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A definition of uncertainty or ambiguity aversion is proposed. It is argued that the definition
is well-suited to modelling within the Savage (as opposed to Anscombe and Aumann) domain of
acts. The defined property of uncertainty aversion has intuitive empirical content, behaves well
in specific models of preference (multiple-priors and Choquet expected utility) and is tractable.
Tractability is established through use of a novel notion of differentiability for utility functions,
called eventwise differentiability.

1. INTRODUCTION

1.1. Objectives

The concepts of risk and risk aversion are cornerstones of a broad range of models in
economics and finance. In contrast, relatively little attention is paid in formal models to
the phenomenon of uncertainty that is arguably more prevalent than risk. The distinction
between them is roughly that risk refers to situations where the perceived likelihoods of
events of interest can be represented by probabilities, whereas uncertainty refers to situ
ations where the information available to the decision-maker is too imprecise to be sum
marized by a probability measure. Thus the terms "vagueness" or "ambiguity" can serve
as close substitutes. Ellsberg, in his famous experiment, has demonstrated that such a
distinction is meaningful empirically, but it cannot be accommodated within the subjective
expected utility (SEU) model.

Perhaps because this latter model has been so dominant, our formal understanding
of uncertainty and uncertainty aversion is poor. There exists a definition of uncertainty
aversion, due to Schmeidler (1989), for the special setting of Anscombe-Aumann (AA)
horse-race/roulette wheel acts. Though it has been transported and widely adopted in
models employing the Savage domain of acts, I feel that it is both less appealing and less
useful in such contexts. Because the Savage domain is typically more appropriate and also
more widely used in descriptive modelling, this suggests the need for an alternative defi
nition of uncertainty aversion that is more suited to applications in a Savage domain.
Providing such a definition is the objective of this paper.

Uncertainty aversion is defined for a large class of preferences. This is done for the
obvious reason that a satisfactory understanding of uncertainty aversion can be achieved
only if its meaning does not rely on preference axioms that are auxiliary rather than
germane to the issue. On the other hand, Choquet expected utility (CEU) theory (Schme
idler (1989» and its close relative, the multiple-priors model (Gilboa and Schmeidler
(1989», provide important examples for understanding the nature of our definition, as
they are the most widely used and studied theories of preference that can accommodate
Ellsberg-type behaviour. Recall that risk aversion has been defined and characterized for
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580 REVIEW OF ECONOMIC STUDIES

general preferences, including those that lie outside the expected utility class (see Yaari
(1969) and Chew and Mao (1995), for example).

There is a separate technical or methodological contribution of the paper. After the
formulation and initial examination of the definition of uncertainty aversion, subsequent
analysis is facilitated by assuming eventwise differentiability of utility. The role of event
wise differentiability may be described roughly as follows: The notion of uncertainty aver
sion leads to concern with the "local probabilistic beliefs" implicit in an arbitrary
preference order or utility function. These beliefs represent the decision-maker's underly
ing "mean" or "ambiguity-free" likelihood assessments for events. In general, they need
not be unique. But they are unique if utility is eventwise differentiable (given suitable
additional conditions). Further perspective is provided by recalling the role of differen
tiability in decision theory under risk, where utility functions are defined on cumulative
distribution functions. Much as calculus is a powerful tool, Machina (1982) has shown
that differential methods are useful in decision theory under risk. He employs Frechet
differentiability; others have shown that Gateaux differentiability suffices for many pur
poses (Chew et al. (1987». In the present context of decision making under uncertainty,
where utility functions are defined over acts, the preceding two notions of differentiability
are not useful for the task of uncovering implicit local beliefs. On the other hand, event
wise differentiability "works". Because local probabilistic beliefs are likely to be useful
more broadly, so it seems will the notion of eventwise differentiability. It must be acknow
ledged, however, that eventwise differentiability has close relatives in the literature, namely
in Rosenmuller (1972) and Machina (1992).1 The differences from this paper and the
value-added here are clarified later (Appendix C). It seems accurate to say that this paper
adds to the demonstration in Machina (1992) that differential techniques are useful also
for analysis of decision-making under uncertainty.

The paper proceeds as follows: The Schmeidler definition of uncertainty aversion is
examined first. This is accompanied by examples that motivate the search for an alterna
tive definition. Then, because the parallel with the well understood theory of risk aversion
is bound to be helpful, relevant aspects of that theory are reviewed. A new definition of
uncertainty aversion is formulated in the remainder of Section 2 and some attractive
properties are described in Section 3. In particular, uncertainty aversion is shown to have
intuitive empirical content and to admit simple characterizations within the CEU and
multiple-priors models. The notion of "eventwise derivative" and the analysis of uncer
tainty aversion given eventwise differentiability follow in Section 4. It is shown that event
wise differentiability of utility simplifies the task of checking whether the corresponding
preference order is uncertainty averse and thus enhances the tractability of the proposed
definition. Section 5 concludes with remarks on the significance of the choice between the
domain of Savage acts vs. the larger Anscombe-Aumann domain of horse-race/roulette
wheel acts. This difference in domains is central to understanding the relation between
this paper and Schmeidler (1989).

Two important limitations of the analysis should be acknowledged at the start. First,
uncertainty aversion is defined relative to an exogenously specified collection of events d.
Events in ~r¥" are thought of as unambiguous or uncertainty-free. They play a role here
parallel to that played by constant (or risk-free) acts in the standard analysis of risk
aversion. However, whether or not an event is ambiguous is naturally viewed as subjective
or derived from preference. Accordingly, it seems desirable to define uncertainty aversion

1. After a version of this paper was completed, I learned of a revision of Machina (1992), dated 1997,
that is even more closely related.
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EPSTEIN UNCERTAINTY AVERSION 581

relative to the collection of subjectively unambiguous events. Unfortunately, such a for
mulation is beyond the scope of this paper? In defence of the exogenous specification of
the collection ,observe that Schmeidler (1989) relies on a comparable specification
through the presence of objective lotteries in the Anscombe-Aumann domain. In addition,
it seems likely that given any future success in endogenizing ambiguity, the present analy-
sis of uncertainty aversion relative to a given collection will be useful.

The other limitation concerns the limited success in this paper in achieving the ulti
mate objective of deriving the behavioural consequences of uncertainty aversion. The focus
here is on the definition of uncertainty aversion. Some behavioural implications are derived
but much is left for future work. In particular, applications to standard economic contexts,
such as asset pricing or games, are beyond the scope of the paper. However, the import
ance of the groundwork laid here for future applications merits emphasis-an essential
precondition for understanding the behavioural consequences of uncertainty aversion is
that the latter term have a precise and intuitively satisfactory meaning. Admittedly, there
have been several papers in the literature claiming to have derived consequences of uncer
tainty aversion for strategic behaviour and also for asset pricing. To varying degrees these
studies either adopt the Schmeidler definition of uncertainty aversion or they do not rely
on a precise definition. In the latter case, they adopt a model of preference that has been
developed in order to accommodate an intuitive notion of uncertainty aversion and inter
pret the implications of this preference specification as due to uncertainty aversion. (This
author is partly responsible for such an exercise (Epstein and Wang (1995»; there are
other examples in the literature.) There is an obvious logical flaw in such a procedure and
the claims made (or the interpretations proposed) are unsupportable without a satisfactory
definition of uncertainty aversion.

1.2. The current definition of uncertainty aversion

In order to motivate the paper further, consider briefly Schmeidler's definition of uncer
tainty aversion. See Section 5 for a more complete description and for a discussion of the
importance of the choice between the Anscombe-Aumann domain (as in Schmeidler
(1989» and the Savage domain (as in this paper).

Fix a state space (5, L), where L is an algebra, and an outcome set/'. Denote by .f
the Savage domain, that is, the set of all finite-ranged (simple) and measurable acts e from
(5, L) into Choice behaviour relative to . f is the object of study. Accordingly, postu
late a preference order ~ and a representing utility function U defined on .X

Schmeidler's definition of uncertainty aversion has been used primarily in the context
of Choquet expected utility theory, according to which uncertain prospects are evaluated
by a utility function having the following form

UcrU(e) =Lu(e)dv, eE 'K (1.1)

Here, u: ~0Pl is a vNM utility index, v is a capacity (or non-additive probability)
on L, integration is in the sense of Choquet and other details will be provided later.' For
such a preference order, uncertainty aversion in the sense of Schmeidler is equivalent to
convexity of the capacity v, that is, to the property whereby

v(A u B) + v(A nB) ~ yeA) + v(B), (1.2)

2. Zhang (1997) is the first paper to propose a definition of ambiguity that is derived from preference, but
his definition is problematic. An improved definition is the subject of current research by this author and Zhang.

3. See Section 3.2 for the definition of Choquet integration.
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582 REVIEW OF ECONOMIC STUDIES

for all measurable events A and B. Additivity is a special case that characterizes uncer
tainty neutrality (suitably defined).

However, Ellsberg's single-urn experiment illustrates the weak connection between
convexity of the capacity and behaviour that is intuitively uncertainty averse." The urn is
represented by the state space S = {R, B, G}, where the symbols represent the possible
colours, red, blue and green of a ball drawn at random from an urn. The information
provided the decision-maker is that the urn contains 30 red balls and 90 balls in total.
Thus, while he knows that there are 60 balls that are either blue or green, the relative
proportions of each are not given. Let ~ be the decision-maker's preference over bets on
events EcS. Typical choices in such a situation correspond to the following rankings of
events"

{R}>{B} -{G}, {B, G}>{R, B} -{R, G}. (1.3)

The intuition for these rankings is well known and is based on the fact that {R} and {B, G}
have objective probabilities, while the other events are "ambiguous", or have "ambiguous
probabilities". Thus these rankings correspond to an intuitive notion of uncertainty or
ambiguity aversion.

Next suppose that the decision-maker has CEU preferences with capacity v, Then
convexity is neither necessary nor sufficient for the above rankings. For example, if vCR)=
8/24, v(B)=v(G)=7/24 and v({B,G})= 13/24, v({R, G}) =v({R,B}) =1/2, then (1.3)
is implied but v is not convex. For the fact that convexity is not sufficient, observe that
convexity does not even exclude the "opposite" rankings that intuitively reflect an affinity
for ambiguity. (Let vCR)= 1/12, v(B) = v(G) = 1/6, v( {B, G}) = 1/3, v( {R, G}) =
v({R, Bn =1/2.)

An additional example, taken from Zhang (1997), will reinforce the above and also
illustrate a key feature of the analysis to follow. An urn contains 100 balls in total, with
colour composition R, B, W, and G, such that R + B = 50 = G + B. Thus S = {R, B, G, W}
and the collection ~w= {0, S, {B, G}, {R, W}, {B, R}, {G, W}}} contains the events that
are intuitively unambiguous. It is natural to suppose that the decision-maker would use
the probability measure p on .se , where p assigns probability 1/2 to each binary event.
For other subsets of S, she might use the capacity P« defined by"

p* (E) =sup {pCB): BeE, BE ,vI}, EeS.

