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This paper investigates the role of non-expected utility preferences in a multi- 
period consumption/savings framework. Three objectives are achieved: First, it is 
shown that behaviour can be intertemporally consistent even if the preference 
ordering is not. Second, non-expected utility preference orderings are shown to be 
useful for disentangling the elasticity of intertemporal substitution from the degree 
of risk aversion. Finally, some discrimination between the non-expected utility 
theories that have appeared in the atemporal literature is achieved by means of 
axioms which arise naturally from the multiperiod framework. Journal of‘ Economic 
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1. INTRODUCTION 

Expected utility theory continues to dominate the economics of uncer- 
tainty. But recently there has been “a growing tendency to view expected 
utility maximization less and less as the only form of “rational” behaviour 
under uncertainty and more and more as a refutable scientific hypothesis, 
to be judged against competing models on the basis of the data” [25, p. 11. 
Evidence against the empirical validity of expected utility theory has 
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are also grateful to Mark Machina and a referee for suggestions which substantially improved 
the exposition. 
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accumulated in the behavioural experimentation literature originating with 
the Allais paradox. Several alternative theories, which are nonlinear in 
probabilities, have been proposed. It has been shown that they can account 
for many of these behavioural paradoxes while still retaining normatively 
appealing properties such as consistency with stochastic dominance and 
risk aversion. (See [26] for a survey.) These theories and the surrounding 
applications have been formulated largely in atemporal frameworks, where 
decisions subject to uncertainty are made at one point in time and/or all 
consumption takes place at one point in time.’ In contrast, in the real time 
framework of this paper uncertain consumption sequences are the ultimate 
source of utility and choices are made sequentially subject to changing 
information about the state of the world. It is only in such a framework 
that one can investigate the usefulness of nonlinear theories of preference 
for explaining consumption and savings behaviour. This paper attempts 
such an investigation. 

Three questions form the heart of this paper: 

(a) Can behaviour which is dictated by a non-expected utility 
preference ordering be intertemporally consistent? 

(b) Can we discriminate amongst the newly proposed theories on the 
basis of theoretical considerations that arise in a temporal setting? 

(c) Are nonlinear theories “useful” for modelling consumption and 
savings behaviour? 

The remainder of this introduction will elaborate on these questions and 
briefly outline the answers developed below. 

With regard to question (c) we are motivated by the desire to specify 
intertemporal utility functionals which permit properties of ordinal 
preferences (the elasticity of intertemporal substitution) and risk 
preferences (the degree of risk aversion) to be disentangled. In the 
common expected utility specification with an intertemporally additive 
von NeumannMorgenstern utility index, both of the above aspects of 
preferences are embodied in the curvature of the within-period utility 
function. Selden [36] and [37], as discussed further below, proposes a 
generalization of the standard specification which eliminates this 
inflexibility. The issue of the separation of “time” and “risk” preferences has 
arisen in the empirical macro literature which attempts to explain the time 
series behaviour of consumption and asset returns. The standard expected 
utility models have not performed well empirically [ 161 and it has been 
conjectured [ 14, 15,441 that this poor performance may be due to the 
inflexibility of the preference specification which employs a single 

I This description also applies to [ 131 and [IS] where dynamic choices do not lead to 
actual consumption until an elementary consequence is encountered at a terminal node. 
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parameter to measure both risk aversion and substitutability. The limited 
flexibility of the standard expected utility specification has also been noted 
in the stochastic growth literature [S, p. 1013, p. 10221 and in the theoreti- 
cal asset pricing literature [24, p. 14411. 

Our analysis of preference is axiomatic. One key axiom considered below 
is recursivity or the intertemporal consistency of preference. Another cen- 
tral axiom, called ordinal dominance, relates the ranking of random con- 
sumption sequences to the ranking of deterministic sequences. Roughly, it 
states that if two random requences, C and C’, are such that in every state 
of the world, the deterministic consumption stream provided in C is weakly 
preferred to that provided in C’, then C should be weakly preferred to C’. 
It is well known [32, p. 821 that there is a close link between intertemporal 
consistency and the independence axiom (IA) of expected utility theory. 
Below (see the discussion following Theorem 3.1) we also draw a parallel 
between ordinal dominance and the reduction of compound lotteries axiom 
(ROCLA). Since IA and ROCLA constitute the cornerstones of expected 
utility theory, it is not surprising that we show below that recursivity and 
ordinal dominance (and other less critical axioms) imply an intertemporal 
expected utility function. Given the inflexibility of the latter noted above we 
are forced to choose which of recursivity and ordinal dominance to 
weaken. We are not aware of any empirical evidence which bears directly 
on this choice and we feel that both of the possible routes are worth 
exploring. In this paper we pursue the route of weakening recursivity. We 
note that in light of the link between recursivity and the independence 
axiom, this route is consistent with the thrust of much of the atemporal 
non-expected utility literature (see [25], in particular) which interprets 
experimental violations of the expected utility model as violations of 
independence. That literature attempts to explain experimental results by 
means of generalized theories which weaken independence. The implied 
remedy for the present temporal context is to weaken recursivity. 

The alternative route of maintaining recursivity has been pursued 
by Epstein and Zin [ 10 J, building upon earlier work by Kreps and 
Porteus [21]. The separation of “time” and “risk” preferences is also 
possible within the Selden [36, 371 specification. These published analyses 
are formulated in a two-period setting, but a multi-period extension is 
possible [38]. This multi-period specification violates both recursivity and 
ordinal dominance. Moreover, since it is based on expected utility for 
single period gambles it is incompatible with the experimental evidence 
against expected utility theory. In contrast, the specifications developed in 
this paper are compatible with that evidence. 

Since the recursivity axiom is deleted, a consumption plan formulated at 
t =0 may not be pursued in subsequent periods. The resulting incon- 
sistency of plans is not an issue if precommitment is possible and this 
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scenario is considered below. But what are reasonable assumptions about 

consumer behaviour when precommitment is not possible? Similar 
questions have arisen in the literatures on planning with changing tastes 
[40, 29, 283 and growth with imperfect intergenerational altruism [22]. 
Two hypotheses that have been explored are (i) naive choice, where the 
consumer ignores future inconsistencies, and (ii) sophisticated choice, 
where inconsistencies are resolved by taking future consumption levels as 
a constraint when choosing current consumption. The latter approach is 
the more prevalent one in the cited literatures and is adopted here.’ 
Formally, the decision problem is modelled as a noncooperative game 
between decision makers at different times and a (stationary) perfect Nash 
equilibrium is used to describe behaviour. 3 The equilibrium represents a 
time-consistent form of behmiour, even though preferences are not inter- 
temporally consistent and thus the first question posed above is answered. 

To demonstrate the “usefulness” of nonlinear theories (question (c)), we 
apply the preference orderings which satisfy our axioms to analyse 
behaviour in a standard setting where the random returns to savings are 
identically and independently distributed over time. The resulting model is 
shown to be tractable in that it is amenable to comparative dynamics 
analysis. Of particular interest is the effect on behaviour of increased risk 
aversion. For the reasons given above, such comparative risk aversion 
analysis cannot be performed satisfactorily in the expected utility 
framework. 

