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Econometrica, Vol. 64, No. 6 (November, 1996), 1343-1373 

"BELIEFS ABOUT BELIEFS" WITHOUT PROBABILITIES 

BY LARRY G. EPSTEIN AND TAN WANG1 

This paper constructs a space of states of the world representing the exhaustive 
uncertainty facing each player in a strategic situation. The innovation is that preferences 
are restricted primarily by "regularity" conditions and need not conform with subjective 
expected utility theory. The construction employs a hierarchy of preferences, rather than 
of beliefs as in the standard Bayesian model. The framework is sufficiently general to 
accommodate uncertainty averse preferences, such as exhibited in the Ellsberg paradox, 
and to allow common knowledge of expected utility (or Choquet expected utility) to be 
well-defined formally. Applications include the provision of (i) foundations for a 
Harsanyi-style game of incomplete information, and (ii) a rich framework for the axioma- 
tization of solution concepts for complete information normal form games. 

KEYwORDS: Uncertainty, capacities, types space, beliefs hierarchies, common knowl- 
edge, Kolmogorov extension theorem, topologies for preferences, vague topology, ratio- 
nalizability. 

1. INTRODUCTION 

THE DOMINANT APPROACH TO MODELING decision making under uncertainty is 
due to Savage. In this approach, one posits that the uncertainty can be 
represented by a space of states of the world that are comprehensive descriptions 
of the environment "leaving no relevant aspect undescribed" (Savage (1954, p. 
9)). This paper is concerned with whether the existence of such a states space is 
justifiable in principle for a decision maker operating in a strategic environment. 
A special feature of a strategic environment is that each agent faces uncertainty 
not only about the primitive uncertainty corresponding to the true state of 
nature, but also about her opponents "type" representing all her relevant 
characteristics. It is well known that this feature leads naturally to concern with 
infinite hierarchies and a problem of infinite regress that must be resolved in 
order to justify the existence of a space of types and therefore a space of states 
of the world. 

In typical formulations of games it is assumed that players are subjective 
expected utility maximizers. If it is further assumed that each player's von 
Neumann-Morgenstern index is common knowledge, then the only relevant 
characteristic of a player about which opponents are uncertain is her Bayesian 
prior probability measure over the relevant state space. Thus the analyst's 
attempt to describe the states of the world facing each player leads naturally to 

1An earlier version of this paper was first circulated in June 1994 under the title "A 'Types' Space 
for Games of Incomplete Information with Non-Bayesian Players." We are grateful to the Social 
Sciences and Humanities Research Council of Canada for financial support and to Eddie Dekel, 
Aviad Heifetz, Bart Lipman, Kin Chung Lo, Stephen Morris, Mike Peters, James Redekop, and Lin 
Zhou for helpful discussions and comments. The suggestions of a co-editor and two referees led to 
substantial improvements in exposition. 
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1344 L. G. EPSTEIN AND T. WANG 

an infinite hierarchy of probability measures representing beliefs. This problem 
of infinite regress in beliefs has been tackled rigorously by Mertens and Zamir 
(1985), who construct a well-defined topological space of "types" having the 
feature that the type of each player is comprehensive in that it identifies, up to a 
homeomorphism, joint beliefs about the state of nature and the types of 
opponents. It is apparent that the relevance of hierarchies of beliefs is not 
restricted to the framework of subjective expected utility maximization. Rather, 
it is valid as long as individual preferences are "based on beliefs" that are 
representable, by a probability measure; Machina and Schmeidler (1992, 1995) 
define this class of preferences precisely and refer to them as "probabilistically 
sophisticated," or "Bayesian rational." 

We have three primary reasons for being dissatisfied with the noted construc- 
tion of a state space. The first is methodological. In Savage's model, states of the 
world logically precede the specification of axioms. Therefore, it is at the very 
least inconsistent with the Savage approach to specify the state space only after 
adopting a set of axioms for preferences, whether those underlying subjective 
expected utility maximization or the weaker set underlying Bayesian rationality. 
More importantly perhaps, the fact that axioms are presumed in the specifica- 
tion of states of the world makes it impossible to formalize them within the 
resulting framework. This methodological concern is pertinent even if the 
modeler wishes to assume that players are Bayesian rational and that this is 
common knowledge. Such an assumption must be understood informally in the 
standard Bayesian framework (Aumann (1987)). 

Our second reason has to do with the decision-theoretic approach to game 
theory whose objective is to relate, at a formal level, our understanding of 
individual rationality on the one hand and strategic rationality on the other. At 
the individual level, though subjective expected utility maximization is undoubt- 
edly the dominant model in economics, many economists would probably view 
axioms such as transitivity or monotonicity as more basic tenets of rationality 
than the Sure-Thing-Principle and other components of the Savage model. The 
implications of such more basic axioms for single agent decision making are well 
understood from abstract choice theory, but they have not been isolated in 
strategic settings. To do so, and thereby to narrow the gap between the formal 
modeling of rationality in the two settings, requires that one specify a state 
space for players in a game that presumes as few preference axioms as possible. 
(As will become apparent, we do not succeed in specifying states of the world 
prior to all axioms, but the axioms maintained in the states space that we 
construct are much weaker than those underlying probabilistic sophistication.) 

Our final reason for dissatisfaction with the Mertens-Zamir types space is 
descriptive accuracy. Both expected utility theory and the generalization formu- 
lated by Machina and Schmeidler are inconsistent with aversion to vagueness or 
ambiguity such as exhibited in the Ellsberg paradox. In other words, neither 
model permits a distinction between risk, where probabilities (either objective or 
subjective) are available to guide choice, and uncertainty, where information is 
too vague to be summarized adequately by a probability measure. This paper is 
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BELIEFS ABOUT BELIEFS 1345 

motivated in part by the presumption that uncertainty or vagueness are impor- 
tant in strategic situations and therefore that it is worthwhile generalizing 
received game theory so that the effects of uncertainty can be studied in 
principle. 

Our main contribution is to show that the previously noted problem of infinite 
regress can be solved, and a space of types (states of the world) constructed, 
under weak maintained assumptions regarding players' preferences. As a result 
we show that the Savage approach to modeling choice under uncertainty, via 
acts over a set of states of the world, is separate from (most of) the Savage 
axioms. In terms of execution, at our level of generality hierarchies of beliefs are 
no longer adequate or even relevant. Indeed, preferences need not even have a 
separable component that can be thought of as "beliefs"; in particular, they 
need not satisfy Savage's Axiom P4 which delivers a "more likely than" relation 
over events. Rather, the relevant hierarchy is one of preferences on suitable 
domains of Savage acts. We show that the types space so constructed is 
sufficiently rich to permit the formalization of the assumption that it is common 
knowledge that players' preferences conform to various alternative models of 
preference, such as expected utility theory or Choquet expected utility theory 
(Schmeidler (1989)). One application of our types space is to provide founda- 
tions for a Harsanyi-style formulation of games of incomplete information with 
non-Bayesian rational players. This application is described and others are 
outlined in Section 2. 

To conclude this introduction, we relate our variation of the Mertens-Zamir 
construction to others that have been developed. The latter authors assume that 
the primitive space of states of nature n is compact Hausdorff. More recently, 
parallel constructions of beliefs hierarchies have been described under the 
alternative assumptions that this space is Polish (Brandenburger and Dekel 
(1993)) and Hausdorff (Heifetz (1993)). Our central result regarding the exis- 
tence of a types space assumes that l2 is compact Hausdorff. The generality of 
our analysis lies in the significantly weaker maintained assumptions about 
individual preferences, as explained above. A difficulty in achieving this general- 
ization is that the standard measure-theoretic machinery exploited by the above 
studies is not available to us. For example, they employ the topological space of 
Borel regular probability measures endowed with the weak convergence topol- 
ogy, which is well understood and has attractive properties. Our first task, prior 
to concern with any infinite regress, is to define a space of "regular" prefer- 
ences, with suitable topology, that possesses comparable properties. This novel 
topological space of preferences is a, secondary contribution of the paper. It is 
useful even if, for whatever reason, only finite hierarchies are relevant; we feel 
also that it will be useful more generally in modeling choice under uncertainty. 

The notion of "knowledge" that we employ is an analogue of "belief with 
probability one," which is the notion employed in the papers just cited. Other 
studies adopt an information-theoretic approach to modeling knowledge, 
whereby the primitive is a set of possibilities indicating the set of states viewed 
as possible by the agent in question (see Fagin, Geanakoplos, Halpern, and 
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1346 L. G. EPSTEIN AND T. WANG 

Vardi (1992) and Heifetz and Samet (1993), for example). These studies cannot 
be viewed as special cases of ours. They show that generally transfinite hierar- 
chies are needed to provide a complete description of the uncertainty facing 
each agent.2 On the other hand, our framework shares with the probability-the- 
oretic literature cited the feature that a denumerable construction suffices for a 
types space, given a compact Hausdorff parameter space. As a result, our 
analysis casts further light on "when" a denumerable construction suffices. 

We proceed as follows: The next section provides an informal outline of the 
hierarchical structure and infinite regress problem that arise in attempting to 
describe the uncertainty facing players in a game. It then describes three 
instances where resolution of this infinite regress problem is important. These 
applications serve to motivate the ensuing formal analysis. Section 3 describes 
the class of individual preferences that we admit and the topology adopted for 
the space of preferences. Some noteworthy subspaces of preferences are studied 
in Section 4. The construction of the space of types is carried out in Section 5 
and the incorporation of common knowledge is examined in Section 6. Most 
proofs are relegated to appendices. 

2. INFORMAL OUTLINE AND APPLICATIONS 

2.1. Incomplete and Complete State Spaces 

Consider a decision maker operating under uncertainty, where the uncertainty 
is represented by the state space S, the space of states of the world as in Savage. 
The objects of choice are acts over S, that is, (suitably measurable) functions 
from S to the set of outcomes X = [0, 1]. Denote by AS) this set of acts and by 
9(S) the set of "regular" preference orderings over AS). More detailed and 
precise definitions of these sets will be provided later. For now, we proceed 
informally assuming that the sets M(S) and 9A(S) are well defined for any S. 
Think of 09,(S) as a large class of preferences limited mainly by "technical" 
conditions and containing subjective expected utility preferences as a small 
subset. This framework may be applied to describe choice behavior by supposing 
that the set of feasible choices corresponds to a subset of AS) and that a 
feasible act that maximizes the decision maker's preference, an element of 
9(S), is chosen. 

