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1. CLT for Belief Functions

The purpose of this Note is to prove a form of CLT (Theorem 1.4) that is used in
Epstein and Seo (2011). More general central limit results and other applications
will follow in later drafts.

Let S ={B,N}and £ (S5) = {{B},{N},{B, N}} the set of nonempty subsets
of S. Denote by s* = (s1, sa,...) the generic element of S> and by ¥,, (s*) the
empirical frequency of the outcome B in the first n experiments in sample s*°.
Let 6 be a belief function on S, that is, there exists m € A (K (S)) such that, for
every A C S,

O(A)=m({KeKk(S): KCA}).

Its conjugate 6" is given by
0" (A) =1-0(5\A),
and the product 6% is the belief function on S satisfying, for every A C S,
0> (A) = m™® <{[~(:Kl Ky X ... eK:(SOO):f(cA}). (1.1)

Here m® is the ordinary i.i.d. product of the measure m.
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The LLN asserts certainty that asymptotic empirical frequencies will lie in the
interval [0 (B),1 — 0 ()], that is,

6> {s* : [liminf ¥, (s*°),limsup ¥,, (s*)] C [# (B),1 —0(N)]} = 1.

The CLT describes (up to approximation) beliefs about finite sample frequencies.
A simple CLT is provided first because it provides perspective on later results.
Let IN (-) be the cdf of a standard normal distribution.

Theorem 1.1.
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The proof follows readily from the next lemma showing that for the events
indicated, the minimizing measures are i.i.d. As a result classical limit theorems
applied to these measures deliver corresponding limit theorems for the i.i.d. prod-
uct 6°°.

Lemma 1.2. Let P* and P, be the measures on S with P, (B) = 6 (B) and
P*(B) = 0" (B) respectively. Then their i.i.d. products, denoted P> and P**,
both lie in core (0*); and, for any 0 <t <1,

0% ({s™ : t < W, (s)}) = P2 ({s™ : 1 < W, (s)}) (1.2)

and

0% ({5 : W, (s°) < t}) = P*° ({5 : U, (s¥) < t}). (1.3)

See the appendix for a proof.

A CLT for two-sided intervals is less trivial because minimizing measures are
not easily identified. Thus the following theorem uses a different proof strategy
and applies a version of the multidimensional Berry-Esseen Theorem (Dasgupta
(2008, pp. 145-6)): If the d-dimensional random variables X, Xs, ... are i.i.d.,
E(Xy) =0, Var (X;) is the identity matrix, and if F (||X1]|) is finite, then there
exists a constant K such that, for all n,
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Here C is the collection of all convex subsets of R?, and Z is standard normal and
R%-valued.

Let N5 (-, +; p) be the cdf for the bivariate normal with zero means, unit vari-
ances and correlation coefficient p, that is,

Ny (a1, a9;p) =Pr(Z1 < an, Z2 < a)
where (7, Z,) is bivariate normal with the indicated moments.

Theorem 1.3. There is a constant K that does not depend on o, ay or n, such
that

6(B) + %m —0(B))6(B) < ¥, (s)
< 0" (B) + %\/(1 0 (B)) 0 (B)
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Moreover, the same holds if a; and as depend on n.

This theorem is a special case of the next one, but it also serves as a lemma
in the proof of the more general result.

Remark 1. When 0 is additive, the indicated correlation coefficient p equals 1
and the inequality becomes

s <a1<ﬁ%ga2)_wm<zgag>|

where Z is standard normal.
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Proof. Define random variables!

X, =I(K; €K(S): K;C{B}) and Y; =1—I(K; € K(S): K; C {N}). (1.4)

'Note that I (K; C {B}))+I(K; C{N})) =1—-1I(K; C{B,N})) # 1. Thus the first two
indicators are not perfectly negatively correlated.



Observe first that X; < Y;. Compute, using m, that £ (X;) = 0(B), E(Y;) =
1—0(N), Var (X;) =0(B)(1—-0(B)), Var (Y;) = (1-0(N))60(N) and

cov(X;,Y;) = E(X)Y)—E(X;)E(Y;)
= E(X;)-E(X))E(Y)
— 9(B) - 6(B)(1— 6 (V)
= 0(B)#(N).

Here, the second equality follows because X; = 1 implies Y; = 1. Then
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Conclude from (1.1) that



— {Klszx...e(K(S))“:51<§Xiggmgﬁz}).

Consequently,
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This permits translation of the assertion to be proven into one about i.i.d. prob-
ability measures and thus classical results can be applied.