Finally, consider question (b). The (transitive) nonlinear preference 
theories which have been axiomatized in an atemporal framework include 
the betweenness-conforming theories [ 12, 91, the subclass of weighted 
utility theories [2, 61, and anticipated or rank-dependent utility theories 
[30, 35, 2, 431. Only the latter class is compatible with the axiomatic struc- 
ture of this paper, at least if the common intersection of these theories, 
expected utility theory, is excluded. There are two important differences 
between existing atemporal axiomatic analyses and our own: First, we are 
unable to determine completely the functional form structure which 
corresponds to our axioms. On the other hand, our central axioms depend 
critically on the multi-period framework and they arise naturally from it. 

The paper proceeds as follows: Some preliminary notions and important 
examples are presented in Section 2. Our formal analysis of preferences is 

’ For an alternative approach see [41]. which proposes an “organizational” view of the 
consumer as made up of a planner and many selfish doers (one for each period). In contrast. 
there is the view of Stigler and Becker 1391 that many apparent changing taste phenomena 
can be modelled in a constant taste framework where inconsistencies do not arise. The useful- 
ness of their approach to our stochastic setting remains to be explored. 

’ Karni and Safra [ 181 adopt a similar game-theoretic approach to the description of 
behaviour in auctions given non-expected utility preferences. But see footnote 1. 
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undertaken in Section 3. Behaviour in the context of a simple but standard 
planning environment is analysed in Section 4 under the assumption that 
plans are not binding and in Section 5 under the assumption that commit- 
ment is possible. Some concluding remarks are offered in Section 6. Proofs 
are collected in an appendix. 

2. PRELIMINARIES 

Fix 0 < 6 < 1. Define 1: + (6) = { y = (c, , . . . . cI, . . . ): c, > 0 for all t and 
CS’c,<co) and endow l’++(6) with the product topology. The basic 
choice space is P = (0, cc ) x M(I: + (6)), where for any topological space 
X, M(X) denotes the space of Bore1 probability measures on X, endowed 
with the weak convergence topology. For a typical element (c,, p) E P, 
called a consumption program or path, c,, represents the certain current 
level of consumption and the probability measure p represents the uncer- 
tain future. Note that any y E 1: + (6) can be identified in the usual fashion 
with the measure assigning unit mass to {JJ}. Thus we often write 

(co, v) E P and we interpret (c,, .v) as a deterministic consumption 
program. 

Preference orderings 2 on P are assumed to be reflexive and transitive 
but possibly incomplete. Completeness is not imposed because of the well- 
known possibilities of non-comparability which arise in infinite horizon 
settings for consumption programs in which consumption is unbounded 
above and/or not bounded away from zero. 

A major thrust of this paper is the analysis of increased risk aversion. 
Thus it is necessary to provide a precise definition for “more risk averse 
than”: 

DEFINITION 2.1. Let k* and 2 be preference orderings on P. Say that 
k* is more risk auerse than 2 if for all (c,, p) E P and y El: +(6), 

(co, .v) 2 (C”? PI =a (CO? .v) 2* (COYP). 

Consider a choice between the nonstochastic path (c,, y) and the 
(generally) stochastic path (c,, p). If one agent rejects the stochastic alter- 
native, then so should the more risk averse agent. Of course two preference 
orderings which are comparable in this sense must rank deterministic 
consumption paths identically. 

To conclude this section we present three examples of preference 
orderings. They will clarify the above definition and should also facilitate 
understanding of the axioms in the next section. 

The first example is the standard time-separable expected utility 
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specification where 2 is represented numerically 
u,, 
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by the utility functional 

(CO? P) E p. (2.1) 

Here 0 < /J < 1, f is increasing and concave on (0, co), and E, denotes the 
expected value according to the measure p.4 Any two distinct expected 
utility specifications U, and U,$ are not comparable according to Delini- 
tion 2.1, though if f * is more concave than f then U,tJf will show greater 
aversion to risks that are confined to consumption in one period. But then 
intertemporal substitutability is also changed in going from f to f*. For 
example, if the common homogeneous specification, f(c) = c’ “/( 1 - a), 
0 < c( # 1, is adopted, then the “relative risk aversion parameter” a is also 
the reciprocal of the elasticity of substitution. Thus comparative statics 
analyses corresponding to changes in c( do not have a clear interpretation. 

For the second example, consider first the utility functional I’, due 
to Yaari [43] and defined on D(R), the set of cumulative distribution 
functions (c.d.f.‘s) on the real line, by 

where g: [IO, 1) + [0, l] is continuous and strictly increasing, g(0) = 0, and 
g( 1) = 1. This is a member of the rank-dependent utility class referred to 
in the introduction. The nature of Vy is clarified by considering c.d.f.‘s 
corresponding to binary gambles with outcomes z, and 22, -71 < z2. Then 
the associated utility according to V,. is 

v,= dP, I:, + (1 - g(p, lb-2, (2.3) 

where p, is the probability of the outcome z, If g(p) >p on [0, l] we see 
that (2.3) is an “expected value” but with probabilities transformed in such 
a way that the inferior outcome is given greater weight. This transforma- 
tion leads to a certainty equivalent for the gamble which is less than its 

expected value and thus implies a form a risk aversion, (See [2, 42, 51 for 
analyses of risk aversion for rank-dependent utility functionals.) 

The Yaari functional (2.2) can be applied to define the intertemporal 
utility functional 

(2.4) 

4 In (2.1) and similar equations below. the equality is intended only on that subset of P 
where the right side is well defined as an extended real number. Thus the domain of U, is a 
proper subset of P and the corresponding ordering 2 is incomplete. Often in the literature 
2 is extended by means of the overtaking criterion, but that extension is not considered here. 
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where (?,, F,, . ..) is any random variable sequence with probability 
measure p, F, = cO, and where for any extended real-valued random 
variable .f, F.? denotes its c.d.f. If g(p) -p then (2.4) reduces to the standard 
specification (2.1). But in the broader class with nonlinear g, greater risk 
aversion can be achieved by suitably modifying the probability transforma- 
tion function. If R* and 2 are two orderings defined via (2.2) and (2.4) 
corresponding to g* and g respectively, then k* is more risk averse than 
2 in the sense of Definition 2.1 if and only if g*(p) 3 g(p) on [0, 11. 

These two examples reflect the general structure of intertemporal utility 
functionals considered in this paper. Informally, that structure corresponds 
to a two-stage algorithm used by the consumer to evaluate any given con- 
sumption program: first, the implied probability distribution is computed 
for the “present discounted utility”: and second, this distribution is 
evaluated by a univariate preference functional. More precisely, 

(2.5) 

where Y is a functional defined on D(R), increasing in the sense of first 
degree stochastic dominance and where the argument of V is defined 
analogously to (2.4). (In (2.1), V is the expected value functional while in 
the second example, V is the Yaari functional (2.2)) Given such a specifica- 
tion, the degree of risk aversion, at least for comparative purposes, is 
encoded in V( .), and thus is disentagled from intertemporal substitutability 
which is encoded in f( ). 

