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Abstract

We consider the dynamics of learning under ambiguity when learning is
costly and is chosen optimally. The setting is Ellsberg’s two-urn thought
experiment modified by allowing the agent to postpone her choice between
bets so that she can learn about the composition of the ambiguous urn.
Signals are modeled by a di↵usion process whose drift is equal to the true
bias of the ambiguous urn and they are observed at a constant cost per unit
time. The resulting optimal stopping problem is solved and the e↵ect of
ambiguity on the extent of learning is determined. It is shown that rejection
of learning opportunities can be optimal for an ambiguity averse agent even
given a small cost.
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1. Introduction

1.1. Objectives and outline

This paper considers the connection between learning and ambiguity. A common
view is that ambiguity is a short-run phenomenon that would fade away given the
opportunity for learning. For example, consider the metaphorical example of Ells-
berg’s 2-urn thought experiment: There are two urns, each containing balls that
are either red or blue, where the ”known” or risky urn contains an equal number
of red and blue balls, and no information is provided about the proportion of red
balls in the ”unknown” or ambiguous urn. A decision-maker (DM) must choose
between betting on the color drawn from the risky urn or from the ambiguous
urn. It is intuitive that if she can first sample with replacement repeatedly, then
as her sample increases she will become increasingly confident in her assessment
of the urn’s composition, and in the limit, she will behave as if she knew the
true composition of the urn. Marinacci (2002) provides formal confirmation of
this intuition under the assumption that DM’s prior beliefs are well-specified in
the sense that the true probability law lies in their ”support,” and Marinacci and
Massari (2016) show that, under suitable assumptions, ambiguity fades away even
if prior beliefs are misspecified.

Both the noted intuition and all related formal studies of which we are aware
rely on the assumption that sampling is costless and exogenous. Here we recon-
sider the connection between learning and ambiguity when learning is costly and is
chosen optimally to balance its cost with the benefit of improved decision-making.
One would expect that a positive cost would limit the extent of learning chosen
optimally. However, intuition regarding other questions – for instance, the impact
of prior ambiguity on the extent of learning – is not clear-cut. On the one hand,
there is an incentive to learn in order to reduce ambiguity; and on the other hand,
ambiguity may reduce how much can be learned because it limits the sharpness of
inferences that can be drawn from signals. Indeed, if the second e↵ect dominates,
then could DM find it optimal to reject any sampling, no matter how short? If
so, then the presumption that ambiguity would fade away, or even diminish, in
the presence of learning opportunities must be reexamined and qualified.

To address the preceding and related questions, we modify Ellsberg’s 2-urn
thought experiment by allowing DM to postpone her choice between bets so that
she can learn about the composition of the ambiguous urn by observing realiza-
tions of a signal. Signals are modeled by a di↵usion process Z

t

whose drift is equal
to the true bias towards red. The longer the interval over which Z

t

is observed
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the larger and more informative is her sample, but there is a per-unit-time cost
c > 0 to sampling; the cost can be material or cognitive. Thus the choice of how
much to learn is the solution to an optimal stopping problem. We assume that
DM: (i) knows the distribution, conditional on the bias, of future signals (which
is the situation most favorable for learning); (ii) deals with ambiguity by solv-
ing a maxmin problem (Gilboa and Schmeidler 1989); and (iii) is forward-looking
and solves her problem by backward induction (as in the continuous-time version
of maxmin in Chen and Epstein (2002)). Under these assumptions and specific
parametric restrictions we completely describe the optimal joint learning and bet-
ting strategy. In particular, we show that it is optimal to reject the opportunity
to learn if and only if ambiguity aversion (suitably measured) exceeds a cut-o↵
level. The latter depends positively on the cost c but can be ”moderate” even if
c is small depending on other parameters of preference. (See Appendix B for a
numerical illustration of this point.)

Two further contributions merit explicit mention. The first concerns our use of
the drift di↵usion model (DDM). As stated by Milosavljevic et al (2010, p. 437),
”the drift di↵usion model is one of the cornerstones of modern psychology ... and,
increasingly, of behavioral neuroscience.” This paper is a first step in introducing
the DDM into the literature on choice under ambiguity, specifically in providing
a model that has a foundation in optimal learning theory. An important compo-
nent in doing so is the demonstration (Appendix A) that the Chen and Epstein
(2002) continuous-time model of preferences under ambiguity can be extended to
accommodate learning and partial information.

The second (potential) contribution is to robustify the classical Bayesian ap-
proach to sequential testing of two simple hypotheses about the unknown drift of
a Wiener process (Wald 1947, Ch. 6 of Peskir and Shiryaev 2006). The hypothesis
testing problem is isomorphic to the variation of this paper’s model in which the
risky urn is removed and DM chooses, after stopping, between betting on a red
or blue draw from the ambiguous urn; and the analysis herein is readily adapted.

Related literature is discussed next. The main body of the paper is contained
in Section 2 where technical details are minimized. Appendix A provides a formal
description of the model including the relevant technicalities of continuous-time
stochastic calculus. Appendix B proves our main result (Theorem 2.1) about the
solution of the optimal stopping problem.
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1.2. Related literature

The theoretical literature on learning under ambiguity is sparse and limited to
passive learning; for example, see Epstein and Schneider (2007,8) and the papers
cited in the opening paragraph for discrete-time models, and see Miao (2009)
and Choi (2016) for continuous-time models (Appendix A contains more on this
literature). One way to di↵erentiate from this paper is that, roughly speaking,
the existing literature focuses on the question ”how does exogenous learning a↵ect
ambiguity?” while we shift the focus to the question ”how does ambiguity a↵ect
the choice of how much to learn?”

There is some (mixed) evidence, derived from urns-based experiments, regard-
ing the e↵ects of learning on ambiguity aversion. Abdellaoui et al (2016) examine
empirically how the degree of ambiguity aversion varies with the number of signal
realizations the DM is permitted to observe prior to choice. They report that with
a smaller sample, ”people exhibit more ambiguity aversion for likely events, but
are more ambiguity seeking for unlikely events. Moreover, though ambiguity at-
titude becomes less pronounced as sample size increases, it does not vanish.” Our
model assumes maxmin behavior and thus precludes ambiguity seeking. Nicholls,
Romm and Zimper (2015) report that giving subjects statistical information (they
are told the results of previous draws) does not reduce violations of Savage’s sure-
thing-principle relative to that of a control group. Trautman and Zeckhauser
(2013) report that their subjects neglected opportunities to learn about an am-
biguous urn even at no visible cost. As noted, when learning opportunities are
described as in this paper, and when there is a cognitive cost to learning, even
arbitrarily small, then seeming neglect can be fully rational. Our model is sugges-
tive of experiments that could provide further evidence on the connection between
ambiguity and the demand for learning.

