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Abstract

We model a decision-maker who is facing a sequence of experiments, and
whose perception is that outcomes are in�uenced by two factors - one that is
well understood and �xed across experiments, and the other that is poorly
understood and thought to be unrelated across experiments (the �error
term�). Consequently, there is incomplete con�dence that experiments are
identical. We argue that a Bayesian model cannot capture the above, but
that belief function utility can. Our formal contribution is to generalize
the de Finetti Theorem on exchangeability to a framework where beliefs
are represented by belief functions. Moreover, this is done while extending
the scope of the bridge provided by de Finetti between subjectivist and
frequentist approaches. In particular, a model of updating is provided.
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1. INTRODUCTION

1.1. Motivation and Objectives

An individual is considering bets on the outcomes of a sequence of coin tosses.
It is the same coin being tossed repeatedly, but di¤erent tosses are performed
by di¤erent people. The individual believes that outcomes depend on both the
(unknown) physical make-up or bias of the coin and on the way in which the coin
is tossed. Her understanding of tossing technique is poor. However, she has no
reason to distinguish between the various tossers and she views technique as being
idiosyncratic. Given this perception, how would she rank bets?
More generally, we are interested in modeling a decision-maker who is facing

a sequence of experiments, and whose perception is that outcomes are in�uenced
by two factors - one that is well understood and �xed across experiments (coin
bias), and the other that is poorly understood and thought to be unrelated across
experiments. This description would seem to apply to many choice settings, where
the decision-maker has a theory or model of her environment, but where she is
sophisticated enough to realize that it is �incomplete�- hence the second factor,
which can be thought of as an �error term�for her model.
We limit ourselves to situations where, in addition, there is symmetry of evi-

dence about the experiments - no information is given that would imply a distinc-
tion between them. However, given the poor understanding of the error term, a
sophisticated individual might very well admit the possibility that the experiments
may di¤er in some way. Thus we refer to experiments as being indistinguishable
but not necessarily identical.1

A prime motivating example is where the decision-maker is a statistician or
empiricist, and an experiment is part of a statistical model of how data are gener-
ated. Invariably symmetry is assumed at some level - perhaps after correcting for
perceived asymmetries, such as heteroscedasticity of errors in a regression model.
Standard statistical methods presume that, after such corrections, the identical
statistical model applies to all experiments or observations. This practice has
been criticized as being particularly inappropriate in the context of the literature
attempting to explain cross-country di¤erences in growth rates, in which case an
�experiment�corresponds to a country. Brock and Durlauf [6, p. 231] argue that

1This terminological distinction was introduced in Epstein and Schneider [13]. Another way
to describe the distinction, due to Walley [41], is between symmetry of evidence, which we
assume, and evidence of symmetry, which we assume is lacking, or at least, is not overwhelming.
See the concluding section for more on related literature.
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it is �a major source of skepticism about the empirical growth literature.�They
write further that �where the analyst can be speci�c about potential di¤erences
[between countries], she can presumably (test and) correct for them by existing
statistical methods. However, the open-endedness of growth theories makes it
impossible to account in this way for all possible di¤erences.� Since they also
emphasize the importance of having sound decision-theoretic foundations for sta-
tistical methods, particularly for purposes of policy analysis, we interpret their
paper as calling (�rst) for a model of decision-making that would permit the an-
alyst to express a judgement of �similarity�or �indistinguishability,�but also a
concern that countries or experiments may di¤er, even if she cannot specify how.
Such a model is our objective.

1.2. The De Finetti Bayesian Model

Some readers may be wondering why there is a need for a new model of choice -
does not the exchangeable Bayesian model due to de Finetti adequately capture
beliefs and, in conjunction with subjective expected utility, also choice, in the
coin-tossing setting (and more generally)?
Recall de Finetti�s model and celebrated theorem [16, 23]. There is a countable

in�nity of experiments, indexed by the set N = f1; 2; :::g. Each experiment yields
an outcome in the set S (technical details are suppressed until later). Thus 
 =
S1 is the set of all possible sample paths. A probability measure P on 
 is
exchangeable if

(�P ) (A1 � A2 � :::::) = P (A��1(1) � A��1(2) � :::::),

for all �nite permutations � of N. De Finetti shows that exchangeability is equiva-
lent to the following representation: There exists a (necessarily unique) probability
measure � on �(S) such that

P (�) =
Z
�(S)

`1 (�) d� (`) , (1.1)

where, for any probability measure ` on S (written ` 2 �(S)), `1 denotes the
corresponding i.i.d. product measure on 
.2

2Though the de Finetti theorem can be viewed as a result in probability theory alone, it
is typically understood in economics as describing the prior in the subjective expected utility
model of choice. That is how we view it in this paper.
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Given a Bayesian prior, symmetry of evidence implies exchangeability and
therefore de Finetti�s representation, which admits the obvious interpretation:
The individual is uncertain about which probability law ` describes any single
experiment. However, conditional on any ` in the support of �, it is the i.i.d.
product `1 that describes the implied probability law on 
. This suggests that
there is no room in the model to accommodate a concern with experiments not
being identical. In Section 3, we con�rm this suggestion at the behavioral level
by identifying behavior that is intuitive for an individual who is not completely
con�dent that experiments are identical, but yet is ruled out by the Independence
axiom of subjective expected utility theory.3 Thus we propose a model that gen-
eralizes the exchangeable Bayesian model by suitably relaxing the Independence
axiom.
Speci�cally, we consider preference on a domain of (Anscombe-Aumann) acts

that conforms to Choquet expected utility where the capacity is a belief function -
we call this model belief function utility.4 Using the latter as the basic framework,
we then impose two further axioms - Symmetry (corresponding to exchangeability)
and Orthogonal Independence (relaxing the Independence axiom). These axioms
are shown (Theorem 4.1) to characterize the following representation that extends
(1.1):

� (�) =
Z
Bel(S)

�1 (�) d� (�) , (1.2)

where � is a belief function on 
, Bel (S) denotes the set of all belief functions
on S, � is a probability measure on Bel (S), and �1 denotes a suitable �i.i.d.
product�of the belief function �.
At an informal level, the representation captures �indistinguishable but not

identical�in the following way. Consider our introductory coin-tossing setting for
concreteness, so that S = fH;Tg. In the Bayesian model, each experiment is
characterized by a single number in the unit interval - the probability of Heads.
Here, instead an experiment is characterized by an interval of probabilities for
Heads, which is nondegenerate because even given the physical bias of the coin,
the in�uence of tossing technique is poorly understood. (For any � 2 Bel (S)

3Walley [41, Ch. 9] argues that the Bayesian model cannot accommodate both symmetry
of evidence and an absence of overwhelming evidence of symmetry. Brock and Durlauf�s [6]
critique of the empirical growth literature is in part expressed as a critique of the assumption
of (a conditional or partial form of) exchangeability. In our view, the culprit is not symmetry,
but rather the implicit assumption of expected utility theory.

4Belief functions and the corresponding utility functions are described in Section 2.
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appearing in (1.2), the interval is [� (H) ; 1 � � (T )]). Experiments are indistin-
guishable, because each is described by the same interval. However, they are not
identical, because any probability in the interval could apply to any experiment.
There is intuition for using ambiguity averse preferences, motivated by the

Ellsberg Paradox, as a framework. If the individual is not con�dent that the
experiments are identical, then presumably there are features of each single ex-
periment that she does not understand well. Belief function utility is particularly
appealing because it is a special case of both Choquet expected utility (Schmei-
dler [37]) and multiple-priors utility (Gilboa and Schmeidler [20]), and thus is
�close�to the benchmark expected utility model, and because it admits an epis-
temic rationale due to Dempster [9] and Shafer [38] (see (2.3) and the surrounding
discussion).

1.3. Frequencies and Updating

As indicated by the discussion of (1.2), one formal contribution of the paper is
to generalize de Finetti�s Theorem from probability measures to belief functions.
However, the importance of the de Finetti Theorem extends beyond the repre-
sentation to the connection it a¤ords between subjective beliefs and empirical
frequencies. Here we outline how these aspects of the de Finetti model extend
also to our generalization.
One form that the noted connection takes in the Bayesian framework is to

relate subjective beliefs about the unknown but �xed bias (or more general pa-
rameter), represented by �, to empirical frequencies. In the coin-tossing setting,
for example, empirical frequencies converge with probability 1 (by a law of large
numbers for exchangeable measures), and one can view � as representing ex ante
beliefs about the limiting empirical frequency of Heads, a random variable. Thus
a bridge is provided between subjectivist and frequentist theories of probabil-
ity (see Kreps [25, Ch. 11], for example). Secondly, this connection can help a
decision-maker to calibrate her uncertainty about the true parameter. Another
important aspect of the de Finetti Theorem is the connection between beliefs and
observations a¤orded via Bayesian updating of the prior �. The combination of
the de Finetti Theorem and Bayes�Rule gives the canonical model of learning or
inference in economics and statistics. Under well-known conditions, it yields the
important conclusion that priors will eventually be swamped by data and that
individuals will learn the truth (see Savage [36, Ch. 3.6], for example).
Our generalization of de Finetti�s Theorem also extends the scope of these
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contributions. The link to a frequentist foundation for beliefs extends in the
following way (for the coin-tossing experiments): Given ambiguity, the decision-
maker is not certain that empirical frequencies converge to a �xed point. Thus
she thinks in terms of the random interval [lim inf 	n (!) ; lim sup	n (!)], where
	n (!) is the empirical frequency of Heads for a sample of size n. We show (Section
5), using a LLN for belief functions due to Maccheroni and Marinacci [27], that
the prior � over Bel (S) can be viewed as a measure over such random intervals.
An aid to forming beliefs about belief functions is also provided thereby.
Turn to updating. Ambiguity poses di¢ culties for updating and there is no

consensus updating rule analogous to Bayes�Rule. However, our model admits
intuitive (and dynamically consistent) updating in a limited but still interesting
class of environments, namely, where an individual �rst samples and observes the
outcomes of some experiments, and then chooses how to bet on the outcomes of
remaining experiments. The essential point is that each experiment serves either
as a signal or is payo¤ relevant, but not both. For example, think of a statistical
decision-maker who, after observing the results of some experiments, is concerned
with predicting the results of others because he must take an action (estimation,
or hypothesis testing perhaps) whose payo¤ depends on their outcomes. Policy
evaluation in the context of cross-country growth is a concrete application, where
choice between policies for a particular country is based on observations of how
these policies fared in others. Our model prescribes a way to use the latter infor-
mation that accommodates the policy-maker�s concern that countries may di¤er
in ways that are poorly understood and that are not taken into account in the
model of growth.
Besides being well-founded axiomatically, our model of updating is also tractable.

This aspect stems from the fact that beliefs at every node have a representation
of the form (1.2), which is completely de�ned by a (unique) probability measure
over Bel (S). Thus one need only describe how information is incorporated into
an additive probability measure, rather than dealing with the thornier problem
of updating a set of priors or a nonadditive measure or capacity. As shown in
Theorem 6.1, this can be done in a way that mirrors standard Bayesian updating.
A consequence is that formal results from Bayesian learning theory can be trans-
lated into our model, though with suitable reinterpretation. As one example, we
establish (Proposition 6.4) a counterpart of the Savage result that (under suitable
conditions), data eventually swamp the prior. In the coin-tossing example, the in-
dividual asymptotically converges to certainty about a particular bias, and hence
about a speci�c probability interval, but since she may still be left with an interval,
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she may remain ambiguous about tossing technique and thus remain concerned
that experiments di¤er. She learns all that she believes that she can, given her
ex ante perception of the experiments, which, in turn, underlies her preferences.
If the truth is that tossing technique is not important, and if that possibility is
admitted in her prior view, then she will converge to the truth asymptotically.