Suppose now that the decision maker is a player in a game. The choice of 
strategy can be modeled as above once the suitable set of states of the world S 
is specified, by associating each strategy with an act over S. The outstanding 
question is "what is S?" To proceed, suppose for notational simplicity that there 
are two players, denoted i and j, with strategy sets Ai =Ai. Each player is 
uncertain about the parameters of the game being played and/or the strategy 
choice of her opponent. This primitive uncertainty may be represented by some 
set D. If i faced uncertainty only about the true w E (, then her choice of 

2See Lipman (1991) for another example of a nondenumerable hierarchical construction. 
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BELIEFS ABOUT BELIEFS 1347 

strategy could be modeled as indicated above: Given j's strategy choice aj, the 
perceived payoff of i depends on her strategy ai and on the true state t. 
Therefore, each ai determines a mapping from (2 into outcomes in X = [0,1], 
that is, each ai determines an act in A (2). Accordingly, i's strategy choice is 
determined by her preference ordering over 9(n), an element of 9(n). But i 
does not know j's chosen ai. By the above for j, she could infer it from 
knowledge of j's preference ordering in 9(n), but she is uncertain about her 
opponent's preferences. Thus i's "second-order state space" is 2 x 9( (2). Were 
this to represent all the uncertainty facing i, then we could argue as above, 
identifying each ai with an act in A(2 x,9((2)) and deriving her strategy choice 
from her "second-order preferences," an element in 9A((2 x,9((2)). Similarly 
for j. But since i's second-order preferences are unknown to j and since they 
are useful for predicting what i will do, j faces the uncertainty represented by 
the state space (2x9A((2) x,9( (2 x,9(()). Proceeding, one is led to the se- 
quence of state spaces 

(1) SO =n SSn= Sn-1 x ,D(S - 1), n > O, 
and similarly for j. Each state space Si (or Si) is an incomplete description of 
the uncertainty facing i (or j) since, as above, given that Si describes some of 
the uncertainty facing j, then i, in predicting j's behavior, faces uncertainty also 
about j's preferences over A(SD). Therefore, to model the decision problem 
facing each player requires first that one prove the existence of a state space 
that is large enough to incorporate all of the above uncertainty. 

Comparison with the Bayesian case may be helpful. When preferences con- 
form to subjective expected utility and when vNM indices of both players are 
common knowledge, then "beliefs" about any given states space S uniquely 
determine preferences over AS). Therefore, the reasoning outlined above leads 
to a hierarchy of "beliefs about beliefs." More specifically, since in the Savage 
model beliefs are represented by a probability measure, the sequence of incom- 
plete state spaces takes the form 

(2) Si= , Si = Si1 x A(S1), n > 0, 

where A(Si l) denotes the set of probability measures on SJ' . These are the 
incomplete state spaces considered in Mertens and Zamir (1985) and 
Brandenburger and Dekel (1993). 

Returning to the general non-Bayesian framework and proceeding heuristi- 
cally, ask what conditions are natural to impose on complete state spaces Si and 
Si, were they to exist. The uncertainty facing i consists of both the primitive 
uncertainty represented by (2 and, by the reasoning described above, by j's 
"feelings" about the exhaustive uncertainty that she faces, where such "feelings" 
are embodied in the way that j ranks acts over her state space si. In other 
words, i is uncertain about (2 x,9(Si). But by hypothesis, Si represents all the 
uncertainty facing i. We conclude that S' and Si should satisfy 

(3) Si Q x (Si) 
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1348 L. G. EPSTEIN AND T. WANG 

where indicates a suitable one-to-one correspondence. Anticipating the 
formal analysis, refer to as a (topological) homeomorphism. 

The following reformulation is convenient. Write 

S =QXTi and Si=Q2xT , 

where T' and Ti are the spaces of possible "types" for i and j and where a 
"type" is a complete description of the relevant characteristics of a player. 
Substitute these expressions into (3) to deduce the following restriction on types 
spaces: 

(4) Ti- 09(QXTj) and Ti ,3(dQXTi). 

Conversely, given spaces satisfying these restrictions, then a type ti E T' for i is 
a comprehensive description of i because it includes, through the homeomor- 
phism - , a specification of i's "feelings" about both the primitive uncertainty 
Q2 and about the type of her opponent. 

The technical contribution of this paper is to describe a mathematically 
rigorous and natural construction of types spaces, given a very general specifica- 
tion of preferences via 9A. We claimed in the introduction that the existence of 
such types spaces was important for some foundational and conceptual issues in 
game theory and in economic theory more broadly. To buttress this claim, we 
proceed now to describe three applications. 

2.2. Applications 

2.2.1. Games of Incomplete Information 

Consider a game that is common knowledge except for the true parameter, an 
element of D. The following Harsanyi (1967/8)-style formulation of such a 
game accommodates all preferences in the broad class defined by 9. The 
formulation does not contain a counterpart of the "common priors" assumption; 
there is no reference to ex ante beliefs or preferences. (Some mathematical 
details required by the later formal analysis have been added.3) 

A game is defined as a tuple (N, X, (Ai, i9, ri, Ui)ibE N) where: 
* N is the finite set and number of players; 
* O is a compact Hausdorff parameter space; 
. Ai is a topological space of i's possible actions; 
e &i is a compact Hausdorff space of i's possible types (private information); 
* ri: H7 1A1 X (2 x I1N1 j X is a measurable function describing out- 

comes for i; 
* UL: &i - '(Qx - &),(&-i H-Ij 19j), where Ui(Oi,) represents i's prefer- 

ences on acts over 2 x _-i conditional on being of type Oi. 

3Throughout the paper, every topological space Y is endowed with the Borel or-algebra and 
measurability of any function f: Y --' refers to Borel measurability. Also, the product topology is 
used for all Cartesian product spaces. 
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BELIEFS ABOUT BELIEFS 1349 

An equilibrium is a tuple (oJd)ii N where oi: &i -- Ai is measurable and 
satisfies: Vi V0i E (9i Vai EAi, 

Ui(Oi, fi[ qi(Oi), Oi ]) 2 Ui(Oi , fi[ai, Oi]) 

where for any (ai, Oi) EA i x 9i,fi[ai, Oi] EA x &- ) is the act defined by 

fi[ai, Oi](oi, O-i) ri ai, (0-j(0j))ji, as, oi, 0-i) 

Conditional on her type Oi, player i identifies each strategy ai with an act over 
12 x E-i and uses her conditional utility function Ui(0i, ) to evaluate the 
strategy. This formulation presumes that 12 x &-i represents all the uncertainty 
facing i. The analysis in this paper shows how, beginning with 12, one can 
construct suitable types spaces 9i = TF satisfying this condition. (In the case of 
two players i and j, see Theorem 5.2; &i = 9j = T, and Li(01, ) is derived from 
the homeomorphism (4) or (12), and similarly for j.) The validation provided 
thereby extends the Mertens-Zamir validation for the standard Bayesian game 
of incomplete information. 

The above game formulation and equilibrium notion have been applied in Lo 
(1995) to examine the effects of uncertainty aversion in first and second price 
sealed bid auctions with independent private values. Lo assumes that it is 
common knowledge that players have preferences in the multiple-priors class 
(Gilboa and Schmeidler (1989)). Such common knowledge assumptions can be 
expressed formally as described in Section 6. 

2.2.2. Foundations for Solutions Concepts 

In the decision-theoretic approach to game theory, each player's problem of 
choosing a strategy is cast as a single agent decision problem under uncertainty. 
Then, assuming that players are Bayesian rational, alternative assumptions 
regarding their beliefs about the uncertainty that they face deliver axiomizations 
for various solution concepts. An example of such an argument, that is the focus 
here, is the theorem characterizing correlated rationalizability and survival of 
iterated deletion of strictly dominated strategies as the (equivalent) implications 
of rationality and common knowledge of rationality (Tan and Werlang (1988, 
Theorems 5.2-5.3)). 

For the reasons given in the introduction, it is desirable to extend such 
arguments beyond the framework of subjective expected utility maximizing 
players. The types space constructed in this paper permits such an extension. 
Here we provide a brief indication of how it may be developed; see Epstein 
(1995) for a more complete analysis. 

Consider a two-player normal form game (Ai, Aj1, r., r), where A =A1=A 
are compact Hausdorff strategy sets, ri,rj: Ai XA - [0,1] are measurable 
outcome functions, and the game is common knowledge. To give formal mean- 
ing to "i is rational," we proceed as follows: i faces the primitive uncertainty 
represented by A (j's choice of strategy), but this uncertainty is not exhaustive 
because "beliefs about beliefs... " matter. The set of states of the world facing i 
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1350 L. G. EPSTEIN AND T. WANG 

is A x Ti, where Ti is the types space for j, taking (2 =A in Section 2.1. The 
strategy choice ai by i determines the act r1(ai, *) over A x Ti and therefore 
can be evaluated by i's preference ordering, an element of _9'(A x Ti). Further, 
i's preference ordering is determined by her type ti according to the homeomor- 
phism in (4). Let the function tI: T'i -*,9(A x Ti) represent this homeomor- 
phism. This leads to the formal definition that (ai, ti) E A x Ti is rational if for 
all a' in A, 

(S) T(ti)(ri(ai, -)) > W(ti)(ri(aa )) 

Denote by Qi the subset of A x T satisfying (5) and define Qj similarly. 
Common knowledge of rationality thus amounts to common knowledge of each 
of Qi and Qj, which can be modeled formally along the lines of Section 6. In 
particular, such common knowledge corresponds to the players' types lying in 
suitable subsets Ti* and Tj* of T, satisfying4 

Ti hmeo A(A x TQj n [A x Tj*]) 

and 
T7 hmeo tA(A x TIQi n [A x Ti* J) 

Therefore, the implications of rationality and common knowledge of rational- 
ity are delivered by answering the following formal question: "For which 
(ai, a1) EA2 does there exist (ti, tj) e TI* x T7* such that (at, ti) E Qi and (aj, tj) 
E Q,?" Epstein (1995) characterizes such strategy profiles in the case of finite 
games, delivering a notion of rationalizability (and corresponding "dominance") 
that is not tied to the subjective expected utility framework. Because AA x T) 
is a large class of preferences, the corresponding notions of rationality and 
rationalizability are weak. However, they can be strengthened by assuming that 
a more restrictive model of preference is common knowledge. 

Two products of such an analysis merit emphasis. First, new solution concepts 
for normal form games are provided that have clear and appealing decision-the- 
oretic foundations and that can accommodate empirically attractive (e.g., uncer- 
tainty averse) preferences.5 It is hoped that these solution concepts will prove 
useful in applications. Another product is the deepening of the foundations for 
the expected utility-based notion of rationalizability due to the fact that com- 
mon knowledge of expected utility maximization may be expressed formally in 
our framework. 