Our interpretation thus far is that the learning process is observable to the
modeler. An alternative is to view the model as describing DM’s unobservable
private information (Lu 2016), thought process or deliberations, (with c being
a cognitive cost), which underlie the time delay before choosing between bets.
Decision or response times have been used to distinguish between ”intuitive” and
”deliberative or reasoned” choices (for example, see Rubinstein (2007, 2013, 2016)
and the references therein). Since we model a sophisticated forward-looking agent,
interpreting quick response times as reflecting an intuitive decision-maker would
require a strictly ”as if” view of the model. In addition, while our model predicts
that ambiguity averse behavior declines with response time, Butler and Guiso
(2013, 2014) argue that intuitive choice leads to less ambiguity aversion. Rubin-
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stein (2013) finds only a weak connection between response time and Ellsberg-type
behavior.

Lastly in this introduction we mention Fudenberg, Strack and Strzalecki (2017),
which triggered our interest in the present topic. They consider an optimal stop-
ping problem under risk where a Bayesian DM decides how long to sample before
making a binary decision, and they focus particularly on the correlation between
speed and accuracy. There is some overlap in intuition as indicated below. How-
ever, our focus on ambiguity and di↵ering specifications for prior beliefs lead to a
substantially di↵erent analysis.

2. The model

2.1. The framework

There are two urns each containing balls that are either red or blue: a risky urn
in which the proportion of red balls is 1

2 and an ambiguous urn in which the color
composition is unknown. Denote by ✓ + 1

2 the unknown proportion of red balls,
where ✓ 2 ⇥ =

⇥
�1

2 ,
1
2

⇤
is the bias towards red: ✓ > 0 indicates more red than

blue, ✓ < 0 indicates the opposite, and ✓ = 0 indicates an equal number as in the
risky urn. (We suppose that the number of balls in the ambiguous urn is large
and treat ✓ as a continuous variable.)

Before choosing between bets, DM is given the opportunity to postpone her
choice so that she can learn about ✓ by observing realizations of a signal process
Z = (Z

t

) given by

Z

t

=

Z
t

0

✓ds+

Z
t

0

�dB

s

= ✓t+ �B

t

. (2.1)

Here � > 0 and B = (B
t

) is a standard Brownian motion. The underlying state
space is ⌦. Because DM observes only realizations of Z

t

, the information available
through time is represented by the filtration generated by Z, denoted {G

t

}.1
There is a constant per-unit-time cost c > 0 of learning. If DM stops learning

at t, then her conditional expected payo↵ (in utils) is X

t

; think of X

t

as the
indirect utility she can attain by choosing optimally between the bets available
at t. A stopping strategy ⌧ is an adapted R+-valued and {G

t

}-adapted random
variable defined on ⌦, that is, {! : ⌧ (!) > t} 2 G

t

for every t. The set of stopping

1Unless specified otherwise, all processes below are taken to be {Gt}-adapted even where
not stated explicitly. Abbreviate [t�0Gt by G1.

5



strategies is �. DM is forward-looking and has time 0 beliefs about future signals
given by the set P0 ⇢ � (⌦,G1). Thus as a maxmin agent she chooses an optimal
stopping strategy ⌧

⇤ by solving

max
⌧2�

min
P2P0

E

P

(X
⌧

� c⌧) . (2.2)

We proceed to describe P0 and X

t

in greater detail.
Initial beliefs about ✓ are given by the set of priors M0 ⇢ � (⇥). Assume

knowledge of the signal structure. Then prior-by-prior Bayesian updating leads
to the set-valued (and {G

t

}-adapted) process (M
t

) of posteriors on ✓. It in turn
induces a corresponding set-valued process of predictive posteriors, measures on
(⌦,G1), as follows. At each time t and signal realization z

t

, each posterior about
✓ induces a predictive posterior about the ”next step” (that is, G

t+dt

), leading to a
set of predictive posteriors about the next step. Then DM uses backward induction
to arrive at sets P

t

that describe beliefs about the entire future (that is, G1). Me-
chanically, backward induction amounts to pasting together all possible selections
of one-step-ahead beliefs. This construction captures prior ambiguity about the
parameter ✓ through M0, learning through updating M0 to Mt

, knowledge of the
signal structure (2.1), and backward induction reasoning built into the sets P

t

of
predictive posteriors including in particular into P0. The latter feature delivers a
recursive structure and hence dynamic consistency of preference. See Epstein and
Schneider (2003) for elaboration on the corresponding discrete-time model and for
axiomatic foundations. Chen and Epstein (2002) show how backward-induction
reasoning can be implemented in a continuous-time setting; Appendix A provides
a formal description and also an extension of Chen-Epstein that accommodates
learning with partial observability.

For the setting of choosing between bets on urns, X
t

takes a specific form. Bets
have prizes 1 and 0, and are evaluated according to maxmin with utility index u

which, without loss of generality, is normalized to satisfy

u (0) = 0 , u (1) = 1 .

Then the time t-conditional utility of betting on red (blue) from the ambiguous
urn is min

µ2Mt Eµ (min
µ2Mt E

⇤
µ), where

Eµ ⌘
Z

(12 + ✓)dµ and E

⇤
µ ⌘

Z
1
2 � ✓dµ .