2. BELIEF FUNCTIONS

We will deal with two di¤erent (compact metric) state spaces - S corresponding
to a single experiment, and 
 = S1, describing all possible sample paths. Thus
in this section we consider an abstract (compact metric) state space X. It has
Borel �-algebra �X .
A belief function on X is a set function � : �X ! [0; 1] such that:5

Bel.1 � (?) = 0 and � (X) = 1

Bel.2 � (A) � � (B) for all Borel sets A � B

Bel.3 � (Bn) # � (B) for all sequences of Borel sets Bn # B

Bel.4 � (G) = supf� (K) : K � G, K compactg, for all open G

Bel.5 � is totally monotone (or 1-monotone): for all Borel sets B1; ::; Bn,

�
�
[nj=1Bj

�
�

P
? 6=J�f1;:::;ng

(�1)jJ j+1 � (\j2JBj)

The set of all belief functions on X is Bel (X). It is compact metric when
endowed with the topology for which �n ! � if and only if

R
fd�n !

R
fd� for

every continuous function f on X, where the integral here and throughout is in
the sense of Choquet (see Schmeidler [37]).
Denote by �(X) the set of Borel probability measures on X, endowed with

the weak convergence topology (generated by continuous functions), and by K (X)
the set of compact subsets of X, endowed with the Hausdor¤ metric. Both are

5These conditions are adapted from [35], to which we refer the reader for details supporting
much of the outline in this section. We point out only that when restricted to probability
measures, Bel.4 is the well-known property of regularity.

7



compact metric. If m 2 �(X), then m1 denotes the usual i.i.d. product measure
on X1.6

Each belief function de�nes a preference order or utility function. Interpreting
X as a state space, denote by F (X) the set of all (measurable) acts f : X ! [0; 1].
For any � 2 Bel (X), let U� : F (X)! R be de�ned by

U� (f) =

Z
fd�. (2.1)

Refer to U� as a belief-function utility, and to the corresponding preference order
as a belief-function preference.
Since a belief function is also a capacity (de�ned by Bel.1-Bel.4), belief-function

utility is a special case of Choquet expected utility, axiomatized by Schmeidler
[37]; and since it is convex (supermodular, or 2-alternating, that is, satis�es the in-
equalities in Bel.5 restricted to n = 2), it is well-known that (2.1) can be expressed
alternatively as

U� (f) = min
P2core(�)

Z
fdP ,

where
core (�) = fP 2 �(X) : P (�) � � (�)g .

Thus the current model is also a special case of multiple-priors utility, which has
been axiomatized by Gilboa and Schmeidler [20].
Note that acts are taken to be real-valued and to enter linearly into the Cho-

quet integral. This may be justi�ed as follows: Suppose that outcomes lie in an
abstract set Z, and that (Anscombe-Aumann) acts map states into �(Z). Sup-
pose also that there exist best and worst outcomes z and z. Then, under weak
conditions, for each state ! and act f , there exists a unique probability p, so that
the constant act f (!) is indi¤erent to the lottery (z; p; z; 1� p); refer to such a
lottery as (a bet on) the toss of an (objective) p-coin.7 Such calibration renders
the util-outcomes of any act observable, and these are the [0; 1]-valued outcomes
we assume herein and that justify writing utility as in (2.1). A further conse-
quence, given (2.1) is that the utility U� (f) is also scaled in probability units - it
satis�es

f � (z; U� (f) ; z; 1� U� (f)) . (2.2)

6Throughout product spaces are endowed with the product metric.
7We will not always repeat �objective�below, but there should be no confusion between the

motivating coin-tossing experiment described in the introduction, where uncertainty is subjec-
tive, and these tosses of an objective coin that de�ne lotteries used to calibrate utility outcomes.
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Thus f is indi¤erent to betting on the toss of a U� (f)-coin.
Belief functions have been widely studied (see [8, 30, 33], for example) and

used (for applications in robust statistics see Huber [24], and for applications in
decision theory and economics, see [15, 35, 27], for example). They (and their cor-
responding utility functions) also admit an intuitive justi�cation due to Dempster
[9] and Shafer [38], (see also Mukerji [32] and Ghirardato [18]), and illustrated in
(2.3) below.
Though there exists a Savage-style state space X, the agent�s perceptions are

coarse and are modeled through an auxiliary epistemic (compact metric) state
space bX and a (measurable and nonempty-compact-valued) correspondence �
from bX into X. There is a Borel probability measure p representing beliefs on bX.

( bX; p) � (X; �)
& #f

[0; 1]

(2.3)

A Bayesian agent would view each physical action as an act from X to the out-
come set [0; 1], and would evaluate it via its expected utility (using a probability
measure on X). The present agent is aware that while she can assign probabili-
ties on bX, events there are only imperfect indicators of payo¤-relevant events in
X. Such awareness and a conservative attitude lead to preference that can be
represented by the utility function

UDS (f) =

Z
bX
�
inf

x2�(bx) f (x)
�
dp =

Z
X

fd�,

where � is the belief function given by8

� (A) = p
�nbx 2 bX : �(bx) � Ao� , for every A 2 �X .

As a foundation for belief function utility, the preceding is suggestive though
limited, because bX; p and � are presumably not directly observable. However,
Epstein, Marinacci and Seo [10, Section 4.3] describe behavioral foundations for
a Dempster-Shafer representation.

8We can view � as a function from bX to K (X). Then � is measurable [3, Thm. 18.10]
and induces the measure p � ��1 on K (X). Choquet�s theorem (see below) implies that � (�) =
p � ��1 (fK : K � �g) is a belief function.

9



A central fact about belief functions is the Choquet Theorem [35, Thm. 2].9

To state it, note that, by [35, Lemma 1], fK 2 K (X) : K � Ag is universally
measurable for every A 2 �X . Further, any Borel probability measure (such as
m on �K(X)) admits a unique extension (also denoted m) to the collection of all
universally measurable sets.10

Theorem 2.1 (Choquet). The set function � : �X ! [0; 1] is a belief function
if and only if there exists a (necessarily unique) Borel probability measure m� on
K (X) such that

� (A) = m� (fK 2 K (X) : K � Ag) , for every A 2 �X . (2.4)

Moreover, in that case, for every act f ,

U� (f) =

Z
X

fd� =

Z
K(X)

�
inf
x2K

f (x)

�
dm� . (2.5)

The one-to-one mapping � 7�! m� is denoted �. It constitutes a homeomor-
phism between Bel (X) and �(K (X)). One perspective on the theorem is that it
shows that any belief function has a special Dempster-Shafer representation where

bX = K (X) , � (K) = K � X and p = m� .

Conclude this overview of belief functions with a simple example. Let X =
fH;Tg and [pm; pM ] � [0; 1], thought of as an interval of probabilities for Heads.
De�ne � on subsets of X, by � (H) = pm, � (T ) = 1 � pM , and � (X) = 1.
Then � is a belief function - the measure m from Choquet�s Theorem is m (H) =
� (H),m (T ) = � (T ) andm (fH;Tg) = 1�� (T )�� (H), the length of the interval.
An interpretation is that the coin is seen as being drawn from an urn containing
many coins, of which the proportion � (H) (� (T )) are sure to yield Heads (Tails),
and where there is complete ignorance about the remaining proportion. In par-
ticular, for binary state spaces, a belief function can be thought of simply as a
probability interval.

9The �nal assertion in the theorem stated below relies also on [35, Thm. 3]. See also [30,
Thm. 5.1] and [7, Thm. 3.2].
10Throughout, given any Borel probability measure, we identify it with its unique extension

to the �-algebra of universally measurable sets.
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3. THE MODEL

While the above refers to an abstract state spaceX, we assume a speci�c structure
here corresponding to the presence of many experiments. Thus let S be a compact
metric space thought of as the stage state space, or the set of possible outcomes
for any single experiment. The full state space is


 = S1 � S2 � :::: = S1, where Si = S for all i.

Denote by �i the Borel �-algebra on Si, which can be identi�ed with a �-algebra
on 
, and by �
, the product Borel �-algebra. For the most part, we take the
abstract space X above to be 
, and in that case, when there is no danger of
confusion, we abbreviate �
; K (
), Bel (
) and F (
) by �, K, Bel and F . For
any I � N, �I is the �-algebra generated by f�i : i 2 Ig and FI denotes the set
of �I-measurable acts. An act is said to be �nitely-based if it lies in [I �niteFI .
We will have occasion to refer also to K (S) and Bel (S).

We are given a belief-function preference � and the corresponding utility func-
tion U . We adopt two axioms for preference (or equivalently, for utility) that
describe the individual�s perception of how experiments are related.
Let � be the set of (�nite) permutations on N. For � 2 � and ! = (s1; s2; :::) 2


, let �! =
�
s�(1); s�(2); :::

�
. Given an act f , de�ne the permuted act �f by

(�f) (s1; :::; sn; :::) = f
�
s�(1); :::; s�(n); :::

�
.

Axiom 1 (SYMMETRY). For all �nitely-based acts f and permutations �,

f � �f:

Our second axiom relaxes the Independence axiom by permitting value for
randomization (or mixing) as a way to alleviate the concern that experiments
may di¤er. First, working within the coin-tossing example, we illustrate why
randomization can be valuable.
Symmetry implies the indi¤erence

H1T2 � T1H2.

Here H1T2 is the bet that pays 1 util if the �rst toss yields Heads and the second
Tails; the bet T1H2 is interpreted similarly. Consider now the choice between
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either of the above bets and the mixture 1
2
H1T2 +

1
2
T1H2, the bet paying 1

2
if

fH1T2; T1H2g and 0 otherwise. The Independence Axiom would imply that

1
2
H1T2 +

1
2
T1H2 � H1T2 � T1H2.

This is intuitive given certainty that tossing technique does not vary, since then
there is nothing to be gained by mixing; neither is there a cost because outcomes
are denominated in utils. On the other hand, if she admits the possibility that
technique varies, and hence that experiments are not identical, then the individ-
ual may strictly prefer the mixture because the bets H1T2 and T1H2 hedge one
another: the former pays well if the �rst toss is biased towards Heads and the
second towards Tails, pays poorly if the opposite bias pattern is valid, and these
�good�and �bad�states are reversed for act T1H2. Thus 12H1T2 +

1
2
T1H2 hedges

uncertainty about the bias pattern, and as such, suggests the ranking

1
2
H1T2 +

1
2
T1H2 � H1T2 � T1H2, (3.1)

contrary to the Independence Axiom.
On the other hand, in well-de�ned cases, mixing is a matter of indi¤erence

just as in expected utility theory. We capture behaviorally the perception of
poorly understood and idiosyncratic factors in�uencing experiments by specifying
precisely when mixing can conceivably be valuable; we do this by specifying when
it de�nitely cannot be valuable.
One might expect that randomization will not matter when mixing bets on

di¤erent experiments. For example, we would expect the ranking

1
2
H1 +

1
2
H2 � H1 � H2.

The reason is that, even though the payo¤ to H1 is uncertain, H2 does not hedge
this uncertainty if tossing technique is perceived to be unrelated across tosses.
Neither does it hedge uncertainty about the physical bias - since the bias is iden-
tical for both tosses, mixing H1 and H2 does not moderate payo¤ uncertainty.
Thus the mixture 1

2
H1 +

1
2
H2 is no better than either component bet.

As another example, suppose that H2 � T2 and ask whether this ranking
should remain invariant after mixing each bet with H3, that is, consider

1
2
H2 +

1
2
H3 � 1

2
T2 +

1
2
H3.