2.2.3. Single Agent Decision Making 

The standard model of information, a partition of the state space, is based on 
strong assumptions about the decision maker's knowledge and information 
processing abilities, most notable negative introspection-if something is not 

4 The notation 9A(S IA), where A cS, denotes the subset of preferences in AS(S) for which S \A 
is null in the sense of Savage. See Section 4.3 for a fuller explanation. 

S Related literature includes Dow and Werlang (1994), Klibanoff (1994), and Lo (1994). They 
provide equilibrium concepts for normal form games with complete information and uncertainty 
averse players. 
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BELIEFS ABOUT BELIEFS 1351 

known, it is known that it is not known. Geanakoplos (1989) proposes nonparti- 
tional models of information to capture the decision maker's imperfect under- 
standing of the universe. He then assumes expected utility maximization and 
Bayesian updating to deliver a model of preference that is used to address issues 
in applied game theory. This approach of pasting Bayes rule onto a nonparti- 
tional information structure is criticized by Morris (1994, 1996) as being ad hoc 
because the usual decision theoretical justification for Bayes' rule is based on a 
form of dynamic consistency that, in turn, implies partition information. It is 
suggested, therefore, that a unified treatment of preference and (imperfect) 
knowledge is required and Morris makes some progress in providing such a 
unification. However, Morris (1994) identifies a circularity in his model and 
suggests that it is best dealt with by a hierarchical model of preference. The 
issue is whether there exists a state space rich enough so that states contain a 
description of (preferences and) knowledge of the state space. Here we show 
that the hierarchies constructed in this paper, suitably reinterpreted, resolve this 
issue. There may be some appeal to the view that knowledge is prior to and 
helps to determine preference. On the other hand, we emphasize, as does 
Morris, that there is a strong tradition in economics of choice-based, or 
equivalently, preference-based modeling. Savage's derivation of subjective 
probability from preference is a prominent example. Another notable recent 
example is Lipman (1995), where a decision maker's reasoning is derived from 
preferences. 

The reinterpretation just mentioned is that we view the single decision maker 
as being uncertain (about the state of nature and) about his own preferences 
rather than about the preferences of another. The discussion leading to (4) is 
readily modified to relate to the decision maker's introspection; she is uncertain 
not only about the true state of nature in 12 but also about how she "feels" 
about this uncertainty and how she "feels about her feelings" regarding the 
state of nature and so on. At issue is whether there exists a space T large 
enough to model both introspection to all finite levels and introspection about T 
itself so that any type t c T represents the exhaustive introspection of the 
decision maker. Formally, the issue is the existence of T such that T is 
homeomorphic to f9(n x T). Let the function W: T -*9(f2 x T) represent such 
a homeomorphism. 

The following connection can now be made to formal nonpartitional models 
of knowledge. Let S = n x T and for each event A c 5, say that the decision 
maker knows A at the state s = (c, t) if '(t) E=((2 x TIA). Define K(A) to be 
the set of states s at which A is known. Then K is a knowledge operator 
satisfying K(S) = S, K(0) = 0, and K(A) n K(B) = K(A n B). Other arguably 
more problematic properties of K required by the partition model are not 
necessarily satisfied. However, they can be imposed as additional assumptions 
expressed as restrictions on the decision maker's type. For example, the knowl- 
edge axiom "know that you know" may be expressed in the form: For every 
A c n x T, 

IW(t) E9'( n X TJA) f'P(t) E=(( 2 X TJ n X r1l9(Qn X TIA)). 
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1352 L. G. EPSTEIN AND T. WANG 

Arguments similar to those in Section 6 can be used to construct the subset of 
types satisfying this condition; similarly for the axiom of negative introspection. 

Though the hypothesis of uncertainty about own preference is uncommon in 
economic theory, it seems natural given an agent who does not perfectly 
understand the nature of the primitive state space Q and who reflects on the 
nature and degree of his misunderstanding. Finally, we note that uncertainty 
about own preferences has been shown to be useful also in modeling preference 
for flexibility (Kreps (1979)) and behavior given unforeseen contingencies (Kreps 
(1992)). 

3. THE SPACE OF PREFERENCES 

This section provides a formal definition of the space of regular preference 
orderings. 

Begin with a state space S, a compact Hausdorff topological space. Preference 
will be defined on s(S), the set of all Borel measurable functions from S to 
X = [0, 1]. In order to describe the class of preferences that will be considered, it 
is convenient to designate various subsets of AS). Call an act simple if its range 
is finite. Call an act f upper semicontinuous (usc) if all sets of the form {s: 
f(s) ? K} are closed. Similarly, f is lower semicontinuous (lsc) if all sets of the 
form {s: f(s) > K} are open. Denote by Y(S) and Y'(S) the sets of simple usc 
and simple lsc acts respectively. The outcome x e X also denotes the corre- 
sponding constant act. Finally, for any x and any -> 0, (x + e) should be 
interpreted as min{x + s, 1} and (x - e) means max{x - e, 0). 

By a (regular) preference order on 9(S), we mean a reflexive, transitive, and 
complete binary relation a satisfying the following conditions for all acts f' 
and f in -(S): 

P.1 INTERMEDLATE VALUE: Vf 3 unique x E X such that f -x. 

P.2 MONOTONICITY: f' >f =f' >f. 

P.3 INNER REGULARITY: If f - x, then Ve > 0 3g E3' -(S) satisfying g < f and 
g a, (x - ). 

P.4 OUTER REGULARITY: Vg E "(S), if g - x, then Ve > 0 3h E -4(S) satisfy- 
ing h?g and (x+e),h. 

While this definition of "preferences" substantially limits the class of binary 
relations and therefore the generality of our analysis, we feel that the above 
conditions are attractive on the grounds of being both readily interpretable and 
not unduly restrictive, as demonstrated by examples below. The first two 
properties are self-explanatory and common. In particular, the assumption that 
there exists a unique "certainty equivalent" for each act seems natural in the 
present setting. The regularity conditions are perhaps unconventional restric- 
tions on preferences, but are nevertheless readily interpretable. Roughly, the 
first requires that any act can be approximated from below, arbitrarily well in 
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preference, by simple usc acts; the second requires that any g in -9-(S) can be 
approximated from above, arbitrarily well in preference, by simple lsc acts. 
Further discussion of the regularity conditions follows shortly. 

Denote by 90(S) the set of preference relations on Y(S). By the intermediate 
value property, any a admits a numerical representation u: (S) X, defined 
by f - u(f). That is, u(f) is the certainty equivalent of the act f. Further, u 
inherits the following properties: 

U.1 CERTAINTY EQUIVALENCE: u(x) x. 

U.2 MONOTONICITY: f' ?f=* u(f') 2 u(f). 

U.3 INNER REGULARITY: u(f) = sup{u(g): g ?f, g E5s"(S)}, Vf e (S). 

U.4 OUTER REGULARITY: u(g) = inf{u(h): h ? g, h E k(S)}, Vg E u(S). 

Equally important and immediate is that any function u satisfying these 
properties defines a unique preference relation a (satisfying the properties 
(P.1)-(P.4)) by 

f' 
, 

,f ;-*u(f ') 
2 
u(f) 

Therefore, we can identify _9'(S) with the set of functions u satisfying (U.1)-(U.4). 
Such functions are referred to interchangeably as utility functions, certainty 
equivalents and, because of the identification, as preference orders. In particu- 
lar, we often write u E-'(S). This identification is convenient since the analysis 
to follow is more simply written in terms of utility functions rather than binary 
relations. We emphasize, however, that everything that follows can be rewritten 
explicitly and exclusively in terms of preferences, that is, we are indeed dealing 
with a space of preference orders rather than nonordinal utility functions. 

The regularity conditions (U.3) and (U.4) resemble more familiar restrictions 
on probability measures (see Section 4.1); think of u as a measure and replace 
g, h, and f by closed, open, and measurable subsets of S, respectively. (To 
motivate the latter substitutions, note that the indicator function for a closed set 
is usc, and so on.) The regularity conditions also imply that a utility function is 
uniquely determined by the certainty equivalents it assigns to simple lsc acts, 
much like a regular probability measure is uniquely determined by its values on 
open sets. This formal similarity may help to motivate our specification of _9?i(S); 
in any event, it "explains" how we arrived at it. The noted similarity is also an 
important reason that a denumerable hierarchy suffices here as it does in the 
case of hierarchies of probability measures. In particular, the restriction to 
regular utility functions permits the proof of a "Kolmogorov extension theorem" 
for utility functions (See Theorem D'.2 and Lemma D.3). 

The next step is to define a topology on 9(S). We employ the topology r 
having the subbasis consisting of sets of the form 

{u: u(g) < K}, {u: u(h) > K}, 

where K varies over the reals and g and h vary over 9(S) and Y'(S), 
respectively. That is, T is the coarsest topology on .9(S) that makes the mapping 
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U '-+ u(f) usc for every f E5-(S) and lsc for every feY'(S).6 Expressed 
explicitly in terms of preference orders a, the above subbasis consists of the 
sets 0 and LA(S) (corresponding to values of K outside the unit interval), { a: 
g -< x} and { a: h >- x} where x varies over [0, 1]. 

A vital feature, for our purposes, of the topology T is that it leads to 
inheritance of the compact Hausdorff property from S to 9?A(S). 

THEOREM 3. 1: (,9(S), T) is compact Hausdorff. 

One justification for the choice of T is pragmatic, that is, "it works," as shown 
below. We view the compact Hausdorff property of (09_A(S), T) as another 
justification, or at least as a confirmation that the topology is "reasonable," that 
is because compactness ensures that T does not contain "too many" open sets 
while the Hausdorff property ensures that it does not contain "too few" open 
sets. More precisely, note that for any other topology T', T' must violate 
compactness if it is strictly stronger than r and it must violate Hausdorff if it is 
strictly weaker than T (see Royden (1988, p. 192)). 

Additional perspective on the topology T may be provided by considering 
some specific alternatives. Topologies frequently adopted for spaces of prefer- 
ences include the topology of closed convergence (Hildenbrand (1974) and 
Grodal (1974)) and the Kannai topology (Kannai (1970)). These presume that 
the domain of preference is itself a topological space and that all preferences 
are continuous. Further, local compactness of the domain is needed in order 
that the Kannai topology be well-defined and that the closed convergence 
topology be Hausdorff. There remains also the need, for the purpose of the 
construction of hierarchies, to ensure that the topological space of preferences 
inherits suitable properties from the domain. For example, a seemingly useful 
result is that the property "compact separable metric" is passed on under the 
closed convergence topology (Hildenbrand (1974, pp. 19-20)). However, we are 
not aware of any reasonable topologies on the domain Y(S) that deliver the 
required properties. For example, Y(S) is in general not locally compact under 
the sup-norm topology and it fails to be compact separable metric under the 
product topology. 