The bet on red (or blue) from the risky urn has utility 1
2 .
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DM can choose between betting on the draw from the risky or ambiguous urn
and also on drawing red or blue. Thus, if she makes her betting choice at time t,
her payo↵ is given by

X

t

= max

⇢
min
µ2Mt

Eµ, min
µ2Mt

E

⇤
µ,

1
2

�
. (2.3)

2.2. Parametric specification

In order to obtain closed-form solutions to the optimal stopping problem, we
specialize prior beliefs about the bias and assume, for parameters 0 < ↵ <

1
2 and

0 < ✏ < 1, that2

M0 = {(1�m)��↵

+m�

↵

:
1� ✏

2
 m  1 + ✏

2
} . (2.4)

According to each prior, the urn is biased (the proportion of red is either 1
2 �↵ or

1
2+↵), but there is ambiguity about which direction for the bias is more likely. The
result is that initially DM conforms to the intuitive ambiguity-averse behavior in
Ellsberg’s 2-urn experiment: she strictly prefers to bet on the risky urn to betting
on either color from the ambiguous urn because

min
µ2M0

Eµ = min
µ2M0

E

⇤
µ =

1

2
� ✏↵ <

1

2
. (2.5)

The specification M0 involves the two parameters ↵ and ✏. We interpret ✏ as
modeling ambiguity (aversion): the set M0 can be identified with the probability
interval

⇥
1�✏

2 ,

1+✏

2

⇤
for the positive bias ↵, and this interval is larger if ✏ increases.

At the extreme when ✏ = 0, then M0 is the singleton according to which the
two biases are equally likely, and DM is a Bayesian who faces uncertainty with
variance ↵

2 about the true bias, but no ambiguity. We interpret ↵ as measuring
the degree of this prior uncertainty, or prior variance; (↵ = 0 implies certainty
that the composition of the ambiguous urn is identical to that of the risky urn).
The model’s other two parameters c and � have obvious interpretations.

Bayesian updating of each prior yields the following set of posteriors (see Ap-
pendix B):

M
t

= {(1�m)��↵

+m�

↵

: m
t

 m  m

t

} , (2.6)

2The results below are unchanged if it is assumed that M0 consists of only the two ex-
treme priors, those that correspond to m = 1+✏

2 and m = 1�✏
2 respectively.
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where

m

t

=
1�✏

1+✏

'(Z
t

)

1 + 1�✏

1+✏

'(Z
t

)
, m

t

=
1+✏

1�✏

'(Z
t

)

1 + 1+✏

1�✏

'(Z
t

)
, (2.7)

and
'(z) = exp

�
2↵z/�2

�
. (2.8)

The probability interval [m
t

,m

t

] for the positive bias ↵ changes over time, with
the response to the signal captured by the function '. Evidently, the response
is a time-invariant function of Z

t

with elasticity depending positively on the ra-
tio ↵/�

2, which is decreasing in the signal variance and increasing in the prior
variance.

One obtains, therefore, that

min
µ2Mt

Eµ = (12 + ↵)� 2↵

1 + 1�✏

1+✏

'(Z
t

)
(2.9)

min
µ2Mt

E

⇤
µ = (12 � ↵) +

2↵

1 + 1+✏

1�✏

'(Z
t

)

and hence,

X

t

= X(Z
t

) =

8
><

>:

(12 + ↵)� 2↵
1+ 1�✏

1+✏'(Zt)
if Z

t

>

�

2

2↵ log(1+✏

1�✏

)

(12 � ↵) + 2↵
1+ 1+✏

1�✏'(Zt)
if Z

t

< ��

2

2↵ log(1+✏

1�✏

)
1
2 otherwise.

(2.10)

2.3. Optimal stopping

Our main result gives the solution to the optimal stopping problem (2.2), assuming
(2.6), (2.10) and the construction of P0 that adapts Chen and Epstein (2002) and
is detailed in Appendix A.3

Let

l(r) = 2 log(
r

1� r

)� 1

r

+
1

1� r

, r 2 (0, 1) , (2.11)

3Below the qualifications ”almost surely” or ”with probability 1” should be understood
even where not stated explicitly. They are defined using any measure P in P0; the choice of P
does not matter because the measures in P0 are pairwise mutually absolutely continuous (that
is, equivalent).

8



and define br by

l(br) = 2↵3

c�

2
. (2.12)

br is uniquely defined thereby and 1
2 < br < 1, because l(·) is strictly increasing,

l(0) = �1, l(12) = 0, and l(1) = 1.

Theorem 2.1. (i) ⌧ ⇤ = 0 if and only if 1+✏

2 � br, in which case X

⌧

⇤ = X0 =
1
2 .

(ii) Let 1+✏

2 < br. Then the optimal stopping time satisfies ⌧ ⇤ > 0 and is given by

⌧

⇤ = min{t � 0 : | Z
t

|� z},

where

z =
�

2

2↵


log

1 + ✏

1� ✏

+ log
r

1� r

�
, (2.13a)

and r, br < r < 1, is the unique solution to the equation

l(r) + l(
1 + ✏

2
) =

4↵3

c�

2
. (2.14)

Moreover, on stopping either the bet on red is chosen (if Z
⌧

⇤ � z) or the bet on
blue is chosen (if Z

⌧

⇤  �z); the bet on the risky urn is never optimal at ⌧ ⇤ > 0.

Part (i) characterizes conditions under which no learning is optimal. Note that
this case excludes the limiting Bayesian model with ✏ = 0 for which some learning
is necessarily optimal for all values of the remaining parameters. In fact, it is
optimal to reject learning if and only if ambiguity, as measured by ✏, is suitably
large. Then the bet on the risky urn is chosen immediately and the opportunity
to learn is declined. The cut-o↵ value 2br�1 for ✏ is increasing in ↵ and decreasing
in c and �. Moreover, rejection of opportunities to learn about the ambiguous
urn can be rationalized even for arbitrarily small cost c. In the complementary
case where some learning is chosen, (ii) shows that it is optimal to sample as long
as the signal Z

t

lies in the continuation region or interval (�z, z). When Z

t

hits
either endpoint, learning stops and DM bets on the ambiguous urn. Thus the
risky urn is chosen (if and) only if it is not optimal to learn.