There is intuition against this ranking if (and only if) there is ambiguity about
the physical bias, because then mixing H3 and T2 smooths out ambiguity about
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the bias, while the same is not true for 1
2
H2 +

1
2
H3, and thus the individual may

strictly prefer 1
2
T2 +

1
2
H3.

With these illustrations in mind, we can now state our central axiom, which
relaxes the Independence axiom. It expresses both the noted stochastic indepen-
dence across experiments and the absence of ambiguity about the factors (such as
the bias of the single coin) that are common to all experiments.11

Axiom 2 (ORTHOGONAL INDEPENDENCE (OI)). For all 0 < � � 1,
and acts f 0; f 2 FI and g 2 FJ , with I and J �nite and disjoint,

f 0 � f () �f 0 + (1� �) g � �f + (1� �) g.

It is easy to show that OI is satis�ed if and only if U satis�es: For all f 2 FI
and g 2 FJ , where I and J are �nite and disjoint, and for all � in [0; 1],

U (�f + (1� �) g) = �U (f) + (1� �)U (g) : (3.2)

We use this characterization of OI frequently.

4. THE REPRESENTATION

Given � 2 Bel (S), we de�ne an �i.i.d. product� �1, a belief function on S1,
as follows. We have � (�) 2 �(K (S)), and hence (� (�))1 2 � [(K (S))1] �
� [(K (S1))].12 By the Choquet Theorem, there exists a (unique) belief function
on S1 corresponding to (� (�))1. Denote it by �1, so that

� (�1) = (� (�))1 .

Since Hendon et al [22] propose this rule in the case of �nite Cartesian products,
we refer to �1 as the Hendon i.i.d. product. Ghirardato [19, Theorem 3] shows
that it is the only product rule for belief functions such that the product (i) is also
a belief function, and (ii) it satis�es a mathematical property called the Fubini
property. The Hendon product is central also in our model, but here it will emerge
as an implication of assumptions about preference. Finally, note that when � is
additive, and thus a probability measure, then �1 is the usual i.i.d. product.

11We do not have a more general model where ambiguity about common factors is permitted.
See the concluding section for further discussion.
12Recall that � denotes the homeomorphism de�ned by Theorem 2.1. We denote by � a

generic belief function on S1 and by � a generic belief function on S.
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The belief-function utility V on F is called an i.i.d. (belief-function) utility if
there exists � 2 Bel (S) such that

V (f) = V�1 (f) �
Z
fd (�1) , for all f 2 F .

Our main result is that Symmetry and OI characterize utility functions that are
�mixtures�of i.i.d. utilities.
Before stating the theorem, we describe a sense in which each i.i.d. utility

function V�1 captures (stochastic) independence across experiments. It is easily
veri�ed (using (2.4)) that13

�1 (AI � AJ � S1) = �1 (AI � S1) �1 (AJ � S1) , (4.1)

for AI 2 �I and AJ 2 �J , where I; J � N are �nite and disjoint. Though the
interpretation of (4.1) as expressing stochastic independence may seem obvious, we
elaborate on this interpretation. Identify each eventE � 
 with the corresponding
bet, the act de�ned by the indicator function 1E, and note that V�1 (1E) =
� (E). Recall also that the outcomes of acts are measured in probability units,
as are utilities (see (2.2)). Therefore, 1E is indi¤erent to betting on the toss of
an objective � (E)-coin. This is true in particular for each of the three events
appearing in (4.1).14 Thus, a bet on AI is indi¤erent to a bet on an objective
� (AI)-coin, a bet on AJ is indi¤erent to a bet on an objective � (AJ)-coin, and a
bet on AI � AJ is indi¤erent to a bet on the toss of an objective coin where the
probability of winning is � (AI) � (AJ), that is, to the bet on successive wins in
independent tosses of the � (AI)- and � (AJ)-coins.
The latter independence of the objective coins is strongly suggestive of the as-

serted perception of stochastic independence of experiments. Alternative support
for the latter interpretation is given below by our model of updating, according to
which an i.i.d. utility function (or belief function) is never modi�ed in response
to past observations.
We can �nally state our representation result.

Theorem 4.1. Let U be a belief function utility. Then the following statements
are equivalent:
(i) U satis�es Symmetry and Orthogonal Independence.

13A more general �product relation�involving (nonindicator) acts is aso satis�ed (see [11]).
14Identify AI � S1 with AI and so on.
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(ii) There exists a (necessarily unique) Borel probability measure � on Bel (S)
such that

U (f) =

Z
Bel(S)

V�1 (f) d� (�) , for every f in F . (4.2)

(iii) There exists a (necessarily unique) Borel probability measure � on Bel (S)
such that �, the belief-function corresponding to U , can be expressed in the form

� (A) =

Z
Bel(S)

�1 (A) d� (�) , for every A in �. (4.3)

As emphasized earlier, we interpret the de Finetti Theorem as a result regard-
ing preference that assumes subjective expected utility. With this interpretation,
we generalize his result to the framework of belief function preference.
The more general representation (4.3) also admits a �conditionally i.i.d.� in-

terpretation. However, as explained in the introduction (following (1.2)), the fact
that each � is a belief function rather than a probability measure, accommodates
the perception that experiments are indistinguishable but not necessarily iden-
tical. Speaking informally, indistinguishability is delivered because the same �
applies to each experiment, while �not identical� is captured essentially because
any probability measure in the core of � could apply to any experiment.15

Another contribution of the theorem is as an aid to a decision-maker in forming
beliefs. Paralleling de Finetti�s contribution for a Bayesian framework, the repre-
sentation (1.2) can aid in forming a (probabilistic) prior even where experiments
are ambiguous. For example, it is arguably easier to decide on which intervals
might describe every coin and on a probability distribution over them than to
arrive at beliefs, in the form of a belief function, directly over all possible sample
realizations.
It is evident that the axiomatic characterization of (4.2) provided by the the-

orem is tight - both axioms are necessary and neither is implied by the other. An
expected utility function with prior p on 
 that is not exchangeable, satis�es OI
but not Symmetry. For a �dual�example, let K� = f(H;H; :::) ; (T; T; :::)g and

� (A) =

�
1 A � K�

0 otherwise.

15This generalizes the informal description in terms of probability intervals given in the intro-
duction for the case of a binary state space S = fH;Tg.
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Then, by the Choquet Theorem, � is a belief function on 
. The corresponding
utility function, as in (2.1), satis�es Symmetry but not OI.16 For example, it
implies

U
�
1
2
H1 +

1
2
T2
�
= 1

2
> 0 = 1

2
U (H1) +

1
2
U (T2) ;

contradicting (3.2). The reason is that according to �, coin tosses are perceived
as perfectly correlated and thus decidedly related to one another.
Finally, for those readers who are concerned about practicality, we o¤er some

reassurance. One obstacle to evaluating the utility functions appearing in the
theorem, is evaluation of i.i.d. utility functions V�1, and thus expressions of the
form

V�1 (f) �
Z
fd (�1) .

But the Choquet Theorem and the de�nition of �1 make this straightforward.
Let m� 2 �(K (S)) denote the measure on subsets implied by Theorem 2.1, in
which case the i.i.d. product (m�)

1 2 � [(K (S))1] is the corresponding measure
for �1. Then, by (2.5),

V�1 (f) =

Z
(K(S))1

�
inf

!2K1�K2�:::
f (!)

�
d(m�)

1 (K1; K2; :::) ,

which is a standard integral with respect to an additive product measure. One
need only derive m� for each relevant �. For a binary state space, the one-to-one
map between � andm� was described at the end of Section 2. Also more generally,
if S is �nite, then m� can be constructed explicitly from � by the so-called Mobius
inversion formula17

m� (A) = �B�A (�1)#(AnB) � (B) , if A � S.

See Hendon et al [22, p. 100], for example.
Another possible concern is whether a decision-maker can plausibly arrive at

a prior � over belief functions. However, belief functions are often not such com-
plicated objects. For example, with repeated coin-tossing, when S is binary, each
belief function � corresponds to a unique interval, and the latter corresponds to an
ordered pair of real numbers - in other words, one need only formulate a prior over

16Talagrand [40] contains the study of symmetric belief functions, where OI for the corre-
sponding utility function is not assumed.
17Since m� is additive, it is uniquely de�ned as a measure on K (S) by its values m� (A) for

every A � S:
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an unknown two-dimensional parameter. More generally, since each � corresponds
to a unique Mobius inverse m�, the task is to form a prior over �(K (S)). This is
perhaps more di¢ cult than forming a prior over �(S), as required by de Finetti,
but is qualitatively comparable to the latter. Some guidance for our agents in
calibrating beliefs is provided next, when the connection to empirical frequencies
is considered.

5. FREQUENCIES

In this section, we relate subjective uncertainty about the true i.i.d. belief function
�1, represented by �, to beliefs about empirical frequencies. Formally, our result
is a corollary of our de Finetti-style representation and a law of large numbers
(LLN) for belief functions due to Maccheroni and Marinacci [27].
The coin-tossing setting conveys the point most clearly. Let S = fH;Tg and

denote by 	n (!) the proportion of Heads realized in the �rst n experiments along
the sequence !. Then, for any � 2 Bel (S), the noted LLN for belief functions
implies that

�1 (f� (H) � lim inf 	n (!) � lim sup	n (!) � 1� � (T )g) = 1. (5.1)

Further, these bounds on empirical frequencies are tight in the sense that18

[a > � (H) or b < 1� � (T )] =) 0 = (5.2)

�1 (fa � lim inf 	n (!) � lim sup	n (!) � bg) .

Therefore, the representation (4.3) implies that, for every 0 � a � b � 1,

� (f� : a � � (H) � 1� � (T ) � bg) (5.3)

= � (fa � lim inf 	n (!) � lim sup	n (!) � bg) .

This equality admits an appealing interpretation. In the Bayesian setting, each
coin toss is described by a common unknown probability of Heads, and the LLN
justi�es interpreting uncertainty about this �parameter�in terms of uncertainty
about the limiting empirical frequency of Heads. In our setting, the individual is
not certain that empirical frequencies converge to a �xed point, and she thinks in

18This is proven in the context of proving the Corollary below.

17



terms of intervals that will contain all limit points. Supposing for simplicity that
� has �nite support, then (5.3) is equivalent to:

� (�) = � (f! : � (H) � lim inf 	n (!) � lim sup	n (!) � 1� � (T )g) . (5.4)

Thus the prior subjective probability of the unknown (but nonrandom) parameter
� equals the prior likelihood, according to �, that the interval [� (H) ; 1�� (T )] will
contain the random interval of empirical frequencies in the long run. This provides
a frequentist perspective for the probability measure � over belief functions.
Consistent with the normative slant of our model, it is also worthwhile noting

that (5.4) can also help a decision-maker, a statistician for example, to calibrate
her uncertainty about the true �. That is because � (�) equals that prize which, if
received with certainty, would be indi¤erent for her to betting (with prizes 1 and
0) on the event that

[lim inf 	n (!) ; lim sup	n (!)] � [� (H) ; 1� � (T )].

We elaborate brie�y on the formal meaning of the preceding. Any � 2 Bel (S)
is completely determined by the two numbers � (H) and � (T ), or equivalently by
the interval

I� = [� (H) ; 1� � (T )]:
Moreover, � 7�! I� is one-to-one. Thus the representing measure � can be thought
of as a measure over intervals I�. Formally, let I be the collection of all compact
subintervals of [0; 1]. As a subset of K ([0; 1]), I inherits the Hausdor¤metric and
the associated Borel �-algebra. Moreover, Bel (S) is homeomorphic to I, and thus
there is a one-to-one correspondence, denoted e, between probability measures on
Bel (S), and probability measures on intervals, that is, measures in �(I). In
particular, � can be identi�ed with a unique b� = e (�) in �(I). Thus (5.3) can
be written in the form

b� (fI : I � [a; b]g) (5.5)

= � (f! : [lim inf 	n (!) ; lim sup	n (!)] � [a; b]g) .