Our approach to (2.5) is axiomatic. Moreover, our axioms will restrict 
the admissible Vs. In particular they will rule out the choice of 

V(F)=/ w(z)dF(z), FE D(R), (2.6) 

where w is increasing and (strictly) concave. In conjunction with (2.5) this 
leads to the expected value of w(x,” plf(c”,)), rather than (2.1). Adoption 
of such a concave transformation of the von Neumann-Morgenstern utility 
index is suggested by Kihlstrom and Mirman’s [19] approach to com- 
parative risk aversion analysis in a multicommodity expected utility 
framework. But if w is not linear, then (2.5)-(2.6) violate one of our axioms 
(stationarity) and so is excluded here. A stronger (but related) argument 
against the adoption of the Kihlstrom and Mirman approach to com- 
parative risk aversion analysis in multiperiod settings is described in [lo]. 

The final example mentioned here is due to Selden and Stux [38], 

~.s(cot PI = t U(?,), (2.7) 
0 
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where 

P, = u-‘(E,u(T,)) 

and the expected value is computed with respect to the probability dis- 
tribution for tth period consumption induced by p. Here U, is a discounted 
sum of within period utilities where the latter depend on the certainty 
equivalents ?,. Intertemporal substitutability is encoded in ,f and risk 
preferences in u. Increased concavity of u implies greater risk aversion in 
the sense of Definition 2.1. But the specification (2.7) will be ruled out by 
our axioms; in particular, note that it is not a special case of (2.5) unless 
o is linear and U, reduces to an expected utility functional. 

3. PREFERENCE ORDERINGS 

Consider the following axioms for the preference ordering 2 defined on 
P=(O, ~m)xM(l:+(6)): 

Cm-taint>> Additivity. There exist a strictly concave and increasing func- 
tion f: (0, r;o ) + ( - rx, w ) and 0 < fi < 1 such that the extended real-valued 
function U, 

‘4.V 
% 

I= c /MC,)> (3.1) 

i) where xc B’f(c,) exists in an extended 
real valued sense, satisfies u( y’) 3 U(Y) o y’ 2 J’.’ 
defined on that subset of I’+ + (6 

The additive functional form (3.1) dominates the capital theory literature 
including stochastic analyses where u is interpreted as a von Neumann- 
Morgenstern utility index. The above axiom requires that 2 agree with 
the additive ordering on deterministic paths. There exist numerous 
axiomatizations of additive orderings of deterministic programs [20, 311. 
Since we wish to focus on uncertainty and attitudes towards it, we 
have chosen simply to maintain certainty additivity. Of course, the strict 
concavity off is equivalent to the strict quasiconcavity of U. 

For any p~M(1’++(6)), denote by Aop~M(1!,+(6)) the measure 
obtained from p by scaling all outcomes by the factor A; that is, ;10 p(Q) E 
p(AK’Q) for all measurable sets Q. 

’ By u( v’) > U(J) we mean that both numbers lie in R* = [-IX), a] and are ordered there 
in the usual way. In particular. it is not true that + I;C = f z. This convention is adopted for 
all extended real-valued functions. 



62 CHEW AND EPSTEIN 

Homotheticity. For all i > 0 and (cb, p’), (c,, p) E P, 

(c-b, p’) 2 (co, p) - (kb, 2 il p’) 2 (kl, 2 17 PI. 

It is now immediate that the function f from (3.1) must have the form 

Jc) = log c ,  

i 

e’- “/(l -a), O<cr#l 
cl= 1. 

(3.2) 

The specification (3.1) and (3.2) is a commonly considered special case 
for an intertemporal von Neumann-Morgenstern index ([34,23], for 
example). Thus homotheticity is natural in this initial attempt at an 
investigation of non-expected utility theories. Moreover, the resulting CES 
specification for intertemporal utility u is sufficiently flexible to permit the 
issue of the separation of ordinal and risk preferences to be addressed. 

The next two axioms are central. 

Ordinal Dominance. For every (cb, p’) and (c,, p) in P which are 
comparable according to 2, if p’1.r E j:+(6): (cb, I,) 2 j} 3 
p{yEli++(6): (co. +r)kj) for all YEI:+ (6) (and if the inequality is strict 
for some j), then (cb, p’) 2 (>) (co, p). 

The essence of the axiom is most easily grasped if it is restricted to 
consumption programs for which 

p’( Y) = p( Y) = 11 Y- {yd++(6): -oO<U(JJ)<oD). 

In that case, (CL, p’) and (c,, p) each induce a probability distribution for 
real-valued intertemporal utility as measured by U. Ordinal dominance 
requires that (cb, p’) be weakly (strictly) preferred to (c,, p) if (the two 
programs are comparable and) the distribution of utility induced by the 
former (strictly) dominates the distribution induced by the latter according 
to first degree stochastic dominance. In the stated axiom, a similar link 
between 2 and its certainty restriction is imposed on the entire program 
space P. (See the introduction for further interpretation of ordinal 
dominance.) 

The next axiom is most easily understood by reference to Fig. 1, where 
consumption programs are represented schematically as probability trees. 
The figure refers to conditional probability measures. For example, given 
(c,, p), p( .I c,) denotes the probability distribution for consumption in 
period 2 and beyond, conditional on the realization c, for t  = 1 consump- 
tion. Suppose that regardless of the state of the world that is realised at 
t  = 1, the agent will find himself with (weakly) preferred prospects if (c,, p’) 
is being followed rather than (c,, p), i.e., 

tct, P’(‘Ici))k tci3 P(.lcr))3 i = a, b. (3.3) 
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(CO! P’) (co, P) 

P’(.lCa) P(.lC=) 

cs CZ3 

TTa 7Ta 

CO -:c. < CO 

Bb TTb 
Cb Cb 

P’(./Cb) P(.lCd 

(C~,P’(+z)) z (GsP(4G)), 

=> (Co,P’) 2 (Co,P) 

i = a,b 

FIG. 1. Recursivity. 

Since both programs involve the identical consumption in period 0, (c,, p’) 
“should” be selected given a choice at t =O. Otherwise, there is a positive 
probability that the time 0 choice will be regretted at t = 1, at least if (3.3) 
includes at least one strict preference. Note that by using (3.3) to describe 
rankings at t = 1, we are implicitly assuming that the agent acts as though 
time begins anew at t = 1 and that he uses 2 to rank consumption 
programs which begin then. In particular, therefore, preferences at t = 1 do 
not depend upon past consumption c0 nor upon the fact that both alter- 
native states a and b were possible ex ante at t = 0. 