The fact that the capacity of any E is computed by means of an inner approximation by
unambiguous events seems to capture a form of aversion to ambiguity. However, p; is
not convex because

Finally, observe that the collection .w is not an algebra, because it is not closed with
respect to intersections. Each of {R, B} and {G, B} is unambiguous, but {B} is ambiguous,
showing that an algebra is not the appropriate mathematical structure for modelling col
lections of unambiguous events. This important insight is due to Zhang (1997). He further

4. As explained in Section 5, the examples to follow raise questions about the widespread use that has
been made of Schmeidler's definition rather than about the definition itself. Section 3.4 describes the performance
of this paper's definition of uncertainty aversion in the Ellsbergian setting.

5. In terms of acts, {R}>{B} means IR> h and so on. For CEU, a decision-maker always prefers to bet
on the event having the larger capacity.

6. p* is an inner measure, as defined and discussed further in Section 3.3.
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EPSTEIN UNCERTAINTY AVERSION 583

proposes an alternative structure, called a A-system, that is adopted below (see Section
2.2).

2. AVERSION TO RISK AND UNCERTAINTY

2.1 Risk aversion

Recall first some aspects of the received theory of risk aversion. This will provide some
perspective for the analysis of uncertainty aversion. In addition, it will become apparent
that if a distinction between risk and uncertainty is desired, then the theory of risk aver
sion must be modified.

Because a subjective approach to risk aversion is the relevant one, adapt Yaari's
(1969) analysis, which applies to the primitives (5, L),/ c7PN and ?::=, a preference over
the set of acts ,x

Turn first to "comparative risk aversion". Say that ?::=2 is more risk averse than ?::=1 if
for every act e and outcome x,

(2.1)

(2.2)

The two acts that are being compared here differ in that the variable outcomes prescribed
by e are replaced by the single outcome x. The intuition for this definition is clear given
the identification of constant acts with the absence of risk or perfect certainty.

To define absolute (rather than comparative) risk aversion, it is necessary to adopt a
"normalization" for risk neutrality. Note that this normalization is exogenous to the
model. The standard normalization is the "expected value function", that is, risk neutral
orders ?::=rn are those satisfying

e ",'" e' {=} Le(s)dm(s) ",'" Le'(s)dm(s),

for some probability measure m on (5, L), where the RN-valued integrals are interpreted
as constant acts and accordingly are ranked by ?::=rn. This leads to the following definition
of risk aversion: Say that ~ is risk averse if there exists a risk neutral order ~rn such that
?::= is more risk averse than ?::=rn. Risk loving and risk neutrality can be defined in the
obvious ways.

In the subjective expected utility framework, this notion of risk aversion is the famil
iar one characterized by concavity of the vNM index, with the required m being the
subjective beliefs or prior. By examining the implications of risk aversion for choice
between binary acts, Yaari (1969) argues that this interpretation for m extends to more
general preferences.

Three points from this review merit emphasis. First, the definition of comparative
risk aversion requires an a priori definition for the absence of risk. Observe that the identi
fication of risklessness with constant acts is not tautological. For example, Karni (1983)
argues that in a state-dependent expected utility model "risklessness" may very well corre
spond to acts that are not constant. Thus the choice of how to model risklessness is a
substantive normalization that precedes the definition of "more risk averse".

Second, the definition of risk aversion requires further an a priori definition of risk
neutrality.

The final point is perhaps less evident or familiar. Consider rankings of the sort used
in (2.1) to define "more risk averse" A decision-maker may prefer the constant act
because she dislikes variable outcomes even when they are realized on events that are
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584 REVIEW OF ECONOMIC STUDIES

understood well enough to be assigned probabilities (risk aversion). Alternatively, the
reason for the indicated preference may be that the variable outcomes occur on events
that are ambiguous and because she dislikes ambiguity or uncertainty. Thus it seems more
appropriate to describe (2.1) as revealing that ~z is "more risk and uncertainty averse
than ~I ," with no attempt being made at a distinction. However, the importance of the
distinction between these two underlying reasons seems self-evident; it is reflected also in
recent concern with formal models of "Knightian uncertainty" and decision theories that
accommodate the Ellsberg (as opposed to Allais) Paradox. The second possibility above
can be excluded, and thus a distinction made, by assuming that the decision-maker is
indifferent to uncertainty or, put another way, by assuming that there is no uncertainty (all
events are assigned probabilities). But these are extreme assumptions that are contradicted
in Ellsberg-type situations. This paper identifies and focuses upon the uncertainty aversion
component implicit in the comparisons (2.1) and, to a limited extent, achieves a separation
between risk aversion and uncertainty aversion.

2.2. Uncertainty aversion

Once again, consider orders ~ on ,t;T , where for the rest of the paper the outcome set
:;[ is arbitrary rather than Euclidean. The objective now is to formulate intuitive notions
of comparative and absolute uncertainty aversion.

Tum first to comparative uncertainty aversion. It is clear intuitively and also from
the discussion of risk aversion that one can proceed only given a prior specification of the
"absence of uncertainty". This specification takes the form of an exogenous family ,r:f!'CL
of "unambiguous" events.

Assume throughout the following intuitive requirements for, !¥": It contains Sand

A E ,w implies that ACE,~;

AI, AzE,W and AInAz=(2) imply that AIuAzE,YZ.

Zhang (1997) argues that these properties are natural for a collection of unambiguous
events and, following (Billingsley (1986), p.36), calls such collections A-systems. Intuit
ively, if an event being unambiguous means that it can be assigned a probability by the
decision-maker, then the sum of the individual probabilities is naturally assigned to a
disjoint union, while the complementary probability is naturally assigned to the comp
lementary event. As demonstrated earlier, it is not intuitive to require that vC}/4 be closed
with respect to nondisjoint unions or intersections, that is, that d be an algebra. Denote
by y ua the set of d-measurable acts, also called unambiguous acts.

The following definition parallels the earlier one for comparative risk aversion. Given
two orderings, say that ~z is more uncertainty averse than ~ I if for every unambiguous
act h and every act e in 5r ,

(2.3)

There is no loss of generality in supposing that the acts hand e deliver the identical
outcomes. The difference between the acts lies in the nature of the events where these
outcomes are delivered (some of these events may be empty). For h, the typical outcome
x is delivered on the unambiguous event h-I(x), while it occurs on an ambiguous event
given e. Then whenever the greater ambiguity inherent in e leads ~I to prefer h, the more
ambiguity averse ~z will also prefer h. This interpretation relies on the assumption that
each event in sf!' is unambiguous and thus is (weakly) less ambiguous than any EE L.
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EPSTEIN UNCERTAINTY AVERSION 585

Fix an order ;?=. To define absolute (rather than comparative) uncertainty aversion
for ;?=, it is necessary to adopt a "normalization" for uncertainty neutrality. As in the case
of risk, a natural though exogenous normalization exists, namely that preference is based
on probabilities in the sense of being probabilistically sophisticated as defined in Machina
and Schmeidler (1992). The functional form of representing utility functions reveals clearly
the sense in which preference is based on probabilities. The components of that functional
form are a probability measure m on the state space (S, I.) and a functional
W: ~(l ) _+jfl, where ~(.1 ) denotes the set of all simple (finite support) probability
measures on the outcome set I. Using m, any act e induces such a probability distribution
'Pm.e - Probabilistic sophistication requires that e be evaluated only through the distri
bution over outcomes 'Pm .e that it induces. More precisely, utility has the form

eE 1.- (2.4)

Following Machina and Schmeidler (1992, p. 754), assume also that W is strictly increas
ing in the sense of first-order stochastic dominance, suitably defined.' Denote any such
order by ;?=ps. A decision-maker with ;?=ps assigns probabilities to all events and in this way
transforms any act into a lottery, or pure risk. Such exclusive reliance on probabilities is,
in particular, inconsistent with the typical "uncertainty averse" behaviour exhibited in
Ellsberg-type experiments. Thus it is both intuitive and consistent with common practice
to identify probabilistic sophistication with uncertainty neutrality. Think of m and Was
the "beliefs" (or probability measure) and "risk preferences" underlying ;?=ps.

8

This normalization leads to the following definition: Say that ~ is uncertainty averse
if there exists a probabilistically sophisticated order ;?=ps such that ;?= is more uncertainty
averse than ~ps. In other words, under the conditions stated in (2.3),

h~{"(>P')e =} h~ (> )e. (2.5)

The intuition is similar to that for (2.3).
It is immediate that ~ and ~ps agree on unambiguous acts. Further, ~ps is indifferent

to uncertainty and thus views all acts as being risky only. Therefore, interpret (2.5) as
stating that ;?=ps is a "risk preference component" of ~. The indefinite article is needed
for two reasons-first because all definitions depend on the exogenously specified collec
tion and second, because ;?=ps need not be unique even given . Subject to these same
qualifications, the probability measure underlying ;?=ps is naturally interpreted as "mean"
or "uncertainty-free" beliefs underlying ;?=. The formal analysis below does not depend
on these interpretations.

It might be useful to adapt familiar terminology and refer to ~ps satisfying (2.5) as
constituting a support for ;?= at h. Then uncertainty aversion for ~ means that there exists
a single order ~ps that supports ~ at every unambiguous act. A parallel requirement in
consumer theory is that there exist a single price vector that supports the indifference
curve at each consumption bundle on the 45° line. (This parallel is developed further in
Section 3.4 and via Theorem 4.2(c).)

7. Write y2:x if receiving outcome y with probability I is weakly preferable, according to UP", to receiving
x for sure. 'II' first-order stochastically dominates '¥ if for all outcomes y, '¥'({XE ;( : y 2:xD ;:S,¥( {XE} : y 2:xj),
Thus the partial order depends on the utility function UP', but that causes no difficulties. See Machina and
Schmeidler (1992), for further details.

8. Subjective expected utility is the special case of (2.4) with W('¥) = J, u(x)d'¥(x). But more general risk
preferences Ware admitted, subject only to the noted monotonicity restriction. In particular, probabilistically
sophisticated preference can rationalize behaviour such as that exhibited in the Allais Paradox. It follows that
uncertainty aversion, as defined shortly, is concerned with Ellsberg-type. and not, Allais-type, behaviour.
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586 REVIEW OF ECONOMIC STUDIES

Turn next to uncertainty loving and uncertainty neutrality. For the definition of the
former, reverse the inequalities in (2.5). That is, say that ~ is uncertainty loving if there
exists a probabilistically sophisticated order ~ps such that, under the conditions stated in
(2.3),

(2.6)

The conjunction of uncertainty aversion and uncertainty loving is called uncertainty
neutrality.