The general (nonbinary) case is similar. Denote by 	n (�) (!) the empirical
frequency measure given the sample !; 	n (B) (!) is the empirical frequency of
B 2 �S in the �rst n experiments. The above reasoning can be extended to prove:

Corollary 5.1. Let U = U� be a belief function utility. Then the equivalent
statements in Theorem 4.1 are equivalent also to the following: There exists a
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probability measure � on Bel (S) satisfying both (i) � represents U in the sense
of (4.2); and (ii) for every �nite collection fA1; :::; AIg � �S, and for all ai � bi,
i = 1; :::; I,

�

�
IT
i=1

f� : [� (Ai) ; 1� � (SnAi)] � [ai; bi]g
�

(5.6)

= �

�
IT
i=1

f! : [lim inf 	n (Ai) (!) ; lim sup	n (Ai) (!)] � [ai; bi]g
�
.

Equation (5.6) relates the prior � over belief functions to ex ante beliefs about
empirical frequencies for the events A1; :::; AI . More precisely, the �-measures
of only the sets shown are so related. However, as our �nal result shows, � is
completely determined by its values on these sets.

Proposition 5.2. If �; �0 2 �(Bel (S)) coincide on all sets of the form

f� 2 Bel (S) : � (A1) � a1; :::; � (AI) � aIg ,

where Ai; ai and I vary over �S, [0; 1] and the positive integers respectively,
then � = �0.

6. UPDATING

There is a given ordering of experiments (which need not be temporal); sn1 =
(s1; :::; sn) denotes a generic sample or history of length n. Acts over the set
I � N of experiments lie in FI ; abbreviate Ffig;Ff1;:::ng and Ffn+1;n+2;:::g by Fi,
F�n and F>n. In this section, we assume that S is �nite.
Ex ante preference on F is � , and �n;sn1 denotes preference on F conditional

on the sample sn1 . (When there is no need to emphasize the sample, we suppress
it in the notation and write �n; similarly for other random variables.) We seek a
model that describes how preferences evolve along a sample.
There is an implicit assumption in this set up which should be made explicit.

We have de�ned outcomes in terms of util/probability equivalents, which obviously
depends on how the individual ranks lotteries (constant acts) over the underlying
physical outcomes (represented earlier by the set Z). This rescaling of outcomes
is straightforward when dealing with a single preference order. However, when
there are several preferences, as is the case here, in general they may disagree
on how to rank lotteries, and thus any given physical action would translate into
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a di¤erent act depending on which preference order was being considered. Our
implicit assumption is that � and every conditional preference �n agree on the
ranking of lotteries. That justi�es interpreting any given f in F as representing
the same physical action for all the noted preferences.
We assume Consequentialism - the conditional ranking given the sample sn1

does not take into account what the acts might have delivered had a di¤erent
sample been realized. Formally, we assume:

Consequentialism: f 0 �n;sn1 f if f
0 (sn1 ; �) = f (sn1 ; �).

6.1. Weak Dynamic Consistency

We postulate the following weak form of dynamic consistency.

Weak Dynamic Consistency (WDC): For any n � 1, sample sn�11 , and acts
f 0; f 2 F>n,

f 0 �n;(sn�11 ;sn)
f for all sn =) f 0 �n�1;sn�11

f , and

f 0 �n;(sn�11 ;sn)
f for some sn =) f 0 �n�1;sn�11

f .

If the de�ning conditions are assumed to hold for all acts f 0 and f , then one
obtains the usual notion of dynamic consistency that we abbreviate DC. In that
case, when the acts f 0 and f can depend on all experiments, each si is both a signal
and a payo¤-relevant state. In contrast, for each comparison in WDC, states are
either signals (s1; :::; sn), or payo¤-relevant (sn+1; :::), but not both. Thus WDC
requires dynamic consistency in the ranking of terminal payo¤s as �pure signals�
are received and beliefs and rankings of future prospects are updated.
Note that WDC is weaker than DC even in the Bayesian context. DC implies

Bayes�Rule, but, as will become evident below, WDC does not. On the other
hand, as argued in the introduction, it is strong enough to accommodate important
settings. There are many cases where an individual observes signals and uses them
to learn about a payo¤ relevant �parameter�. Here the signals are (s1; :::; sn) for
some n, and the parameter is (sn+1; sn+2; :::).
A �nal assumption is that � and every �n satisfy the axioms of our belief

function model.19 Call this composite axiom Exchangeability.
19In fact, the main result below (Theorem 6.1) relies on the existence of a de Finetti-style

representation, but not on belief functions per se. Thus it can be translated into a model of
updating for our multiple-priors-based analysis of exchangeability in [11]. We discuss that model
below in the concluding section.
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Since all utility functions satisfy our axioms, each admits a representation in
terms of a unique measure over Bel (S), the set of belief functions over S. Their
utility functions are U and Un (� j sn1 ), for � and �n;sn1 respectively; frequently,
dependence on the sample is suppressed and we write simply �n and Un. Then

U (f) =
R

Bel(S)

V�1 (f) d� (�) , for all f 2 F ,

where �1 is the Hendon product and V�1 is the corresponding IID utility function.
Similarly, imposing Consequentialism,

Un (f j sn1 ) =
R

Bel(S)

V�1 (f (s
n
1 ; �)) d�n (�) , for all f 2 F ,

for some probability measure �n that depends on the realized sample s
n
1 . The

updating problem thus reduces to describing the evolution of �n as a function of
�0 = � and the realized sample.
The implications of WDC and the other axioms are described in terms of a

likelihood function L : Bel (S) ! �(
), where � 7�! L (B j �) is (Borel) mea-
surable for each measurable subset B of 
. Think of L (B j �) as the likelihood
of B � 
, a set of in�nite samples, conditional on � describing each experi-
ment. These likelihoods are used in describing inferences drawn after observ-
ing a sample; they are not to be thought of as describing ex ante beliefs. For
each n and likelihood function L, Ln is its one-step-ahead conditional at stage n,
Ln : S

n�1�Bel (S)! �(S).20 Thus for each sample sn�11 , Ln (� j �) 2 �(S) gives
the probability distribution, or likelihood, for the nth experiment, conditional on
sn�11 and for the given �.
The central result in our model of updating follows.

Theorem 6.1. The axioms Consequentialism, WDC and Exchangeability are
satis�ed if and only if the representing probability measures f�ng are related
as follows: there exists a likelihood function L such that, for all n � 1,

d�n (�) =
Ln (sn j �)
Ln (sn)

d�n�1 (�) , (6.1)

where
Ln (�) =

R
Ln (� j �) d�n�1 (�) , (6.2)

is a probability measure on S having full support.
20More precisely, Ln (� j �) is a regular conditional probability on Sn given sn1 (suppressed in

the notation), which exists as long as S is Polish.
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The proof of necessity is straightforward. We verify only WDC. For any f 2
F>n,

�snLn (sn)Un (f j sn) = �sn
�R
V�1 (f)Ln (sn j �) d�n�1

�
=

R
V�1 (f) (�snLn (sn j �)) d�n�1

=
R
V�1 (f) d�n�1 = Un�1 (f) ,

or
Un�1 (f) = �snLn (sn)Un (f j sn) , f 2 F>n; (6.3)

which implies WDC.
See Appendix C for the proof of su¢ ciency. The argument amounts to show-

ing that the problem is a special case of a¢ ne aggregation (see de Meyer and
Mongin [29]); other special cases include Harsanyi�s aggregation theorem [21] and
probability aggregation [31].
The theorem may be surprising at �rst glance and some discussion is in order.

Two features stand out: (i) likelihood functions are not tied to the ex ante prefer-
ence �; and (ii) the implied process of posteriors f�ng is identical to that implied
by a suitable Bayesian model. We elaborate on each in turn.
In the absence of ambiguity, when prior beliefs are probabilistic, it is standard

practice to use them to de�ne likelihood functions for updating, as in Bayes�
Rule. The normative argument for doing so is that Bayesian updating delivers
DC. However, if only WDC is sought, then even under subjective expected utility,
one can use any likelihood function to de�ne updating. Also more generally, any
likelihood function L can be used for updating in such a way as to satisfy WDC.
In particular, though L is derived from the entire set of (conditional) preferences,
it plays no role in the representation of ex ante preference. Its role is exclusively
to represent updating.
The divorce from prior beliefs of the likelihoods used for updating does not

contradict WDC: prior beliefs about signals underlie choice, but since in WDC
signals are assumed not to be payo¤ relevant, consistency across time does not
require that they play a role when processing signals. The broader tenet implicit
in our model is that prior ambiguity about signals is conceptually separate from
(albeit related to) inference after realization of the signal. Prior ambiguity about
signals is primarily about how to rank bets on the signal ex ante, while the in-
ference problem concerns the ex post interpretation of the signal as information
about other experiments.
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Turn to the connection with updating in a Bayesian model. Given a likelihood
function L and prior � as in the theorem, de�ne L 2 �(
) by

L (�) =
R
L (� j �) d� (�) . (6.4)

Note that then the one-step-ahead conditional of L at stage n is Ln de�ned by
(6.2). It follows that the identical process f�ng arises in an expected utility
model where L (�) is the Bayesian prior.21 This is not to say that our model is
observationally equivalent to the corresponding Bayesian model - they involve the
identical process of posteriors but the two models of choice are distinct. (For ex-
ample, only in the shadow Bayesian model do ex ante and conditional preferences
satisfy the Independence axiom. Alternatively, note that L (�) and its conditionals
describe beliefs about future payo¤ relevant states in the Bayesian context, while
in our model �beliefs�at node n are represented by the belief function

R
�1d�n.)

The existence of a shadow Bayesian model is an advantage in terms of tractabil-
ity, since it permits application of results from the Bayesian literature about the
dynamics of posteriors.
The emergence of additive likelihood functions in spite of the presence of am-

biguity should by now not be surprising. At the functional form level, it is a
consequence of preferences being represented by additive measures �n. The lat-
ter, in turn, emerges as a consequence of Orthogonal Independence. We pointed
out when discussing OI that it rules out (in the coin-tossing example) ambiguity
about the physical bias of the coin - hedging gains arise only from the poorly
understood idiosyncratic factors that a¤ect experiments and render them non-
identical.
Before examining further axioms, it is convenient to clarify �rst uniqueness

properties. De�ne the process fwng by

wn (sn; �) =
Ln (sn j �)
Ln(sn)

=
d�n
d�n�1

. (6.5)

Refer to wn (sn; �) as the weight of evidence for � provided by sn (and the sup-
pressed sn�11 ). Then the weight of evidence process is unique (up to nullity),
because f�ng is unique and hence so are the Radon-Nikodym densities d�n

d�n�1
.

On the other hand, the likelihood function L is typically not unique. Suppose,
for example, that signals are perceived to be uninformative, so that �n = � for

21Without further assumptions, L need not be exchangeable. Thus the shadow Bayesian
model is not de Finetti�s in general.
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all n. Then any speci�cation with Ln (�; �) = Ln (�), where the latter measures
are arbitrary, satis�es (6.1). On the other hand, if for each history sn�11 , the
conditional utility functions Un (� j sn), sn 2 Sn, are linearly independent, then it
follows immediately from (6.3) that fLn (�)g is unique; and thus the conditional
likelihoods Ln (�; �) = wn (�; �)Ln (�) are also unique for each sn. Uniqueness of L
follows (up to �-nullity).
We summarize the preceding more formally. First, we add the axiom:22

Non-Collinearity: For each n, the collection fUn (� j sn1 ) : sn1 2 Sng is linearly
independent, where each function Un (� j sn1 ) is viewed as a function on F>n.