A very special but still useful illustration has a finite state space S = {1, . . ., n}, 
in which case .(S) = u(S) = '(S) = [0, 1]. Therefore, the regularity condi- 
tions are trivially satisfied and _9(S) can be identified with that subset of 
[0, 1][0 1l consistent with (U.1) and (U.2). The topology T is the induced product 
topology. It is straightforward to construct a utility function satisfying both (U.1) 
and (U.2) that is not continuous on [0, 1]n and that fails to be strictly monotonic 
there, where the latter refers to the property 

f' >f everywhere on S u(f') > u (f). 

6It can be shown that T is weaker than the topology generated by sets of the form {u: U(f) < K) 

and {u: u(f ) > K), where f varies over all continuous functions in M(S). Note that these sets are in 
general not open in T because the subbasis in (6) employs simple functions. 
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Therefore, the example demonstrates that in general regular utility functions 
need not be sup-norm-continuous or strictly monotonic. In this specific example, 
SAS) is in fact compact separable metric under the usual topology on [0, 1]n and 
the above cited theorem of Hildenbrand delivers a compact separable metric 
space of (continuous) preferences. However, the finiteness of the state space is 
critical and finiteness is lost at the second stage of the hierarchy, that is, once 
one's opponents preferences themselves constitute part of the uncertainty facing 
a player. 

4. PREFERENCE SUBSPACES 

We turn to some noteworthy subspaces of 9(S) that will help to clarify the 
nature of (0(S), r). In particular, we hope that the specializations to follow will 
convince the reader that our choice of regularity conditions and topology are 
sensible at least in the sense that they are consistent with more familiar models. 

4.1. Expected Utility 

Denote by A(S) the space of regular Borel probability measures endowed with 
the weak convergence topology, where regularity for p E A(S) means:7 

R.1 p(A) = sup{p(K): K cA compact} V measurable A. 

R.2 p(K) = inf{p(G): G DK open), V compact K. 

Note that A(S) is compact Hausdorff; this is implied by the Riesz Representa- 
tion and Alaoglu Theorems (Royden (1988, pp. 352, 237)). 

Fix a vNM index v: X , continuous and strictly increasing. For each 
measure p E A(S), define up by 

(7) up(f )= -v (v(f)dp) 

The identification of p with up establishes a homeomorphism between A(S) 
and a subspace of 9I(S). 

THEOREM 4.1: The mapping p -> up is a homeomorphism between A(s) and a 
compact subspace of 9A(S). 

This is a simple corollary of Theorem 4.2. 
A possible extension of the theorem is worth noting. Note that it is the 

probabilistic sophistication of each up that is important above, not the expected 
utility functional form itself. In particular, the class of all u's corresponding to 
some "belief' p E A(S) and a fixed "well-behaved" functional for evaluating 

7 In fact, for S compact Hausdorff, either of these conditions implies the other (Royden (1988, p. 
341)). 
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risky prospects is also compact and homeomorphic to A(S). The reader is 
referred to Machina and Schmeidler (1992) for the details supporting this 
sketched extension. 

4.2. Choquet Utility 

Schmeidler (1989) has axiomatized a generalization of expected utility theory 
that can accommodate aversion to uncertainty such as exhibited in the Ellsberg 
paradox. We show that a suitable specialization of his model can be embedded 
within the space of regular utility functions _A(S). 

By a (regular) capacity we mean a function c from the measurable subsets of 
S into [0,1] satisfying c(0) = 0, c(S) = 1, monotonicity with respect to set 
inclusion and the counterparts of the regularity conditions R.1-R.2.8 Note that 
since capacities are not necessarily additive, the conjunction of the two regular- 
ity conditions is strictly stronger than either one alone. 

Each capacity can be associated with a utility function as follows: Fix a vNM 
index v as in the preceding example. For each capacity c, define the utility 
function uc by 

(8) uC(fM)Ev (v(f)dc) 

where the indicated integration is in the sense of Choquet. (When the integrand 
is nonnegative, the integral is defined to equal the Riemann integral J c{v(f ) > 
t} dt. In particular, for any characteristic function f = 1A the Choquet integral 
equals v(O) + c(A)[ v(1) - v()]. Though Choquet integration is not additive, it 
does satisfy the following limited form of additivity: 

(9) f[v(f) + v(f')1 dc = fv(f) dc+ fv(f') dc, 

whenever f and f ' are comonotonic, that is, [f(s) -f(s')][f '(s) -f '(s')] > 0 
Vs,s' eS.) 

Denote by M(5) the set of capacities and endow it with the vague topology, 
which is the topology generated by the subbasis 

{c: c(K) < K} {c: c(G) > K}, 

where K and G vary over compact and open subsets of S and K varies over the 
reals. Equivalently, the vague topology is the weakest topology on M(S) that 
renders the mapping c I-* ffdc continuous for each continuous act f (see 
O'Brien and Vervaat (1991)). It follows that the topology induced on A(S), 

8 This definition, apart from the normalization c(S) = 1, coincides with that adopted in Norberg 
(1986) and O'Brien and Vervaat (1991). Schmeidler (1989) does not impose any regularity condi- 
tions, while alternative regularity conditions are occasionally imposed, e.g., in Choquet (1953/4) and 
Graf (1980). 
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viewed as a subset of v(S), coincides with the weak convergence topology. 
Finally, F(S) is compact Hausdorff (O'Brien and Vervaat (1991, Theorems 2.2, 
2.3)). 

We have the following extension of Theorem 4.1: 

THEOREM 4.2: The mapping I: c -* uc is a homeomorphism between 3(S) and 
a compact subspace of Ha(S). 

The subset of convex capacities warrants separate mention. A capacity is 
called convex if for all measurable sets A and B 

c(A U B) + c(A n B) 2 c(A) + c(B). 

Schmeidler (1989) has demonstrated that convexity of the capacity c corre- 
sponds to a form of uncertainty aversion for uC and thus defines an interesting 
specialization of (8). The set of all convex capacities is closed in F(S).9 By 
Theorem 4.2, it follows that the set of all Choquet expected utility functions with 
convex capacity and a fixed vNM index is closed in ,9(S). 

4.3. Knowledge Subspaces 

It will be of interest to consider the subset of ,9(S) that corresponds to 
"knowledge that A c S is true." Given u, say that u knows the Borel measur- 
able event A if S \A is null in the sense of Savage, that is, if for all f and f' in 
As), 

(10) f=f' on A =u(f) = u(f'). 

It will be useful to extend this definition also to nonmeasurable subsets of S. 
Therefore, if B is an arbitrary subset of S, say that u knows B if there exists a 
measurable event A cB such that u knows A.10 Finally, adopt the notation 
A'(SIB) {u E:9(S): u knows B} cOA(S). 

We can prove the following intuitive and useful result: 

THEOREM 4.3: If A c S is compact, then 9(A) is homeomorphic to the com- 
pact set 9(S IA). 

Given a utility function u, the following property of the associated knowledge 
will be important below: "If {Ak} is a declining sequence of subsets of S such 
that u knows each Ak, then u knows also n Ak." Refer to any utility function 
satisfying this property as exhibiting continuous knowledge. Expected utility 
functions satisfy this property because of the countable additivity of probability 

9This follows readily from the characterization of regular convex capacities in Anger (1971, 
Theorem 3). 

10 This extension parallels the common procedure of completing a c--algebra by adding to it all 
subsets of measurable sets that are null with respect to a given probability measure. 
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measures, more particularly because a countable union of null events is null. We 
have not determined whether every utility function in 9'(S) exhibits continuous 
knowledge, but we can show that many do. To be precise, all utility functions 
that are continuous with respect to the sup-norm topology on acts satisfy this 
property. This class includes (Choquet) expected utilities. 

THEOREM 4.4: If u e-9(S) is sup-norm continuous, then it exhibits continuous 
knowledge. 

5. A TYPES SPACE 

Refer to the two-player game situation described informally in Section 2.1. 
The incomplete state spaces in (1) are well defined, because S_ - and SJ_- 

compact Hausdorff imply the same for S' and SJ. The latter two spaces are 
equal and can be denoted Sn. This leads us to the sequence of incomplete state 
spaces Sn defined by" 

(1) SO = Q2, Sn = Sn - X'O'(Sn -1 n > O. 

Similarly, we can write T = -= T, where the types space T should satisfy 

(12) T -hmeo 9(Q x T). 

We proceed to construct such a types space T. This is done by adapting and 
extending the Brandenburger-Dekel (1993) argument from their Bayesian 
framework to the present framework. 

It is natural to represent player i by her "feelings about Q," her "feelings 
about j's feelings about f2" and so on to all finite orders, that is, since 
"feelings" are expressed by preferences, by an element t = (uo, ..., un,...) in 

To -- lH1O-(Sn). Not all such elements t are sensible, however, since the utility 
functions un may contradict one another. To clarify and rule out contradictions, 
identify A (Sn_ -) with a subset of Y(Sn-1 x'OA(Sn l)) by identifying each act 
over Sn- 1 with an act over the larger state space Sn- 1 x i7(Sn- 1) that does not 
depend on the second argument. Then any u n e(Sn) ='(Sn - 1 x (Sn - )) 
induces a "marginal" preference order mrg1(S )un on acts over Sn1 Say that 
the type t is coherent if Vn ? 2 

(13) mrg,-(S )uf nu-1, 

or more simply written, if 

un(f = Un-sl(f Vf E e(snt i e 

The subspace of To consisting of coherent types is denoted T,. 

11 If differential information about l2 is modeled via partitions (or o-algebras), i will generally be 
uncertain not only about j's preferences on Borel-measurable acts over (2, but also about j's 
partition. Such uncertainty is modeled in Heifetz and Samet (1993), but is ignored in a recursion 
such as (11). 
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Each coherent type determines a unique preference ordering on acts over the 
uncertainty space [2 x To, as shown by the following preliminary result: 

THEOREM 5.1: T1 is homeomorphic to 4([ x TO). 

REMARK: The proof, given in Appendix D, is based on a "Kolmogorov 
extension theorem" for preferences that generalizes the well known theorem for 
probability measures (see Bochner (1960, Chapter 5) or Rao (1984, p. 165), for 
example). 

It is natural to assume not only that each player is coherent, but also that this 
is common knowledge. To express this restriction, let I: T1 ->*9(f2 x To) denote 
the homeomorphism in Theorem 5.1 and define for k 2 2, 

(14) Tk = {t E Tl: I(t) knows l2 X Tk l} = F-1-9(2 X To If2 X Tk l ). 