The above is summarized in the following axiom: 

Recursiuitv. For all (c,, p’) and (c,, p) as in Fig. 1 and satisfying (3.3), 
(c,, p’) 2 (c,, p). Moreover, if there is at least one strict preference in (3.3), 
then (co, P’) > (co, PI. 

Similar axioms in the literature are frequently called “consistency”, or 
more fully, the consistency of preference. We have chosen a more neutral 
name. Of course, the reason for the name recursivity is that similar axioms 
frequently imply a recursive structure for utility functions (when the latter 
exist). See [20] for the deterministic case and [ 171 for the stochastic case. 

The next three axioms are largely technical and certainly less contentious 
than the ones described till now and, moreover, are satisfied by the 
standard expected utility ordering corresponding to (2.1). The incomplete- 
ness of 2 reflects the possible inability of the consumer to compare two 
consumption programs which involve distributions that are unbounded 
above or are not bounded away from zero. The axiom compact complete- 
ness requires that the consumer be able to compare all other pairs of 
programs. The following axiom, compact continuity, imposes a common 
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form of continuity while the final one, extendability, guarantees that the 
preference for a distribution cannot be “driven” by the tails. The latter 
would be irrelevant and the others standard if we restricted ourselves to 
suitably bounded probability measures in defining the outcome space. But 
such a domain is not sufficiently broad to contain the consumption 
programs that are optimal in the optimization problems of Sections 4 and 
5. Thus the added complexity here is necessary for the later behavioural 
analysis. 

The formulation of these axioms requires the following additional 
notation: For each 0 < I< L < w and p E M(I’+ +(6)), P,,~ denotes the 
truncation ofp onto [I, L]” defined as follows: Let 7~: 1: +(6)--f [C, L]” be 
defined by 

c 

(ny),- l’ 

1 

16c,<L 

c, d I 

L c, 3 L. 

Define p,,JQ)=p(z~‘(Q)) for all measurable sets Qc/:+(S)). Then 
P,,~ E M( [I, L]‘“), the set of probability measures with support in [I, L] X. 

Compact Completeness. 2 is complete on (0, 00 ) x M( [I, L J “) for each 
O<I<L<oo. 

Compact Continuity. For any 0 < 1 <L < W, 2 is continuous when 
restricted to (0, cc ) x M( [C, L] z ). 

Extendability. For all (cb, p’) and (c,,, p) in P, if (cb, p’)> (c,, p), then 
3O<I,<L,<cc; such that (~b,p;,~)>(c~,p,,,.) for all O<f<I, and 
L,<L<w. 

Consider briefly the axioms specified to this point in the context of the 
examples defined in the preceding section. (Henceforth, let f in (2.1) (2.4), 
and (2.7) be defined by (3.2).) It is readily verified that the Yaari-based 
specification ((2.2), (2.4)) satisfies all of these axioms with the possible 
exception of recursivity. Note that ordinal dominance is a consequence of 
the general structure (2.5). Recursivity is satisfied if and only if the 
probability transformation function g is linear, in which case the expected 
utility specification (2.1) is obtained. In fact, the axioms stated thus far 
imply an expected utility specification as described in the first theorem of 
this section. 

THEOREM 3.1. Let 2 satisfy the axioms certainty additivity, homo- 
theticity, ordinal dominance, recursivity, compact completeness, compuct 
continuity. and extendability. Then ,for all consumption programs in P. 

u,tc;,, p’) 2 ci,(c,, p) =s (cb, p’f 2 (co, p), (3.4) 
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hrhere U, is defined by (2.1) and (3.2). Conversely, the ordering represented 
by this expected utility specification satisfies all of the above axioms. 

It can be shown that equivalence in (3.4) holds on P{, the subset of P 
defined in (4.2) below, which consists of all consumption programs which 
are intermediate in preference between some pair of deterministic and 
constant programs. On that set, at least, Theorem 3.1 shows that the stated 
axioms characterize the homothetic expected utility specification. The fact 
that the latter is implied by the axioms is the relatively less immediate and 
more important part of the theorem especially in light of the inadequacy of 
the expected utility framework for modelling risk aversion and sub- 
stitutability separately. That inadequacy will force us to re-evaluate our 
axioms and to decide which should be weakened. 

Some guidance in making that decision may be forthcoming if we first 
relate Theorem 3.1 to existing atemporal axiomatizations of expected 
utility. Standard axiomatizations of expected utility theory involve two key 
axioms-the reduction of compound lotteries axiom (ROCLA) and the 
independence axiom (IA). In a model in which scalar consumption occurs 
only at a single terminal time, ROCLA roughly speaking requires that 
preference depend only on the probability distribution of consumption, and 
not on the way in which that uncertainty is embedded in multiple-stage 
lotteries and therefore not on the way in which the uncertainty resolves over 
time. A plausible extension of this axiom to the present consumption 
stream context can be formulated by first aggregating the goods by means 
of the intertemporal utility function and second imposing ROCLA at the 
level of probability distributions over the scalar utility payoff. This exten- 
sion (and stochastic dominance) are the content of ordinal dominance. On 
the other hand, there is a close connection between IA and intertemporal 
consistency, and therefore our recursivity axiom. (See [32, p. 821.) These 
observations suggest that a much stronger version of the necessity portion 
of the theorem should be true; for example, if the certainty additivity and 
homotheticity axioms are deleted. Such a generalization is not pursued here 
because the axiomatization of the homothetic expected utility specification 
is not the focus of this paper. Rather, the main role of Theorem 3.1 in the 
present paper is to provide perspective for the ensuing analysis. 

We view ordinal dominance and recursivity as the two “culprit” axioms 
and in deciding on which to weaken we take our cue from the atemporal 
theory surveyed in [26]. That literature (see [25], in particular) interprets 
experimental violations of the expected utility model as violations of IA. 
Thus the literature seeks to explain the experimental results by means of 
generalized theories which weaken the idependence axiom. The implied 
remedy for the present temporal context is to weaken recursivity. 

Our dissatisfaction with the intertemporal expected utility specification 
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(2.1) is, of course, only relevant in the presence of uncertainty. Indeed, for 
deterministic consumption programs we have maintained intertemporal 
additivity. Thus in weakening recursivity we admit the inconsistency of 
preferences only given some “meaningful” uncertainty. Formally, for any 
n > 1 denote by (c,, c,, . . . . c,, p) that element of P in which consumption 
through period n is ci, 0 d i< n, and the uncertain consumption levels in 
later periods are represented by the probability measure p. Then we adopt 
the following alternative to recursivity: 

Stationari~~. For all c,>O, c, >O, ~~A4(1:+(6)), and $EM(I’++(~)). 
(C~,ClrP’)~:(C~,CI~P)~(C,~P’)~(C,~P). 

Note that stationarity is the restriction of recursivity to consumption 
programs in which period 1 consumption is certain, i.e., c, = cb in Fig. 1. 
Thus if stationarity is maintained, the inconsistency of preference is 
admitted but only given some uncertainty in an intermediate period. In 
that case the evaluation of the future held at t = 0, prior to the resolution 
of period 1 consumption, can differ from that held at t = 1,’ after that 
resolution. 