2.3. A degree of separation

Consider the question of a separation between attitudes towards uncertainty and attitudes
towards risk. Suppose that ~ is uncertainty averse with support ~ps. Because ~ and ~ps

agree on the set ,'jf-ua of unambiguous acts, ~ is probabilistically sophisticated there. Thus,
treating the probability measure underlying ~ps as objective, one may adopt the standard
notion of risk aversion (or loving) for objective lotteries (see Machina (1982), for example)
in order to give precise meaning to the statement that ~ is risk averse (or loving). In the
same way, such risk attitudes are well defined if ~ is uncertainty loving. That a degree of
separation between risk and uncertainty attitudes has been achieved is reflected in the fact
that all four logically possible combinations of risk and uncertainty attitudes are admiss
ible. On the other hand, the separation is partial: If ~l is more uncertainty averse than
~2, then these two preference orders must agree on ,Tua and thus embody the same risk
aversion.

As emphasized earlier, the meaning of uncertainty aversion depends on the exogen
ously specified .ss'. That specification also bears on the distinction between risk aversion
and uncertainty aversion. The suggestion just expressed is that the risk attitude of an order
;:=::: is embodied in the ranking it induces on ,Tua

, while the attitude towards uncertainty is
reflected in the way in which ~ relates arbitrary acts e with unambiguous acts h as in
(2.3). Thus if the modeller specifies that = {0, S}, and hence that ,'jf-ua contains only
constant acts, then she is assuming that the decision-maker is not facing any meaningful
risk. Accordingly, the modeller is led to interpret comparisons of the form (2.1) as
reflecting (comparative) uncertainty aversion exclusively. At the other extreme, if the
modeller specifies that =L, and hence that all acts in ,7 are unambiguous, then she is
assuming that the decision-maker faces only risk, which leads to the interpretation of (2.1)
as reflecting (comparative) risk aversion exclusively. More generally, the specification of

reflects the modeller's prior view of the decision-maker's perception of his
environment.

3. IS THE DEFINITION ATTRACTIVE?

3.1. Some attractive properties

The definition of uncertainty aversion has been based on the a priori identification of
uncertainty neutrality (defined informally) with probabilistic sophistication. Therefore,
internal consistency of the approach should deliver this identification as a formal result.
On the other hand, because attitudes towards uncertainty have been defined relative to a
given such a result cannot be expected unless it is assumed that is "large". Suppose,
therefore, that is rich: There exist x*>x* such that for every BeE in L and A in
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(x*, A; x*, AC)~(x*,E; x*, E'),

there exists A in r ; AcA such that

(x*, A; .\*, A()~(x*,E; x*, E').

A corresponding notion of richness is valid for the roulette-wheel lotteries in the
Anscombe-Aumann framework adopted by Schmeidler (1989).9

The next theorem (proved in Appendix A) establishes the internal consistency of our
approach.

Theorem 3.1. If ~ is probabilistically sophisticated, then it is uncertainty neutral. The
converse is true if / is rich.

The potential usefulness of the notion of uncertainty aversion depends on being able
to check for the existence of a probabilistically sophisticated order supporting a given ~.

This concern with tractability motivates the later analysis of eventwise differentiability.
Anticipating that analysis, consider here the narrower question "does there exist ~ps that
both supports ~ and has underlying beliefs represented by the given probability measure
m on L? On its own, the question may seem to be of limited interest. But once eventwise
differentiability delivers m, its answer completes a procedure for checking for uncertainty
aversion.

Lemma 3.2. Let ~ps support ~ in the sense of (2.5) and have underlying probability
measure m on L. Then:

(i) For any two unambiguous acts hand h', i('PmJ,jirst-order stochastically dominates
'Pm)!', then U(h) 2': V(h').

(ii) For all acts e and unambiguous acts h,

\fin/.< = \fI1II.II :=:} U(e):S U(h).

The converse is true ~r m satisfies: For each unambiguous A and 0 < r < mA, there exists
unambiguous BcA with mB = r.

The added assumption for m is satisfied if 5 = 5\ X 52, unambiguous events are
measurable subsets of 5\ and the marginal of m on 51 is convex-ranged in the usual sense.
The role of the assumption is to ensure that, using the notation surrounding (2.4),

: \fI ' IIJI . h e.> WI: =~( / ).

3.2. Multiple-priors and CEU utilities

The two most widely used generalizations of subjective expected utility theory are CEU
and the multiple-priors model. In this subsection, uncertainty aversion is examined in the
context of these models.

9. It merits emphasis that richness of A is needed only for some results below; for example, for the necessity
parts of Theorem 3.1 and Lemma 3.4. Richness is not used to describe conditions that are sufficient for uncer
tainty aversion (or neutrality). In particular. the approach and definitions of this paper are potentially useful
even if / = {0, S}.

 at M
ugar M

em
orial L

ibrary, B
oston U

niversity on February 11, 2016
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


588 REVIEW OF ECONOMIC STUDIES

Say that ~ is a multiple-priors preference order if it is represented by a utility function
U'" of the form

UmP(e)=min f u(e)dm,
mEP S

(3.1)

for some set P of probability measures on (8, L) and some vNM index u: ,f;t ~9fi1.

Given a class .ss', it is natural to model the unambiguous nature of events in ,,14/ by
supposing that all measures in P are identical when restricted to that is,

mA =m'A for all m and m' in P and A in ,W'. (3.2)

These two restrictions on ~ imply uncertainty aversion, because ~ is more uncertainty
averse than the expected utility order ~ps with vNM index u and any probability measure
m in P. More precisely, the following intuitive result is valid:

Theorem 3.3. Any multiple-priors order satisfying (3.2) is uncertainty averse.

Proof Let ~ps denote an expected utility order with vNM index u and any
probability measure m in P. Then h~pse ¢::> f u(h)dm~ f u(e)dm~ Ump(h) = f u(h)dm~

f u(e)dm~ UmP(e). II

A commonly studied special case of the multiple-priors model is a Choquet expected
utility order with convex capacity v. Then (3.1) applies with

P= core(v) = {m:m(-)~v(-) on :E}.

Thus convexity of the capacity implies uncertainty aversion given (3.2).
Focus more closely on the CEU model, with particular emphasis on the connection

between uncertainty aversion and convexity of the capacity. The next result translates
Lemma 3.2 into the present setting, thus providing necessary and sufficient conditions for
uncertainty aversion combined with a prespecified supporting probability measure m. For
necessity, an added assumption is adopted. Say that a capacity v is convex-ranged if for
all events E1eE2 and v(E1) < r < v(E2), there exists E, E 1eEeE2, such that veE) =r. This
terminology applies in particular if v is additive, where it is standard.'? For axiomatiza
tions of CEU that deliver a convex-ranged capacity, see Gilboa (1987, p.73) and Sarin
and Wakker (1992, Proposition A.3). Savage's axiomatization of expected utility delivers
a convex-ranged probability measure.

Use the notation U'?' to refer to utility functions defined by (1.1), where the vNM
index u:;t ~_~1 satisfies

u(£» has nonempty interior in~1.

For those unfamiliar with Choquet integration, observe that for simple acts it yields

(3.3)

where the outcomes are ranked as Xl>X2>' . '>xn and the act e has e(xi) =E i , i =1, ... ,n.

10. See Rao and Rao (1983). Given countable additivity, convex-ranged is equivalent to non-atomicity.
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EPSTEIN UNCERTAINTY AVERSION 589

Lemma 3.4. Let U?" be a CEU utility function with capacity V.

(a) The following conditions are sufficient for U?" to be uncertainty averse with
supporting Ups having m as underlying probability measure: There exists a bijection
g: [0, I]~[O, I] such that

m e core(g-l(v»; and (3.4)

(3.5)

(b) Suppose that v is convex-ranged and that J¥' is rich. Then the conditions in (a) are
necessary in order that Uceu be uncertainty averse with supporting Ups having m as underlying
probability measure.

(c) Finally, in each of the preceding parts, the supporting utility Ups can be taken to be
an expected utility function if and only if in addition g is the identity function, that is,

m =v on J¥' and m;;;:; v on L. (3.6)

See Appendix A for a proof. The supporting utility function Ups that is provided by
the proof of (a) has the form (2.4), where the risk preference functional W is

W('I') = Lu(x)d(g 0 '¥)(x),

a member of the rank-dependent expected utility class (Chew et al. (1987».
Observe first that attitudes towards uncertainty do not depend on properties of the

vNM index u. More surprising is that given m, the conditions on v described in (a) are
ordinal invariants, that is, if v satisfies them, then so does cp(v) for any monotonic trans
formation cpo In other words, v and g satisfy these conditions if and only if cp(v) and g=
q>(g) do. Consequently, under the regularity conditions in the lemma, the CEU utility
function I u(e)dv is uncertainty averse if and only if the same is true for I u(e)dcp(v). The
fact that uncertainty aversion is determined by ordinal properties of the capacity makes it
perfectly clear that uncertainty aversion has little to do with convexity, a cardinal
property.

Thus far, only parts (a) and (b) of the lemma have been used. Focus now on (c),
characterizing conditions under which U'": is "more uncertainty averse than some
expected utility order with probability measure m:" Because the CEU utility functions
studied by Schmeidler are defined on horse-race/roulette-wheels and conform with
expected utility on the objective roulette-wheels, this latter comparison may be more rel
evant than uncertainty aversion per se for understanding the connection with convexity.
The lemma delivers the requirement that v be additive on S'JI' and that it admit an exten
sion to a measure lying in its core. It is well known that convexity of v is sufficient for
nonemptiness of the core, but that seems to be the extent of the link with uncertainty
aversion. The final example in Section 1.2, as completed in the next subsection, shows
that U?" may be more uncertainty averse than some expected utility order even though
its capacity is not convex.

To summarize, there appears to be no logical connection in the Savage framework
between uncertainty aversion and convexity. Convexity does not imply uncertainty aver
sion, unless added conditions such as (3.2) are imposed. Furthermore, convexity is not
necessary even for the stricter notion "more uncertainty averse than some expected utility
order" that seems closer to Schmeidler's notion. This is not to say that convexity and the
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590 REVIEW OF ECONOMIC STUDIES

associated multiple-priors functional structure that it delivers are not useful hypotheses.
Rather, the point is to object to the widely adopted behavioural interpretation of
convexity as uncertainty aversion.

3.3. Inner measures

Zhang (1997) argues that rather than convex capacities, it is capacities that are inner
measures that model uncertainty aversion. These capacities are defined as follows: Let p
be a probability measure on ,W'; its existence reflects the unambiguous nature of events in
,'41'. Then the corresponding inner measure P« is the capacity given by

P«(E) =sup {pCB): BeE, BE ,5ff}, EEL.

The fact that the capacity of any E is computed by means of an inner approximation by
unambiguous events seems to capture a form of aversion to ambiguity. Zhang provides
axioms for preference that are consistent with this intuition and that deliver the subclass
of CEU preferences having an inner measure as the capacity v.

It is interesting to ask whether CEU preferences with inner measures are uncertainty
averse in the formal sense of this paper. The answer is "sometimes" as described in the
next lemma.