Then Tk X Tk equals the subset of To x To for which all of the following 
statements are true: i and j are each coherent, each knows (employing the 
homeomorphism f) that the other is coherent, each knows that the other 
knows this, and so on up to order k.12 Thus if we define 

(15) T= nkTkI 

then T x T is the set of types that impose common knowledge of coherence. 
Our principal result is that the space T constructed in this way satisfies (12). 

That is, in light of the discussion in Section 2.1, "feelings about feelings..." to 
all finite orders, supplemented by coherence and common knowledge of coher- 
ence, provides an exhaustive characterization of each player. Correspondingly, 
the Cartesian product l2 x T is a space of states of the world that provides a 
complete description of the uncertainty facing either player. 

THEOREM 5.2: The space T defined by (15) satisfies both (12) and 

(16) T hmeo SA(f2x ToI?2x T). 

Furthermore T is compact Hausdorff and nonempty. 

PROOF: For (16), it is enough to prove that 

(17) Tc V-19Nf2x ToIf2x T). 

That is because the reverse inclusion is trivially true. The above inclusion is 
equivalent to 

(18) nfk o9( 2X ToI 2 x Tko) c( x XToI xfl n k 2o Tk). 

12 Note that the sets Tk are well defined since the indicated knowledge subspaces do not presume 
any measurability; see subsection 4.3. 
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Note that (18) admits the intuitive interpretation that knowledge of each ?2 X Tk 
should imply knowledge of the "limit" ?2 x n Tk.13 We verify that T satisfies 
(18). 

Observe that To and T1 c To are compact Hausdorff by Theorems 3.1 and 5.1. 
Apply Theorem 4.3 repeatedly to conclude that each Tk c To is compact. Now 
let u lie in the intersection on the left side of (18). Then u knows 12 X Tk for all 
k. Thus for any simple usc function g, U(g1Tk) = u(g). By Lemma D.1 and the 
compact Hausdorff nature of each Tk, u(g1 Tk) 4 U(gl T). Therefore, u(g91) = 
u(g). It follows from inner regularity that u knows ?2 x T. 

This proves that T hmeo h ( 12 x To I ?2 x T). By Theorem 4.3, the latter is 
homeomorphic to 9(? x T). Each Tk is nonempty since it is homeomorphic (by 
Theorem 4.3) to 3(?2 XTk T- ). Therefore, T is nonempty by the nature of 
compact Hausdorff spaces. Q.E.D. 

REMARK: An example of an element of T is (uo,... , un,...) GeI9(S,) 
defined recursively by s0 = cl, uo(f) =f(ZO), and Vn 21, 

Sn = (Sn-1,Un-1) and un(f) =f(sn), f E(Sn) 

Here cl is a fixed element of 12. This type for i indicates that i knows {cli}, i 
knows that j knows {fi}, i knows that j knows {cil}, and so on. (It follows from 
the compact Hausdorff nature of ?2 that each un is regular and therefore lies in 
,9(sn) ) 

6. COMMON KNOWLEDGE 

We conclude the paper by showing that the types space we have constructed is 
rich enough to permit the formal modeling of various common knowledge 
assumptions. We indicated above that T X T equals that subset of To x To for 
which coherence is common knowledge. In this section, we construct subsets of 
T x T that impose in addition common knowledge of events (subsets of 12) and 
various models of preference. 

Two special cases are particularly noteworthy. The first imposes as common 
knowledge that everyone is an expected utility maximizer (with fixed vNM 
index). Then it is an immediate consequence of Theorem 4.1, that the subspace 
of types we construct below is homeomorphic to the hierarchy of beliefs 
analyzed in Mertens and Zamir (1985), Heifetz (1993), and Brandenburger and 
Dekel (1993). This establishes the sense in which our analysis of hierarchies of 
preferences extends these earlier stuidies. The second special case imposes as 
common knowledge that everyone is a Choquet expected utility maximizer (with 

13 This condition resembles the property of knowledge structures termed "limit closure" in Fagin, 
Geanakoplos, Halpern, and Vardi (1992), where it is identified as a critical reason for the adequacy 
of denumerable hierarchies in the measure-theoretic approach to modeling knowledge. The counter- 
part of (18) for probability measures is automatically satisfied because of countable additivity, 
regardless of the nature of Q2. 
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fixed vNM index). Then Theorem 4.2 implies that the subspace of types 
constructed below is homeomorphic to a hierarchy of capacities. Such hierar- 
chies have not previously been studied to our knowledge. 

To proceed, represent a model of preference by a subset P*(Q x T) of 
9A(f x T) satisfying conditions to be specified. Fix also a subset f2Q to [2. We 
wish to identify the subset of types in T that correspond to the situation where 
everyone knows no, everyone's preferences conform with the model P* and 
both facts are common knowledge. It is natural to mimic the modeling of 
common knowledge of coherence, via the construction in (14), and to proceed as 
follows: First, introduce the notation 

P*(Q x TIA) -(Qx TIA) n P*(Q x T), 

to denote the class of preferences in P*(Q x T) that know A, where A is a (not 
necessarily measurable) subset of 1 x T. Then define the sequence of subspaces 
of T by T(?)= T, 

(19) T(k+ l) = I- lP*(Q x TI no x T(k)), k 0. 

Note that t, in TV') indicates that j knows [2o and conforms to model P*; ti in 
T(2) indicates that the preceding applies to i and that i knows that it applies to 
j; and so on. Therefore, T* = n T(k) is the natural candidate subspace of T. 

Reasoning similar to that surrounding (16)-(18) in the modeling of common 
knowledge of coherence leads to the following condition: 

(20) nk?OP*(Qx TIQo x T )) cP*(Qx TIQox nk?OT ). 

This condition represents a restriction on no and P*(?2 x T) that is necessary 
and sufficient in order that there exist a subspace T* of T that embodies 
common knowledge of no and P*(Q x T).14 We are still left with the question 
"is this condition satisfied in a broad class of cases outside the expected utility 
framework?" The next theorem provides an affirmative answer by showing that 
it is satisfied under two alternative sets of assumptions. 

THEOREM 6.1: Let no c n and P*(f x T) c,9(n x T). Assume either (a) or 
(b), where: 

(a) no and P*(l x T) are closed. 
(b) Every u E P*(Q x T) exhibits continuous knowledge (defined in Section 

4.3). 
Then T* c T defined above satisfies, 

T* hmeo P*(Q X TIQn0 x T*), 

14 It is possible that some T(k) is empty and therefore that T* is also empty. This is not a 
difficulty in modeling common knowledge; it merely indicates that kth order knowledge of both the 
event nO and the model of preference P* are mutually inconsistent and therefore naturally the 
same applies to common knowledge of both. Since P*(Q x T10) = 0, all formulae retain meaning 
in such cases. In any event, below we describe conditions that guarantee nonemptiness of T*. 
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where the indicated homeomorphism is the restriction of W. Further, T* is a 
nonempty closed subspace of T if (a) holds and if each T(k) is nonempty. 

The proof of sufficiency of (a) is similar to that of Theorem 5.2. The proof of 
sufficiency of (b) follows immediately from (20) and the definition of continuous 
knowledge. 

REMARK: Under suitable strengthening of (b), we can show that T* is 
nonempty. Assume that rather than being restricted to the particular state space 
Q2 x T, the model P* is a correspondence that assigns to any compact Hausdorff 
state space S a nonempty subspace P*(S) of 9(S). Such a formulation of 
"model of preference" seems natural if one is thinking of axiomatically based 
models. Assume further that for each S and s E S, the evaluation utility 
function us E P*(S), where us(f) f(s) Vf E9(S). Nonemptiness of T* can 
then be proven by constructing an example along the lines of that concluding 
Section 5. 

Consider assumptions (a) and (b) in turn. With regard to the former, the 
assumption that P*(f2 x T) is closed is restrictive; for example, it excludes the 
class of all strictly increasing utility functions in 9(l? x T). On the other hand, 
this assumption is satisfied by the expected utility and Choquet expected utility 
model defined in Theorems 4.1-4.2. 

While (a) restricts no to be compact, the alternative sufficient condition (b) 
in the theorem places no restrictions on the event ?2o, other than what is 
implied by its being a subset of compact Hausdorff space ?2. By Dugundji (1966, 
XI.8), the implicit restriction on ?2o, viewed as a topological space with the 
induced topology, is that it be completely regular. In other words, (b) shows that 
we can model common knowledge of the combination of any completely regular 
event ?2o and any model of preference P* that satisfies continuous knowledge. 
As we saw in Section 4.3, any sup-norm continuous utility satisfies knowledge 
continuity and so (b) has wide applicability. Finally, through (b) we can model 
common knowledge of strictly monotone and knowledge continuous prefer- 
ences, though we noted earlier that common knowledge of strict monotonicity 
alone is beyond the scope of (a). 

The significance of Theorem 6.1 merits emphasis. In standard Bayesian 
models of differential information, it is often assumed that the "structure" of 
the model is common knowledge. In particular, common knowledge of expected 
utility preferences is assumed. But, such common knowledge is not well defined 
formally and therefore must be understood informally (Aumann (1987)). How- 
ever, within the wider framework of the class 9 of preferences, where non- 
expected utility preferences can be imagined by each player, (common) knowl- 
edge of expected utility preferences becomes meaningful. In particular, the 
preceding Theorem (with ?2o = ?2) shows that common knowledge of expected 
utility and Choquet expected utility preferences have formal meaning in our 
framework because such models of preference correspond to appropriate sub- 
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sets of T."5 On the other hand, knowledge of SD1 remains a meta-assumption in 
our framework. (See Gilboa (1988) and Heifetz (1994) for approaches to 
formalizing meta-assumptions.) 
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APPENDIX A: A "BETWEEN" LEMMA 

The lemma presented here is used in the proofs of Theorems 3.1, 4.2, and Lemma D.3. In the 
special case where g and h are indicator functions for closed and open sets respectively, the Lemma 
is an implication of Urysohn's Lemma and the fact that any compact Hausdorff space S is normal. 

LEMMA A.1: Let S be compact Hausdorff. For each pair of simple usc and Isc functions g and h with 
g < h, there exists a pair of functions of the form 4= 1 ai1lG, and X4.. 1a=1G, where G1 are open sets, 
such that g < .1 GI <a i=I ailu < h. Moreover, given any basis for the topology of S, each set G1 
can be chosen to be a finite union of basic open sets. 

PROOF: Let g and h be such a pair of simple functions, expressed as in (25). Fix i and consider 
the collection of all open sets G such that Ki c G. Order this collection by inverse inclusion. Then it 
comprises a net {Gpy Ej, where J, is the directed indexed set. Note that in general the directed set 
Ji depends on i. However, by defining the new directed set J = {((y- *. Y k): Yi E J1. *- yk E Jk} with 
the partial order defined by 

(Y1. k) 2 (Y. ), * * * > Yk2 vi, 

and defining 

Gi(.1,.Yk) = GiYt 

we obtain nets {Gia,} with a common directed index set J. 
These nets {G,l, j Z have the following property. If {G,k , J is a subnet of {Gi,, E y , then 

(21) n{Gi: ye J'1}= M{G, : yeJ'} =Ki. 

