of the 
conditions below on f. 

We now proceed with the formal details. For simplicity we will omit the a.s. (almost sure) 
qualification whenever it obviously applies. The basic primitive of the model is a filtered probability 
space (Q2, , IF, P), where the filtration IF = {,F: t > 0) is assumed to satisfy the usual conditions. It is 
also assumed that 90 is trivial, that is, it only contains events of probability one or zero. 
Consumption processes are valued in a closed convex subset, e, of some separable Banach lattice. 
The reader may choose to think of e as a finite dimensional Euclidean space or its positive cone. 
For fixed v E lR, 9 is defined to be the space of all optional, e-valued processes, c = (c,; t > 0), 
such that E(JOevtIIcII2 dt) <, and is equipped with the norm I c1.ol= [E(JQe vtIct2dt)]1/2. 
Finally, for any horizon length T < oo, .9[0, T] is defined to be the space of all optional, {-valued 
processes, c, such that E(OTjIIcI112 dt) < and ct = 0 for all t > T. Notice that .9[0, T] c .9,, for all 
choices of T < oo and v. Section 3 defined a recursive utility UT over .9[0, T]. Here, the definition is 
extended to all of .9S, for an appropriate v. 

Assumptions 

The issue of existence of the infinite horizon recursive utility has the flavor of that of stability of 
nonlinear feedback systems. We can view f as a nonlinear feedback function. In control theory 
literature, f is often required to satisfy a "sector condition." (See for example Vidyasagar (1978).) 
Here we will employ a more stringent "uniform sector condition," which can also be viewed as a 
generalized Lipschitz condition. 

In the sequel f: ex Rl -* R will be taken to be a measurable function satisfying the following 
regularity conditions: 

ASSUMPTION 1: f satisfies a growth condition in consumption. That is, for some constants k1 and 
k2, and all c E %, If(c,0)I 6 k1 + k211eCI. 

ASSUMPTION 2: f satisfies the uniform sector condition in utility: For some constants v and k with 
v <k, and all c e- %, 

f(c,v3) -f(c,v) -k -- 6-,vv, 
vv 

For v = -k < 0, Assumption 2 is equivalent to a Lipschitz condition. The notation reflects the 
fact that, in general, v > 0. This is not, however, a condition required by our theory. 
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Existence and Uniqueness 

Section 3 showed that if f satisfies Assumptions 1 and 2, with v = - k, then for any c E .9[0, TI 
there is a unique integrable semimartingalel' VT that satisfies the recursive relation (ci) for 
t E [O, T] and such that Vt=O for t > T. The finite horizon recursive utility, UT: 3[0, T] -* lR, is 
then defined by letting UT(c) = VOT. The following theorem allows us to extend this definition. 

THEOREM Cl: Under Assumptions 1 and 2 and for all c E .v, the limit in (c2) exists and satisfies 
(c3). Furthermore, (c2) defines the unique integrable semimartingale V satisfying (c3) and the 
transversality condition (c4). 

Assumption 2 and the requirement that c E 3,4 play antagonistic roles. We want to find the 
largest possible v for which Assumption 2 holds, in order to allow the largest possible class of 
consumption processes implied by the theorem. 

The infinite horizon recursive utility, U: .v -* lR, can now be defined by setting U(c) = VO. Notice 
that, for 0 E 4' and f(O, 0) = 0, UT is the restriction of U to 3[0, T]. Before proving the theorem we 
give two lemmas, proved at the end of this appendix, which.will be useful in subsequent proofs. 
Until the end of the proof of Theorem 1, we fix some c E 3, 

LEMMA Cl: Suppose Vis an integrable semimartingale satisfying (c3) for some T > 0. Then, for all 
stopping times TI, T2 bounded by T, 

V,=E[f f(cs,T/)ds+VT2 on 

LEMMA C2: There exist constants K1 and K2 such that for all t 6 T, 

|TK| < K1 + K2evtE [f lcsevs ds Ft 

PROOF OF THEOREM 1: Existence: We show that the limit in (ci) exists by proving that, for each 
time t > 0, the sequence {Vn, : n > 0) is Cauchy, almost everywhere on Q2. Suppose n, m > N, fix t, 
and define the stopping times: T = inf {s: s a t, Vsn Vsm} and TN = T A N. Lemma Cl and Assump- 
tion 2 imply, for all u E [t, T], 

(vun _vm)1{z} = E[fN( f(c,svSn)-f(c,svsm))1{r>}ds 5<] 

(Vn Vm)l [(TNfC, Vn)1{>}g 

(T U N = EnV f sV >f (S} ds VS+ '(T VN U N dS -9U >N 

u 

By the stochastic Gronwall-Bellman inequality, 

( vn _Vm +< e-V( )E [ ( VTN -VTN ) '(T > U} I X ] 

(S)<e V(N t)E[(Vn | V 
m)l -T 

]. 