Lemma 3.5. Let Uceu
( . ) == f u( . )dp*, where p* is the inner measure generated as above

from the probability measure p on ,'41'.

(a) Ifp admits an extension to a probability measure on L, then U?" is more uncertainty
averse than the expected utility function f u( . )dp.

(b) Adopt the auxiliary assumptions in Lemma 3.4(b). If U?" is uncertainty averse,
then p admits an extension from to a measure on all of E.

Proof (a) p* and p coincide on ,y/'o For every BeE, p(B)~p(E). Therefore,
P«(E) ~p(E). From the formula (3.3) for the Choquet integral, conclude that for all acts
e and unambiguous acts h,

fu(h)dp. =fu(h)dp and fu(e)dp.:;;;fu(e)dp.

(b) By Lemma 3.4 and its proof, p =P« =gem) on ,W' and m(.qf) =[0,1]. Therefore,
g must be the identity function. Again by the previous lemma, m lies in core(p*), implying
that m ap; =p on .se'. Because is closed with respect to complements, conclude that
m =p on ,w/ and hence that m is the asserted extension of p. II

Both directions in the lemma are of interest. In general, a probability measure on the
A-system ,w'need not admit an extension to the algebra L. I I Therefore, (b) shows that the
intuition surrounding "inner approximation" is flawed or incomplete, demonstrating the
importance of a formal definition of uncertainty aversion. Part (a) provides a class of
examples of Choquet expected utility functions that are more uncertainty averse than

11. Massimo Marinacci provided the following example: Let S be the set of integers {I, ... ,6} and
the A-system {0, S} u {Ai' A~: 1$i,$3}, where AI = {l, 2, 3}, A 2 = {3, 4, 5} and A 3 ::: {I, 5, 6}. Define p on as
the unique probability measure satisfying p(A i ) ::: 1/6 for all i. If P has an extension to the power set, then
P(UiAJ::: 1 > 1/2 =LiP(AJ. However, the reverse inequality must obtain for any probability measure.
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EPSTEIN UNCERTAINTY AVERSION 591

some expected utility order. These can be used to show that even if this stricter notion of
(more) uncertainty averse is adopted, the capacity p* need not be convex. For instance,
the last example in Section 1.2 satisfies the conditions in (a)-the required extension is the
equally likely (counting) probability measure on the power set. Thus preference is uncer
tainty averse, even though P« is not convex.

3.4. Bets, beliefs and uncertainty aversion

This section examines some implications of uncertainty aversion for the ranking of binary
acts. Because the ranking of bets reveals the decision-maker's underlying beliefs or likeli
hoods, these implications clarify the meaning of uncertainty aversion and help to demon
strate its intuitive empirical content. The generic binary act is denoted xEy, indicating
that x is obtained if E is realized and y otherwise.

Let ;:::= be uncertainty averse with probabilistically sophisticated order ;:::=ps satisfying
(2.5). Apply the latter to binary acts, to obtain the following relation: For all unambiguous
A, events E and outcomes Xl and X2.

xlAx2~PS(>I")XlEx2 => xlAx2~ (> )XlEx2.

Proceed to transform this relation into a more illuminating form.
Exclude the uninteresting case XI -X2 and assume that

Then XlEx2 can be viewed as a bet on the event E. As noted earlier, ~ps necessarily agrees
with the given ~ in the ranking of unambiguous acts and hence also constant acts or
outcomes, so Xl '>">». Let m be the subjective probability measure on the state space
(8, L) that underlies ~ps. Then the monotonicity property inherent in probabilistic sophis
tication implies that

XlAx2 ~PS(>ps)XIEX2 {:::} m(A d ~ (> )m(EI ).

Conclude that uncertainty aversion implies the existence of a probability measure m such
that: For all A, E, Xl and X2 as above.

m(A)~( > )m(E) => XlAx2;:::= (> )XlEx2.

One final rewriting is useful. Define, for the given pair x.>X2,

Then,

mA~(> )mE=> vA~(> lYE, (3.7)

which is the sought-after implication of uncertainty aversion."
In the special case of CEU (1.1), with vNM index satisfying u(xd =1 and U(X2) =0,

v defined as above coincides with the capacity in the CEU functional form. Even when
CEU is not assumed, (suppose that v is monotone with respect to set inclusion and) refer
to v as a capacity. The interpretation is that v represents ~ numerically over bets on

12. This condition is necessary for uncertainty aversion but not sufficient, even if there are only two
possible outcomes. That is because by taking h in (2.5) to be a constant act, one concludes that an uncertainty
averse order ~ assigns a lower certainty equivalent to any act than does the supporting order ~ps. In contrast,
(3.7) contains information only on the ranking of bets and not on their certainty equivalents. (I am assuming
here that certainty equivalents exist.)
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592 REVIEW OF ECONOMIC STUDIES

various events with the given stakes Xl and X2, or alternatively, that it represents numeri
cally the likelihood relation underlying preference ~. From this perspective, only the
ordinal properties of v are significant. 13 An implication of (3.7) is that v and m must be
ordinally equivalent on ,9'/ (though not on L).

In other words, uncertainty aversion implies the existence of a probability measure
m that supports {EEL: v(E)~v(A)} at each unambiguous A, where support is in a sense
analogous to the usual meaning, except that the usual linear supporting function defined
on a linear space is replaced by an additive function defined on an algebra. Think of the
measure m as describing the (not necessarily unique) "mean ambiguity-free likelihoods"
implicit in v and ~. This interpretation and the "support" analogy are pursued and devel
oped further in Section 4.3 under the assumption that preference is eventwise
differentiable.

In a similar fashion, one can show that uncertainty loving implies the existence of a
probability measure q on (8, L) such that

q(A);$( < )q(E) =:} v(A):$( < )v(E), (3.8)

for every EE L and A E .se'. The conjunction of (3.7) and (3.8) imply, under a mild
additional assumption, that v is ordinally equivalent to a probability measure (see Lemma
A.l), which is one step in the proof of Theorem 3.1.

Because choice between bets provides much of the experimental evidence regarding
nonindifference to uncertainty, the implication (3.7) is convenient for demonstrating the
intuitive empirical content of uncertainty aversion. The Ellsberg urn discussed in the Intro
duction provides the natural vehicle. Consider again the typical choices in (1.3). In order
to relate these rankings to the formal definition of uncertainty aversion, adopt the natural
specification

,5¥'= {0, S, {R}, {B, G}}.

Given this specification, it is easy to see that these rankings imply uncertainty aversion
the measure m assigning 1/3 probability to each colour is a support in the sense of (3.7).

Equally revealing is that the notion of uncertainty aversion excludes behaviour that
is interpreted intuitively as reflecting an affinity for ambiguity.l" To see this, suppose that
the decision-maker's rankings are changed by reversing the strict preference ">" to "<;".

These new rankings contradict uncertainty aversion: Let m be a support as in the impli
cation (3.7) of uncertainty aversion and take A = {B, G}. Then {B, G}<{R, B} implies
that m( {B, Gn < m( {R, Bn. Because m is additive, conclude that m( G) < miR). But then
uncertainty aversion applied to the unambiguous event {R} implies that {R}>{ G},
contrary to the hypothesis.

Though a general formal result seems unachievable, there is an informal sense in
which these results seem to be valid much more broadly than the specific Ellsberg experi
ment considered. Typically when choices are viewed as paradoxical relative to probabilist
ically sophisticated preferences, there is a natural probability measure on the state space
that is "contradicted" by observed choices. This seems close to saying precisely that the
measure is a support.

13. These ordinal properties are independent of the particular pair of outcomes satisfying x,>xz if (and
only if) ~ satisfies Savage's axiom P4: For any events A and B and outcomes Xl>XZ and v.>,». x,Axz~xIBxz
implies that y,Ayz~ y,Byz.

14. Alternatively, we could show that the rankings in (1.3) are inconsistent with the implication (3.8) of
uncertainty loving.
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EPSTEIN UNCERTAINTY AVERSION 593

Another revealing implication of uncertainty aversion is readily derived from (3.7).
Notation that is useful here and below is, given A, write an arbitrary event E in the form

E= A + F- G, where F= E\A and G =A\E. (3.9)

Henceforth, E + F denotes both Eu F and the assumption that the sets are disjoint. Simi
larly, implicit in the notation E - G is that GeE. Now let m be the supporting measure
delivered by uncertainty aversion. Then for any unambiguous A' and A, if FeA' nA C and
GeA,cnA,

A' - F+ G?:=A'~ A + F- G~A, (3.10)

because the first ranking implies (by the support property at A') that mF::?'mG and this
implies the second ranking (by the support property at A).15 In particular, taking A' = A c,

A C
- F+ G?:=A c

~ A + F-G~A, (3.11)

for all Fe.A' and GeA. The interpretation is that if F seems small relative to G when (as
at A') one is contemplating subtracting F and adding G, then it also seems small when
(as at A) one is contemplating adding F and subtracting G. This is reminiscent of the
familiar inequality between the compensating and equivalent variations for an economic
change, or the property of diminishing marginal rate of substitution. A closer connection
between uncertainty aversion and such familiar notions from consumer theory is possible
if eventwise differentiability of preference is assumed, as in the next section.

4. DIFFERENTIABLE UTILITIES

Tractability in applying the notion of uncertainty aversion raises the following question:
Is there a procedure for deriving from ?:= all probabilistically sophisticated orders
satisfying (2.5), or for deriving from v all candidate supporting measures m satisfying
(3.7)? Such a procedure is essential for the hypothesis of uncertainty aversion to be verifi
able. For example, within CEU, Lemma 3.4 describes the probability measures that can
serve as supports. However, to apply the description, one must be able to compute the
cores of the capacity v and of monotonic transformations of v, while even the core of v
alone is typically not easily computed from v.

In order to address the question of tractability, this section introduces the notion of
eventwise differentiability of preference. Much as within expected utility theory (where
outcomes lie in some /)n), differentiability of the vNM index simplifies the task of check
ing for concavity and hence risk aversion, eventwise differentiability simplifies the task of
checking for uncertainty aversion. That is because such differentiability permits the candi
date supporting measures to be derived via convenient calculations of the sort familiar
from calculus. Further, conditions are provided that deliver a unique supporting measure
from the eventwise derivative of utility. When combined with Lemmas 3.2 and 3.4, this
provides a practicable characterization of uncertainty aversion.

15. A slight strengthening of (3.10) is valid. Suppose that

A' F' + G'~A' all i.

for some partitions F = 'LF' and G = 'LG 1
• Only the trivial partitions were admitted above. Then additivity of the

supporting measure implies as above that mF~mG and hence that A + F- G~A.
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4.1. Definition of eventwise differentiability

The standard representation of an act, used above, is as a measurable map from states
into outcomes. Let e: S~ ,ft be such an act. An alternative representation of this act is
by means of the inverse correspondence e- l

, denoted bye. Thus e:d ~L, where e(x)
denotes the event E on which the act assumes the outcome x. For notational simplicity,
it is convenient to write e rather than eand to leave it to the context to make clear whether
e denotes a mapping from states into consequences or alternatively from outcomes into
events.