To see this, let x be any point that is not in K,. Since S is compact Hausdorff, there exists an open 
set G such that 

KicG and xeG. 

Common knowledge of Choquet expected utility (with fixed vNM index) is modeled via a set of 
types T* satisfying the appropriate form of the homeomorphism in Theorem 6.1, which is T* -hmeo 

W(12 x T*). (Recall that F denotes the space of regular capacities.) The set T* satisfying this 
condition could alternatively have been constructed "directly" by the construction in Section 5, 
modified so that, roughly speaking, -9(.) is replaced throughout by W'(O) and acts are replaced by 
events. An advantage of the indirect route we have described is that it permits common knowledge 
of Choquet expected utility to be expressed formally. 
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Then there is an index flyeJ such that G = G.-. By the definition of "subnet," 3y' eJ' such that 
y' 2 7, which implies that 

Giy, C Gi: 

Thus x e Gi,, and hence x e nf{Giy: yeJ'}, proving part of (21). For the rest, let Gi,, be an 
element of the subnet. Since S is compact Hausdorff, there exists an open set V such that 
K, c Vc Vc G,,. The set V must be an element of the original net, that is, V = G5,, for some y. 
Again by the definition of "subnet," 3y" el', such that ly" > y, which implies that 

Ki c Gi,, C VC VC Giy, Ki c Giy , c Vc Giy. 

Therefore, 

K5c n,Giyc nftGi-y=Ki, 

completing the proof of (21). 
The key to the proof is the claim that for some yo, and hence for all y 2 yo, 

k k 

(22) g< E aj1G < E a1lU, <h. 
i=1 i=l 

Suppose, to the contrary, that for each y 3x7, 

k k 

(23) a, _= , ai1 U,,(XT ) > E, 6j (x, 1 
i=l i=l 

Since the left-hand side of the above equality can assume at most finitely many values, there is a 
subnet (a7y: ye'J), such that a7 = a, a constant value, for y> yo. (To confirm that such a subset 
exists, denote by a,,... . am, the possible values of the ar's and Aj = (ye J: a, = aj). Suppose that 
for each j 3yj eJ, such that ye Aj Vy 2 yj; otherwise, the desired subnet exists. Since J is a 
directed set, Ty- e J, yj Vj. Therefore, yT Aj Vj Vy ? 7, contradicting J = UjAj.) Similarly, 
there is a further subnet,16 and a fixed set of indices {il,... . im} c {1,2, .... k}, say {1, 2) such that 
a = a1 + a2 and x', E Z7,, n l2,y for y > yo. By compactness, a subnet of x,, say itself, converges to 
a point x. Then x E K, n K2- (To show this, it is sufficient to show that x E G,. n G22 VTY 2 To 
Suppose to the contrary that for some y > To, 

Then 

x E- cnl2c. 

Since x,--x, 3y' > fl such that if y> y', then 

On the other hand, T > jp implies that 

XIEG,,l nG2ycG,,l nG2., 

a contradiction.) Thus g(x) 2 a, + a2. For y > yT, the right-hand side of (23) also assumes finitely 
many values and the strict inequality holds for all of these finitely many values. By considering a 

16 For notational simplicity, we use the same notation to denote the original net and all subnets. 
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subnet if necessary, we may assume that the right-hand side assumes a constant value. Thus we have 
k k k 

g(x) 2 a, + a2 = , a1,(x,) > E f3,lu,(xY) = liminf E 8g1u,(xY) > h(x). 
i=1 i51 i=1 

This is a contradiction to h 2g and establishes the claim (22). 
Turn to the final assertion regarding the nature of the sets Gi. By construction, Ki c Gi for each 

i. Since Ki is compact, 3KMi c G c Gi such that Gt is a finite union of basic open sets. These sets 
{oG} satisfy the required conditions. Q.E.D. 

APPENDIX B: PROOFS FOR SECrION 3 

PROOF OF THEOREM 3.1: Part (a): Let A(S) be the set of utility functions u satisfying (U.2)-(U.4) 
and taking on values in [0,11, endowed with the topology r redefined in the obvious way. Note that 
9(S) is a closed subspace of .9(S); this is true since constant acts are simple, usc and lsc, implying 
that {u e.2(S): u(x) =x} is closed. It remains to show that 9(S) is compact. This is done by 
adapting the proof of O'Brien and Vervaat (1991, Theorem 2.2), which is a corresponding result for 
the space of capacities. (Note that the argument to follow is valid for any topological space S, not 
only for compact Hausdorff spaces.) 

By Alexander's subbase theorem (Kelley (1985, p. 139)), it suffices to find a finite subcover for any 
cover of the form 

(24) 9(S) c U {u: u(hi) >xi} U U {u: u(gi) <yj}, 
ieI jeJ 

where g and h are simple usc and lsc functions respectively, xi and y, are real numbers, and I and J 
are index sets. We may assume that xi, yj E X. (If xi > 1 or if yj < 0, the corresponding set is empty; 
if for some i, xi < 0, or for some j, yj > 1, then the open set {u: u(h,) >xi} or {u: u(gj) <yj} is 
already a finite covering.) Define a utility function uo as follows. For any simple usc act g, set 

uo(g) = inf{xi: hi 2g} (here inf{0) = 1). 

For a general act f, let 

u0(f ) = sup{u0(g): f 2 g, g e M(S)}. 

Then uo is monotonic and satisfies inner regularity. By construction, uo(hi) ? xi. Therefore, 
Vg eY"(S), uo(g) = inf{xi: hi 2 g} 2 inf{uo(hi): hi 2?g} 2 inf{uo(h): h 2 g} 2 uo(g). That is, uo satis- 
fies outer regularity and uo eav(S). 

By (24) and uo(hi) <xi Vi, 3jo eJ such that uo(gj,) <y,o. By the definition of uo(g,o) and the fact 
that yjo ? 1, 3io such that hio ?gjo and xio <yjo. Thus 

.9(S) c {u: u(hi,0) >xio} U {u: u(gjo) <yj1. 

Therefore SO9(S) is compact. 
Part (b): We need only show that T is Hausdorff. To show that points can be separated, let ul 

and u2 be two distinct utility functions. Then there exists a simple usc function g such that 

u1(g) < d < u2(g). 

By regularity, there exists a simple lsc function h such that g < h and 

ul(h) < d < u2(g). 

Now invoke Lemma A.1 and choose a pair of functions of the form I a. 1,Gl and ?Ia 1I A , where 
Gi are open sets, such that 

k k 

g? E aiiG, Ea aiU? <h. 
i=l i=1 
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Then 

( 
U 

Eai=l ') <) 1 E- (u: Ut IOG, 
> 
>d) 

and 

u:( aiil ) <d} n u:( E aiG,) > d =0. 

Therefore gi:(S) is Hausdorff. Q.E.D. 

APPENDIX C: PROOFS FOR SEcrION 4 

Note first that any g E5,(S) and h E.s'(S) can be expressed in the form 

m m 

(25) 9 = Fla atlK,, h = , 'pi l), 
i=1 i=1 

where each K, is compact, each Ui is open, and ai, 8, Ee [0, 1]. (Let h assume the values x1 < <Xm. 

Then let U1=S, 81=xl, and Vi>1, Ui=h-h((xi-Im,1]), i31=xi-xi-1. For g with the above 
values, let U1 = S, a1 = xl, and Vi > 1, Ki = g- 1([xi, 1]) and ai = xi - xi- 1.) 

PROOF OF THEOREM 4.2: Step 1: Show that u, E9-(S). Certainty equivalence and monotonicity are 
obvious. To verify regularity, we employ the following lemma from Graff (1980, p. 194): 

LEMMA C.1: Let W be a (pointwise) increasing net of decreasing real-valued functions on R+. If the 
pointwise supremum f is real-valued, then there exists a (pointwise) increasing sequence {gn} in W such 
that limn gn(x) ==f(x) for all x E R+ . 

Let f, g, and h denote generic elements of A(S),s(S), and Y'(S), respectively. To prove inner 
regularity, note that {c({g 2 t}): g < v o f} is a pointwise increasing (in g) net of decreasing (in t) 
real-valued functions on R+. By the lemma, there exists an increasing sequence gn < v o f such that 

lim C({gn 2 t}) = sup{c({g 2 t}): g < v - f} 
n 

for all t E R+. Then 

f1sup{c({g > t}): g < v o f } dt = limf 1C({gn t}) dt 
o o 

< sup( c({g2t})dt: g?v of) 

Thus 

(26) flsup{c({g t}): g < v o f} dt = sup( c({g t})dt:g<vof}. 

Define A {v - f 2 t}. Since c is regular, c(A) = sup{c(K): KcA compact). But for any such K, 
the simple usc function g = tlK satisfies g < v a f and {g 2 t} = K. It follows that 

(27) sup{c({g t}): g < v a f } = c({v o f t}). 
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Application of (26) and (27) yields 

sup(f v(g) dc: g <f} = sup(f gdc: g < v o f 

=sup{flc({g? t})dt: g<vof} 

-f1c({v o f2 t}) dt = fv(f ) dc, 

which implies inner regularity. 
For outer regularity, by Lemma A.1, 

inf{uc(h): h 2g} = inf{uj(g'): 3h,g' 2h 2g}. 

Thus we have 

inf{uc(h): h 2g} = inf{uj(g'): 3h, g' 2 h 2g} 

=v 1(inf(fg;dc: 3h,g' h?vog}) 

= v-l(finf{g/: 3h, g' 2 h > vog} dc) 

=v -(fvogdc) =uc(g). 

The third equality follows from Anger (1977, p. 247), since the collection {g': 3h, g' 2 h 2g} is a 
decreasing net of simple usc functions such that 

inf{g'(x): 3h, g' 2 h 2g} =g(x), for all x e S. 

Step 2: By the preceding step, I maps W(S) into .9v(S). Since I is obviously one-to-one and since 
the spaces are compact Hausdorff, I is a homeomorphism if it is continuous (Dugundji (1966, 
Theorem XI.2.1)). But continuity can be demonstrated as follows: For any simple usc g, g = E' ailK 
with Ki+1 cK1 as in (25), I-I({u: u(g) < K) nI(C(S))) = {c: fv(g)dc <V(K)1 = {c: Eiv(ai)c(K,) < 
V(K)}, by (9). The latter set is open in W(S) since each mapping c * c(Ki) is usc under the vague 
topology. Similarly, for the preimages of subbasic open sets defined by simple lsc acts h. Q.E.D. 