There is simple intuition for the noted features of the optimal strategy. First,
consider the e↵ect of ambiguity (large ✏) on the incentive to learn. DM’s prior
beliefs admit only ↵ and �↵ as the two possible values for the true bias. She will
incur the cost of learning if she believes that she is likely to learn quickly which of
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these is true. She understands that she will come to accept ↵ (or �↵) as being true
given realization of su�ciently large positive (negative) values for Z

t

. A di�culty
is that she is not sure which probability law in her set P0 describes the signal
process. As a conservative decision-maker, she bases her decisions on the worst-
case scenario P ⇤ in her set. Because she is trying to learn, the worst-case minimizes
the probability of extreme, hence revealing, signal realizations, which, informally
speaking, occurs if P ⇤({dZ

t

> 0} | Z
t

> 0) and P

⇤({dZ
t

< 0} | Z
t

< 0) are as
small as possible. That is, if Z

t

> 0, then the distribution of the increment dZ

t

is computed using the posterior associated with that prior in M0 which assigns
the largest probability 1+✏

2 to the negative bias �↵, while if Z
t

< 0, then the
distribution of the increment is computed using the posterior associated with the
prior assigning the largest probability 1+✏

2 to the positive bias ↵. It follows that
the prospect of learning from future signals is less attractive when viewed from
the perspective of P ⇤ the greater is ✏. A second e↵ect of an increase in ✏ is that it
reduces the ex ante utility of betting on the ambiguous urn (2.5) and hence implies
that signals in an increasingly large interval would not change betting preference.
Consequently, a small sample is unlikely to be of value–only long samples are
useful. Together, these two e↵ects suggest existence of a cuto↵ value for ✏ beyond
which no amount of learning is su�ciently attractive to justify its cost.

There remains the following question for smaller values of ✏: why is it never
optimal to try learning for a while and then, for some sample realizations, to stop
and bet on the risky urn? The intuition (adapted from Fudenberg, Strack and
Strzalecki (2017)) is that this feature is a consequence of the specification M0 for
the set of priors. To see why, suppose that Z

t

is small for some positive t. A
possible interpretation, particularly for large t, is that the true bias is small and
thus that there is little to be gained by continuing to sample – DM might as well
stop and bet on the risky urn. But this reasoning is excluded when, as in our
specification, DM is certain that the bias is ±↵. Then signals su�ciently near
0 must be noise and the situation is essentially the same as it was at the start.
Hence, if stopping to bet on the risky urn were optimal at t, it would have been
optimal also at time 0.

This intuition is suggestive of the likely consequences of generalizing the spec-
ification of M0. Suppose, for example, that M0 is such that all its priors share a
common finite support. We conjecture that then the predicted incompatibility of
learning and betting on the risky urn would be overturned if and only if the zero
bias point is in the common support.4

4One might instead deviate from finite-support priors e.g., Fudenberg, Strack and Strza-
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To conclude discussion of the theorem, consider another perspective on the
no-learning result. One might be inclined to understand it by comparing optimal
stopping under ambiguity with two Bayesian optimal stopping problems where,
respectively, the single priors are µ0 and µ0 given by µ0 (↵) = 1�✏

2 = m0 and
µ0 (↵) =

1+✏

2 = m0. These are the two extreme priors in M0. Accordingly, one
might conjecture that there is a close connection between rejection of learning by
these two fictional Bayesian agents and rejection of learning in our model with
ambiguity. In fact, one can show that rejection of learning by Bayesian agents with
single priors µ0 and µ0 respectively implies rejection of learning under ambiguity as
in (i), but that the converse is false. (Formally, the Bayesian problems are classical
and are special cases of Theorem 21.1 in Peskir and Shiryaev (2006), from which
one can derive that no learning is optimal for both Bayesian agents if and only if
1+✏

2 > r

B, where l(rB) = 4↵3

c�

2 , and hence r

B

> r > br.) In particular, ambiguity
about the bias corresponding to taking M0 equal to the convex hull of {µ0, µ0}
leads to more rejection of learning in general than what is implied by either µ0 or
µ0. This is because, as described above, the worst-case scenario under ambiguity
involves switching between the posteriors for µ0 and µ0 depending on the realized
signal, rather than using either one throughout, which means that DM perceives
the learning opportunity strictly less favorably than does either Bayesian agent.

A corollary describes some comparative statics results. Given two stopping
strategies ⌧ 1 and ⌧ 2, say that ⌧ 1 stops later if, for every t,

{! 2 ⌦ : ⌧ 1 (!)  t} ⇢ {! 2 ⌦ : ⌧ 2 (!)  t} .

If both strategies have the form in the theorem with critical values z1 and z2

respectively, then the preceding is equivalent to z1 � z2.

Corollary 2.2. DM stops sampling later in each of the following cases:
(1) c falls. (2) ✏ increases in the interval [0, 2br � 1), where br is defined in (2.12).
(3) � and ↵ both increase in such a way that ↵/�2 is constant.

That lower cost leads to longer sampling is not surprising. The second result
is more interesting. When ✏ is in the indicated interval, part (ii) of the theorem
applies and ⌧

⇤
> 0. In that case, greater ambiguity leads, as described above,

to a worst-case scenario that renders the signal structure less informative, hence
requiring a longer sample for learning enough to improve the choice between bets.

lecki (2017) assume normal priors.
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But eventually, when ✏ reaches 2br� 1, the sample size needed to learn is too long
to justify the cost, and the response time drops to zero.

Turn to (3). The separate comparative static e↵ects of � and ↵ are indeter-
minate. For example, an increase in � has two opposite e↵ects. A larger signal
variance implies a smaller response (in absolute value) to any realized signal when
updating (recall (2.8)). Therefore, any given impact on beliefs requires a stronger
signal, hence also a larger sample. However, looking forward, a larger signal
variance implies that less can be gained from future learning, which argues for
a smaller sample. The net e↵ect is indeterminate without further assumptions.
Similarly for the e↵ects of ↵, though the directions of each of the noted e↵ects
are reversed. However, when both parameters change in such a way that the ratio
↵/�

2 is constant, then only the second forward-looking e↵ect (of an increase in ↵)
applies and DM decides later.

Further properties of ⌧ ⇤ follow from well-known results regarding hitting times
of Brownian motion with drift (see Borodin and Salminen (2015), for example).
Here the question concerns the distribution of the time at which Z

t

first hits ±z,
assuming case (ii) of the theorem where some sampling is optimal. Denote by P

✓

the probability distribution of (Z
t

) if ✓ is the true bias. Then DM stops in finite
time almost surely for every ✓,

P

✓ (⌧ ⇤ < 1) = 1 .

In addition, the mean delay time according to P

✓ is finite and given by

E

✓

⌧

⇤ =

(
(z/�)2

⇥tanh(✓z/�2)
✓z/�

2

⇤
if ✓ 6= 0

(z/�)2 if ✓ = 0 .
(2.15)

In particular, E✓

⌧

⇤ falls as the absolute value of the true bias | ✓ | increases.
If ✓ > 0, then the correct choice on stopping is to choose the bet on red, which

occurs if Z
t

hits z before hitting �z; and symmetrically for bets on blue. It follows
that5

P

✓ ({ correct choice of bet }) = 1

1 + exp
⇣
�2|✓|

�

2 z

⌘ , if ✓ 6= 0 .