Henceforth, when examining the decision-maker's ranking of a pair of acts, view
those acts as assigning a common set of outcomes to different events. This perspective is
"dual" to the more common one, where distinct acts are viewed as assigning different
outcomes to common events. These two perspectives are mathematically equally valid;
the choice between them is a matter of convenience. The latter is well suited to the study
of risk aversion (attitudes towards variability in outcomes) and, it is argued here, the
former is well suited to the study of uncertainty aversion. The intuition is that uncertainty
or ambiguity stems from events and that aversion to uncertainty reflects attitudes towards
changes in those events.

Because acts are simple,

In addition,

{XE d: e(x):;t: 0} is finite.

{e(x): XE , e(x):;t: 0} partitions S.

(4.1)

(4.2)

The set of acts ,7 may be identified with the set of all maps satisfying these two con
ditions. In particular, ,IT CL", where the latter is defined as the set of all maps from !l
into L satisfying (4.1).

Let V: ,7 ~(;J? be a utility function from ~ and define the "eventwise derivative of
V". Because utility is defined on a subset of 1:1

, it is convenient to define derivatives first
for functions cI> that are defined on all of L"". Continue to refer to elements eE L / as acts
even when they are not elements of ,'7.

The following structure for L""is useful. Define the operations "u", "n" and "comp
lementation" (e ~ eC

) on L' co-ordinatewise; for example,

(e uf)(x) == e(x)uf(x), for all XE

Say that e andfare disjoint if e(x)nf(x) == 0 for all x, abbreviated e nf= 0. In that case,
denote the above union by e +f The notation e'\e and e'~e indicates set difference and
symmetric difference applied outcome by outcome. Similar meaning is given to gce.

Say that {fi}.7= 1 partitions f if {fi(X)} partitions f(x) for each x. Define the refine
ment partial ordering of partitions in the obvious way. Given an act f, {{fi,A}j~ 1 h
denotes the net of all finite partitions off, where A < A' if and only if the partition corre
sponding to A' refines the partition corresponding to A.

A real-valued function J1 on L ,/ is called additive if it is additive across disjoint acts.
Refer to such a function as a (signed) measure even though that terminology is usually
reserved for functions defined on algebras, while 1: r is not an algebra." Expected utility
functions, Vee) =Lx u(x)p(e(x)), are additive and hence measures in this terminology. The

16. In particular, :E'is not the product algebra on S'induced by :E. However, :E' is a ring, that is, it is
closed with respect to unions and differences.
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EPSTEIN UNCERTAINTY AVERSION 595

properties of boundedness and convex-rangedness for a measure f.1 on L' can be defined
in the natural way (see Appendix B).

Define differentiability for a function <1>: L / ~. ~)I. In order to better understand the
essence of the definition, some readers may wish to focus on the special case where the
domain of <I> is L. Then each act e is simply an event E. One can think of <I> as a capacity
and of 8<1>('; E) as its derivative at E.

Definition 4.1. <I> is (eventwise) differentiable at eEL / if there exists a bounded and
convex-ranged measure 8<1>( -; e) on L " such that: For all fc.e" and gee,

L7~ I 1<I>(e +r: -g),A) - <I> (e) - 8<1>(fi,\ e) + 8<1>(g)'\ e)1 ~A O. (4.3)

Any utility function U is defined on the proper subset f of L ', Define LU('; e) as
above, with the exception that the perturbations fi,A and g).A are restricted so that
e + f i,A - s'" lies in _T. Say that U is eventwise differentiable if the derivative exists at each
e in .7.

(To clarify the notation, suppose that e is an act in f that assumes the outcomes XI

and X2 on E and E C respectively. Letfassume (only) these outcomes on events Fc.E" and
GeE, while g assumes (only) XI and X2 on G and F respectively. Then f and g lie in L',
fcz e", gee and e + f - g is the act in f that yields XI on E + F - G and X2 on its com
plement. Further if {Fi,A} and {G i ,).. } are partitions of F and G and if f i .).. and gi,A are
defined in fashion paralleling the definitions given for f and g, then {fi,A} and {g),A} are
partitions off and g that enter into the definition of 8 U( .; e).)

The suggested interpretation is that 8 U(·; e) represents the "mean" or "uncertainty
free" assessment of acts implicit in utility, as viewed from the perspective of the act e. It
may help to recall that in the theory of expected utility over objective lotteries or risk, if
the vNM index is differentiable, then utility is linear to the first order and hence preference
is risk neutral for small gambles. The suggested parallel here is that a differentiable utility
is additive (rather than linear) and uncertainty neutral (rather than risk neutral) to the
"first-order" .

Before applying eventwise differentiability to the analysis of uncertainty aversion, the
next section provides some examples. See Appendix C for some technical aspects of event
wise differentiability, for a stronger form of differentiability (similar to that in Machina
(1992)) and for a brief comparison with Rosenmuller (1972), which inspired the above
definition.

4.2. Examples

Turn to some examples that illustrate both differentiability and uncertainty aversion. All
are special cases of the CEU model (3.3), though other examples are readily constructed.
Because the discussion of differentiability dealt with functions defined on L /' rather than
just. 7, rewrite the CEU functional form here using this larger domain. If the outcomes
satisfy XI>-X2>-' . ->x, and the act e has e(xJ =E j , i = 1, ... , n, then

Uceu(e) = L7~1' [u(xd - u(Xj+ I )]V(U: Ej ) + u(xn)v(U'; Ei ) ·

Suppose that the capacity v is eventwise differentiable with derivative 8v('; E) at E; nat
urally, differentiability is in the sense of the last section (with 1;( 1= 1). Then Uceu

(- ) is
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eventwise differentiable with derivative

(4.4)

where e'(xi) =E;. (This follows as in calculus from the additivity property of differen
tiation.) Because differentiability of utility is determined totally by that of the capacity, it
is enough to consider examples of differentiable (and nondifferentiable) capacities. In each
case where the capacity is differentiable, (4.4) describes the corresponding derivative of
utility.

The CEU case demonstrates clearly that eventwise differentiability is distinct from
more familiar notions, such as Gateaux differentiability. It is well-known that a CEU
utility function is not Gateaux differentiable, even if the vNM index is smooth, unless it
is an expected utility function. In contrast, many CEU utility functions are eventwise
differentiable, regardless of the nature of u( .).

Verification of the formulae provided for derivatives is possible using the definition
(4.3). Alternatively, verification of the stronger ,u-differentiability (see Appendix C) is
straightforward. (Define ,u by (C.2) and j1{) =p in the first two examples, =q in the third
example and = 1*II*(S) in the final example, where only "one-sided" derivatives exist.)

Example (Probability measure). Let p be a convex-ranged probability measure. Then
Dp(. ; E) = p( '), the same measure for all E. Application of (4.4) yields

DU(e'; e) = I7= 1 u(xJpE;.

Example (Probabilistic sophistication within CEU). Let

v =g(p), (4.5)

where p is a convex-ranged probability measure and g: [0, 1]~[O, 1] is increasing, onto and
continuously differentiable. The corresponding utility function lies in the rank-dependent
expected-utility class of functions studied in the case of risk where p is taken to be objec
tive. (See Chew et al. (1987) and the references therein.) Then

DV('; E) = g'(pE)p(')

and

Example (Quadratic capacity). Let

veE) =p(E)q(E),

where p and q are convex-ranged probability measures withp«q. Then

DV('; E) =p(E)q(·) +p(. )q(E),

a formula that is reminiscent of standard calculus. 17

Direct verification shows that v is convex. As for uncertainty aversion, if p and q
agree on Y/, then the probability measure on L defined by

m(·) = DV(-; A)IDV(S;A) = [q(-) +p(- )]/2,

17. More generally, a counterpart of the usual product rule of differentiation is valid for eventwise
differentiation.
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EPSTEIN UNCERTAINTY AVERSION 597

serves as a support in the sense of (3.7). That the implied CEU utility function is uncer
tainty averse in the full sense of (2.5) may be established by application of Lemma 3.4.
Observe that v = p2 = m' on , thus get) = i', Then m lies in the core of (pq)1/2, because
[PC .) + q( .)]2~ 4p( . )q( .). The probabilistically sophisticated supporting utility function Ups
is

U'''(e) =Lu(e)dm'.

Example (Interval beliefs). Let '* and 1* be two non-negative, convex-ranged meas
ures on (S, }2), such that

'*(-):;;"*(-) and O<'*(S)<l<'*(S).

Define ~ = I*(S) - 1 and

veE) = max {'*(E), I*(E) -~}.

Then v is a convex capacity on (S,}2) and has the core

core(v) =i p « M(S,}2): '* (-) :;;'p(-) :;;'1*(-) on }2}.

(4.6)

This representation for the core provides intuition for v and the reason for its name.
See Wasserman (1990) for details regarding this capacity and its applications in robust
statistics.

Because the capacity is "piecewise additive", one can easily see that though it has
"one-sided derivatives", v is generally not eventwise differentiable at any E such that
t; (E):;t:.I*(E) -~'

It follows from Theorem 3.3 and the nature of core(v) that a CEU utility U?" with
capacity v is uncertainty averse for any class such that '* (. ) = ,*(.) on /\ {S}. Because
any such class excludes events that are "close to" S, such an cannot be rich. In
fact, one can show using Lemma 3.4, that it is impossible for U?" to be uncertainty averse
relative to any rich class of unambiguous events, unless I*(-)/I*(S) = I*(-)/I*(S) on I., in
which case U'"" is probabilistically sophisticated, providing another illustration of the lack
of a connection between uncertainty aversion and convexity.

4.3. Uncertainty aversion under differentiability

To begin this section, the discussion will be restricted to binary acts; that is, uncertainty
aversion will refer to (2.6), or equivalently, to (3.7). Implications are then drawn for
uncertainty aversion in the full sense of general acts and (2.5).

The relevant derivative is DV( ; E), where vE== U(XIEx2) and U need not be a CEU
function. Assume that vE is increasing with E. Thus DV('; E) is a non-negative measure,
though not necessarily a probability measure. The suggested interpretation from Section
4.1, specialized to this case, is that DV('; E) represents the "mean" or "uncertainty-free"
likelihoods implicit in v, as viewed from the perspective of the event E. This interpretation
is natural given that DV('; E) is additive over events and hence ordinally equivalent to a
probability measure on I..

Turn to the relation between differentiability and uncertainty aversion. When v is
differentiable, analogy with calculus might suggest that the support at any event A, in the
sense of (3.7), should be unique and given by bV('; A), perhaps up to a scalar multiple.
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598 REVIEW OF ECONOMIC STUDIES

Though the analogy with calculus is imperfect, it is nevertheless the case that, under
additional assumptions, differentiability provides information about the set of supports.

