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1. CLT for Belief Functions

The purpose of this Note is to prove a form of CLT (Theorem 1.4) that is used in
Epstein and Seo (2011). More general central limit results and other applications
will follow in later drafts.
Let S = fB;Ng and K (S) = ffBg; fNg; fB;Ngg the set of nonempty subsets

of S. Denote by s1 = (s1; s2; :::) the generic element of S1 and by 	n (s1) the
empirical frequency of the outcome B in the �rst n experiments in sample s1.
Let � be a belief function on S, that is, there exists m 2 �(K (S)) such that, for
every A � S,

� (A) = m (fK 2 K (S) : K � Ag) .
Its conjugate �� is given by

�� (A) = 1� � (SnA) ,

and the product �1 is the belief function on S1 satisfying, for every A � S1,

�1 (A) = m1
�
f eK = K1 �K2 � ::: 2 K (S1) : eK � Ag

�
. (1.1)

Here m1 is the ordinary i.i.d. product of the measure m.
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0918248) and discussions with Zengjing Chen. This paper is preliminary; its main purpose is to
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The LLN asserts certainty that asymptotic empirical frequencies will lie in the
interval [� (B) ; 1� � (N)], that is,

�1fs1 : [lim inf 	n (s1) ; lim sup	n (s1)] � [� (B) ; 1� � (N)]g = 1.

The CLT describes (up to approximation) beliefs about �nite sample frequencies.
A simple CLT is provided �rst because it provides perspective on later results.

Let N (�) be the cdf of a standard normal distribution.

Theorem 1.1.

lim
n!1

�1

 (
s1 :

p
n

	n (s
1)� ��(B)p

� (fNg) (1� � (fNg))
� �

)!
= N (�)

lim
n!1

�1

 (
s1 :

p
n

	n (s
1)� � (fBg)p

� (fBg) (1� � (fBg))
> �

)!
= 1�N (�) .

The proof follows readily from the next lemma showing that for the events
indicated, the minimizing measures are i.i.d. As a result classical limit theorems
applied to these measures deliver corresponding limit theorems for the i.i.d. prod-
uct �1.

Lemma 1.2. Let P � and P� be the measures on S with P� (B) = � (B) and
P � (B) = �� (B) respectively. Then their i.i.d. products, denoted P1� and P �1,
both lie in core (�1); and, for any 0 � t � 1 ,

�1 (fs1 : t � 	n (s1)g) = P1� (fs1 : t � 	n (s1)g) (1.2)

and
�1 (fs1 : 	n (s1) � tg) = P �1 (fs1 : 	n (s1) � tg) . (1.3)

See the appendix for a proof.
A CLT for two-sided intervals is less trivial because minimizing measures are

not easily identi�ed. Thus the following theorem uses a di¤erent proof strategy
and applies a version of the multidimensional Berry-Esseen Theorem (Dasgupta
(2008, pp. 145-6)): If the d-dimensional random variables X1; X2; ::: are i.i.d.,
E (X1) = 0, V ar (X1) is the identity matrix, and if E (kX1k) is �nite, then there
exists a constant K such that, for all n,

sup
C2C

����Pr�X1 + :::+Xnp
n

2 C
�
� Pr (Z 2 C)

���� � Kp
n
.
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Here C is the collection of all convex subsets of Rd, and Z is standard normal and
Rd-valued.
Let N 2 (�; �; �) be the cdf for the bivariate normal with zero means, unit vari-

ances and correlation coe¢ cient �, that is,

N 2 (�1; �2; �) = Pr (Z1 � �1; Z2 � �2)

where (Z1; Z2) is bivariate normal with the indicated moments.

Theorem 1.3. There is a constant K that does not depend on �1, �2 or n, such
that �����������

�1

0B@
8><>:
� (B) +

�1p
n

p
(1� � (B)) � (B) � 	n (s1)

� �� (B) + �2p
n

p
(1� �� (B)) �� (B)

9>=>;
1CA

�N 2

�
��1; �2; ��(B)�(N)p

�(B)(1��(B))��(B)(1���(B))

�
�����������
� Kp

n
:

Moreover, the same holds if �1 and �2 depend on n.

This theorem is a special case of the next one, but it also serves as a lemma
in the proof of the more general result.

Remark 1. When � is additive, the indicated correlation coe¢ cient � equals 1
and the inequality becomes

j �1
�
�1 <

p
n	n(s

1)(B)��(B)p
(1��(B))�(B)

� �2
�
� Pr (�1 < Z � �2) j�

Kp
n
,

where Z is standard normal.