Corollary 6.2. Let L0 and L be two likelihood functions that satisfy the condi-
tions in Theorem 6.1. Then, for every n,

w0n (�; �) = wn (�; �) �n�1-a.s.

where the weights processes fw0ng and fwng are de�ned as in (6.5). Moreover, if
Non-Collinearity is satis�ed, then L0 (� j �) = L (� j �) �-a.s.

6.2. Further Restrictions

Weak Dynamic Consistency alone does not pin down the process of posterior
beliefs and preferences emanating from a given ex ante preference - any likelihood
function L leads, via (6.1), to satisfaction of WDC. Here we explore two further
axioms and the restrictions they impose on L. Such restrictions are meaningful
given Non-Collinearity, by the uniqueness established in Corollary 6.2. Since it is
simplifying, we adopt Non-Collinearity below. However, it should be possible to
use the weights process to describe the implications of the axioms more generally.
Above we emphasized the distinction between ex ante ambiguity about a signal

and ex post inference from realization of the signal. The next axiom imposes a
connection.

Payo¤ Ambiguity: For every n, f 2 F>n and fn 2 F�n, if f �n;sn1 fn for all s
n
1 ,

then f � fn.

Suppose that for every sample sn1 , after observing it and updating beliefs ac-
cordingly, the individual is indi¤erent between f , which depends only on future
22Recall that utilities are �probability equivalents�, and thus it is legitimate to use Un (� j sn1 )

in an axiom for conditional preference.
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experiments, and fn (sn1 ), a deterministic outcome since fn 2 F�n. In other words,
for any sn1 , fn (s

n
1 ) is the ex post �value�of holding f conditional on s

n
1 . Dynamic

consistency, in the form of DC, would imply indi¤erence between f and fn also
ex ante.23 However, we have indicated a di¤erence between the individual�s ex
ante and ex post perspectives that argues against DC. When evaluating fn, the
sample sn1 is payo¤ relevant and ex ante ambiguity about the �rst n experiments
matters. By contrast, such ex ante ambiguity is not relevant to the evaluation
of f since for it s1; :::; sn serve as pure signals. In this case, ex ante ambiguity
about the �rst n experiments may translate into a concern with the quality of the
information provided by the sample. The ex post concern with quality is already
incorporated into the conditional indi¤erence f �n;sn1 fn. If the assessment (or
anticipation) of quality is identical also ex ante, then the only di¤erence between
the two stages is the added ambiguity associated with fn when viewed from the
ex ante perspective. Thus, in going back to the ex ante stage, fn is discounted
relative to f , which is thus weakly preferable.

Corollary 6.3. Let � and f�ng satisfy Consequentialism, WDC, Exchangeabil-
ity and Non-Collinearity. Let L be the (essentially unique) likelihood function
provided by Theorem 6.1 and Corollary 6.2, and let L be de�ned by (6.4). Then
Payo¤ Ambiguity is satis�ed if and only if

L (�) 2 core
�Z

�1d�

�
. (6.6)

Payo¤ Ambiguity restricts the prior of the shadow Bayesian model to lie in
the core of � =

R
�1d�, the belief function on 
 that de�nes ex ante preference

(see Theorem 4.1). As a result, a connection is imposed between ex post inference
and ex ante preference.
Condition (6.6) is su¢ cient even without Non-Collinearity.24 It has the follow-

ing further implication. Since posteriors form an L-martingale, for any �, �1 (�)
exists except for an L-null set B. But, by (6.6),

L (B) = 0 =) U (1B) = 0, (6.7)

in other words, the individual would be unwilling to bet against posteriors at �
converging. This is a limited sense of certainty that beliefs will converge.
23WDC does not cover this situation since fn depends on the nth experiment, while WDC

applies only to the ranking of acts that are independent of signals.
24The stronger condition L (� j �) 2 core (�1) �-a.s. seems particularly natural. It is an open

question whether it is also necessary (given Non-Collinearity).
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We prove one direction here (su¢ ciency of (6.6)) and relegate the other direc-
tion to an appendix. For any belief function �, (6.6) implies that, for every n and
fn 2 F�n, Z

fndL (�) �
Z
V�1 (fn) d�.

Let f and fn be as in the statement of the axiom. Then, using (6.3),

U (f) = �sn1L (s1; :::; sn)Un (f j s
n
1 )

= �sn1L (s1; :::; sn)Un (fn j s
n
1 )

= �sn1L (s1; :::; sn) fn (s
n
1 )

�
�R
V�1 (fn) d� (�)

�
= U (fn) ,

where the inequality follows from the hypothesis (6.6).

Our �nal axiom is another expression of symmetry.

Commutativity: For all n and samples sn1 , acts f
0; f 2 F>n, and �nite permuta-

tions �,
f 0 �n;sn1 f =) f 0 �n;�sn1 f ,

where �sn1 is the permuted sample
�
s�(1); :::; s�(n)

�
.

Since updating coincides with that in a Bayesian model with prior L, Com-
mutativity is satis�ed if and only if conditionals of L are invariant to the order of
the conditioning sample. A stronger, and hence su¢ cient condition, is that L be
exchangeable.25

6.3. The Dynamics of Beliefs

Two properties are immediate: (i) Ambiguity is in general not monotonic along a
sample. Posterior probabilities �n (�) are not monotonic under Bayesian updating.
Thus, for example, if � has two points of support �0 and �, and if core(�0) �
core (�), then the set of priors corresponding to Un decreases with n (in the sense
of set inclusion) if �n (�) increases but increases in size if �n (�) decreases. (ii)

25See Fortini et al [17, pp. 90-2] for elaboration on how/why exchangeability is a strictly
stronger condition.
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Ambiguity need not vanish asymptotically (this is illustrated and discussed further
below).26

To say more, and to illustrate what the model can deliver, we restrict the
likelihood function in a way that seems natural but is only partly justi�ed ax-
iomatically. Assume that for (�-almost) every �:

L1 L (� j �) 2 core (�1): This implies L (�) 2 core
�R
�1d�

�
and hence Payo¤

Ambiguity.

L2 L (� j �) is exchangeable: This implies that L is exchangeable and hence
Commutativity. By the de Finetti Theorem applied to L (� j �), the preced-
ing is equivalent to L (� j �) being expressible in the form

L (� j �) =
Z
�(S)

`1 (�) d�� (q) , (6.8)

for some (unique) probability measure �� on �(S).

L3 �� has support equal to core (�): That the support is contained in core (�)
is implied by L1. Here we assume �full support.�

The interpretation is as follows. There is ex ante uncertainty, represented by �,
about which hypothesis � best describes experiments. Conditional on a particular
� in the support of �, the individual is not con�dent in any particular probability
law being accurate. For purposes of choice she is not Bayesian with respect to
this uncertainty - ex ante ambiguity about each experiment is captured by the
multiplicity of measures in core (�1), and her preferences on F are represented
by the belief function utility V�1. When it comes to inference ex post, she is still
uncertain about the data generating mechanism, but now she acts like a Bayesian
- she uses the probability measure �� over core (�) to de�ne likelihoods as in (6.8).
The full support assumption L3 requires that she admit any measure in the core
as a possibility for purposes of inference. If � is additive, then L1 implies that
L (� j p) = p1 (�); therefore, if every � in the support of � is additive, de Finetti�s
model, including Bayesian updating, is obtained.
We can now state a counterpart for our framework of the Savage result that

data eventually swamp the prior.

26Though our model does not permit in�nite samples, asymptotic results can be interpreted
as an approximation to large �nite samples.

27



Proposition 6.4. Suppose that the likelihood function L satis�es L1 and L2, and
that � has �nite support. (i) Suppose further that for any �0 6= � in the support,
core (�0) and core (�) are disjoint. Then, for every � with � (�) > 0,

�n (�)! 1 L (� j �) -a.s.

(ii) Let � have support f�; pg, where p 2 core (�) is permitted. If p is not an atom
of ��, that is, if �� (fpg) = 0, then

�n (p)! 1 p1-a.s.

Part (i) is the indicated counterpart. The assumption of disjoint cores is
an intuitive identi�cation assumption. The set G of samples along which �n (�)
converges to 1 satis�es L (G j �) = 1, and hence also

`1 (G) = 1 ��-a.s.

Particularly if �� has full support (L3), this clari�es the sense in which G is a
large set.
Note that even given certainty about �, in general there remains ambiguity

when predicting future experiments and ranking bets over their outcomes. For
example, in the coin-tossing example, an individual would become certain about
the physical bias of the coin, but would (if � is not additive) remain ambiguous
about the outcomes of future experiments because of her limited understanding
of the e¤ects of tossing technique, particularly her view that these are unrelated
across tosses. On the other hand, if the truth is that experiments are i.i.d. with
joint probability measure p1, if the truth has positive subjective probability ex
ante (� = p is in the support of �), and if the identi�cation condition is satis�ed,
then the individual asymptotically becomes certain of the true law with probability
1 according to the truth, and there is no ambiguity remaining (she uses p1 (�) to
predict future outcomes).27

Part (ii) is an illustrative result for the case when cores may overlap. Here there
is convergence to the truth p1, though the prior attaches positive probability to
experiments di¤ering. The overall message is that whether or not ambiguity per-
sists asymptotically depends (on the sample and) on the prior view of experiments.
If she sees each new coin-tosser as employing a di¤erent and hard-to-understand

27This is because, as indicated above, L (� j �) = p1 (�) if � = p is additive.
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technique, then, even after learning the coin�s bias, it is rational to take this lim-
ited understanding into account for further prediction and choice. In any case,
the model does not force ambiguity to persist in all circumstances.

A �nal example exploits the fact that the �parameters�� being learned about
are belief functions, or, in the coin-tossing setting that we consider, each � corre-
sponds to a probability interval I� � [0; 1]. Let � have support f�0; �g, where

I�0 = [p� �0; p+ �0]; I� = [p� �; p+ �] and �0 > � > 0.

Thus the intervals have a common midpoint but di¤er in length. Accordingly,
we interpret the individual as entertaining two hypotheses that di¤er only in how
similar experiments are seen to be; obviously, they are more similar according to
�. We ask how the posterior probability �n (�) behaves in large samples.
Specialize L1-L3 by assuming further that ��0 and �� are uniform on their

respective intervals. Though we do this for concreteness, the uniform distribution
seems natural at a super�cial level. It delivers the following result for the limiting
probability of �:28 Denote by 
� the set of samples ! for which lim	n (!) 2 I�.
Then, for every ! in 
�,

�1 (�) =
1

1 + �(�0)
�(�)

�
�0

. (6.9)

Note that, by (C.1) and the full support property L3, the set of samples 
� has
positive probability according to both L (� j �0) and L (� j �).
For samples in 
�, the limiting empirical frequency of Heads is consistent with

both � and �0. This identi�cation problem leads to the result that 0 < �1 (�) < 1 -
neither hypothesis is dismissed entirely along such samples, even in the limit. This
is an instance of the identi�cation problem studied by Acemoglu et al [2]. They
posit a prior of the form L (�) =

R
L (� j �) d� (�) in order to model learning about

a parameter when there is uncertainty about how to interpret a signal. Their
model is Bayesian, and � is an abstract parameter rather than a belief function.
Here signals are di¢ cult to interpret only because of the concern that experiments
di¤er, while experiments are identical (in the behavioral sense of our paper) in
their model.29

28The claim (6.9) to follow is adapted from [2, Lemma 1]. The latter implies also that for the
lack of asymptotic learning, it would be enough for ��0 and �� to have positive and continuous
Lebesgue densities on their intervals.
29In spite of these di¤erences, their results translate into our setting. In particular, one

could use concern about nonidentical experiments to justify asymptotic disagreement between
individuals.
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Another noteworthy implication of (6.9) is that �1 (�) > � (�), that is, any
sample that is consistent with both hypotheses leads eventually to a shift in proba-
bility mass towards the �more precise�hypothesis. Given a sample, the di¢ culty
in making inferences about future experiments is that they are not seen to be
identical. Here experiments may di¤er according to both �0 and �, but they di¤er
more according to �0. Thus the sample provides less information about future
experiments under �0 than under �. This leads to a shift in weight towards �.