Because of symmetry, I ,- Vtm S 2e-v(Nt')E[ VI I + IV II 1g]. Combining this result with 
Lemma C2 proves our assertion. 

To show that V satisfies (c3), we start with Vmn = E[ftTf(csFn)ds + V!I 1 Noting that 
If(cs,J'n)I < If(cs,Fn)-f(cs,O)I + If(cs,O)I smax(k,-v)I>sjds +k1+k2IIcVII and using domi- 

10 We identify semimartingales that are versions of each other. 
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nated convergence and Lemma 2, we can let n -X oo to derive (c3). 
Uniqueness: Suppose V and V both satisfy (c3) and (c4). Arguing exactly as above, we find 

IVt,-t I ? 2e-N-' E[ I VNI + I VNI I I]. Taking expectations on both sides and letting N -X oo, we 
find Vt = Vt. This completes the proof of Theorem 1. Q.E.D. 

We conclude this section by discussing the representation: 

(c5) Vt=E[f f(cs,VI)ds S]j 
Tempting as it is, such a representation is not always valid. 

EXAMPLE: Let f(c, v) 1 - v. Then, clearly, Assumptions 1 and 2 are satisfied. For any c, the 
corresponding utilities are V,T = 1 - e(t - T) and Vt = 1. While (c2) and (c3) are satisfied, (c5) fails. 
One might suggest that (cS) be modified to 

Vt = E[f f(cs, Vs) ds 5t] + V., 

for some random variable V,, (identically equal to 1 in our case). But then consider f(c, v) 
c - (1 + c-1)v and ct = 1 + t. Again Assumptions 1 and 2 are satisfied while the corresponding 
utilities are KT = (1 + t)V,T and V, = (1 + t)Vt, with VT and V as above. Now (cS) fails even more 
seriously. However, we have the following positive result. 

PROPOSITION: Suppose v < 0, Assumptions 1 and 2 are satisfied, and c E 9S,. Then (c3) and (c5) 
are equivalent. 

PROOF: Clearly, (cS) implies (c3). For the converse, we wish to let T -4 oc and then apply the 
dominated convergence theorem as in the proof of the existence part of the above theorem. The 
reader can verify that Lemma 2 and Fubini's theorem yield the required integrability condition. It is 
here that the condition v < 0 is crucial. Q.E.D. 

Properties 

We conclude by briefly reviewing some properties of the infinite horizon stochastic differential 
utility. For this section, f is taken to satisfy Assumptions 1 and 2. Most of the basic properties are 
direct consequences of their finite horizon counterparts and equation (c2). Thus 

* U is (strictly) increasing whenever f is (strictly) increasing in consumption. 
* U is concave whenever f is concave. 
* U is time consistent in the sense of Section 5. 
The discussion on risk aversion and homotheticity in Section 5 also extends in an obvious manner 

to the infinite horizon case. A less obvious result is continuity relative to the norm I I e on 
Proof of the following is left to the end of the Appendix. 

THEOREM C2 (Continuity): The utility function U: SD, R is continuous provided f is continuous. 

Finally, the discussion of the Bellman equation in Section 6 also generalizes to an infinite 
horizon. The only change is the terminal value condition for the value function which is now 
replaced by a transversality condition as in equation (c4). The reader who has read the proofs of this 
paper will have no trouble in applying the same approach in modifying the finite horizon argument. 

An alternative approach to Bellman's equation for solving optimization problems in the presence 
of convexity is generalized Kuhn-Tucker theory. This requires the computation of the gradient of 
the utility function. Work in this direction is reported in Duffie and Skiadas (1990). 