Proof. De�ne random variables1

Xi = I (Ki 2 K (S) : Ki � fBg) and Yi = 1� I (Ki 2 K (S) : Ki � fNg) . (1.4)
1Note that I (Ki � fBg)) + I (Ki � fNg)) = 1 � I (Ki � fB;Ng)) 6= 1. Thus the �rst two

indicators are not perfectly negatively correlated.
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Observe �rst that Xi � Yi. Compute, using m, that E (Xi) = � (B), E (Yi) =
1� � (N), V ar (Xi) = � (B) (1� � (B)), V ar (Yi) = (1� � (N)) � (N) and

cov (Xi; Yi) = E (XiYi)� E (Xi)E (Yi)

= E (Xi)� E (Xi)E (Yi)

= � (B)� � (B) (1� � (N))
= � (B) � (N) :

Here, the second equality follows because Xi = 1 implies Yi = 1. Then

E

240@ Xi��(B)p
(1��(B))�(B)
Yi�(1��(N))p
(1��(N))�(N)

1A35 = 0 and

V ar

240@ Xi��(B)p
(1��(B))�(B)
Yi�(1��(N))p
(1��(N))�(N)

1A35 =

�
1 �
� 1

�
,

where

� = corr (Xi; Yi) =
� (B) � (N)p

� (B) (1� � (B)) (1� � (N)) � (N)
:

Note that

K1 �K2 � ::: �
�
s1 : �1 <

nP
i=1

I (si = B) � �2
�

()

�1 < min
s12K1�K2�:::

nP
i=1

I (si = B) � max
s12K1�K2�:::

nP
i=1

I (si = B) � �2 ()

�1 <
nP
i=1

min
s12K1�K2�:::

I (si = B) �
nP
i=1

max
s12K1�K2�:::

I (si = B) � �2 ()

�1 <
nP
i=1

I (Ki � fBg) �
nP
i=1

[1� I (Ki � fNg)] � �2 ()

�1 <
nP
i=1

Xi �
nP
i=1

Yi � �2

Conclude from (1.1) that
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�1
��
s1 : �1 <

nP
i=1

I (si = B) � �2
��

= m1
��
K1 �K2 � ::: 2 (K (S))1 : �1 <

nP
i=1

Xi �
nP
i=1

Yi � �2
��

:

Consequently,

�1
�
�1 <

n	n(s1)�n�(B)p
n(1��(B))�(B)

, n	n(s
1)�n(1��(N))p

n(1��(N))�(N)
� �2

�
= �1

�
�1
p
n (1� � (B)) � (B) + n� (B) < n	n (s1)

�
p
n (1� � (N)) � (N)�2 + n (1� � (N))

�
= m1

�
�1
p
n (1� � (B)) � (B) + n� (B) <

Pn
i=1Xi

�
Pn

i=1 Yi �
p
n (1� � (N)) � (N)�2 + n (1� � (N))

�
= m1

�
�1 <

Pn

i=1
Xi�n�(B)p

n(1��(B))�(B)
,
Pn

i=1
Yi�n(1��(N))p

n(1��(N))�(N)
� �2

�
:

This permits translation of the assertion to be proven into one about i.i.d. prob-
ability measures and thus classical results can be applied.
Use the Cholesky decomposition of the variance-covariance matrix to obtain

V � such that (V �)�1

0@ Xi��(B)p
(1��(B))�(B)
Yi�(1��(N))p
(1��(N))�(N)

1A is standard normal (with correlation 0),

and

[�1 <

Pn
i=1Xi � n� (B)p
n (1� � (B)) � (B)

and

Pn
i=1 Yi � n (1� � (N))p
n (1� � (N)) � (N)

� �2] ()

(V �)�1

0B@
Pn

i=1
Xi�n�(B)p

n(1��(B))�(B)Pn

i=1
Yi�n(1��(N))p

n(1��(N))�(N)

1CA 2 C,

for some convex C � R2. Therefore, by the multidimensional Berry-Esseen The-
orem, �������m1

0B@(V �)�1
0B@

Pn

i=1
Xi�n�(B)p

n(1��(B))�(B)Pn

i=1
Yi�n(1��(N))p

n(1��(N))�(N)

1CA 2 C

1CA� Pr��Z
Z 0

�
2 C

�������� �
Kp
n
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for some constant K that does not depend on C or n, where
�
Z
Z 0

�
is standard

normal.
De�ne �

~Z
~Z 0

�
= V �

�
Z
Z 0

�
.