Theorem 3.2, the second central result of this section, describes the con- 
sequences of replacing recursivity by stationarity. Informally, those conse- 
quences can be derived as follows: For CI # 1, c’ -‘/( 1 - Z) is uniformly 
signed for all c > 0 and so u( JJ) = C /3’c: - “/( 1 - c() is well-defined on 
1: +(6) as an extended real-valued function. Thus each consumption 
program (c,, p) induces a distribution F,,?, for lifetime utility. By ordinal 
dominance only this distribution matters in ranking consumption 
programs and so the ordering is representable by L’(F,,,,) for a suitable 
function V, i.e., see (2.5). Ordinal dominance implies also that V is increasing 
in the sense of first degree stochastic dominance. Moreover, V can be 
chosen (by taking a suitable monotonic transformation) to be a generalized 
mean value or certainty equivalent, i.e., 

V(F,)=x if F, E domain of V, (3.5) 

where for any extended real number X, F, is the c.d.f. defined by F,(t) = 0 
if t < x and = 1 if t > x. Finally, homotheticity readily implies 

V(F,,) = iV(F.,) Vi>O. (3.6) 

Next consider the implications of stationarity. In terms of V this axiom 
states that 

where J’ and 3 are random variable consumption paths corresponding to 
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(c, , p’) and (cl, p), respectively. If the former program is taken to be non- 
stochastic and if we apply (3.5) and (3.6) then we obtain 

Thus 

W,,,) = b + V(F,), (3.8) 

on a suitable domain, where b can vary over [0, co) if cx < 1 and (- co, 0] 
ifsr>l. 

In this way the following theorem may be proven6 

THEOREM 3.2. Let 2 satisjj the axioms of Theorem 3.1 with the excep- 
tion that recursivity is replaced bJ$ stationarity and where the parameter x 
from (3.2) is not equal to 1. Let 4 be defined on P so that V(c,, p) E P, 
&c,, p) denotes the c.d.f. Fu,3j, where J is any variable consumption path, 
J= (co, (‘,, . ..) Cz,, . ..). such that (i;, , . . . . ?,, . ..) is distributed according to p. 
Then there exists an extended real-valued function V defined on b(P) such 
that7 

V(d(cbt P’) 2 V(C4c,, PI)=- (4, P’) 2 (co, P) on P. (3.9) 

Moreover, V is increasing in the sense of first degree stochastic dominance 
and satisfies (3.5), (3.6), and (3.8) on its domain. 

The translation invariance property (3.8) and scale invariance property 
(3.6) are the key implications of our axioms which we use to restrict the 
admissible functionals V. The expected value operator, of course, satisfies 
both invariance properties, so that UE defined in (2.1) satisfies our axioms. 
The Yaari functional (2.2) also satisfies both invariance conditions (e.g., 
verify this in the context of (2.3)), and thus U, defined in (2.4) satisfies our 
axioms. Note however, that when stationarity is strengthened to recur- 
sivity, then (see proof of Theorem 3.1) the corresponding V must satisfy the 
independence axiom. Moreover the scale and translation invariance 
conditions immediately imply that V must reduce to the expected value 
functional and so must satisfy the linearity-in-payoffs property V(F,+,) = 
V(F,) + V(F,). The latter condition is much stronger than (3.8). It is 
satisfied by the Yaari functional Vy only when g is linear and V, coincides 

’ The theorem as stated excludes 2 = 1. That case. treated in [3]. is more complicated 
because log c is unbounded both above and below. 

’ Equivalence in (3.8) holds on P’. the subset of P defined in (4.2) below. 
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with the expected value functional. This “explains” why U, is ruled out in 
Theorem 3.1 but nevertheless is admissible in Theorem 3.2. 

Other examples of functionals V satisfying (3.6) and (3.8) may be found 
in [4]. Each such V can be used to define the utility of consumption 
programs via (2.5). The cited paper also shows that betweenness- 
conforming specifications for V (that are not simply expected value) are 
ruled out by (3.6) and (3.8) if we require that 2 be risk averse in the sense 
of conditional certainty equivalents as in Machina [25]. In our context this 
risk aversion takes the following form: For every (c,, p) and (co, p’) E P 
and for every a~(0,1),(~~,0~~+(1--c~)p’)~(c,,ccp*+(1--cz)p’), where 
p* is the probability measure which assigns unit mass to the consumption 
path Ep, the mean consumption path under p. On the other hand, if g is 
concave then the Yaari-based functional U,. from (2.4) is risk averse in this 
sense [43, 51. Since risk aversion is a basic and widely accepted hypothesis 
in uncertainty analysis, we conclude that our axiomatic framework has 
succeeded in discriminating between the two principal classes of non- 
expected utility theories as described in the introduction. Moreover, this 
discrimination is based largely on axioms which arise naturally from the 
temporal setting.’ 

The Selden utility functional U, from (2.7) satisfies stationarity. It is not 
covered by the theorem, however, since it violates ordinal dominance. The 
latter axiom thus serves to discriminate between Selden’s approach to 
separating “risk” and “time” preferences and ours based on the general 
structure (2.5), (3.6), and (3.8). Both approaches generally violate recur- 
sivity. 

Finally, consider the definition of “more risk averse than” in the context 
of the structure in Theorem 3.2. If 2* and 2 are two orderings satisfying 
the axioms of that theorem and if V* and V are the corresponding 
functionals provided by the theorem, then k* is more risk averse in the 
sense of Definition 2.1 if and only if 

V*(F) d V(F) for all F. (3.9) 

This characterization will be applied in the behavioural analysis to which 
we now turn. 

s Homotheticity plays a large role in our arguments and this may detract from our conclu- 
sions if homotheticity is not taken to be very compelling But there is an alternative route to 
(3.6) and (3.8) which reinforces our results: In the spirit of separating “risk” and “time” 
preferences, one is presumably interested in functionals V such that (2.5) will satisfy our 
axioms (excluding homotheticity and recursivity) for a range of values for B and CL But then 
(3.7) can be used to prove forms of scale and translation invariance for V, which in turn, can 
be used to exclude betweenness theories. 
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4. CONSUMPTION-SAVINGS BEHAVIOUR WITHOUT COMMITMENT 

The ordering 2 satisfies the axioms of Theorem 3.2 (for some 6) as well 
as two additional continuity axioms described in the Appendix.’ The 
decision environment is standard in many respects. There is a single good 
which can be consumed or accumulated. The gross return to savings in 
period t is r”,, where the F,‘s are LID. and have support in [r, r]. We 
assume that 

1 <I, r<6 ‘, p[rp < 1. (4.1) 

But the decision problem is nonstandard because of potential incon- 
sistencies. Since the recursivity axiom may not be satisfied, a consumption 
plan formulated at t = 0 may not be pursued in subsequent periods in the 
absence of the ability to commit oneself to such a plan. In such an environ- 
ment, the agent chooses the best program from amongst those which will 
actually be followed. Formally, we model the decision problem as a non- 
cooperative game between decision makers at different times and a perfect 
Nash equilibrium is taken to describe behaviour. 