PROOF OF THEOREM 4.3: Define e: 3l(A) -*93'(S) by, for v in .9(A), 

(ev)(f) = V(fIA), f GES). 

(fiA denotes the restriction of f to A.) We must show that ev satisfies the appropriate regularity 
conditions. Certainty equivalence and monotonicity are obvious. For inner regularity, given f E-=(S) 
and ? > 0, by the inner regularity of v, 3gA E.(A), gA <PEA, 

v(gA) > V(fIA)-E. 

Extend gA to the act g on S given by g =gA'A. Then f2g EY '(S) (by the compactness of A) and 

ev(g) > ev(f) - E. 

Outer regularity can be proven similarly. (Given hA 5(A), we extend it to the act h E F'(S) 
given by h = hAlA + 1Ac.) 

e is one-to-one: v # v 3gA Fu (A), V(gA) i V (gA) =' ev(gA'A) 0 ev (gAlA). 
e is onto F(SjA): Given u in .9(SIA), then u = ev, where v e8A(A) is defined by v(fA) 

U(fA 1A) VfAA EyAA). 
e is continuous: For any h e-9(S), e-I({u E- (SIA): u(h) < K}) = {V Ey (A): v(hIA) < K}, which 

is open in 69A(A) because hJA Ey'(A). Similarly for the inverse image of other subbasic open sets. 
It follows from Dugundji (1966, Theorem XI.2.1) that e is a homeomorphism. Q.E.D. 
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PROOF OF THEOREM 4.4-Step 1: We use sup-norm continuity to prove that 

(28) u( inf gk) = inf u(gk), 

for any decreasing sequence of functions gk =-Y(S). Let E> 0 be given and g,. =infkgk. Then gx,. 
is usc, but not necessarily in Yu(S). Since u is sup-norm continuous, 381 > 0 such that 

U (gx' + 5 I) < U (g"') + E- 

For appropriate N, the function EN- l/Nl{g. n/N) er(S) is greater than gx,. but less than 
gx + 81. So 3g Er(S) such that gx. ?g ?g. + 81. Thus 

u(g) < U(g") + E. 

Now by the outer regularity and sup-norm continuity of u, 3h E '(S) and 82 > 0 such that g h 
and 

(29) u(h+ 82) < U(g-) + E. 

For each k, the function 

max{O, gk (S) -(s)} 

is usc. Furthermore, max{O, gk(S) - h(s)) 4 0. Thus by Dini's Theorem (Royden (1988, p. 195)), the 
noted convergence is uniform in s. Then 3K, such that 3k > K: Vs e S, gk(S) - (s) ? 82, and 
therefore (by (29)) 

U(gk) < U(gx) + E. 

Therefore u(gx) = infk U(gk). 
Step 2: We use (28) to prove knowledge continuity. It is enough to deal with (declining) events Ak 

that are measurable. Let A, fl Ak and f e9(S); we need to show that 

(30) u(f) = u(f1AX)- 

In this step, we show that for each e > 0, there exists a decreasing sequence gk et -(5) such that 

(31) gk?fiAk and u(f)<U(gk)+E. 

For this, we show that there exists a decreasing sequence of functions gk =-9(S) that satisfy 
gk ?f 1Ak and 

(32) U(gk) + E/2k 2u(gk_ 1) 

for k = 2,3,.... Let go =f. Let g, U(S) be such that g1 ?f1A, and 

U(g0) = u(f) = u(flA,) < u(gl) + e/2. 

Since u knows A1, the existence of g, follows from the inner regularity of u. Suppose that we have 
constructed g1 2 ... ?gk -. Now construct gk as follows. By inner regularity of u, 3Ik 9(S) 
such that gk < min{gk - 1, f 1Ak and 

(34) U(gk) + E/2k >u(min{gk_l,flA,))- 

Then gk <f 1Ak and gk gk - Noting that gk- <f and that u knows Ak, we have 

u(min{gk-1, f lA)) 2 u(min{gk -llA f lAk ) = U(A k min{gk-, 1 f) 

= U(lAkgk - 1) = U(gk - 1 ) 

Combined with (34), this yields (32). Now it follows from (32) and (33) that 

k k 

E (u(gi) + E/2i) 2 U(gk- 1) 
i=l i=l 

and u(gk) + E 2 u(f ) as desired. 
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Step 3: Finally, we prove (30). By assumption, u knows Ak for all k and so 

u(f) = u(flAk) = sup{u(g): g e?(S), g _f 'Ak} 

By Step 2, VE > 0 3 decreasing sequence {gk} cY' (S) satisfying (31). Then gO. - infk gk <f 1AX. By 
Step 1 and the monotonicity of u, 

u(f ) - E < u(g) < u(flA). 

But E is arbitrary and u(f ) u(f 'A) by monotonicity. Therefore, (30) is proven. Q.E.D. 

APPENDIX D: PROOFS FOR SECrION 5 

The proof of Theorem 5.2 provided in the text uses the following: 

LEMMA D.1: Let S be compact Hausdorff and suppose that {Ak} is a declining sequence of compact 
subsets, with n kAk =A. Then for each u in 60'(S) and g C.(S), 

(35) u (g Ak ) 4U (g1A) . 

PROOF: For each E > 0, there is a simple lsc function h ?glA such that U(gl') > u(h) -8. We 
claim that further 3k such that 

(36) h 2glAk 2glA. 

Assuming (36), it follows that 

U(g1A) > u(h) - 8? inf U(glAk)-8. 
k 

Thus u(g1A) 2 infk u(glAk) and equality follows by the monotonicity of u. 
It remains to prove (36). Adopt the expressions in (25) for g and h. Suppose contrary to (36) that 

Vk 3Xk satisfying 

m m 

(37) EaiK,n Ak(Xk) > EpilU,(Xk). 
i=l1= 

The left side assumes only finitely many values. Therefore, for a suitable subsequence of {Xk), it 
assumes a constant value a, say a = a, + a2, and, after renaming the subsequence, we have 
Vk, Xk E (K1 nAk) n (K2 nlAk) and Xk c (Ki nAk) Vi > 2. Without loss of generality, let Xk -tx. 

Then x E (Kl nlA) ni (K2 nA), implying g1A(X) 2 a, + a2. 
The right side of (37) also assumes only finitely many values. Therefore, by taking a suitable 

subsequence, we may assume that E:1= 1u(xk) is constant. We obtain the following contradiction 
to h ?glA: g1(x) 2 al + a2 =Ei.=1a 1 K, n Ak(Xk) > ET I pI Ui(Xk) = liminf ETl P1i1Ui(Xk) 2 h(x), 
where the last inequality is due to h being lsc. Q.E.D. 

A proof of Theorem 5.1 follows by adapting Brandenburger and Dekel (1993, p. 192) and writing 
Zo = So = Q, Z, =._'(Sn-) for n 2 1, yielding Sn = Hl'Z1 and Q x To = HI'Zi. Let in A(rl0 Zj) 
and g 3(Hl=0 Z1). We treat in c n+ c c.. Since each Zn is compact Hausdorff by Theorem 3.1, 
Theorem 5.1 is an immediate consequence of the following. 

THEOREM D.2-Generalized Kolmogorov Extension Theorem: Let {Zjn, o be an arbitrary se- 
quence of compact Hausdorff spaces. 

(a) Let un e.9'(H7ffi0Z1) Vn satisfy 

(38) un+ l(f) = un(f) Vf En. 
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Then there exists a unique u r.g9(HT. 0Z1) such that 

(39) u( f) ==un(f Vf ES in. 

We refer to uOO as the extension of {uj}. 
(b) Define the mapping J: 3S'(HIIZ1) -* Hn?(H0I= Z1) by J(u) = {mrg., u). Then J is a homeo- 

morphism onto the subspace of Hrln'(rl. 0 Z) consisting of {un} satisfying (38). 

In light of the importance of the Kolmogorov Extension Theorem for probability measures (see 
Bochner (1960, Chapter 5) or Rao (1984, p. 165) for a version that applies to all Hausdorff state 
spaces), we remark briefly on our generalization to the space of preferences contained in part (a). 
First, we clarifythat (a) does indeed provide a generalization, at least on compact Hausdorff spaces. 
To see this, suppose that each u, is an expected utility function that can be identified with a 
probability measure on HIL. 0Zi. Then our result guarantees directly only that uOO is a regular utility 
function. However, we can show as follows that uO,, must lie in the expected utility class. Modulo the 
homeomorphism in Theorem 4.1, un lies in A(HfLoZi) and therefore (modulo the obvious second 
homeomorphism) also in AU(HY0Zj). Then u<,, also lies in A(fH7'0Zj) since: (i) it can be verified 
that u,,O constructed in the proof is a limit point of {ud}, and (ii) by Theorem 4.1, A(HI= 0Zj) is a 
closed subspace of AM(H7 0Z1). By similar reasoning, Theorem D.2 delivers an extension theorem 
for capacities (because W(H7'=0Zj) is closed in .(H901'0Zi) modulo the homeomorphism in Theo- 
rem 4.2), for convex capacities (see the concluding remarks in Section 4.2), and for any other 
constructs that can be identified with a closed subspace of (Tl =. 0 Z1). 

Proceed now to the proof; it makes use of the following lemma: 

LEMMA D.3: Let g < h Et=', g E.--. Then 3n and h n Et, such that 

(40) g ?hn <h. 

PROOF: By Lemma A.1, 

m 

g? E ai1Gh <h 

for open sets Gi that are finite unions of open cylinders, that is, sets of the form Q X Hr+ Zj, where 
Q is open in H1ZJ. It follows that the function El' 1G lies in some 9n. Q.E.D. 

PROOF OF THEOREM D.2: .," denotes the appropriate set of simple usc functions, and so on. 
Part (a): Define a utility function u.,: J< -- R in two stages by 

(41) u (g) = inf{un(h): all n and all h En,h > g}, h , 

(42) u (f) = sup{uj(g): g e.J, g ?fl, feS.g 

We show that uO. satisfies the desired properties. Monotonicity (U.2) and inner regularity (U.3) are 
obvious. That the extension of the un's is unique (if it exists) is immediate from the preceding lemma 
and the regularity conditions that utility functions must satisfy. Certainty equivalence (U.1) will 
follow once we prove that u,O is an extension. Thus we turn to outer regularity and (39). 