The probability of making the correct choice increases with ✏ and | ✓ |, and declines
with c and �.

5Apply the optional stopping theorem to the martingale e�2✓Zt/�
2

.
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The proof of the theorem yields a closed-form expression for the value function
associated with the optimal stopping problem. In particular, the value at time 0
satisfies (from (B.3) and (B.10)),

v0 � 1
2 =

(
0 if 1+✏

2 � br
c�

2

2↵2 [
1

2r(1�r) �
2

(1+✏)(1�✏) ] if 1+✏

2 < br . (2.16)

Since the payo↵ 1
2 is the best available without learning, v0 � 1

2 is the value of
the learning option. In the region 1+✏

2 < br, its value declines with ✏; and it equals
zero when 1+✏

2 � br. (The intuition for the negative relation between the value of
learning and initial ambiguity was given above.) In contrast, the value of learning
is increasing with the prior variance ↵ (Appendix C).

3. Concluding remarks

Being a first step, the model is very special. We exploited its simplicity in order
to solve the optimal stopping problem in closed-form and to provide a number of
comparative statics predictions regarding the e↵ects on optimal learning of prior
ambiguity (✏), prior variance (↵), signal variance (�) and the learning cost (c). In
addition, and perhaps surprisingly at first glance, we showed that the model can
rationalize rejection of learning opportunities, even given ambiguity averse choices
in Ellsberg’s two-urn thought experiment and even for a small cost of learning.

Naturally, specificity and simplicity of the model raise questions, left for fu-
ture research, about generality and robustness of the results. For example, we
speculated briefly on the role of the specification of initial beliefs. Some readers
may wonder about robustness to the assumption of maxmin utility. In particu-
lar, the smooth ambiguity model is a widely-used alternative for which smooth-
ness (di↵erentiability) is often highlighted as an important advantage, and it is
available in a dynamic recursive form (Klibano↵, Marinacci and Mukerji 2009).
However, it is not useful in our context because, as Skiadas (2013) has shown,
in the continuous-time limit and given Brownian uncertainty, it is observationally
equivalent to recursive expected utility (Kreps and Porteus 1978) thus implying
indi↵erence to ambiguity.
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A. Appendix: Construction of P0

We show how the approach of Chen and Epstein (2002)–CE below–can be applied
in a setting with learning and partial information. The construction that follows
is described in part for the parametric specification in Section 2.2. However, it
should be clear that it can be adapted much more generally.

Let (⌦,G1) with filtration G = {G
t

}0t<1 be defined as in Section 2.1. Fix the
volatility � > 0 as in (2.1). Suppose that under a reference probability measure
P0, W = (W

t

)0t<1 is a Brownian motion which generates the filtration {G
t

}.
CE define a set of predictive priors P0 on (⌦,G1) through specification of their
densities with respect to P0. Thus they take as primitive a set-valued process (⌅

t

),
where ⌅

t

(!) is called the set of density generators at (t,!); each ⌘

t

(!) 2 ⌅
t

(!) can
be thought of roughly as defining conditional beliefs about G

t+dt

. The associated
set of processes is

⌅ = {⌘ = (⌘
t

) | ⌘
t

(!) 2 ⌅
t

(!) dt⌦ dP0 a.s.}.

Then
P0 = {P ⌘ : ⌘ 2 ⌅} , (A.1)

where
dP

⌘

dP0
|Gt= exp{�

Z
t

0

⌘

2
s

ds�
Z

t

0

⌘

s

dW

s

} for all t .

By the Girsanov Theorem,

dW

⌘

t

= ⌘

t

dt+ dW

t

(A.2)

is a Brownian motion under P ⌘, which thus can be understood as an alternative
hypothesis about the drift of the driving process.

The components P0, W , (⌅
t

) and {G
t

} are primitives in CE. Here we specify
them in terms of the primitives of our model; notably, (⌅

t

) models the e↵ect on
beliefs of past signal realizations, that is, learning. A noteworthy feature of the
specification is that the signal process Z will serve as our reference Brownian
motion under a suitably defined measure P0.

For the purposes of this section, we take as given a measurable space (⌦,F)
and filtration {F

t

}, F
t

% F1 ⇢ F , and a collection {P µ : µ 2 M0} of pairwise
equivalent probability measures on (⌦,F). Though ✓ is an unknown deterministic
parameter, for mathematical precision we view ✓ as a random variable on (⌦,F).
Further, for each µ 2 M0, P µ induces the distribution µ for ✓ via µ(A) =

14



P

µ({✓ 2 A}) for Borel measurable A ⇢ ⇥. There is also a standard Brownian
motion B = (B

t

), with generated filtration {FB

t

}, such that B is independent of
✓ under each P

µ. B is the Brownian motion driving signals Z

t

as in (2.1) and
signals generate the subfiltration {G

t

}. (Adopt also other notation from Section
2.) All probability spaces are taken to be complete and all related filtrations are
augmented in the usual sense.

Step 1. Take µ 2 M0. By standard filtering theory (Theorem 8.3 in Lipster and

Shiryaev), if we replace the unknown parameter ✓ by the estimate b✓
µ

t

= Eµ

t

� 1
2 ,

then we can rewrite (2.1) in the form

dZ

t

= ✓̂

µ

t

(Z
t

) dt+ �(dB
t

+
✓ � ✓̂

µ

t

(Z
t

)

�

dt) (A.3)

= ✓̂

µ

t

(Z
t

) dt+ �dB̃

µ

t

,

where the innovation process (B̃µ

t

) is a standard {G
t

}-adapted Brownian motion

on (⌦,G1, P

µ). This applies in particular for the two extreme measures, µ = µ,µ,
satisfying (recall (2.6) and (2.7)), for all t,

µ

t

(↵) = m

t

and µ

t

(↵) = m

t

.

for which the corresponding parameter estimates are

b
✓

µ

t

(Z
t

) = ↵� 2↵

1 + 1+✏

1�✏

'(Z
t

)
, and (A.4)

✓̂

µ

t

(Z
t

) = ↵� 2↵

1 + 1�✏

1+✏

'(Z
t

)
.