7. RELATED LITERATURE

Shafer [39] is the �rst, to our knowledge, to discuss the use of belief functions
within the framework of parametric statistical models analogous to de Finetti�s.
In particular, he sketches (section 3.3) a de Finetti-style treatment of randomness
based on belief functions. His model is not axiomatic or choice-based, but ignoring
these di¤erences, one can translate his suggested model into our framework in the
following way. Consider the de Finetti representation (1.1), where the probability
measure � models beliefs about `, the unknown �parameter�. An obvious gener-
alization is to replace � by a belief function on �(S), or more generally by a set
of probability measures on �(S), thus generalizing prior beliefs. Epstein and Seo
[11] show that such a model is characterized primarily by an axiom called Strong
Exchangeability, whereby randomizing between an act and any permuted variant
of the act is of no value; formally,

�f + (1� �)�f � f:

The resulting representation is such that every prior in the set representing prefer-
ence is exchangeable. This suggests the interpretation that there is prior ambigu-
ity about the true law `, but, since the same ` applies to every experiment, there
remains, just as in de Finetti�s model, certainty that experiments are identical.
For coin tossing, there is ambiguity about the given coin�s bias, but the way in
which the coin is tossed is viewed as �xed across experiments, and hence these are
viewed as identical. It remains to formulate a general model that features both
prior ambiguity and indistinguishable, but not necessarily identical, experiments.
(See the concluding section of our other paper for a conjecture in this regard.)
Our paper [11] is evidently closely related. In addition to the representation

just mentioned based on Strong Exchangeability, where experiments are identical,
we also characterize a representation closer to the one in this paper, where ex-
periments are not identical. This is done within the framework of multiple-priors
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utility. Since belief function utility is a subclass of the multiple-priors model, one
might wonder whether the representation result Theorem 4.1 could be obtained
simply by specializing the ambient preference framework and assuming that all
preferences conform to belief function utility.
We emphasize that Theorem 4.1 is not a �special case,�or simple corollary,

of results in [11]. One reason is that the latter paper employs an axiom called
Dominance that is redundant here.30 There is an important di¤erence also in the
representations. The specialization of [11] indicated above would at best yield
a representation wherein, though � in (1.2) is assumed to be a belief function,
the counterpart of each � on the right-hand side would be the lower envelope of
a set of priors, and not necessarily a belief function on S. The representation
result obtained here is also sharper in another way. The rule for forming the
i.i.d. product �1 is pinned down - it corresponds to that advocated by Hendon
et al [22]. In contrast, the representation in [11] is less speci�c in this regard
because it re�ects the well-known fact (see Ghirardato [19], in particular) that
stochastic independence is more complicated in the multiple-priors (or nonadditive
probability) framework in that there is more than one way to form independent
products.
In addition, there is no counterpart in [11] of the connection established here

(Corollary 5.1) between subjective prior beliefs and long run empirical frequencies,
or of our model of updating.
In [11], we describe the connection to Epstein and Schneider [13] and espe-

cially [14]. The comparison with this paper suggests a trade-o¤ between DC and
Symmetry.31 The (nonaxiomatic) model in [14] satis�es DC, but not Symmetry,
while here we keep the latter at the cost of a weaker dynamic consistency prop-
erty (WDC). The advantages of dynamic consistency for a normative model are
evident. However, we �nd Symmetry compelling in a cross-sectional setting, and
appealing also when experiments are separated in time. Therefore, in this pa-
per, we have assumed Symmetry and explored a weaker, but still useful, form of
dynamic consistency.
A recent paper by Al-Najjar and De Castro [1] also extends the de Finetti

Theorem beyond subjective expected utility theory. Their key axiom builds on
Strong Exchangeability and strengthens it to require that any act f is indi¤erent

30Two more minor di¤erences are: (i) Orthogonal Independence as stated here is considerably
weaker than the corresponding axiom in our other paper; and (ii) Theorem 4.1 assumes that S
is compact metric, while in our other paper S is required to be �nite.
31See [12] for a formal result describing such a trade-o¤.
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to any �nite mixture of permutations of f , that is,

�i�i (�if) � f .

In the multiple-priors framework, this axiom is equivalent to Strong Exchange-
ability, given also Symmetry. They o¤er results regarding the connection between
preference and limiting empirical frequencies, with Theorem 1 being the main
result. If one stays within the multiple-priors framework, then a counterpart of
Theorem 1 is immediate once one has the representation in [11, Theorem 3.3],
because as noted above, every prior in the set of priors is exchangeable and stan-
dard ergodic theory applies. Therefore, their analysis can be seen largely as a
generalization of [11, Theorem 3.3] beyond the multiple-priors utility framework;
for example, they can accommodate variational utility [28], and, since they do not
impose completeness, also Bewley�s [5] Knightian decision theory. (The latter,
however, is readily done directly without any of the machinery in their paper or
in ours.32) Finally, from the perspective of this paper (as opposed to that of [11]),
and just as in Shafer�s model, experiments are perceived to be identical in their
model.

A. Appendix: Proof of Theorem 4.1

First we prove the measurability required to show that the integrals in (4.2) and
(4.3) are well-de�ned. (Recall that the Borel probability measure � has a unique
extension to the class of all universally measurable subsets.)

Lemma A.1. Both � 7�! V�1 (f) and � 7�! �1 (A) are universally measurable
for any f 2 F and A 2 �.

Proof. Since Bel (S) and �(K (S)) are homeomorphic, and in light of (2.5), it
is enough to prove analytical (and hence universal) measurability of the mapping
from �(K (S)) to R given by

` 7�!
Z
[K(S)]1

inf
!2K

f (!) d`1 (K) .

32According to Bewley�s model, f � �f if and only if Pf = (�P ) f for every prior in the
representing set of priors. Thus Symmetry implies that every prior in this set is exchangeable.
This observation is due to Klaus Nehring.
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Step 1. �(K (S)) and f`1 : ` 2 �(K (S))g are homeomorphic when the latter
set is endowed with the relative topology inherited from �([K (S)]1).
Step 2. P 7�!

R
f̂dP from �([K (S)]1) to R is analytically measurable for

any bounded analytically measurable function f̂ on [K (S)]1: If f̂ is simple (has
a �nite number of values), then P 7�!

R
f̂dP is analytically measurable by [4,

p. 169]. More generally,
R
f̂dP equals the pointwise limit of lim

R
f̂ndP for some

simple and analytically measurable f̂n, which implies the desired measurability.
Step 3. Note that�

K 2 K : inf
!2K

f (!) � t
�
= fK 2 K : K � f! : f (!) � tgg (A.1)

is co-analytic by [35, p. 772], and hence analytically measurable.
Steps 1, 2 and 3 complete the proof. �

For Theorem 4.1, we show (iii))(ii))(i))(iii). If � 2 Bel, let m = � (�). We
use (2.5) repeatedly without reference.

(iii))(ii): Let �0 be the �-algebra generated by the class

fK 2 K : K � AgA2� :

We claim that m (�) =
R
Bel(S)

� (�1) (�) d� (�) on �0. Since the latter is a proba-
bility measure on K, it is enough to show that

m (fK 2 K : K � Ag) =
Z
Bel(S)

� (�1) (fK 2 K : K � Ag) d� (�)

for each A 2 �. This is equivalent to

� (A) =

Z
Bel(S)

�1 (A) d� (�) ,

which is true given (iii).
By a standard argument using the Lebesgue Dominated Convergence Theorem,Z

K
f̂dm =

Z
Bel(S)

�Z
K
f̂d� (�1)

�
d� (�) ,
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for all �0-measurable f̂ : K ! [0; 1]. Since K 7�! inf!2K f (!) is �0-measurable
by (A.1),

U� (f) =

Z
K
inf
!2K

f (!) dm (K) =

Z
Bel(S)

�Z
K
inf
!2K

f (!) d� (�1)

�
d� (�)

=

Z
Bel(S)

V�1 (f) d� (�) .

(ii))(i): It is enough to show that V�1 satis�es Symmetry and OI. Let m =
� (�1) = (� (�))1. Then, m is an i.i.d. measure on [K (S)]1. Since m is symmet-
ric,

V�1 (�f) =

Z
K
inf
!2K

�f (!) dm (K) =

Z
K
inf
!2K

f (�!) dm (K)

=

Z
K
inf

�!2�K
f (�!) dm (K) =

Z
K
inf
!2K

f (!) d (�m) (K)

=

Z
K
inf
!2K

f (!) dm (K) = V�1 (f) :

Show (3.2) to prove OI. For simplicity, let f 2 F1 and g 2 F2. The general
case is similar. For 0 < � � 1,

V�1 (�f + (1� �) g)

=

Z
K
inf
!2K

[�f (!) + (1� �) g (!)] dm (K)

=

Z
[K(S)]1

inf
s12K1;s22K2

[�f (s1) + (1� �) g (s2)] dm (K1; K2; :::)

=

Z
[K(S)]1

�

�
inf
s12K1

f (s1)

�
+ (1� �)

�
inf
s22K2

(1� �) g (s2)
�
dm (K1; K2; :::)

= �

Z
[K(S)]1

�
inf
s12K1

f (s1)

�
dm (K1; K2; :::)

+ (1� �)
Z
[K(S)]1

�
inf
s22K2

g (s2)

�
dm (K1; K2; :::)

= �V�1 (f) + (1� �)V�1 (g) :
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The second equality follows because K 2 [K (S)]1, a:s:-m [K].

(i))(iii): For C � K, let �C = f�K 2 K : K 2 Cg, and for m 2 �(K), de�ne
�m 2 �(K) by �m (C) = m (�C) for each C 2 �K.

Lemma A.2. For any m 2 �(K), m = �m for all � if and only if m = �(�) for
some symmetric belief function � on 
.

Proof. If m = � (�), then � (K) = m (fK 0 2 K : K 0 � Kg), and

� (�K) = m (fK 0 2 K : K 0 � �Kg) = m (f�K 0 2 K : �K 0 � �Kg)
= m (f�K 0 2 K : K 0 � Kg) = m (�(fK 0 2 K : K 0 � Kg)) .

The asserted equivalence follows, because the class fK 0 2 K : K 0 � KgK2K gen-
erates the Borel �-algebra on K. �

Lemma A.3. Let � be a belief function on S1 and m = � (�) the corresponding
measure on K (S1). If U� satis�es OI, then m [(K (S))1] = 1.

Proof. For any ! 2 S1 and disjoint sets I; J � N, !I denotes the projection of
! onto SI , and we write ! = (!I ; !J ; !�I�J). When I = fig, we write !i, rather
than !fig, to denote the i-th component of !.
Let A be the collection of compact subsets K of S1 satisfying: For any n > 0,

and !1; !2 2 K, and for every partition f1; :::; ng = I [ J ,

9!� 2 K, such that !�I = !1I and !�J = !2J . (A.2)

In other words, for every n, the projection of K onto Sn is a Cartesian product.

Step 1. For any continuous acts f 2 FI and g 2 FJ with �nite disjoint I and J ,

min
!2K

�
1
2
f (!) + 1

2
g (!)