Then

Pr

��
Z
Z 0

�
2 C

�
= Pr

�
�1 < ~Z, ~Z 0 � �2

�
= Pr

�
� ~Z < ��1, ~Z 0 � �2

�
= N 2 (��1; �2;��) :

Therefore,��������
�1
�
�1 <

n	n(s1)�n�(B)p
n(1��(B))�(B)

, n	n(s
1)�n(1��(N))p

n(1��(N))�(N)
� �2

�
�N 2

�
��1; �2; ��(B)�(N)p

�(B)(1��(B))(1��(N))�(N)

�
�������� �

Kp
n
:

Finally, the same proof works when �1 and �2 are replaced by �1;n and �2;n.�

The next theorem generalizes the preceding and is the main objective of this
Note.

Theorem 1.4. Suppose that G : R ! R is bounded, quasi-concave and upper-
semicontinuous. ThenZ

G (	n (s
1)) d�1 (s1) = E [min fG (X 0

1n) ; G (X
0
2n)g] +O

�
1p
n

�
,

where (X 0
1n; X

0
2n) is normally distributed with mean (� (B) ; �

� (B)) and variance

1

n

�
� (B) (1� � (B)) � (B) � (N)
� (B) � (N) (1� � (N)) � (N)

�
:

That is,

lim sup
n!1

p
n

����Z G (	n (s
1) (B)) d�1 (s1)� E [min fG (X 0

1n) ; G (X
0
2n)g]

���� � K
for some constant K. Moreover, the same holds when G depends on n and
supn;a jGn (a)j <1.
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The preceding theorem is the special case where G (�) = 1[an;bn] (�) and

an = � (B)+n
�1=2�1

p
(1� � (B)) � (B), bn = �� (B)+n�1=2�2

p
(1� �� (B)) �� (B).

Proof. Without loss of generality, suppose that infn;aG (a) = 0. De�ne M =
supn;aG (a). Since G is quasiconcave, there are two (inverse) functions G�1L and
G�1R such that

fa : G (a) � t g =
�
G�1L (t) ; G�1R (t)

�
for all t 2 [0;M ] .

(The inverses may not be de�ned at t = 0, but this is of no consequence below.)
By the de�nition of Choquet integration,Z

G (	n (s
1)) d�1 (s1) =

Z M

0

�1 (G (	n (s
1)) � t) dt

=

Z M

0

�1
�
G�1L (t) � 	n (s1) � G�1R (t)

�
dt:

Note that

�1
�
G�1L (t) � 	n (s1) � G�1R (t)

�
= �1

0B@ nG�1L (t)�n�(B)p
n(1��(B))�(B)

� n	n(s1)�n�(B)p
n(1��(B))�(B)

,

n	n(s1)�n(1��(N))p
n(1��(N))�(N)

� nG�1R (t)�n(1��(N))p
n(1��(N))�(N)

1CA :
Thus, by Theorem 1.3,

�1
�
G�1L (t) � 	n (s1) � G�1R (t)

�
= N 2

 
� nG�1L (t)� n� (B)p

n (1� � (B)) � (B)
;
nG�1R (t)� n (1� � (N))p

n (1� � (N)) � (N)
;��

!
+O

�
1p
n

�
with � = �(B)�(N)p

�(B)(1��(B))(1��(N))�(N)
. Because the term O

�
1p
n

�
does not depend on

t, Z M

0

�1
�
G�1L (t) � 	n (s1) � G�1R (t)

�
dt

=

Z M

0

N 2

 
� nG�1L (t)� n� (B)p

n (1� � (B)) � (B)
;
nG�1R (t)� n (1� � (N))p

n (1� � (N)) � (N)
;��

!
dt+O

�
1p
n

�
:
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Let Z1 and Z2 be jointly normally distributed with mean (0; 0) and variance�
1 �
� 1

�
, and letX 0

1n andX
0
2n be normally distributed as in the theorem statement.