Since (B̃µ

t

) is a standard G
t

-adapted Brownian motion on (⌦,G1, P

µ), (B̃µ

t

)
takes the same role as (W ⌘

t

) in CE. Rewrite (A.3) as

dB̃

µ

t

= � 1

�

✓̂

µ

t

(Z
t

) dt+
1

�

dZ

t

which suggests that (Z
t

/�) (resp. (�✓̂

µ

t

(Z
t

) /�)) can be chosen as the Brownian
motion (W

t

) (resp. the drift (⌘
t

)) in CE.
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Step 2. Find a reference probability measure P0 on (⌦,G1) under which (Z
t

/�)
is a {G

t

}-adapted Brownian motion on (⌦,G1). Define P0 by:

dP0
dP

µ |Gt = exp{� 1
2�2

R
t

0 (✓̂
µ

s

(Z
s

))2ds� 1
�

R
t

0 ✓̂
µ

s

(Z
s

) dB̃µ

s

}
= exp{ 1

2�2

R
t

0 (✓̂
µ

s

(Z
s

))2ds� 1
�

2

R
t

0 ✓̂
µ

s

(Z
s

) dZ
s

} .

By Girsanov’s Theorem, (Z
t

/�) is a {G
t

}-adapted Brownian motion under P0.

Step 3. Viewing P0 as a reference measure, perturb it. For each µ 2 M0, define
P

µ

0 on (⌦,G1) by

dP

µ

0

dP0
|Gt= exp{� 1

2�2

Z
t

0

(✓̂
µ

s

(Z
s

))2ds+
1

�

2

Z
t

0

✓̂

µ

s

(Z
s

) dZ
s

}.

By Girsanov, dB̃µ

t

= � 1
�

✓̂

µ

t

(Z
t

) dt+ 1
�

dZ

t

is a Brownian motion under P µ

0 .
In general, P µ 6= P

µ

0 . However, they induce the identical distribution for Z.
This is because (B̃µ

t

) is a {G
t

}-adapted Brownian motion under both P

µ and
P

µ

0 . Therefore, by the uniqueness of weak solutions to SDEs, the solution Z

t

of
(A.3) on (⌦,F1, P

µ) and the solution Z

0 of (A.3) on (⌦,G1, P

µ

0 ) have identical
distributions.6 Given that only the distribution of signals matters in our model,
there is no reason to distinguish between the two probability measures. Thus
we apply CE to the following components: W and P0 defined in Step 2, and
⌅
t

= {�✓̂

µ

t

/� : µ 2 M0} defined in (A.4). This produces the set P0 via (A.1) that
we use in our analysis.

Remark 1. Chen and Epstein (2002) do not discuss learning explicitly, but sug-
gest that their framework can accommodate any model of passive learning.7 We
are aware of two papers that explicitly address learning in the CE framework–
Choi (2016) and Miao (2009)–whose models are much di↵erent than the above.
Two core distinguishing features of Choi’s model are: (i) his set of priors M0

consists exclusively of Dirac, or dogmatic, measures which naturally do not admit
Bayesian updating; and (ii) ambiguity a↵ects learning primarily because there are
multiple-likelihoods, reflecting the assumption that the signal structure is not well
understood. See the related discrete-time work of Epstein and Schneider (2007,

6Argue as in Example 8.6.9 of Oksendal (2005). See his Section 5.3 for discussion of weak
versus strong solutions of SDEs.

7Cheng and Reidel (2013) describe how CE can be extended to study optimal stopping.
They do not discuss learning in any detail.
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2008) for the distinction between prior ambiguity about an unknown parameter,
as in our model, and ambiguity about the signal structure (or the likelihood func-
tion, as in Choi). Our focus on prior ambiguity derives from our objective–trying
to understand how learning a↵ects prior ambiguity about urn composition, for
example, in the situation most favorable for learning which is that the signal
structure is well understood.

Miao focuses on partial information and filtering in the presence of ambiguity.
In his model, application of CE is immediate and partial information does not
make much di↵erence for the analysis. He applies classical filtering for a refer-
ence model and then adds time- and history-invariant ambiguity (through CE’s
”-ignorance” specification) to the updated reference measure. There is no inter-
action between filtering and ambiguity; for example, the dependence of estimates
on the prior µ as in (A.4) is absent in his model.

B. Appendix: Proof of Theorem 2.1

First, note that the formula (2.6) describing posteriors follows from Theorem 9.1
in Lipster and Shiryaev (1977): given any µ = (1�m)�

✓1+m�

✓2 , then ⇡

t

⌘ µ

t

(✓2)
satisfies ⇡0 = m and

d⇡

t

= ✓2�✓1
�

2 ⇡

t

(1� ⇡

t

)[dZ
t

� (✓1(1� ⇡

t

) + ✓2⇡t

)dt] .

The solution is

⇡

t

=
m

1�m

'(t, Z
t

)/


1 +

m

1�m

'(t, Z
t

)

�
,

where

'(t, z) = exp{✓2 � ✓1

�

2
z � 1

2�2
(✓22 � ✓

2
1)t}.

Before proceeding to the formal proof, consider the Figure which illustrates
both the theorem and elements in the proof below. The red (blue) curve represents
the (minimum expected) payo↵ to a bet on red (blue) conditional on each signal
z. The payo↵, in green, to the bet on the risky urn equals 1/2 for every z. The
upper envelope of these three curves is the graph of X (z), the maximum payo↵
possible if sampling ceases and a bet is chosen given z. Because v, the value
function for the optimal stopping problem, includes the option of waiting longer
before choosing between bets, it lies everywhere weakly above X, and coincides
with X at values of z where further sampling is not optimal. Since z = 0 at time
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Value Functions

0, the (earliest) stopping time occurs at the smallest | z | where v and X coincide,
which occurs at 0 in I corresponding to part (i) of the theorem (ž is defined in
the proof of (i) below), and at ±z in II corresponding to part (ii) of the theorem.
Note that at stopping points there is a smooth fit between v and X as is common
in the free-boundary approach to analysing optimal stopping problems (Peskir
and Shiryaev 2006). In the zero-learning case portrayed, the contact between v

and the horizontal line at 1
2 extends for a small interval (denoted [�bz, bz] in the

proof) about 0. The two figures share the parameter values (c, �,↵) =
�
.01, 1, 18

�
.