In light of homotheticity, it is natural to consider consumption policies 
which are linear in wealth. If we restrict attention to interior points, then 
at each time f a consumption/wealth ratio a, E (0, 1) is chosen. Given initial 
wealth .u,>O and a sequence (a,):, wealth in period t is given by x, = 
.Y~( 1 - a,) . . (1 - a, 1) 7,. . r”, , and consumption in period t is a,.~,. In 
light of the stationarity of both and the stochastic process of rates of 
return, it is natural to look for equilibria in which all 0,‘s are equal. 

We further restrict the Nash equilibria that we consider by requiring 
them to correspond to consumption programs which lie in P’, where 

P’s {(c,, Jl)E P: (_c,c,_c, . ..) 

<(c,,p)<(c;,c,c,...)forsome~>Oandc>O). (4.2) 

Feasibility and (4.1) imply that any Nash equilibrium must define a 
program (c,, p) which is ranked worse than some constant path. Thus the 
substantive restriction imposed by P’ is that (c,, p) not be disastrous, 
where a disastrous program is one that is worse than any constant path. 

Let 4 be as in Theorem 3.2. In the appendix we show that V is real 
valued on cj(Pl) and that it represents 2 on P’ in the sense of an 

‘We could consolidate and otherwise simplify our many continuity axioms without 
invalidating the theorems in Sections 3-5. But we are constrained by the desire to have an 
example of a utility functional (e.g. (2.4)) satisfying our assumptions and thus establishing the 
nonvacuousness of our analysis. Given this constraint we have not been able to devise a 
simpler set of axioms. 
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equivalence in (3.9). Thus we are led to the following definition: Say that 
uNE E (0, 1) defines a (nondisastrous and stationary) Nash equilibrium if lo 

a I --2 
aNEEarg max V 

(1 --a)‘-” 

ut(O.ll l_rl+b 1-a 

&-I c~NE(~-~NE)‘~‘~,...~ 
I 

(4.3) 

Consider the following suggestive argument regarding the existence of a 
Nash equilibrium: Apply (3.6) and (3.8) to rewrite (4.3) in the form 

aNE E arg max aF,O.,) ( 
a ;+Pu --a)‘-” WaNEI 3 

> 

where 

H(a) E v 
( 
&fpl[a(l -a)‘-l - rO..~T,P,]lPz). (4.4 1 

1 

From the first order conditions for (4.4) we see that Nash equilibria are 
precisely the solutions a to the equation 

(1 -a)“/a=/?S(a)=j3(1 -a) H(a)a’- ‘. (4.5) 

Thus the existence of equilibria follows from the properties of S represented 
in Fig. 2. Uniqueness is guaranteed when CI > 1, but multiple equilibria 
cannot be ruled out when c( < 1. (The c( = 1 case leads to a horizontal graph 
for /3S in Fig. 2.) These results are established rigorously in the context of 
the following theorem: 

THEOREM 4.1. Under the assumptions maintained in this section, a 
stationary Nash equilibrium exists, and if CI > 1, it is unique. 

Consider the effects of increased risk aversion. Let k* be more risk 
averse than 2. Denote by S* the function that corresponds to 2* via 
(4.4t(4.5). Then (3.10) implies S*(a)<S(a) on the relevant domain if 
c( < 1, and the reverse inequality is implied if o! L 1. Thus the following 
theorem is readily proven by a simple curve shifting exercise in Fig. 3. 

THEOREM 4.2. Let 2* he more risk averse than 2 in the sense qf 
Definition 2.1. 

I0 Henceforth we write V(Z) rather than V(F,). 
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Ml* fq ca 
1 a 1 

(i) a> 1 (ii) a< 1 

@(a) = (l-a)Va 

FIG. 2. Proof of Theorem 4.1. 

(i) If (r > I, the (unique) equilibrium for 2 * cannot exceed that 
for 2. 

(ii) If tl < 1 and if a* is an equilibrium for 2 *, then there exists an 
equilibrium a for 2 such that a* > a. 

(iii) [ f  c( = 1, both orderings have the identical equilibria. 

The qualitative effect of increased risk aversion depends upon the size of 
3t (the reciprocal of the elasticity of substitution) in an intuitive fashion. In 
fact, Selden’s [37] intuition based on his two-period analysis applies here 
also-increased risk aversion reduces the “effective” return to saving. Thus 
the effect on consumption is qualitatively the same as the effect of a smaller 
certain return to saving in a deterministic model. 

Note that if 2 is an expected utility ordering, then it has a unique equi- 
librium (defined by (1 - aNE)’ = BE(?) -’ )). Thus (ii) can be strengthened 
to read that every equilibrium for k* is less than or equal to the equi- 
librium for 2. Moreover, strict forms of (i) and (ii) are valid. 

5. CONSUMPTION-SAVINGS BEHAVIOUR WITH COMMITMENT 

The assumptions of the last section are retained. We investigate the 
consumptionsavings plan that would be chosen by the agent at I = 0 if he 
were certain that the plan would be followed in subsequent periods. 

The constraint set (implicit in (5.1) below) facing our agent has the 
following two properties: (i) there exists C > 0 such that all feasible plans 
that are comparable with some constant path are worse than (F, C, . ..). (ii) 
there exists a feasible program that is nondisastrous (in the sense of the 
preceding section). Thus an optimal program in the corresponding choice 
problem necessarily lies in P-’ (from (4.2)). As argued above this implies 
that we can exploit the function V. 
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The level of initial wealth can be normalized to elqual unity. Then we 
solve the optimization problem 

,*I 
xC/?-‘[a,(,7)(1 -u,(,F))...(l -a,_,(,~,i))~,-..~,~, P>. (5.1) 

2 

where ,? denotes (Fo, . . . . F, ~ , ) for t 3 1, a, E (0, 1 ), and for each 
I 3 1, a,: [r, F]’ + (0, 1) is a measurable function. 

The problem (5.1) can be solved in two stages and is equivalent to 

(5.2) 

p- max V 
I4.);; ! 

~w)iO)’ x+$--& 

,CL, 
XC/J’ ‘[u,(,~)(l-u,(,7))...(1-u,~,(,~,~))r’,...?,~, 

2 
1’ g. 

The consequences of increased risk aversion may be determined from 
(5.2). Simply note that if k* is more risk averse than 2, then the problem 
corresponding to the former ordering is similar to (5.2), but p* d ,u (by 
(3.10)). This leads immediately to the following theorem:” 

THEOREM 5.1. Let k* he more risk averse than 2 in the sense of Defini- 
tion 2.1 and suppose that solutions exist to the uppropriute.forms of (5.1) for 
both orderings. Then the agent with the more risk averse ordering consumes 
no more (no less) than the other agent at t = 0 if c( 3 1 (c( < 1) and if 
consumption plans ,formuluted at t = 0 are binding for the entire future. 