The principal additional assumption may be stated as follows: ,%0 == {A E

,S4f': yeS) > max {vA, vA C}}, the set of unambiguous events A such that A and its comp
lement are each strictly less likely than S. Say that v is coherent if there exists a positive
real-valued function 1C defined on ,wo, such that

8v(-; A) =1C(A)8v(-; A C) on L, (4.7)

for each A in ,W'0. Coherence is satisfied by all the differentiable examples in Section 4.2.
By the Chain Rule for eventwise differentiability (Theorem C.I), coherence is invariant
to suitable monotonic transformations of v and thus is an assumption about the prefer
ence ranking of binary acts. It is arguably an expression of the unambiguous nature of
events in ,W'. To see this, it may help to consider first the following addition to (3.11):

A + F- G:::::;A ~ A C- F+ G?;=A c
•

This is a questionable assumption because the events A C - F + G and A + F - G are both
ambiguous. Therefore, there is no reason to expect the perspective on the change "add F
and subtract G" to be similar at A C as at A. However, if F and G are both "small", then
only mean likelihoods matter and it is reasonable that the relative mean likelihoods of F
and G be the same from the two perspectives. In fact, such agreement seems to be an
expression of the existence of "coherent" ambiguity-free beliefs underlying preference.
This condition translates into the following restriction on derivatives:

8v(F; A)~8v(G;A) ~ 8v(F; AC)~8v(G;A C).

By arguments similar to those in the proof of the theorem, this implication delivers (4.7)
under the assumptions in part (b). (Observe that the reverse implication follows from
(3.11).)

The following result is proven in Appendix A:

Theorem 4.2. Let v be eventwise differentiable.

(a) Ifv is uncertainty averse, then for all AE<%, Fe.A" and GcA,

8v(F; AC)~8v(G;A C
) ~ v(A + F- G)~v(A). (4.8)

(b) Suppose further that L is a a-algebra and that m and each 8v(',A), AE,Wo, are
countably additive, where m is a support in the sense of (3.7). Then for each A in "wo,

and

8v(F; A)m(G) ~ 8v(G; A)m(F) (4.9)

(4.11)

8v(G; AC)m(F)~8v(F;AC)m(G). (4.10)

(c) Suppose further that e54f'0 is nonempty and that v is coherent. Then the unique
countably additive supporting probability measure m is given by m(·) =8v(·; A)j8v(S; A),
for any A in vWO.

When division is permitted, the inequalities in (b) imply that

8v(F; A) m(F) 8v(F; A C)
---<--<----
8v(G; A) m(G) = 8v(G; A C)'

which suggests an interpretation as an interval bound for the "marginal rate of sub
stitution at any A between F and G".
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EPSTEIN UNCERTAINTY AVERSION 599

The relation (4.8) states roughly that for each A, DV(-; A C
) serves as a support at A.

Given our earlier interpretation for the derivative, it states that if the decision-maker
would rather bet on A + F - G than on A when ambiguity is ignored and when mean
likelihoods are computed from the perspective of A c, then she would make the same choice
also when ambiguity is considered. That is because the former event is more ambiguous
and the decision-maker dislikes ambiguity or uncertainty.

Finally, part (c) of the theorem describes conditions under which the parallel with
calculus is valid-the (countably additive) supporting measure is unique and given essen
tially by the derivative of v. Note that the support property in question here is global in
that the same measure "works" at each unambiguous A, and not just at a single given
A. i 8 This explains the need for the coherence assumption, which helps to ensure that
DV(-; A)/DV(S; A) is independent of A.

Turn to uncertainty aversion for general nonbinary acts, that is, in the sense of (2.5).
Lemma 3.2 characterizes uncertainty aversion for preferences or utility functions,
assuming a given supporting measure. Theorem 4.2 delivers the uniqueness of the support
ing measure under the stated conditions. Combining these two results produces our most
complete characterization of uncertainty aversion.

Theorem 4.3. Let U be a utility function, Xl> X2, veE) =. U(XlEX2) and suppose that
v is eventwise differentiable. Suppose further that each DV(', A), A EYo, is countably addi-
tive, . is nonempty and v is coherent. Then (1) implies (2), where:

(1) U is uncertainty averse with countahly additive supporting probability measure.
(2) U satisfies conditions (i) and (ii) of Lemma 3.2 with measure m given by

m(-) =DV(-; A)/DV(S; A), for any A in/ 0. (4.12)

Conversely, if DV('; A) is convex-ranged any for any A in ./0, then (2) implies (1).

The combination of Theorem 4.2 with Lemma 3.4 delivers a comparable result for CEU
utility functions. In particular, to verify "more uncertainty averse than some expected
utility function" (Lemma 3.4(c», one need only verify (3.6) for the particular measure m
defined in (4.12), a much easier task than computing the complete core of v.

5. CONCLUDING REMARKS

Within the Choquet expected utility framework, convexity of the capacity has been widely
taken to characterize uncertainty aversion. This paper has questioned the appeal of this
characterization and has proposed an alternative. To conclude, consider further the
relation between the two definitions and, in particular, the significance of the difference
in the domains adopted in Schmeidler (1989) and in this paper.

Denote by Jr the set of all finite-ranged (simple) and measurable acts e from (S, r)
into .1.(l ). Then J! is the domain of horse-race/roulette-wheel acts used by Anscombe
and Aumann. Each such act h involves two stages-in the first, uncertainty is resolved
through realization of the horse-race winner SE S and in the second stage the risk associ
ated with the objective lottery h(s) is resolved. An act h that yields a degenerate lottery

18. Even given (4.7), the supporting measure at a given single A is not unique, contrary to the intuition
suggested by calculus. If the support property "mF~mG~ v(A + F- G)~vA", is satisfied by m, then it is also
satisfied by any m' satisfying mi, )~m'(') on l:n A' and mi : );;;;;m'(·) on I:nA. For example, let m' be the
conditional of m given A'.
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600 REVIEW OF ECONOMIC STUDIES

h(s) in the second stage for every s can be identified with a Savage act; in other words,
5r c/;f~

Schmeidler assumes that preference ~ and the representing utility function U are
defined on the larger domain /7f'. He calls U uncertainty averse if it is quasiconcave, that
is, if

U(e)~ U(f) => U(ae + (1 - a)f)~ U(f), (5.1)

for all aE [0, 1], where the mixture ae + (1 - a)f is defined in the obvious way. The sug
gested interpretation (p. 582) is that "substituting objective mixing for subjective mixing
makes the decision-maker better off." Within Choquet expected utility theory, expanded
to the domain'JC, U?" is uncertainty averse if and only if the corresponding capacity v
is convex.

Though formulated and motivated by Schmeidler within the AA framework, the
identification of convexity of v with uncertainty aversion has been widely adopted in many
instances where the Savage domain ~9( rather than is the relevant one, that is, where
choice behaviour over ,T is the object of study and in which only such behaviour is
observable to the analyst. The Ellsberg single-urn experiment provides such a setting, but
it was shown in Section 1.2 that convexity has little to do with intuitively uncertainty
averse behaviour in that setting. One possible reaction is to suggest that the single-urn
experiment is special and that convexity is better suited to Ellsberg's other principal
experiment involving two urns, one ambiguous and the other unambiguous." Because
behaviour in this experiment is also prototypical of the behaviour that is to be modelled
and because it might be unrealistic to expect a single definition of uncertainty aversion to
perform well in all settings, good performance of the convexity definition in this setting
might restore its appeal. Moreover, such good performance might be expected because
the Cartesian product state space that is natural for modelling the two-urn experiment
suggests a connection with the horse-race/roulette-wheel acts in the AA domain. Accord
ing to this view, the state space for the ambiguous urn "corresponds" to the horse-race
stage of the AA acts and the state space for the unambiguous urn "corresponds" to the
roulette-wheel component.

In fact, the performance of the convexity definition is no better in the two-urn experi
ment than in the single-urn case. Rather than providing specific examples of capacities
supporting this assertion, it may be more useful to point out why the grounds for opti
mism described above are unsound. In spite of the apparent correspondence between the
AA setup and the Savage domain with a Cartesian product state space, these are substan
tially different specifications because, as pointed out by Sarin and Wakker (1992), only
the AA domain involves two-stage acts (the horse-race first and then the roulette-wheel)
and in Schmeidler's formulation of CEU, these are evaluated in an iterative fashion. Eich
berger and Kelsey (1996) show that this difference leads to different conclusions about
the connection between convexity of the capacity and attitudes towards randomization.
For the same reason the difference in domains leads to different conclusions about the
connection between convexity of the capacity and attitudes towards uncertainty. In par
ticular, convexity is not closely connected to typical behaviour in the two-urn experiment.

While the preceding discussion has centred on examples, albeit telling examples, there
is a general point that may be worth making explicit. The general point concerns the

19. Each urn contains 100 balls that are either red or blue. For the ambiguous urn this is all the infor
mation provided. For the unambiguous urn, the decision-maker is told that there are 50 balls of each colour.
The choice problem is whether to bet on drawing a red (or blue) ball from the ambiguous urn vs. the unambigu
ous one.
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EPSTEIN UNCERTAINTY AVERSION 601

practice of transferring to the Savage domain notions, such as uncertainty aversion, that
have been formulated and motivated in the AA framework. The difference between the
decision-maker's attitude towards the second-stage roulette-wheel risk as opposed to the
uncertainty inherent in the first-stage horse-race is the basis for Schmeidler's definition of
uncertainty aversion. The upshot is that uncertainty aversion is not manifested exclusively
or primarily through the choice of pure horse-races or acts over S. Frequently, however,
it is the latter choice behaviour that is of primary interest to the modeller. This is the case,
for example, in the Ellsberg experiments discussed above and is the reason for the weak
(or non-existent) connection between convexity and intuitive behaviour in those experi
ments. This is not to deny that convexity may be a useful hypothesis even in a Savage
framework nor that its interpretation as uncertainty aversion may be warranted where
preferences over AA acts are observable, say in laboratory experiments. Accordingly, this
is not a criticism of Schmeidler's definition within his chosen framework. It argues only
against the common practice of interpreting convexity as uncertainty aversion outside that
framework. (An alternative behavioural interpretation for convexity is provided in
Wakker (1996).)

I conclude with one last remark on the AA domain. The extension of the Savage
domain of acts to the AA domain is useful because the inclusion of second-stage lotteries
delivers greater analytical power or simplicity. This is the reason for their inclusion by
Anscombe and Aumann-to simplify the derivation of subjective probabilities-as well
as in the axiomatizations of the CEU and multiple-priors utility functions in Schmeidler
(1989) and Gilboa and Schmeidler (1989) respectively. In all these cases, roulette-wheels
are a tool whose purpose is to help in delivering the representation of utility for acts over
S. Kreps (1988, p. 101) writes that this is sensible in a normative application but "is a
very dicey and perhaps completely useless procedure in descriptive applications" if only
choices between acts over S are observable. Emphasizing and elaborating this point has
been the objective of this section.