They di↵er only in the value of ✏, (.04 versus .05), which di↵erence is significant
because the no-learning cut-o↵ value for ✏ is 2br� 1 = .0488. Accordingly, there is
no sampling when ✏ = .05 and the expected sample size when ✏ = .04 equals .61
if the true bias is zero (by (2.15)).

Proof of Theorem 2.1: For both (i) and (ii), the strategy is to: (a) guess the
P

⇤ in P0 that is the worst-case scenario; (b) solve the classical optimal stopping
problem given the single prior P ⇤; (c) show that the value function derived in (b)
is also the value function for our problem (2.2); and (d) use the value function to
derive ⌧ ⇤. The process is aided by intuition derived from analysis of the modified
optimal stopping problem where the bets on stopping are on a single fixed color,
say red, and the choice is only between urns. Analysis of this problem is simpler
because it is apparent that the worst-case, at every time and sample, corresponds
to the measure in M0 that assigns the lowest (prior and posterior) probability to
the bias towards red. (In our problem, in contrast, the identity of the worst-case
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prior varies with the sample.) Solution of the single-color problems for red and
then blue, gives value functions g1 and g2 respectively, which, in turn, appear in
the expressions (B.3) and (B.10) for the value functions for step (c).

Define g1 and g2 by, for 0 < y < 1,

g1(y;C1, C2) =
c�

2

2↵2
(2y � 1) log(

y

1� y

)� C1(y �
1

2
) + C2 , (B.1)

g2(y;C1, C2) =
c�

2

2↵2
(2y � 1) log(

y

1� y

) + C1(y �
1

2
) + C2 ,

where the constants C1 and C2 will be determined by the smooth-contact con-
ditions discussed in connection with the Figure. In particular, they will di↵er
between parts (i) and (ii).

Let P ⇤ be the probability measure in P0 which has density generator process
(⌘

t

),

�⌘

t

= (✓̂
µ

t

/�)1
Zt0 + (✓̂

µ

t

/�)1
Zt>0 .

It will be shown that P ⇤ is the worst-case scenario in P0.

Proof of (ii): Consider the classical optimal stopping problem under the measure
P

⇤,
max

⌧

E

P

⇤ [X(Z
⌧

)� c⌧ ] , (B.2)

where X(·) is defined in (2.10). To describe the value function v for this problem,
define

v(z) =

8
>>>><

>>>>:

1
2 � ↵ + 2↵

1+ 1+✏
1�✏'(z)

if z < �z

g1(1� 1
1+ 1+✏

1�✏'(z)
;C1, C2) if � z  z < 0

g2(1� 1
1+ 1�✏

1+✏'(z)
;C1, C2) if 0  z < z

1
2 + ↵� 2↵

1+ 1�✏
1+✏'(z)

if z  z,

(B.3)

where

C1 = 2↵� c�

2

2↵2
l(r̄) , and

C2 =
1

2
+

c�

2

4↵2

(2r̄ � 1)2

r̄(1� r̄)
.
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Lemma B.1. v is the value function of the classical optimal stopping problem
(B.2), i.e., for any t � 0,

v(z) = max
⌧�t

E

P

⇤ [X(Z
⌧

)� c(⌧ � t) | Z
t

= z] .

Further, v satisfies the following HJB equation

max{X(z)� v(z),�c+
1

2
�

2
v

zz

(z) + f(z,�sgn(z)✏)v
z

(z)} = 0 , (B.4)

where sgn(z) = 1 if z � 0, = �1 if z < 0, and

f(z, p) = ↵� 2↵

1 + 1+p

1�p

'(z)
. (B.5)

Finally, v also satisfies
sgn(v

z

(z)) = sgn(z) , and (B.6)

�c+
1

2
�

2
v

zz

(z) + f(z,�sgn(z)✏)v
z

(z) = 0 8z 2 (�z, z), (B.7)

For the proof, first verify that v defined in (B.3) satisfies the HJB equation (B.4),
and then apply Theorems 8.5 and 8.6 in El Karoui et al (1997). Alternatively, a
proof can be constructed along the lines of Peskir and Shiryaev (2006, Ch. 6).

Next we prove that, for t � 0,

v(z) = max
⌧�t

min
P2P0

E

P

[X(Z
⌧

)� c(⌧ � t) | Z
t

= z] ,

that is, v is the value function of our optimal stopping problem (2.2). Since v(z)
is time invariant, we prove only the case t = 0.

By Lemma B.1,

v(z) = max
⌧

E

P

⇤ [X(Z
⌧

)� c⌧ ] � max
⌧

min
P2P0

E

P

[X(Z
⌧

)� c⌧ ] .

To prove the opposite inequality, consider the stopping time

⌧

⇤ = inf{t � 0 :| Z
t

|� z}.

For t  ⌧

⇤, by Ito’s formula, (B.4), (B.6) and (B.7),

dv(Z
t

) =
1

2
�

2
v

zz

(Z
t

)dt+ v

z

(Z
t

)dZ
t

(B.8)

= [c� f(Z
t

,� sgn (Z
t

)✏)v
z

(Z
t

)]dt+ v

z

(Z
t

)dZ
t

= [c� f(Z
t

,� sgn (v
z

(Z
t

))✏)v
z

(Z
t

)]dt+ v

z

(Z
t

)dZ
t

.
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Each P = P

⇣ 2 P0 corresponds to a density generator process f(t, Z
t

, ⇣

t

) where
(⇣

t

) is a {G
t

}-adapted process taking values in [�✏, ✏]. Set

W

⇣

t

=
1

�

Z

t

+
1

�

Z
t

0

f(Z
s

, ⇣

s

)ds.

Then (W ⇣

t

) is a Brownian motion under P ⇣ and

dv(Z
t

) (B.9)

= [c+ (f(Z
t

, ⇣

t

)� f(Z
t

,� sgn (v
z

(Z
t

))✏)) v
z

(Z
t

)]dt+ �v

z

(Z
t

)dW ⇣

t

.

Because f(z, p) is increasing in p,

(f(Z
t

, ⇣

t

)� f(Z
t

,� sgn (v
z

(Z
t

))✏)) v
z

(Z
t

) � 0 .

Taking expectation in (B.9) under P ⇣ , we have

v(z)  E

P

⇣ [v(Z
⌧

⇤)� c⌧

⇤]

= E

P

⇣ [X(Z
⌧

⇤)� c⌧

⇤].