Note that the qualitative effect of increased risk aversion on consump- 
tion in the initial period is identical to that described in Theorem 4.2 for 
the case where commitment is impossible. 

It is interest to compare the Nash equilibrium and commitment-optimal 
consumption levels at t = 0. Such a comparison follows immediately from 
(4.4) and (5.2) upon noting that p B H(u) for all a E (0, 1). 

THEOREM 5.2. Suppose a,* solves (5.2) and let aNE be a Nash equilibrium. 
Then u,*<(a)uNE according us c1< ( 2 ) 1. 

” The proofs of Theorems 5.1 and 5.2 are straightforward and are omitted. 
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Once again the degree CJ = 2-l of intertemporal substitutability is critical 
and it determines the relative magnitudes of a,* and aNE in the intuitively 
anticipated manner. The ability to commit increases the “effective return” 
to saving. Thus initial consumption is (weakly) higher with commitment if 
a< 1 and lower if a3 I. 

6. CONCLUDING REMARKS 

To date the primary reason for interest in non-expected utility theories 
has been their capability to explain behavioural paradoxes. We have shown 
that nonlinear theories can be a useful analytical tool in a consumption- 
savings context since they permit the separation of risk aversion from the 
elasticity of substitution. 

We noted in the introduction that expected utility models have not 
explained consumption and asset return data very well. It seems 
worthwhile to investigate whether the more flexible specifications proposed 
here would perform better. Such an empirical analysis would complement 
the recent impirical investigation in [ 1 l] based on recursive preference 
specifications which violate ordinal dominance.” First, however, the 
behavioural analysis of this paper would need to be extended to include 
many assets having returns with a more general serial structure. 

Since the preference orderings considered in this paper are not intertem- 
porally consistent, the implied behaviour depends on whether plans can be 
made which are binding on the future. Above we have considered the 
individual choice problem while taking the existence of institutions for 
making commitments to be exogenous. In future work we intend to 
investigate whether non-expected utility preferences can help to explain the 
existence of a variety of commitment institutions-for example, defined 
contribution pension plans-which are frequently rationalized by the ad 
hoc hypothesis of changing tastes or myopia. 

APPENDIX 

Proof of Theorem 3.1. Necessity of the axioms is obvious. We outline 
a proof of their sufficiency in the case c( # 1. For more details and the CI = 1 
case, the reader is referred to [3]. 

Let V be the functional which represents 2 in the sense of (2.5). 

” The Selden and Stux specification has been implemented by Hall [ 141 and Zin 1441. But 
their estimating equations are applicable only to a naive consumer who continually ignores 
the fact that plans formulated at any given time will not be carried out in the future. 
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* (by recursivity) 

(c,p”) - (GPb) 

+ (by recursiwty) 

co,c and cl > 0. p’, pb and P E fvUL1”) 

FIG. 3. Proof of Theorem 3.1. 

Existence of V is implied by ordinal dominance as described in the 
statement of Theorem 3.2 and the discussion leading up to it. We wish to 
show that V coincides with the expected value functional on a suitable 
domain. First, we show that it satisfies the independence axiom (IA). 

Refer to Fig. 3 and let j”, jb, and j be random variable consumption 
paths corresponding to the probability measures pU, pb, and p, respectively. 
Then the chain of implications in the figure implies that 

It follows that V satisfies IA on an appropriate subdomain. By using com- 
pact continuity, an expected utility representation for V can be deduced. In 
fact, by the translation and scale invariance properties (3.7) and (3.8), V 
must be the expected value functional [27]. This representation for V can 
be extended to its entire domain by applying extendability. 1 

Proof of Theorem 3.2. For any c>O, denote by (c) the constant path 
(c, c, c, . ..). Define V as follows: 

4(c)) if (co7 PI - (~1 

v44co3 P)) = + a if (co, p)>(c)Vc>O 

--rx) if (c,, p)<(c) Vc > 0. 
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Then V is well-defined by ordinal dominance, and (3.5 ) and (3.9) can be 
verified. The invariance properties (3.6) and (3.8) may be established as 
described in the text. 1 

For the behavioural analyses in Sections 4 and 5 we require some further 
continuity properties for 2. To formulate the first one we need another 
notion of convergence for sequences in M(I: + (6)). For any p E M(I’+ + (6)) 
denote by E[z4; p] the extended real-valued expected value of u taken from 
(3.1))(3.2). Say that p” +* p if both p” + p in the usual weak convergence 
topology and E[u: p”] + E[u; p]. Since p” +*p implies p” + p, the next 
continuity requirement is made weaker by use of the * convergence notion. 
For any L > 0, /1(0, L) denotes i(c): 0 < c < L,\, the set of deterministic 
constant consumption paths with consumption less than L. Since 
M(/1(0, L)) is homeomorphic to M((0, L)), first degree stochastic 
dominance may be defined on the former space in the natural fashion. 
Denote that dominance relation by FSD. 

Limited Continuitj~. If {(c-l;, p”) j ; is a sequence in (0, co) x M(ii(0, L)) 
for some #CC > L > 0 such that 

(i) c; -+ L’~ and p” +* p, c > 0, and p E M(A(0, L)); 

(ii) r;f > c’; + I 3 c0 and p” FSD p” + ’ FSD p for all n; 

then for every (cb, p’)~ P which satisfies (c;, p’) > (co, p), there exists N 
such that n > N * (cl,, p’) > (c;l, p”). 

On the other hand if (ii) is replaced by 

(ii’) (~6. p”)< (c) for all c> 0 and for all n, then (c,, p)i (c) for all 
c > 0. 

In contrast to compact continuity, limited continuity deals with 
measures whose supports are not bounded away from zero consumption. 
Such measures pose difficulties when CI 3 1 since ,f(c) is then unbounded 
below near 0. Limited continuity is not needed below when CY < 1. 

The second additional continuity axiom in a sense requires continuity 
with respect to the consumption level along deterministic constant paths. 

Certainty Continuity. For each (c,, P)E P, the sets (c: (c)> (co, p)> 
and (c: (c) < (c,, p)> are open in the real line. 

LEMMA A.1. The ordering represented by V y defined in (2.4) satisfies 
certainty continuity and all of the axioms in Theorem 3.2. Moreover, limited 
continuity’ is also satisfied {f the probability transformation function g is 
concave und g’(0) < a. 
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As noted earlier the concavity of g is equivalent to the Yaari functional 
(2.2) being risk averse in the sense of conditional certainty equivalents, 
which in turn is equivalent to aversion to mean preserving increases in 
risk ([42]). Also, in conjunction with g’(0) < “~1, concavity implies the 
Lipschitz property 

Ig(x’) - g(x)/ < A Ix’ - XI VXE [O, l] (A.1 1 

for A = g’(0). 