Remaining Proofs 

PROOF OF LEMMA Cl: Equation (c3) implies that 

I f(c,Vs)ds + Vt =E[ f(cVs)ds +VT ] 

which is a martingale. Doob's Optional Stopping Theorem then allows us to replace t by rl or 72 in 
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the above equation and hence in (c3). Therefore, 

VI=E [ f(cs, V) ds + VT, I] 

and using the fact that SI 5 g2 

E[ '2I 1] E[f f(cS, VS) ds +VT 

Subtracting the last equation from the second to last, the result follows. Q.E.D. 

PROOF OF LEMMA C2: Fix t and define the stopping times: 

IT= inf (s: s > t, V 0T ) O} and r= inf(s: s > t, VT) O}, 

with the convention that inf0 = oo. Let r represent either r+ or r7 Since r T, Lemma Cl 
implies that, for all u E [t, T], 

VU1{>}=E[(f( S, VT) ds + VT)1{>}S 

and since VT+ 1{T+ > U} 6 O, 

VUT 1{+, UE[f( cs, ) 1{+ > S}dS 

The sector condition on f then implies that, for all u E [t, T], 

VUT1{T+>U}6E[f T(If(CS,o)I -PVT) 1{+ > ds d j. 

Similarly, for all u E [t, T], 

-VT,1fT->} 6 (If(cS,O)I- V T))j1{T->} dS91 

The stochastic version of the Gronwall-Bellman inequality (stated in Appendix B) gives 

VT1+ > t fEt[fe( I f(c,?)I1{ >r+s} ds| t ] 

and 

Vt 1{T_ > t 6 E [f e f(Cs )t1{r- > S} ds 9t] 

Adding the last two inequalities and noting that r+= r= 0 VtT= 0, we conclude that 

VtT| 6[T e M(S ')lfc,)dl 

The result follows by the growth condition on f. Q.E.D. 

THEOREM C2 (Continuity): The utility function U: .v -4 R is continuous provided f is continuous. 

PROOF: Suppose c, c^ e .9, and let V and V be the respective associated utility processes. Fix t 
and define the stopping times: 7 = inf{s: s > t, Vs < Vs} and TN = 7 A N. Lemma Cl and Assumption 
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2 imply that, for all u E [t, T], 

+E[(VN- VN)1{ >N}d] 

sx E I C V,)- Cs I V') |-V( r > u ) 1{T > S}) 1{| > ] 
1 

+E[(VN- VN)1{T>N}jYj 

By the stochastic Gronwall-Bellman inequality, applied on [t, T], 

(Vt-Jr)>Se (N )E[IVNI + IVNIIt ] 

+E[fNe (Ns)If (cs ) V -f(, Vf) Jds ] 

Therefore, by symmetry, 

(c6) |IV,-V, | 2 e (N )E[VN I I+ |VNI) J f ] 

+2E[f e (N s)If(CS VS) -f(S JVS)Ids ] 

Suppose now that cn - e in m. By Jensen's inequality, this implies that IT" - cu2 converges11 to 
zero in L'(Q2 X [0, oo), S? ~[O, o), u), where ,u is the product measure defined by ,u(A x B) = 

E(JBe"^tlA dt). It follows that, given any subsequence (c"'k; k = 1, 2, ), there is a further 
subsequence (c"1'; k = 1, 2,. . .) that converges to c, ,u-a.e. as k -*oo. By continuity of f, If(c, J't) - 
f(c,'k, J,I -| 0 as k o* o, ,u-a.e. Noting that 

If(c,Vt) -f(<,V N) J?If(c,,Vt)-f(ct,O)I + If(cI,O)I +I (cI k,O)t 

E[fNel^(Ns)If(cs, J+)E-f(c 'Ns, Js)Idsj f 0 as k * c. 

Let V4k be the utility process corresponding to c"1'. Then given e > 0, the above result and (c6), 
applied at t = 0, imply that there exists K such that for all k > K, 

IVoI Vtn I I2e 'NE[IVNI + IVNIF]+et 

Letting N oco and using (c4), it follows that s VO - V 's I , e for all k > K. 
We have shown that every subsequence of {U(c")- U(c)} has a further subsequence converging 

to zero. Therefore, the original sequence also converges to zero. Q.E.D. 

1l Recall that an optional process is necessarily progressively measurable. 
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