Use the Cholesky decomposition of the variance-covariance matrix to obtain
X,—0(B)

V* such that (V*)' Y(il__g(j)()]\a}()?) is standard normal (with correlation 0),

(1-0(N))0(N)
and
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for some convex C' C R2. Therefore, by the multidimensional Berry-Esseen The-
orem,
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Z\ .
for some constant K that does not depend on C or n, where < Z’> is standard

normal.
Define ~
Z A
(2)-v(7)
Then
A ~ 7l
Pr ((Z,> e C) — Pr <a1 <7, 7'< @2)
= Pr <—Z < -, 7' < a2>
= Ny(—a1,az—p).
Therefore,

Vn(1=0(B)O(B)"  /n(1—0(N))O(N)

< K
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Finally, the same proof works when «; and «; are replaced by «; , and oy ,,.

The next theorem generalizes the preceding and is the main objective of this
Note.

Theorem 1.4. Suppose that G : R — R is bounded, quasi-concave and upper-
semicontinuous. Then

[ 6 ) 0™ (%) = B lmin (6 042,). 6 (X)) + 0 (72 )

where (X7,,, X},,) is normally distributed with mean (6 (B),0" (B)) and variance

1(e<B><1—9<B>> e<B>e<N>)
n\ 0B (1-oN)aN))
That is,
limsup Vit | [ G (W, (%) (B) d6™ () ~ B [min (G (X,,), G (X3, )}| < K

for some constant K. Moreover, the same holds when G depends on n and
sup,, , |Gn (a)] < co.



The preceding theorem is the special case where G () = 1., () and

an = 0 (B)+n"Y201\/(1-60(B))6 (B), b, = 0" (B ay\/(1— 6 (B)) 6 (B).

Proof. Without loss of generality, suppose that inf, , G (a) = 0. Define M =
sup,, , G (a). Since G is quasiconcave, there are two (inverse) functions G;' and
G5! such that

{a:G(a) >t} =[G (t),Gg (¢)] forallte[0,M].

(The inverses may not be defined at ¢t = 0, but this is of no consequence below.)
By the definition of Choquet integration,

/G(qzn(sooweoo(sw) - /0 0> (G (T, (s)) > t) dt
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Note that
0> (G;1 (t) <V, (s*) < (t))
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Thus, by Theorem 1.3,
0> (G (t) < 0, (s™) < G (1))
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Let Z; and Zs be jointly normally distributed with mean (0,0) and variance

1
Then

</1) P > , and let X1, and X/ be normally distributed as in the theorem statement.

M nGr' (t) —nf (B) nGgl(t) —n(1-0(N))

N2 - ’ » d
/ <¢n<l_e<3>w<3> V(L= AN 9] p>t
| Y/ OOEE)

e[ Grwsem 2

T\ a ) ¢ D gy
_ / Pr(G' (t) < X1, X3, <GR (1)) dt
;/MPr t) < X1, <GR (1), Gt () < X5, < GR (1)) dt+0(%)

!/ !/ 1
Pr (X! >t,G(X2n)2t)dt+O(ﬁ)

Pr (min {G (X1,), G (X3,)} = t)dt + O (%)

~ B0 (). G5+ 0 (=)

To complete the proof, we need only prove the equality marked with an aster-
isk. Define random variables (X;,Y;);-, as in (1.4). Then they are i.i.d. under
m> and, because X; <Y},

Pr (CL < Zi:lXi, Zi:lyi < b>
< == ~— <
— Pr (a < L Xt 2V o b)
< == ~— <

- Pr(a<'TX§b gzi—lyigb).

n



By the multidimensional Berry-Esseen Theorem,
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and similarly

n ) n . K
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It follows that, for all a« < b and n,
!/ / ! !/ 2K
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This proves the marked equation.
Finally, the above proof works also if GG is replaced by G,, such that
sup,, ., |Gn (a)] < oo, [ |

A. Appendix: Proof of Lemma 1.2

Prove (1.2).
Step 1: K3 x Ko x ... C{s>®: X" I(s;,=B)>t}ifft ¥ I (K; C {B}) >t.
Here is a proof:

K1XK2X... C {SOOZ[(SZ:B)Zt}
=1

n

— min > I(si=B)>t

s®eK1xKaoX... i=1

n
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Step 2: Let m™ € A (K (S°)) be the measure for 6. Then

(f g -m=1)
— ({m X Ky X .. elC(SO"):i_ill(Ki c (B)) Zt}).

Argue as follows:

= m°°<{K€/C(S°°):KC{Sm:il(sizB)Zt}

Next apply Step 1.
Step 3: Complete the proof. By Step 2,

0% ({7 : W, (™) > t})

= m>® <{Kl x Ky x ...€ K(5%): %iI(K}:{B}) Zt})

i=1

= Pr(iZLY; >1),

where Y; = 0 or 1, Pr(Y; =1) = 6(B) and the Y;’s are i.i.d. Therefore, the
preceding equals P> ({s* : WU, (s*) > nt}).
To prove (1.3), reverse the roles of B and N in the preceding argument. W
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