First we show that for every g E.-, u-(g) = un(g). By the definition of u<O, for any h E.9 such 
that h 2g, we have u-(g) < un(h) which implies, by the outer regularity of un, that u<,(g) < un(g). 
On the other hand, for any e > 0, 3m 2 n and h !- such that h 2 g and 

un(g) = um(g) < um(h) < u.(g) + e, 

which implies that un(g) < u-(g). 
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Next we show that for any h E. ,u, ,(h) = uj(h), which combined with (41) implies the outer 
regularity of uOO. We have 

u.(h) = sup{u.(g): g e.9.', g < h} 

2 sup{u.(g): gE c<9, g < h} 

= sup{un(g): g e.Q, g < hi = un(h). 

For the reverse inequality, note that by (41), 

ux(h) = sup{u.(g): g E Y, g < hI < un(h). 

Now we prove (39) for general f c-,9n. It is clear from the argument used above for lsc functions 
that u.(f) 2 u,(f). For the reverse inequality, V e > 0 3g EZ4 such that g <f and uc(f ) < ux(g) + 

?. Define for each m a function g.. in .9m by 

(43) 9m(Z0 -'Zm)=max{g(zo,* HZmZm+l**.):(Zm+l**.)E [ Zi 
i=m 1 

Note that {(zo.. Zm): gm(Z0. Zm) 2 K} is equal to the projection of 

{(z0.* Zm Zm + I,_ ) . g(Z0 Zm, Zm + 1.*) K) onto HL OZi, and thus is closed. (We use the 
fact that if Y1 is a topological space, Y2 is compact and A c Y1 x Y2 is closed, then the projection of 

A onto Y1 is closed in Yl.) Therefore, gm is a simple usc function in .9m and g <gm < f for m 2 n. 

By exploiting the monotonicity of uOO and the extension property proven above for acts in any .9, we 

conclude that for m ? n, 

uoo(f) < UC(g) + s? < Uo(gm) + s = um(gm) + ? < um(f) + e 

= Un (f) + ? - 

This completes the proof of (a). 

Part (b): Part (a) shows that J is onto the indicated range and (by the uniqueness of the 

extension) one-to-one. For continuity, it is sufficient to show that for any h GE., 

J-'({{Un}: um(h) <K}) and J-1({{un}: um(h)> K}) 

are open. But this is obvious because, for example, J' ({{ud: um(h) > K}) = {Ua: uoo(h) > K), which 

is open since 7m ctj. Finally, J is open since 9(FH'Z,) is compact and the range of J is Hausdorff 

(Dugundji (1966, Theorem XI.2.1)). Q.E.D. 

REFERENCES 

ANGER, B. (1977): "Representation of Capacities," MathematischeAnnalen, 229, 245-258. 
AUMANN, R. J. (1987): "Correlated Equilibrium as an Expression of Bayesian Rationality," Econo- 

metrica, 55, 1-18. 
BOCHNER, S. (1960): Harmonic Analysis and the Theory of Probability. Berkeley: U. California Press. 
BRANDENBURGER, A., AND E. DEKEL (1993): "Hierarchies of Beliefs and Common Knowledge," 

Joumal of Economic Theory, 59, 189-198. 
CHOQUET, G. (1953/4): "Theory of Capacities," Annales Institut Fourier, Grenoble, 5, 131-295. 
Dow, J., AND S. R. C. WERLANG (1994): "Nash Equilibrium under Uncertainty: Breaking Down 

Backward Induction," Joumal of Economic Theory, 64, 305-324. 
DUGUNDJI, J. (1966): Topology. Boston: Allyn and Bacon. 
EPSTEIN, L. G. (1995): "Preference, Rationalizability and Equilibrium," Joumal of Economic Theory, 

forthcoming. 

This content downloaded from 168.122.65.132 on Sun, 20 Dec 2015 16:29:34 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1372 L. G. EPSTEIN AND T. WANG 

FAGIN, R., J. GEANAKOPLOS, J. HALPERN, AND M. VARDI (1992): "The Expressive Power of the 
Hierarchical Approach to Modeling Knowledge and Common Knowledge," in Proceedings of the 
Fourth Conference on Theoretical Aspects of Reasoning about Knowledge, ed. by M. Y. Vardi. San 
Mateo: Morgan Kaufman, pp. 229-244. 

GEANAKOPLOS, J. (1989): "Game Theory Without Partitions, and Applications to Speculation and 
Consensus," Cowles Foundation. 

GILBOA, I. (1988): "Information and Meta Information," in Proceedings of the Second Conference on 
Theoretical Aspects of Reasoning about Knowledge, ed. by M. Y. Vardi. San Mateo: Morgan 
Kaufman, pp. 227-243. 

GILBOA, I., AND D. SCHMEIDLER (1989): "Maxmin Expected Utility With Nonunique Prior," Joumal 
of Mathematical Economics, 18, 141-153. 

GRAF, S. (1980): "A Radon-Nikodym Theorem for Capacities," Joumal fir Mathematik, 320, 
192-214. 

GRODAL, B. (1974): "A Note on the Space of Preference Relations," Joumal of Mathematical 
Economics, 1, 279-294. 

HARSANYI, J. (1967/68): "Games with Incomplete Information Played by 'Bayesian' Players," I-III, 
Management Science, 14, 159-182, 320-334, 486-502. 

HEIFETZ, A. (1993): "The Bayesian Formulation of Incomplete Information-The Non-Compact 
Case," International Joumal of Game Theory, 21, 329-338. 

(1994): "Non-Well-Founded Type Spaces," mimeo, Tel Aviv University. 
HEIFETZ, A., AND D. SAMET (1993): "Universal Partition Structures," Working Paper 26/93, Tel 

Aviv University. 
HILDENBRAND, W. (1974): Core and Equilibria of a Large Economy. Princeton: Princeton U. Press. 
KANNAI, Y. (1970): "Continuity Properties of the Core of a Market," Econometrica, 38, 791-815. 
KELLEY, J. L. (1985): General Topology. New York: Springer Verlag. 
KLIBANOFF, P. (1994): "Uncertainty, Decision and Normal Form Games," mimeo, Northwestern 

University. 
KREPS, D. M. (1979): "A Representation Theorem for Flexibility," Econometrica, 47, 565-577. 

(1992): "Static Choice in the Presence of Unforeseen Contingencies," in Economic Analysis 
of Market and Games: Essays in Honour of Frank Hahn, ed. by P. Dasgupta, D. Gale, 0. Hart, and 
E. Maskin. Cambridge, Mass.: MIT Press. 

LIPMAN, B. (1991): "How to Decide How to Decide How to...: Modeling Limited Rationality," 
Econometrica, 59, 1105-1125. 

(1995): "Decision Theory Without Logical Omniscience: Toward an Axiomatic Framework 
for Bounded Rationality," mimeo, University of Western Ontario. 

Lo, K. C. (1994): "Equilibrium in Beliefs Under Uncertainty," Joumal of Economic 7heory, 
forthcoming. 

(1995): "Sealed Bid Auctions with Uncertainty Averse Bidders," U. Toronto, mimeo. 

MACHINA, M., AND D. SCHMEIDLER (1992): "A More Robust Definition of Subjective Probability," 
Econometrica, 60, 745-780. 

(1995): "Bayes Without Bernoulli: Simple Conditions for Probabilistically Sophisticated 
Choice," Joumal of Economic Theory, 67, 106-128. 

MERTENS, J. F., AND S. ZAMIR (1985): "Formulation of Bayesian Analysis for Games with Incom- 
plete Information," Intemational Joumal of Game Theory, 14, 1-29. 

MORRIS, S. (1994): "Revising Knowledge: A Hierarchical Approach," in Proceedings of the Fifth 
Conference on Theoretical Aspects of Reasoning about Knowledge, ed. by R. Fagin. San Mateo: 
Morgan Kaufman. 

(1996): "The Logic of Belief Change: A Decision Theoretic Approach," Joumal of Economic 
Theory, 69, 1-23. 

NORBERG, T. (1986): "Random Capacities and Their Distributions," Probability Theory and Related 
Fields, 73, 281-297. 

This content downloaded from 168.122.65.132 on Sun, 20 Dec 2015 16:29:34 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


BELIEFS ABOUT BELIEFS 1373 

O'BRIEN, G. L., AND W. VERVAAT (1991): "Capacities, Large Deviations and LogLog Laws," in 
Stable Processes, ed. by S. Cambanis, G. Samorodnitsky, and M. S. Taquu. Boston: Birkhauser, pp. 
43-83. 

RAO, M. M. (1984): Probability Theory with Applications. New York: Academic Press. 
ROYDEN, H. L. (1988): Real Analysis, 3rd edition. New York: Macmillan. 
SAVAGE, L. (1954): The Foundations of Statistics. New York: John Wiley. 
SCHMEIDLER, D. (1989): "Subjective Probability and Expected Utility Without Additivity," Econo- 

metrica, 57, 571-587. 
TAN, T. C. C., AND S. R. WERLANG (1988): "The Bayesian Foundations of Solution Concepts of 

Games," Journal of Economic Theory, 45, 370-391. 

This content downloaded from 168.122.65.132 on Sun, 20 Dec 2015 16:29:34 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 1343
	p. 1344
	p. 1345
	p. 1346
	p. 1347
	p. 1348
	p. 1349
	p. 1350
	p. 1351
	p. 1352
	p. 1353
	p. 1354
	p. 1355
	p. 1356
	p. 1357
	p. 1358
	p. 1359
	p. 1360
	p. 1361
	p. 1362
	p. 1363
	p. 1364
	p. 1365
	p. 1366
	p. 1367
	p. 1368
	p. 1369
	p. 1370
	p. 1371
	p. 1372
	p. 1373

	Issue Table of Contents
	Econometrica: Journal of the Econometric Society, Vol. 64, No. 6, Nov., 1996
	Volume Information [pp.  i - v]
	Front Matter
	Testable Restrictions on the Equilibrium Manifold [pp.  1249 - 1262]
	The Dynamics of Productivity in the Telecommunications Equipment Industry [pp.  1263 - 1297]
	Learning by Doing and the Choice of Technology [pp.  1299 - 1310]
	A Theory of Divided Government [pp.  1311 - 1341]
	"Beliefs about Beliefs" without Probabilities [pp.  1343 - 1373]
	A Probabilistic Model of Learning in Games [pp.  1375 - 1393]
	On the Value of Commitment with Asymmetric Information [pp.  1395 - 1414]
	Multistage Situations [pp.  1415 - 1437]
	Asset Pricing in Economies with Frictions [pp.  1439 - 1467]
	Announcement [pp.  1469 - 1474]
	News Notes [pp.  1475 - 1476]
	Program of the 1996 North American Summer Meeting of the Econometric Society [pp.  1477 - 1492]
	Erratum: Convergence Rates of SNP Density Estimators [p.  1493]
	Back Matter