Then Z M

0

N 2

 
� nG�1L (t)� n� (B)p

n (1� � (B)) � (B)
;
nG�1R (t)� n (1� � (N))p

n (1� � (N)) � (N)
;��

!
dt

=

Z M

0

Pr

0@ G�1L (t) � � (B) +
p
n(1��(B))�(B)

n
Z1;

(1� � (N)) +
p
n(1��(N))�(N)

n
Z2 � G�1R (t)

1A dt
=

Z M

0

Pr
�
G�1L (t) � X 0

1n, X
0
2n � G�1R (t)

�
dt

*
=

Z M

0

Pr
�
G�1L (t) � X 0

1n � G�1R (t) , G�1L (t) � X 0
2n � G�1R (t)

�
dt+O

�
1p
n

�
=

Z M

0

Pr (G (X 0
1n) � t, G (X 0

2n) � t) dt+O
�
1p
n

�
=

Z M

0

Pr (min fG (X 0
1n) ; G (X

0
2n)g � t) dt+O

�
1p
n

�
= E [min fG (X 0

1n) ; G (X
0
2n)g] +O

�
1p
n

�
:

To complete the proof, we need only prove the equality marked with an aster-
isk. De�ne random variables (Xi; Yi)

1
i=1 as in (1.4). Then they are i.i.d. under

m1 and, because Xi � Yi,

Pr

�
a �

Pn

i=1
Xi

n
,
Pn

i=1
Yi

n
� b
�

= Pr

�
a �

Pn

i=1
Xi

n
�
Pn

i=1
Yi

n
� b
�

= Pr

�
a �

Pn

i=1
Xi

n
� b, a �

Pn

i=1
Yi

n
� b
�
:
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By the multidimensional Berry-Esseen Theorem,

j Pr

�
a �

Pn

i=1
Xi

n
,
Pn

i=1
Yi

n
� b
�
� Pr(a � X 0

1n, X
0
2n � b) j

= j Pr
�
(a� E [X1])

p
n �

Pn

i=1
(Xi�E[X1])p
n

,
Pn

i=1
(Yi�E[Y1])p
n

� (b� E [Y1])
p
n

�
�Pr

�
(a� E [X1])

p
n � (X 0

1n � E [X1])
p
n, (X 0

2n � E [Y1])
p
n � (b� E [Y1])

p
n
���

= sup
C2R2 convex

j Pr
��Pn

i=1
(Xi�E[X1])p
n

;

Pn

i=1
(Yi�E[Y1])p
n

�
2 C

�
� Pr((Z1; Z2) 2 C) j�

Kp
n
;

and similarly

j Pr
�
a �

Pn

i=1
Xi

n
� b, a �

Pn

i=1
Yi

n
� b
�
�Pr (a � X 0

1n � b, a � X 0
2n � b) j�

Kp
n
.

It follows that, for all a � b and n,

j Pr(a � X 0
1n, X

0
2n � b)� Pr (a � X 0

1n � b, a � X 0
2n � b) j�

2Kp
n
.

This proves the marked equation.
Finally, the above proof works also if G is replaced by Gn such that

supn;a jGn (a)j � 1. �

A. Appendix: Proof of Lemma 1.2

Prove (1.2).
Step 1: K1 �K2 � ::: � fs1 : �ni=1I (si = B) � tg i¤ �ni=1I (Ki � fBg) � t.
Here is a proof:

K1 �K2 � ::: �
�
s1 :

nP
i=1

I (si = B) � t
�

() min
s12K1�K2�:::

nP
i=1

I (si = B) � t

()
nP
i=1

min
si2Ki

I (si = B) � t

()
nP
i=1

I (Ki � fBg) � t.
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Step 2: Let m1 2 �(K (S1)) be the measure for �1. Then

�1
��
s1 :

nP
i=1

I (si = B) � t
��

= m1
��
K1 �K2 � ::: 2 K (S1) :

nP
i=1

I (Ki � fBg) � t
��

:

Argue as follows:

�1
��
s1 :

nP
i=1

I (si = B) � t
��

= m1
��
K 2 K (S1) : K �

�
s1 :

nP
i=1

I (si = B) � t
���

= m1
��
K1 �K2 � ::: 2 K (S1) : K1 �K2 � ::: �

�
s1 :

nP
i=1

I (si = B) � t
���

:

Next apply Step 1.
Step 3: Complete the proof. By Step 2,

�1 (fs1 : 	n (s1) � tg)

= �1
��
s1 : 1

n

nP
i=1

I (si = B) � t
��

= m1
��
K1 �K2 � ::: 2 K (S1) : 1n

nP
i=1

I (Ki = fBg) � t
��

= Pr
�
1
n
�ni=1Yi � t

�
,

where Yi = 0 or 1, Pr (Yi = 1) = � (B) and the Yi�s are i.i.d. Therefore, the
preceding equals P1� (fs1 : 	n (s1) � ntg) :
To prove (1.3), reverse the roles of B and N in the preceding argument. �
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