Proof: Only limited continuity requires attention. Assume (i) and (ii) of 
that axiom and let m” = c$(c;(, p”), m = $(c,, p). Note that 

m” FSD m” + ’ FSD m for all n. CA.2) 

We now show that 

m” -+ m. CA.3 1 

Each p” and p E M(/i(O, L)) induce in a natural fashion measures on the 
interval (0, JC). Denote those measures also by p” and p. Given d > 0 3_c > 0 
such that 

P(k, ml)> 1 -A. (A.41 

Since p” FSDp, it follows also that 

P”((c, ml)> 1 -A for all n. (A.51 

Let f: ( - co, cx ) + ( - m, cc) be continuous and bounded by Ifl. By 
changing variables and subsequently by exploiting (A.4) and (A.5) we can 
write 

I j f(z)d(m”(z)-m(z)) 

But the last term can be made small because c; -+ cO, { u(c;, (c)): n = 1, 2, . 
and _c < c < L} is a bounded set and pn -+ p. This proves (A.3). 

Denote by V (rather than Vy) the rank-dependent functional defined in 
(2.2). We need to prove that 

lim V(&) = V(m). (A.61 
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(In (2.2), V was defined on c.d.f.‘s; but it can also be identified with a 
function on probability measures, which identification is adopted in this 
proof.) If R < 1, then the m”‘s and m all have supports that lie within a 
bounded interval in [0, co). Thus (A.6) follows from the well-known con- 
tinuity properties of the rank-dependent funcltional [a]. The only difficulty 
arises when x > 1 since then u is unbounded below as consumption in any 
period approaches zero. 

If x > 1, then mfl and nz lie in M( [ - a, 0)). For any K > 0, denote by rni 
and mK the truncations to [ -K, 0) of nz” and m, respectively. Suppose that 
V(m) > --r;. (The argument is similar when V(m) = -a.) Given E > 0 3K 
such that 

V(nz,)< V(m)+&. 

Now nz$--+m, and the continuity of V noted above imply that 
V(m”,)+ V(m,). Thus 3N such that V(m”,)< V(m)+& for all n> N. But 
V(m”) < V’(m”,). Thus I’(&‘) < V(m) +E for all sufficiently large II. Also, 
V(nP) > V(m) because of (A.2). This proves (A.6). 

For the second part of limited continuity, assume (i) and (ii’) of that 
axiom and define m” and m as above. Condition (ii’) is impossible if !x < 1. 
If we take CI > 1, then V from (2.2) need be considered only for measures 
with supports in the negative real line. Suppose for the moment that the 
Yaari functional V is such that for all such measures m, 

V(m)= -1% if and only if Em= -m, (A.7) 

where Em is the expected value of m. Then (ii’) a V(m”) = 
--rx; * Em”= -CU. Since p” +* p follows that Em=lim(Em”)= -cc and 
so by (A.7) V(m) = --a3 and (co. p) < (c) for all c > 0. Thus the proof is 
complete if (A.7) can be established. 

The Lipschitz property (A.1 ) for g implies that I”- % z n(g[m(r)]) 2 
AJO, = dm(z); that is 

V(m) > AEm. CA.8 1 

Also, g concave * g(x) 3 .Y on [0, l] 3 (by [42]) 

I’( m ) < Em. (A.9) 

Together, (A.8) and (A.9) imply (A.7). 1 

Proof of Theorem 4.1. For CI = 1, see [3]. We concentrate on TV # 1. 
For any given a and u* in (0, 1 ), let c0 = a and let pi be the probability 

measure corresponding to the random path in which consumption in 
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period t3 1 is given by c’, = a*( 1 -a)(1 -a*)‘-’ i,,. . . i,-, if t> 1. Then 
p~M(l~+(6)) since by (4.1) 

with probability one. 
If cI< 1. then 

% 
xCP’[(l -a”)‘-’ qPE< cc, by (4.1). 

Thus if a and a* are restricted to a compact interval inside (0, 1 ), then p? 
has support in [I ,C] lr for some 0 < I< L < cc. The critical properties of S 
portrayed in Fig. 2(ii) are now readily established. The continuity of S 
follows from compact continuity and its negative slope is implied by the 
FSD monotonicity of V. By the latter and (4.1), c’ -’ 6 V(r”AP”) d S(u) < 
C’~/~-‘(~)(‘-~‘)‘<CC on (0, 1). Thus S(O+)<cc and S(ll)>O. 

When a > 1, f(c) is unbounded below near c = 0 and we must make use 
of limited continuity in order to establish the needed properties of S. For 
a~(0, l), let C (a) denote x;C fl’-‘[(l -uo)‘-’ ?,- I ...r”o]‘P”/(l -a). 
Define d-sup{u~ (0, 1): C (a)> -cc with probability l} and let m(u) 
be the probability measure corresponding to C (a). Define 5 E 
sup{u E (0, d): m(u) E $(P”), where P“ and 4 are defined in (4.2) and 
Theorem 3.2 respectively. Note that 

~(m(a’)v O<u<Z (A.lO) 

Let u” be given by (1 Yu”)‘Pz/?(EY”~Pr )= 1. For O<u<u’,EZ(u) con- 
verges to a finite number while for u” d a < 1, EC(a) diverges to - co. But 
EC(u) is continuous in a on (0, 1) in an extended real-valued sense. 

It is straightforward to show that 
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Next we show that 

WI(a) $! &P’ ). (A.ll) 

Take {u”‘,?c(&~) such that a,,Jti. Then m(a”)+m(ti) in M((-so, cc)). 
There exists (co(Z), p(G)) and for each n !l(c,(a”), p(a”))~ (0, acl) x 
M(/i(O, L)) such that m(a”) = &~,(a”), ~(a”)) and m(E) = d(c,(a), p(a)), 
where L is independent of H. Moreover, in light of the convergence of m(8) 
to m(Z), the fact that m(u”)$&Pf) for all n, and the continuity of EC(u) 
noted above, we can choose the sequence ( (~,(a”), ~(a”))) ;^ so that it 
satisfies conditions (i) and (ii’) of limited continuity. Thus the latter 
=-(~,(a), p(a))<(c) for all c>O=E-(c,(a), ~(ti))$P’=(A.ll). 

We wish to prove that S( .) defined by (A.lO) is continuous on (0,~) 
and that S(u) + cc: as a -+ 5. Consider the latter property. Let un T 2 
and construct consumption programs (~,(a”), ~(a”)), (c,(a), p(a)) as above 
so as to satisfy conditions (i) and (ii) of limited continuity. By (A. 11) 
(c,(a), p(Z)) -K (c) for all c > 0. Thus limited continuity implies that for all 
c>o 3N, n>N~(c,(u’~),p(u”))~(L’)~V(WI(u~))<~C’~~/(1-~)(1-~). 
Thus V(m(u”)) converges to --cc; and S(8) converges to xi. 

The desired continuity of S(-) follows in a similar fashion. 1 
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