Because P

⇣ can be any measure in P0, deduce that

v(z)  min
P2P0

E

P

[X(Z
⌧

⇤)� c⌧

⇤]

 max
⌧

min
P2P0

E

P

[X(Z
⌧

)� c⌧ ] .

Conclude that v is the value function for our optimal stopping problem and
that ⌧ ⇤ is the optimal stopping time. Note that the time 0 signal Z0 = 0 falls in
the continuation region.

To complete the proof of statement (ii), let z be given by

z =
�

2

2↵
log(

1 + ✏

1� ✏

) < z .

It follows from (2.3) and (2.6) that at any given t, not necessarily an optimal
stopping time, betting on the ambiguous urn is preferred to betting on the risky
urn i↵ | Z

t

|� z. Thus at ⌧ ⇤ > 0,

| Z
⌧

⇤ |= z > z ,

and betting on the ambiguous urn is optimal on stopping.
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Remark 2. The preceding implies that P

⇤ is indeed the minimizing measure
because the minimax property is satisfied:

max
⌧

E

P

⇤
X (Z

⌧

) = max
⌧

min
P2P0

E

P

X (Z
⌧

) 

min
P2P0

max
⌧

E

P

X (Z
⌧

)  max
⌧

E

P

⇤
X (Z

⌧

) =)

min
P2P0

max
⌧

E

P

X (Z
⌧

) = max
⌧

min
P2P0

E

P

X (Z
⌧

) .

Proof of (i): The proof is similar to that of part (ii). The only di↵erence is that,
as illustrated in panel I of the Figure, there is contact between the value function
and X in an interval surrounding 0. This leads to the new constants

C3 = ↵ , C4 =
1

2
+

c�

2

2↵2
(

1

2r̂(1� r̂)
� 2),

and to the value function v given by

v(z) =

8
>>>>>><

>>>>>>:

1
2 � ↵ + 2↵

1+ 1+✏
1�✏'(z)

if z  �ž

g3(1� 1
1+ 1+✏

1�✏'(z)
;C3, C4) if � ž < z < �bz

1
2 �bz  z  bz

g4(1� 1
1+ 1�✏

1+✏'(z)
;C3, C4) if bz < z < ž

1
2 + ↵� 2↵

1+ 1�✏
1+✏'(z)

if ž  z,

(B.10)

where

ž =
�

2

2↵


log

1 + ✏

1� ✏

+ log
br

1� br

�
,

bz =
�

2

2↵


log

1 + ✏

1� ✏

+ log
1� br
br

�
.

The continuation region for this case is

(�ž,�bz) [ (bz, ž) .

Note that 1+✏

2 � br is equivalent to r̄  1+✏

2 which is also equivalent to bz � 0. Thus
1+✏

2 � br implies that
�ž  �bz < bz  ž .

The significance of the interval [�bz, bz] is that DM should stop and bet on risky
urn when Z

⌧

first enters the interval. In our context, this occurs at time 0 because
Z0 = 0. ⌅
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C. Appendix: Miscellaneous

Proof of Corollary 2.2: 1. `(·) increasing implies that br is decreasing in c.
There exists bc such that c < bc i↵ ✏ < 2br � 1 =) l(1+✏

2 ) < 4↵3

c�

2 , which implies that
both r and z increase as c falls. For c � bc, part (i) of the theorem gives ⌧ ⇤ = 0.
2. z is increasing in ✏: `0 (r) = 1

r

2(1�r)2
, dz

d✏

> 0 i↵ 2r2
1�✏

`

0 (r) > 1+✏

1�r2

1
2`

0�1+✏

2

�
i↵

(1� ✏) (1 + ✏) > r (1� r). But 1
2 <

1+✏

2 < br < r =) 1+✏

2 · 1�✏

2 > br (1� br) >

r (1� r) =) (1� ✏) (1 + ✏) > 4r (1� r) > r (1� r)
3. If `

�
1+✏

2

�
� 4↵3

c�

2 , then
1+✏

2 � br and ⌧

⇤ = 0. Next restrict attention to parameter

values satisfying `

�
1+✏

2

�
<

4↵3

c�

2 and consider an increase in ↵ with ↵/�

2 held con-
stant. In this region, r >

1
2 and z is an increasing function of r, which in turn is

an increasing function of ↵2, hence of ↵. ⌅
Verify that v0 in (2.16) is increasing in ↵: Consider two values for ↵, ↵1 < ↵2,
and prove that v↵1

0  v

↵2
0 . Use that

br↵1
< br↵2 .

If 1+✏

2 � br↵2 , then there is no learning for either ↵ and both values equal 1
2 . If

br↵1  1+✏

2 < br↵2 , then v

↵1
0 = 1

2 < v

↵2
0 .

The remaining possibility is 1+✏

2 < br↵1 . Then (2.16) applies for both ↵1 and
↵2. In the obvious notation, for ↵ = ↵1, ↵2,

v

↵

0 � 1
2 =

c�

2

2↵2
[

1

2r↵(1� r

↵)
� 2

(1 + ✏)(1� ✏)
] ,

and, by (2.14),

v

↵

0 � 1
2 =

2↵

l(r↵) + l(1+✏

2 )
[

1

2r↵(1� r

↵)
� 2

(1 + ✏)(1� ✏)
].

For x 2 (12 , 1), define

k(x) =
1

l(z) + l(1+✏

2 )
[

1

2x(1� x)
� 2

(1 + ✏)(1� ✏)
].

Since r

↵

> br↵ >

1
2 , r

↵ is increasing in ↵ and k (x) > 0, it su�ces to prove that
k

0(x) > 0. Using l

0(x) = 1
x

2(1�x)2 , compute that k0(x) =

1

(l(x) + l(1+✏

2 ))2
1

x

2(1� x)2
[(x� 1

2
)(l(x) + l(

1 + ✏

2
))� 1

2x(1� x)
+

2

(1 + ✏)(1� ✏)
]

=
1

(l(x) + l(1+✏

2 ))2
1

x

2(1� x)2
[(2x� 1)(log(

x

1� x

) +
1

2
l(
1 + ✏

2
)) + 2(

1

(1 + ✏)(1� ✏)
� 1)].
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Since 1
(1+✏)(1�✏) > 1 and x >

1
2 , conclude that k0 (x) > 0. ⌅
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