�
= 1

2
min
!2K

f (!) + 1
2
min
!2K

g (!) , (A.3)

a:s:-m [K]: This is where OI enters - by (3.2) it implies that

U�
�
1
2
f + 1

2
g
�
= 1

2
U� (f) +

1
2
U� (g) .
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Since U� (f) =
R
K inf!2K f (!) dm (K),Z

K
min
!2K

�
1
2
f (!) + 1

2
g (!)

�
dm (K) = 1

2

Z
K
min
!2K

f (!) dm (K)+1
2

Z
K
min
!2K

g (!) dm (K) .

The assertion follows from

min
!2K

�
1
2
f (!) + 1

2
g (!)

�
� 1

2
min
!2K

f (!) + 1
2
min
!2K

g (!) .

Let G be the set of all pairs (f; g) such that f and g are continuous and
f 2 FI ; g 2 FJ for some �nite disjoint I and J . Let Bf;g be the collection of
K 2 K satisfying (A.3), given f and g. Step 1 implies m (Bf;g) = 1 for each
(f; g) 2 G.

Step 2. m

 T
(f;g)2G

Bf;g

!
= 1: Since the set of continuous �nitely-based acts is

separable under the sup-norm topology (see [3, Lemma 3.99]), it is easy to see
that G is also separable. Let f(fn; gn)g be a countable dense subset of G. By Step
1,

m

�
Kn
� 1T
i=1

Bfi;gi
��

= m

� 1S
i=1

(KnBfi;gi)
�
�
P
m (KnBfi;gi) = 0:

Thus it is enough to show that
1T
i=1

Bfi;gi =
T

(f;g)2G
Bf;g.

Only � requires proof. Let K 2
1T
i=1

Bfi;gi, (f; g) 2 G and assume wlog that

(fi; gi)! (f; g). Then, by the Maximum Theorem [3, Theorem 17.31],

min
!2K

�
1
2
f (!) + 1

2
g (!)

�
= lim

i
min
!2K

�
1
2
fi (!) +

1
2
gi (!)

�
= lim

i

�
1
2
min
!2K

fi (!) +
1
2
min
!2K

gi (!)

�
= 1

2
min
!2K

f (!) + 1
2
min
!2K

g (!) .

Thus K 2
T

(f;g)2G
Bf;g.
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Step 3. If K 2
T

(f;g)2G
Bf;g, then K 2 A: Let n � 0; !1; !2 2 K and

f1; :::; ng = I [ J , with I and J disjoint. For each i, take closed sets

Ai =

(
! :
X
t2I
2�td

�
!t; !

1
t

�
� 1

i

)
and

Bi =

(
! :
X
t2J
2�td

�
!t; !

2
t

�
� 1

i

)
,

where d (�; �) is the metric on S. By Urysohn�s Lemma, there are continuous
functions fi and gi such that, for each i,

fi (!) = 1 if ! 2 Ai and 0 if !I = !1I , and
gi (!) = 1 if ! 2 Bi and 0 if !J = !2J .

Since Ai 2 �I and Bi 2 �J , we can take fi 2 FI , and gi 2 FJ . Then,
min!2K fi (!) = min!2K gi (!) = 0 and, since K 2 Bfi;gi,

min
!2K

[fi (!) + gi (!)] = 0.

Hence, there exists !̂i 2 K such that fi
�
!̂i
�
= gi

�
!̂i
�
= 0: By the construction

of fi and gi, we have !̂
i =2 Ai; Bi, which impliesX

t2I
2�td

�
!̂it; !

1
t

�
+
X
t2J
2�td

�
!̂it; !

2
t

�
<
2

i
:

Since f!̂ig � K and K is compact, there is a limit point !� 2 K satisfying (A.2).

Step 4. m (A) = 1: By Steps 2-3, 1 � m (A) � m
 T
(f;g)2G

Bf;g

!
= 1.

Step 5. A = (K (S))1: Clearly A � (K (S))1. For the other direction, take
K 2 A and assume !1; !2; ::: 2 K. It su¢ ces to show that

!� =
�
!11; !

2
2; :::; !

n
n; :::

�
2 K: (A.4)

Since K 2 A and !1; !2 2 K, there exists !̂2 2 K such that
�
!̂21; !̂

2
2

�
=

(!11; !
2
2). Similarly, since !̂

2; !3 2 K, there exists !̂3 2 K such that
�
!̂31; !̂

3
2; !̂

3
3

�
=
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�
!̂21; !̂

2
2; !

3
3

�
= (!11; !

2
2; !

3
3), and so on, giving a sequence f!̂ng in K. Any limit

point !� satis�es (A.4). �

Finally, we prove (i))(ii). Let � be a belief function on S1 and suppose that
U� satis�es Symmetry and OI. By Lemma A.3, m � � (�) can be viewed as a
measure on [K (S)]1, and by Lemma A.2, m is symmetric. Thus we can apply
de Finetti�s Theorem [23] to m, viewing K (S) as the one-period state space, to
obtain: There exists �̂ 2 �(� (K (S))) such that

m (C) =

Z
�(K(S))

`1 (C) d�̂ (`) for all C 2 �[K(S)]1.

Here each ` lies in �(K (S)) and `1 is the i.i.d. product measure on [K (S)]1.
Extend each measure `1 to �K and write

m (C) =

Z
�(K(S))

`1 (C) d�̂ (`) for all C 2 �K(S1).

We claim that the equation extends also to C 2 �0, where �0 is the �-algebra
generated by the class

fK 2 K : K � AgA2� .
First, note that ` 7�! `1 (C) is universally measurable by Lemma A.1, and hence
the integral is well-de�ned. By a standard argument using the Lebesgue Dom-
inated Convergence Theorem, C 7�!

R
�(K(S)) `

1 (C) d�̂ (`) is countably additive
on �0. This completes the argument because m has a unique extension to the
�-algebra of universally measurable sets, and the latter contains �0.
Let � � �̂ � � 2 �(Bel (S)) and apply the Change of Variables Theorem to

derive, for any A 2 �,

� (A) = m (fK 2 K : K � Ag)

=

Z
�(K(S))

`1 (fK 2 K : K � Ag) d�̂ (`)

=

Z
�(K(S))

`1 (fK 2 K : K � Ag) d� � ��1 (`)
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=

Z
Bel(S)

[� (�)]1 (fK 2 K : K � Ag) d� (�)

=

Z
Bel(S)

� (�1) (fK 2 K : K � Ag) d� (�)

=

Z
Bel(S)

�1 (A) d� (�) .

Uniqueness of � follows from the uniqueness of �̂ provided by de Finetti�s
Theorem. �

B. Appendix: Proofs for Section 5

Proof of Corollary 5.1: Since �1 (A) = � (A) for A 2 �S, � 7�! � (A) is universally
measurable by Lemma A.1. Hence, every set of the form

f� 2 Bel (S) : [� (A) ; 1� � (SnA)] � [a; b]g

is universally measurable and the statement of the Corollary is well-de�ned.
We need two lemmas. Recall that 	n (A) (!) = 1

n

Pn
i=1 I (!i 2 A) where !i

is the i-th component of !. Similarly de�ne b	n (A) (K) = 1
n

Pn
i=1 I (Ki � A) for

K 2 [K (S)]1, where Ki is the i-th component of K.

Lemma B.1. Let K 2 [K (S)]1, K = K1 � K2 � ::: , and � 2 R. Then the
following are equivalent:
(i) lim infn	n (A) (!) > � for every !i 2 Ki, i = 1; :::
(ii) lim infn b	n (A) (K) > �.
Proof. (i))(ii): If Ki � A, let !i be any element in Ki, and otherwise, let !i be
any element in KinA. Then, I (Ki � A) = I (!i 2 A) and thus (ii) is implied.
(ii))(i): If !i 2 Ki, I (Ki � A) � I (!i 2 A). Thus, if !i 2 Ki for i = 1; :::,

then,
lim inf

n
	n (A) (!) � lim inf

n

b	n (A) (K) > �:
�

Lemma B.2. (i) �1 (f! : � (A) < lim infn	n (A) (!)g) = 0 for each A 2 �S; and
(ii) �1 (f! : lim supn	n (A) (!) < 1� � (SnA)g) = 0 for each A 2 �S.
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Proof. Fix A 2 �S. Then,

�1
�n
! : � (A) < lim inf

n
	n (A) (!)

o�
= [� (�)]1

�n
K 2 [K (S)]1 : K �

n
! : � (A) < lim inf

n
	n (A) (!)

oo�
= [� (�)]1

�n
K 2 [K (S)]1 : lim inf

n

b	n (A) (K) > � (A)o� (by Lemma B.1).

By the Law of Large Numbers, b	n (A) (K) converges to
� (�) (fK1 2 K (S) : K1 � Ag) = � (A) almost surely-[� (�)]1, which implies (i).
The proof of (ii) is similar. �

Return to the Corollary. By the LLN in [27], Lemma B.2 and the monotonicity
of belief functions,

�1 (f! : [lim inf 	n (A) (!) ; lim sup	n (A) (!)] � [a; b]g) = 1
, [� (A) ; 1� � (SnA)] � [a; b]

and

�1 (f! : [lim inf 	n (A) (!) ; lim sup	n (A) (!)] � [a; b]g) = 0
, [� (A) ; 1� � (SnA)] is not a subset of [a; b].

Moreover, for any belief function 
 on 
, if 
 (A) = 
 (B) = 1, then 
 (A \B) = 1
by the Choquet theorem. Therefore,

�

�
IT
i=1

f! : [lim inf 	n (Ai) (!) ; lim sup	n (Ai) (!)] � [ai; bi]g
�

=

Z
Bel(S)

�1
�

IT
i=1

f! : [lim inf 	n (Ai) (!) ; lim sup	n (Ai) (!)] � [ai; bi]g
�
d� (�)

= �

�
IT
i=1

f� : [� (Ai) ; 1� � (SnAi)] � [ai; bi]g
�
. �

Proof of Proposition 5.2: By exploiting the homeomorphism de�ned in the Cho-
quet Theorem, we can identify �0 and � with measures on �(K (S)). Modulo this
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identi�cation, we are given that �0 and � agree on the collection of all subsets of
�(K (S)) of the form

IT
i=1

f` 2 �(K (S)) : ` (fK 2 K (S) : K � Aig) � aig ,

for all I > 0, Ai 2 �S and ai 2 [0; 1]. They necessarily agree also on the generated
�-algebra, denoted ��. Therefore, it su¢ ces to show that

��(K(S)) � ��,

where ��(K(S)) is the Borel �-algebra on �(K (S)).
Step 1. ` 7�! ` (C) is ��-measurable for measurable C 2 �K(S): Let C be

the collection of measurable subsets C of K (S) such that ` 7�! ` (C) is ��-
measurable. Every set of the form fK 0 2 K (S) : K 0 � Kg for K 2 K (S) lies in
C. Since the collection fK 0 2 K (S) : K 0 � KgK2K(S) generates �K(S), it is enough
to show that C is a �-algebra: (i) C 2 C implies K (S) nC 2 C; (ii) if each Ci 2 C,
then ` 7�! ` ([1i=1Ci) is ��-measurable because it equals the pointwise limit of
` 7�! ` ([ni=1Ci) - hence [1i=1Ci 2 C.
Step 2. ` 7�!

R
f̂d` is ��-measurable for all Borel-measurable f̂ on K (S):

Identical to Step 2 in Lemma A.1.
Step 3. ��(K(S)) � ��: By Step 2,

n
` :
R
f̂d` � a

o
2 �� for all Borel-

measurable f̂ on K (S). But ��(K(S)) is the smallest �-algebra containing the
sets

n
` :
R
f̂d� � a

o
for all continuous f̂ and a 2 R. �

C. Appendix: Proofs for Updating

Proof of Theorem 6.1: Prove su¢ ciency of the axioms. We prove (6.1) for n = 1;
the general argument is similar.
We use Proposition 1 in [29], for which the main step is to show that D is

convex, where

D =
�
(U (f) ; U1 (f j s1))s12S1 : f 2 F>1

	
� RS+1.