APPENDIX

A. Proof'!

Proof of Lemma 3.2. Ups and U agree on i au. Therefore, (i) follows from (2.4) and the monotonicity
assumed for W. That Ups supports U implies by (2.5) that for all eE i and hE j "",

W('t'"" );;; W('t'mil) => U(e);? U(h).

This implies (ii).
For the converse, define ?,P' as the order represented numerically by UP',

where W: ~(/ )~ h) J is defined by

W(\{l) = U(h) for any he. ;lia satisfying \{lm.h= 't'.

Part (i) ensures that W(\{l) does not depend on the choice of h, making W well-defined. The assumption added
for m ensures that this defines Won all of ~( / ). Then Ups supports U. II

ProofofLemma 3.4. (b) UC C I1 and U'" must agree on ;- '", implying that v and mare ordinally equivalent
on . Because v is convex-ranged and / is rich, v( /) =v(L) =[0, I]. Conclude that mi. /) =[0, I] also. Thus
(3.5) is proven.
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602 REVIEW OF ECONOMIC STUDIES

Lemma 3.2(ii) implies that for all acts e and unambiguous acts h,

UCeU(e) = L;~]I [u(x;) - u(x;+ d]v(U: e(xj)) + u(xn )

~L;~ II[u(x;) - u(x;+] )]v(U: h(xj)) + u(xn ) = Uceu(h)

= L;~: [u(x;) - U(Xi+ I)]g· m(U: h(xj)) + u(xn ) ,

if m(e(xj)) =m(h(xj)) for all j. Because this inequality obtains for all u(xd>' .. > u(x,,) and these utility levels
can be varied over an open set containing some point (u(x), ... , u(x)), it follows that

g(m(U: e(xj))) = g(m(U: h(xj)))? v(U: e(xj)),

for all e and h as above. Given EEL, let e(xd =E and e(x2) =E", XI>X2. There exists unambiguous A such that
mE = mAo Let h(x]) = A and h(x2) = A c. Then g(m(E)) ~ vee) follows, proving (3.4).

The sufficiency portion (a) can be proven by suitably reversing the preceding argument. II

Proof of Theorem 3.1. The following lemma is of independent interest because of the special significance
of bets as a subclass of all acts. Notation from Section 3.4 is used below.

Lemma A.I. Suppose that is rich, with outcomes x* and x* as in the definition of richness. Let
vee) == U(x* Ex*). Then the conjunction of (3.7) and (3.8) implies that v is ordinally equivalent to a probability
measure on L (or equivalently, v satisfies (4.5)). A fortiori, the conclusion is valid if > is both uncertainty averse
and uncertainty loving.

Proof Let m and q be the hypothesized supports. Their defining properties imply that

mF~mG=>qF~qG,

for all A E .se', FeA C and GeA. But if this relation is applied to A C in place of A, noting that A C Ej,/, then the
roles of F and G are reversed and one obtains

mF~mG=>qF?qG.

In other words,

mF~mG ¢:} qF~qG,

for all AEW, Fe.A" and GeA. Conclude from (3.7) and (3.8) that

mF~mG¢:}v(A +F-G)~vA,

for all AE._"y!', FezA" and GeA; or equivalently, that for all AE_l/,

mE~mA ¢:} vE~vA.

In other words, every indifference curve for v containing some unambiguous event is also an indifference curve
for m. The stated hypothesis regardings/ ensures that every indifference curve contains some unambiguous A
and therefore that v and mare ordinally equivalent on all of L. II

Complete the proof of Theorem 3.1. Denote by ?=,ps and ?=,ps the probabilistically sophisticated preference
orders supporting ~ in the sense of (2.5) and (2.6), respectively, ~nd having underlying probability measures m
and q defined on L. From the proof of the lemma,

m and q are ordinally equivalent on L.

Claim: For each act e, there exists he .'T 1m such that

e_PSh and e-psh.

*
To see this, let e = «x;, E,)7= I)' By the richness of.,y!', there exists an unambiguous event HI, such that,
x*Hlx*-x*Elx*, or, in the notation of the lemma, v(H]) =v(Ed. Because v and mare ordinally equivalent,
m(H1 ) = m(EI) and thus also m(Hi) = m(EJ) and v(Hl) = v(Ei). Thus one can apply richness again to find a
suitable unambiguous subset H 2 of H~. Proceeding in this way, one constructs an unambiguous act
h =«x;, H i )7=d such that

v(Hi) =v(Ei) and m(Hi) =m(E;),

 at M
ugar M

em
orial L

ibrary, B
oston U

niversity on February 11, 2016
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


EPSTEIN UNCERTAINTY AVERSION 603

for all i. By the ordinal equivalence of m and q,

q(H,) =q(E,), all i.

The claim now follows immediately from the nature of probabilistic sophistication.

From (2.5), ~ and ~ps agree on /- "", Similarly, ~ and ~ps agree on /- UiJ. Therefore, ~ps and ~ps agree
there. From the claim, it follows that they agree on the complete set of acts f. The support properties (2.5)
and (2.6) thus imply that

h~pse~h~e, for all hEfUl/ and eE f.

In particular, every indifference curve for ~ps containing some unambiguous act is also an indifference curve
for ~. But the qualification can be dropped because of the claim. It follows that ~ and ~ps coincide on f. II

Proof of Theorem 4.2. (a) Let m satisfy (3.7) at A. Show first that

mF:SomG~ 8v(F; A):So8v(G; A), (AI)

for all FeA' and GeA: Fix E > 0 and let Ao be such that the expression defining 8v('; A) is less than E whenever
A> Ao. By Lemma B.I, there exist partitions {p.A }'I'- and {G}' }fA such that

mp·A :SomGi.A, }= 1, ... , n«,

and A> Ao, hence

I~~ 1I[V(A) - v(A + p.A -- G i .
A)] - [8v(Gi.\ A) - 8v(P·A; A)] 1< E.

Because m is a support,

v(A + F i .A - Gi.A):Sov(A).

8v(G; A) - 8v(F; A) = I.~~ 1 [8v(Gi.\ A) - 8v (Fi."; A)] > -E.

However, E is arbitrary. This proves (AI).
Replace A by A', in which case F and G reverse roles and deduce that

mF~mG~ 8v(F; A')~8v(G;A'),

or equivalently,
8v(F; A'):So8v(G; A') ~mF:SomG.

Because m is a support, this yields (4.8).
(b) Let A E satisfy

S> A and S> A'.

(A2)

(A3)

Claim I: 8v(A", A) > O. If it equals zero, then 8v(A '; A) =ov(0; A) implies, by (4.8), that A + A '~A, or
S-A, contrary to (A.3).

Claim 2: mA'>O. If not, then mS:SomA= I and (3.7) implies that S-A, contrary to (A.3).

Claim 3: oV(A; A') > 0 and mA > O. Replace A by A' above.

Claim 4: ov(A', A') > O. If it equals zero, then 8v(A; A')mA" = 0 by (4.9), contradicting Claim 3.

Claim 5: For any GeA, 8v(G; A) =0~ mG =0: Let F= A'. By Claim I, 8v(F; A) > O. Therefore, Lemma
B.I implies that 'v'Ao3A> Ao, 8v(P·A; A) > 0 = 8v(G; A) for all}. By (AI), 'v'Ao3A> Ao,m(FP) > meG) for all},
and thus also mF> I.~~ I (mG). This implies mG = O.

Claim 6: For any FeA', mF=0~8v(F:A) 0: mF=O~(by (AI» oV(F;A);;;;;8v(G;A) for all GeA.
Claim 4 implies 8v(G; A) > 0 if G = A. Therefore. 8v('; A) convex-ranged implies (Lemma B.l) that 8v(F; A) =
O.

Claim 7: m is convex-ranged: By Claim 5, m is absolutely continuous with respect to ov(·; A) on A. The
latter measure is convex-ranged. Therefore, m has no atoms in A. Replace A by A' and use the convex range of
ov(·; A'") to deduce in a similar fashion that m has no atoms in A'. Thus m is non-atomic. Because it is also
countably additive by hypothesis, conclude that it is convex-ranged (Rao and Rao (1983), Theorem 5.1.6).
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Turn to (4.9); (4.10) may be proven similarly. Define the measures J-L and p on ACx A as follows

J-L =m~ DVC; A), p = DV(·;A)0m.

Claims 5 and 6 prove that p«J-L. Denote by h e dpf du. the Radon-Nikodym density. (Countable additivity is
used here.)

Claim 8: J-L{(s, t)e ACx A: h(s, t) > I} = 0: If not, then there exist FocA c and GocA, with J-L(Fox Go) > 0,
such that

h > 1 on Fo x Go.

Case 1: mFo= mGo. Integration delivers I Fo I Go [h(s, t) - 1]dJ-L > 0, implying that

DV(Fo; A)mGo- mFoDv(Go; A) > O.

Consequently, mFo=mGo and 8v(Fo; A) > 8v(Go; A), contradicting (A.I).

Case2: mFo< mGo. Because m is convex-ranged (Claim 7), there exists G1 cGo such that mG1 =mFo and
J-L(Fox G1 ) > O. Thus the argument in Case 1 can be applied.

Case 3: mFo> mGo. Similar to Case 2.

This proves Claim 8. Finally, for any Fe.A" and GcA, 8v(F; A)(mG) - (mF)8v(G; A) = IF IG (h -1)dJ-L~

0, proving (4.9).

(c) Though at first glance the proof may seem obvious given (4.11), some needed details are provided
here. Let AE,;;/J. Multiply through (4.9) by 8v(G;A C) to obtain that

Dv(F; A)8v(G; AL)mG~Dv(G;A)8v(G; AL)mF,

for all Fe.A" and GcA. Similarly, multiplying through (4.10) by 8v(G; A) yields

DV(G;A)DV(G; AC)mF~Dv(G; A)8v(F; AC)mG,

for all such F and G. Conclude from coherence that

DV(G;A)DV(G; AC)mF =DV(G;A)DV(F; AC)mG, (AA)

for all Fez A" and GeA.
Take G =A in (AA) to deduce

8v(F; A C) = 8v(A; AC)m(F)jm(A),

Next take F= A" in (AA). If DV(G;A) > 0, then

8v(G; A C) =DV(AC, AC)m(G)jm(AC),

for all FcA c
•

for all GcA.

(A.5)

(A.6)

This equation is true also if DV(G;A) =0, because then (4.8), with F= A C, implies 8v(A C
; A)m(G) =0, which

implies mG =0 by Claim 1.
Substitute the expressions for DV(F; A C

) and 8v(G; A C) into (A.4) and set F= A C and G =A to derive

8v(A C
; Ajjm(Aj =8v(A; Ajjm(A) =. a(A) > O.

Thus

8v(-;A L)= {a(A)m(-)
a(A)m(')

By additivity, it follows that 8vC; AL)=a(A)mC) on all of E. Thus 8v(-; A) = IC(A)a(A)m('), completing the
proof. II

B. Additive Functions on ~d'

Some details are provided for such functions, as defined in Section 4.1.
For any additive J-L, J-L(0) =0 and

J-L(e) = Lx J-LAe(x)), (B.l)

where J-Lx is the marginal measure on L defined by J-Lx(E) =the J-L-measure of the act that assigns E to the outcome
x and the empty set to every other outcome.
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(B.2)

Apply to each marginal the standard notions and results for finitely additive measures on an algebra (see
Rao and Rao (1983)). In this way, one obtains a decomposition of /1,

where /1+ and /1- are non-negative measures. Define

Say that the measure /1 is bounded if

s~p 1/11 U) =sup {I;~ I 1/1U i
.
A

) I: fe L' , A}< CXJ.

Call the measure /1 on L' convex-ranged if for every e and rE (0, I/11(e)), there exists b, bee such that I/11(b) == r,
where e and b are elements of L' .

Lemma B.l summarizes some useful properties of convex-ranged measures on L' . See Rao and Rao
(1983), pp. 142-143 for comparable results for measures on an algebra. In Rao and Rao (1983), property (b) is
referred to as strong continuity.

Lemma B.l. Let /1 be a measure on L' Then the following statements are equivalent:

(a) /1 is convex-ranged.
(b) For any act f, with corresponding net of all finite partitions {FA }i~ I, andfor any e > 0, there exists Ao

such that

A >Ao=} 1/1IU'·).)<£, for i> 1, ... .n«.

(c) For any acts f, g and h=-f+g, ij'/1(f»/1(g), then there exists a partition {h/·A}i'=l ofh, such that
/1(hi .

A) < e and /1(hJ•
Anf) > /1(h i .

Ang). j = L ... ,n i .

C. Differentiability

This Appendix elaborates on mathematical aspects of the definition of eventwise differentiability. Then it
describes a stronger differentiability notion.

The requirement of convex range for 8<1>( : e) is not needed everywhere, but is built into the definition for
ease of exposition. Though I use the term derivative, 8<1> ( .; e) is actually the counterpart of a differential. The
need for a signed measure arises from the absence of any monotonicity assumptions. If <1>( .) is monotone with
respect to inclusion e, then each 8<1> ( -; e) is a non-negative measure.

The limiting condition (4.3) may seem unusual because it does not involve a difference quotient. It may
be comforting, therefore, to observe that a comparable condition can be identified in calculus: For a function
cp:jfJl~. A)l that is differentiable at some x III the usual sense, elementary algebraic manipulation of the
definition of the derivative cp'(x) yields the following expression paralleling (4.3):

I;v= I [cp(x + N I ) - cp(x) - N -'cp'(x)] ~N-+Y 0.

Further clarification is afforded as follows by comparison with Gateaux differentiability: Roughly speak
ing, eventwise differentiability at e states that the difference <I>(e vI: g) - <I> (e) can be approximated by
8<1>(f; e) - 8<1>(g; e) for suitably "small" f and g. where the small size of the perturbation" f - g" is in the sense
of the fineness of the partitions as Agrows. Naturally, it is important that the approximating functional 8<1> ( . ; e)

is additive (a signed measure). There is an apparent parallel with Gateaux (directional) differentiability of func
tions defined on a linear space-'j- g" represents the "direction" of perturbation and the additive approxi
mation replaces the usual linear one. Note that the perturbation from e to e +f - g is perfectly general; any e'
can be expressed (uniquely) in the form e' == e +/- g, with fee' and gee (see (3.9)).

A natural question is "how restrictive is the assumption of eventwise differentiability?" In this connection,
the reader may have noted that the definition is formulated for an arbitrary state space S and algebra L. How
ever, eventwise differentiability is potentially interesting only in cases where these are both infinite. That is
because if L is finite, then <I> is differentiable if and only if it is additive.

Another question concerns the uniqueness of the derivative. The limiting condition (4.3) has at most one
solution, that is, the derivative is unique if it exists: If p and q are two measures on L / satisfying the limiting
property, then for each gee" Ip(g) -q(g)! SI;~ I !p(g,.A) - q(g').)1 ~).O. Therefore, p(g) == q(g) for all gee. Simi
larly, prove equality for all fee' and then apply additivity.

Next I describe a Chain Rule for eventwise differentiability.
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Theorem C.l. Let <1>: I:'" ~~I be eventwise differentiable at e and qJ: <1>(I:")~~1 be strictly increasing
and continuously differentiable. Then qJ 0 <I> is eventwise differentiable at e and

D(qJ 0 <1»('; e) = qJ'(<I> (e))D<I>(-; e)

Proof Consider the sum whose convergence defines the eventwise derivative of qJ 0 <1>. By the Mean Value
Theorem,

qJ 0 <I>(e +r: -g},A) - qJ' <1> (e) = qJ'(z},A)[<1>(e +l·A - g},A) - <I> (e)],

for suitable real numbers z},A. Therefore, it suffices to prove that

By the continuity of qt, the second term converges to zero uniformly inj. Eventwise differentiability of <I> implies
that given f, there exists Ao such that A> Ao =>

L;~ I 1<1>(e +f},A - g},A) - <1> (e) I;;;;f + L;~ I ID<1>(f},A; e) - D<1>(g},A; e)I

;;;;;£ + L;~ I (ID<1>(f},A; e)1+ ID<1>(g}'\ e) I);;;;; K,

for some K < 00 that is independent of A, f and g, as provided by the boundedness of the measure D<I>(·; e).

Eventwise differentiability is inspired by Rosenmuller's (1972) notion, but there are differences. Rosen
muller deals with convex capacities defined on L' rather than with utility functions defined on acts. Even within
that framework, his formulation differs from (4.3) and relies on the assumed convexity. Moreover, he restricts
attention to "one-sided" derivatives, that is, where the inner perturbation g is identically empty (producing an
outer derivative), or where the outer perturbationfis identically empty (producing an inner derivative). Finally,
Rosenmuller's application is to co-operative game theory rather than to decision theory.

A strengthening of eventwise differentiability, called )1-differentiability, is described here. The stronger
notion is more easily interpreted, thus casting further light on eventwise differentiability, and it delivers a form
of the Fundamental Theorem of Calculus. Machina (1992) introduces a very similar notion. Because it is new
and still unfamiliar and because our formulation is somewhat different and arguably more transparent, a detailed
description seems in order."

To proceed, adopt as another primitive a non-negative, bounded and convex-ranged measure )1 on I: ',
This measure serves the "technical role" of determining the distance between acts. To be precise, if e and e' are
identified whenever )1(et.e') =0, then

d(e, e') = )1(e,1e') (C.l)

defines a metric on I:"'; the assumption of convex range renders the metric space path-connected (by Volkmer
and Weber (1983), see also Landers (1973), Lemma 4).

One way in which such a measure can arise is from a convex-ranged probability measure u, on I:. Given
)10, define )1by

)1(e)=Lx )1o(e(x )). (C.2)

Once again let <1>: k? ~ )pl. Because acts e and e' are identified when )1(et.e') =0, <I> is assumed to satisfy
the condition

)1(et.e') =°=><I>(e u f) =<I>(e' u j), for allf (C.3)

In particular, acts of )1-measure 0 are assumed to be "null" with respect to <1>.

Definition C.2. <1> is u-differentiable at eE I: "if there exists a bounded and convex-ranged measure D<1>('; e)
on I: "', such that for allfeec and gee,

as )1(f+ g) ~o.

1<I>(e +f - g) - <1> (e) - D<1>(j; e) + D<I>(g; e)1/)1(f+g) ~o (C.4)

21. As mentioned earlier, after a version of this paper was completed, I learned of a revision of Machina
(1992), dated 1997, in which Machina provides a formulation very similar to that provided in this subsection.
The connection with the more general "partitions-based" notion of eventwise differentiability, inspired by
Rosenmuller (1972), is not observed by Machina,
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The presence of a "difference quotient" makes the definition more familiar in appearance and permits an
obvious interpretation. Think in particular of the case (\ / I= 1) where the domain of ct> is L. It is easy to see
that 8<1> ( .; e) is absolutely continuous with respect to J.1 for each e. (Usc additivity of the derivative and (C.3).)

Eventwise and J.1-derivatives have not been distinguished notationally because they coincide whenever both
exist.

Lemma C.3. If <I> is u-differentiable at some e in L', then <I> is also eventwise differentiable at e and the
two derivatives coincide.

Proof Let 8<1> ( -; e) be the J.1-derivative at e, fc.e" and gee. Given e > 0, there exists (by J.1-differentiabi
lity) e' > °such that

1<I>(e +1" - g') - <I> (e) - 8<1>(f'; e) + 8<1>(g'; e) 1< eutf" + g'),

if j.1(1"+g') < e'. By Lemma B.l applied to the convex-ranged u, there exists Ao such that

(C.S)

j.1(fP'- + g I.A) < e', for all A> Ao.

Therefore, one can apply (C.S) to the acts (f', f/) =(F'\ g i,A). Deduce that

L~~ 1 1<I>(e-t" - g i.A) - <I>(e) - 8<1> (fi,\ e) + 8<1>(g;,A; e) I

e L~~ I j.1(f i·A + g J.A)=£j.1(f+ g) < £ sup j.1( . ).

A consequence is that the j.1-derivative of <I> is independent of u: that is, if j.11 and j.12 are two measures
satisfying the conditions in the lemma, then they imply the identical derivatives for <1>. This follows from the
uniqueness of the eventwise derivative noted earlier. Such invariance is important in light of the exogenous and
ad hoc nature of u. This result is evident because of the deeper perspective afforded by the notion of eventwise
differentiability and reflects its superiority over the notion of j.1-differentiability.

Finally, under a slight strengthening of j.1-differentiability, one can "integrate" back to <I> from its deriva
tives. That is, a form of the Fundamental Theorem of Calculus is valid.

Lemma CA. Let <I> be u-differentiable and suppose that the convergence in (CA) is uniform in e. For every
e > O,fee" and gee, there exist finite partitions I= r..r and g::: r.. s' such that e >

(C.6)

where. /-i =L~= 1 P andc I =L~= 1 s'.

Proof j.1-differentiability and the indicated uniform convergence imply that

-8<1>(f';e+ /,-1_ r, '-l)+D<I>(gi;e+ J- i
-

I _ r; i-I)I<£j.1(f'+gi),

for any partitions {Ii} and {g J} such that j.1(jJ+ gl) is sufficiently small for all j. But the latter can be ensured
by taking the partitions {FA} and {gl.A} for A sufficiently large. The convex range assumption for u enters here;

use Lemma B.l. Therefore, the triangle inequality delivers 1<I>(e+[-g)-<I>(e)-r..8<I>(fi;e+.I- i
-

1
_ r, i - l )

+ L8<1>(gi; e+ T i- I -(, i-I)I ;S:£Lij.1(fi + gil =£j.1(f+ g). II
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