A preliminary result concerns shifted acts. Denote by { the shift operator, so
that, for any act,

({f) (s1; s2; s3; :::) = f (s2; s3; ::) ;
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{n denotes the n-fold replication of {. We show in [11, Lemma 3.8] that Symmetry
implies also indi¤erence to shifts, that is, {f � f for all acts f .
Now let x; y 2 D,

x = (U (f) ; U1 (f j s1))s12S1 and y = (U (g) ; U1 (g j s1))s12S1 ,

and prove that �x+(1� �) y 2 D. Suppose �rst that f and g �nitely-based. Then
there exists N large enough so that f and the shifted act {Ng are orthogonal,
that is, they depend on disjoint sets of experiments. For such an N , because each
utility function satis�es OI and shift-invariance,

�x+ (1� �) y = � (U (f) ; U1 (f j s1))s12S1 + (1� �) (U (g) ; U1 (g j s1))s12S1
= � (U (f) ; U1 (f j s1))s12S1 + (1� �)

�
U
�
{Ng

�
; U1

�
{Ng j s1

��
s12S1

=
�
U
�
�f + (1� �){Ng

�
; U1

�
�f + (1� �){Ng j s1

��
s12S1

2 D,

where the last equality follows from (3.2). Finally, the preceding can be extended
to general (not only �nitely-based) acts f and g. That is because, as in our other
model [11], preference is �regular�and thus properties on the set of �nitely-based
acts extend to all acts. We refer the reader to our earlier paper for elaboration
and more precise statements. That belief function utility is regular follows from
[35, Proposition 1] and [11, Theorem 2.2].
The other conditions in Proposition 1 of [29] are readily veri�ed.33 Therefore,

there exist positive numbers as1 > 0 such that

U (f) = �s1as1U1 (f j s1) , f 2 F>1.

Since U (p) = U1 (p j s1) = p for all (constant acts) p, it follows that �s1as1 = 1.
Deduce that, for all f 2 F>1,Z
V�1 (f) d� (�) = �s1as1

Z
V�1 (f) d�s1 (�) =

Z
V�1 (f)

�
�s1as1d�s1 (�)

�
.

By uniqueness of the representing measure,

� (�) = �s1as1�s1 (�) .
33De Meyer and Mongin�s condition (C) is satis�ed here because U (p) = U1 (p j s1) = p for all

s1 and 0 � p � 1. Therefore, WDC implies their condition P4, and the Proposition�s conclusion
follows.
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Because as1 > 0 for each s1, it follows that �s1 << �, and

1 = �s1as1
�
d�s1 (�) =d� (�)

�
.

Equation (6.1) is satis�ed for n = 1 if

L1 (s1 j �) = as1
�
d�s1 (�) =d� (�)

�
.

Similarly for n > 1.
Argue similarly for every n to obtain a family fLn (� j �)g of conditional one-

step-ahead likelihoods. These can be combined in the standard way to yield a
unique likelihood function L (� j �) on 
. �

Remark 1. The above proof uses �niteness of S. An extension to an in�nite
state space may be possible, for example, by adapting Zhou�s [42] proof of the
Harsanyi theorem for in�nite societies.

Proof of Corollary 6.3: It remains to prove necessity of (6.6): Fix f 2 F>n and
de�ne fn 2 F�n by

fn (s
n
1 ) = Un (f j sn1 ) , for every sn1 .

By Payo¤ Ambiguity, f � fn, and hence, using (6.3),Z
fndL (�) = U (f) � U (fn) =Z

V�1 (fn) d� =

Z
V�n (fn) d�,

or Z
fndL (�) � VR �nd� (fn) .

Moreover, this inequality is valid for every fn 2 Dn = [f2F>nffn 2 F�n : fn (�) =
Un (f j �)g. Under Non-Collinearity, Dn = F�n: Identify Dn with a subset of
[0; 1]S

n
. It is convex - see the proof of Theorem 6.1 - and includes the main

diagonal (the portion within the unit cube). Non-Collinearity implies that Dn is
not contained within any hyperplane. Therefore, Dn = [0; 1]

Sn, and,

mrgS1�:::�SnL (�) 2 core
�Z

�nd�

�
.
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It follows by standard arguments, using the regularity property Bel.4 of belief
functions and the Choquet�s [8, 15.2] capacitability result, that

L (�) 2 core
�Z

�1d�

�
. �

Proof of Proposition 6.4: (i) We adapt a result of Doob as described in LeCam
and Yang [26, Propositions 2,3, p. 243]. For simplicity, consider the special case
of coin-tossing. To prove the general case, simply replace probability intervals by
cores.
Because each L (� j �) is exchangeable, lim	n (!) exists L (� j �)-a.s., and, for

any interval I � [0; 1],

�� (I) = L (� j �) (f! : lim	n (!) 2 Ig) . (C.1)

Since �� has support in I� � [� (H) ; 1� � (T )],

�� (I�) = 1.

Because intervals are disjoint, for each !, there is at most one � such that
lim	n (!) 2 I�. De�ne F : 
! Supp (�), by

F (!) = �, if lim	n (!) 2 I�,

and de�ne F (!) = �, with � an arbitrary �xed belief function in the support of
�, if lim	n (!) 62 [Supp(�)I�. Then,Z

Supp(�)

Z



j � � F (!) j dL (! j �) d� (�) = 0.

which establishes the condition in [26, Proposition 2]. Their Proposition 3 com-
pletes the proof.

(ii) De�ne F : 
! f�; pg, by F (!) = p if lim	n (!) = p, and = � otherwise.
Then Z




j � � F (!) j dL (! j �) = 0, andZ



j p� F (!) j dp1 (!) = 0.

The former is valid because L (f! : lim	n (!) = pg j �) = �� (fpg) = 0. Thus [26,
Proposition 3] completes the proof. �

44



References

[1] N. Al-Najjar and L.De Castro, A subjective foundation of objective proba-
bility, March 2009.

[2] D. Acemoglu, V. Chernozhukov and M. Yildiz, Fragility of asymptotic agree-
ment under Bayesian learning, 2008.

[3] C.D. Aliprantis and K.C. Border, In�nite Dimensional Analysis, 3rd edition,
Springer, 2006.

[4] D.P. Bertsekas and S.E. Shreve, Stochastic Optimal Control: The Discrete
Time Case, Academic Press, New York, 1978.

[5] T. Bewley, Knightian decision theory: Part I, Decisions in Economics and
Finance 25 (2002), 79-110.

[6] W. Brock and S.N. Durlauf, Growth empirics and reality, The World Bank
Review 15 (2001), 229-272.

[7] A. Castaldo, F. Maccheroni and M. Marinacci, Random correspondences as
bundles of random variables, Sankhya (Series A) 80 (2004), 409-427.

[8] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1954), 131-295.

[9] A.P. Dempster, Upper and lower probabilities induced by a multi-valued
mapping, Ann. Math. Statist. 38 (1967), 325-339.

[10] L.G. Epstein, M. Marinacci and K. Seo, Coarse contingencies and ambiguity,
Theor. Econ. 2 (2007), 355-394.

[11] L.G. Epstein and K. Seo, Symmetry of evidence without evidence of symme-
try, 2008.

[12] L.G. Epstein and K. Seo, Symmetry or dynamic consistency?, 2009.

[13] L.G. Epstein and M. Schneider, IID: independently and indistinguishably
distributed, J. Econ. Theory 113 (2003), 32-50.

[14] L.G. Epstein and M. Schneider, Learning under ambiguity, Rev. Ec. Studies
74 (2007), 1275-1303.

45



[15] L.G. Epstein and T. Wang, Intertemporal asset pricing under Knightian un-
certainty, Econometrica 62 (1994), 283-322.

[16] B. de Finetti, La prevision: ses lois logiques, ses sources subjectives. Ann.
Inst. H. Poincare 7 (1937), 1-68. English translation in Studies in Subjec-
tive Probability, 2nd edition, H.E. Kyburg and H.E. Smokler eds., Krieger
Publishing, Huntington NY, 1980, pp. 53-118.

[17] S. Fortini, L. Ladelli and E. Regazzini, Exchangeability, predictive distribu-
tions and parametric models, Indian J. Stats. 62 (2000), 86-109.

[18] P. Ghirardato, Coping with ignorance, unforeseen contingencies and nonad-
ditive uncertainty, Econ. Theory 17 (2001), 247-276.

[19] P. Ghirardato, On independence for non-additive measure, with a Fubini
theorem, J. Econ. Theory 73 (1997), 261-291.

[20] I. Gilboa and D. Schmeidler, Maxmin expected utility with non-unique priors,
J. Math. Econ. 18 (1989), 141-153.

[21] J.C. Harsanyi, Cardinal welfare, individualistic ethics, and interpersonal com-
parisons of utility, J. Pol. Econ. 63 (1955), 309-321.

[22] E. Hendon, H.J. Jacobson. B. Sloth and T. Tranaes, The product of capacities
and belief functions, Math. Soc. Sc. 32 (1996), 95-108.

[23] E. Hewitt and L.J. Savage, Symmetric measures on Cartesian products,
Trans. Amer. Math. Soc. 80 (1955), 470-501.

[24] P.J. Huber, Robust Statistics, Wiley, New York, 1981.

[25] D.M. Kreps, Notes on the Theory of Choice, Westview, 1988.

[26] L. Le Cam and G.L. Yang, Asymptotics in Statistics, 2nd ed., Springer, 2000.

[27] F. Maccheroni andM. Marinacci, A strong law of large numbers for capacities,
Ann. Prob. 33 (2005), 1171-1178.

[28] F. Maccheroni, M. Marinacci, and A. Rustichini, Ambiguity aversion, ro-
bustness, and the variational representation of preferences, Econometrica 74
(2006), 1447-1498.

46



[29] B. de Meyer and P. Mongin, A note on a¢ ne aggregation, Ec. Letters 47
(1995), 177-183.

[30] I. Molchanov, Theory of Random Sets, Springer, 2005.

[31] P. Mongin, Consistent Bayesian aggregation, J. Econ. Theory 66 (1995), 313-
351.

[32] S. Mukerji, Understanding the nonadditive probability decision model, Econ.
Theory 9 (1997), 23-46.

[33] H.T. Nguyen, On random sets and belief functions, J. Math. Anal. and Appl.
65 ((1978), 531-542.

[34] R. Phelps, Lectures on Choquet�s Theorem, Springer, 2001.

[35] F. Philippe, G. Debs and J.Y. Ja¤ray, Decision making with monotone lower
probabilities of in�nite order, Math. Oper. Res. 24 (1999), 767-784.

[36] L. Savage, The Foundations of Statistics, Dover, 1972.

[37] D. Schmeidler, Subjective probability and expected utility without additivity,
Econometrica 57 (1989), 571-587.

[38] G. Shafer, A Mathematical Theory of Evidence, Princeton U. Press, Prince-
ton, 1976.

[39] G. Shafer, Belief functions and parametric models (with commentary), J.
Royal Stat. Soc. Series B 44 (1982), 322-352.

[40] M. Talagrand, Capacités invariantes extrémales, Ann. Inst. Fourier (Greno-
ble) 28 (1978), 79-146.

[41] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and
Hall, 1991.

[42] L. Zhou, Harsanyi�s utilitarianism theorems: general societies, J. Econ. The-
ory 72 (1997), 198-207.

47


