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Larry G. Epstein, Jawwad Noor, and Alvaro Sandroni

Abstract

A series of experiments suggest that, compared to the Bayesian benchmark, people may either
underreact or overreact to new information. We consider a setting where agents repeatedly process
new data. Our main result shows a basic distinction between the long-run beliefs of agents who
underreact to information and agents who overreact to information. Like Bayesian learners, non-
Bayesian updaters who underreact to observations eventually forecast accurately. Hence, under-
reaction may be a transient phenomenon. Non-Bayesian updaters who overreact to observations
eventually forecast accurately with positive probability but may also, with positive probability,
converge to incorrect forecasts. Hence, overreaction may have long-run consequences.
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Corrigendum in “Non-Bayesian Learning”

by Larry Epstein, Jawwad Noor and Alvaro Sandroni

Theorem 2.2 in “Non-Bayesian Learning” published in The B.E. Journal

of Theoretical Economics: 10-1 (Advances), by Larry Epstein, Jawwad Noor

and Alvaro Sandroni is correct, but there is an error in the proof of part ).
We found this error due to an observation made by Kim-Sau Chung. We

gratefully thank him for pointing this difficulty to us. Below we provide a

correct argument.

Part ) in Theorem 2.2 claims that under suitable conditions multiple rep-
etitions of overreacting updating rules may lead to convergence to a false pa-

rameter with strictly positive probability. The mistake in the argument is in

the equation

P∗
¡
Σ−1
=0 log +1 −∗ [log +1 | S] ≥ 

¢ ≤ 1
2
.

that appears at the end of page 10. This equation holds true only if the

two values of +1 = log +1 − ∗ [log +1 | S] depended only on the period
 + 1, but these values are, in fact, history-dependent.
The alternative argument for part ) of Theorem 2.2 (below) shows con-

vergence to a false parameter with strictly positive probability as stated in

Theorem 2.2 and not convergence to a false parameter with probability greater

than 05 as incorrectly argued in the original proof.
We maintain the notation and claims 1− 3 of the original argument. Let

+1 ≡ (1− )

¡
+1 | 12

¢
 (+1)

+ ; +1 = log +1 −∗ [log +1 | S]

+1 = ∗ [log +1 | S] and +1 = ∗
£
(+1)

2 | S
¤
.

Claim 4 : For some real number   0 +1
−+1 ≤ 1


.

By claim 3, −+1 is non-negative (in fact, check that−+1 is positive if ∗
is less than one and zero if ∗ is one). In addition, +1 is limited above because
+1 is uniformly bounded. Let   0 be such that |+1| ≤  Note that +1
and +1 converge to zero as 

∗
 goes to one. Using L’Hopital theorem, check

that
+1
−+1 converges to a finite value as 

∗
 goes to one.

By Claim 1, it suffices to prove that ∗∞ = 1 P∗−  is impossible. Com-
pute that
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log ∗ = log 
∗
0 + Σ−1

=0 log

Ã
(1− )


¡
+1 | 12

¢
 (+1)

+ 

!
= log∗0 + Σ−1

=0 (log +1 −∗ [log +1 | S]) + Σ−1
=0

∗ [log +1 | S]
= log∗0 + Σ−1

=0 +1 + Σ−1
=0 +1

Therefore, by claim 4, if log ∗ ≥ log ∗0 then

Σ−1
=0 +1 ≥ −Σ−1

=0 +1 ≥ Σ−1
=0 +1

Let   0 be large enough such that 1 ≥ 1

(note that  depends on

∗0). By De la Peña (1999) extension of Prokhorov’s inequality (Theorem 1.2B
equation 1.5),

P∗(
Σ−1
=0 +1

Σ−1
=0 +1

≥ ) ≤ exp(− 2

2(1 + )
)

Thus,

P∗ (log ∗ ≥ log∗0)
is bounded away from one and hence

P∗ (log∗ −→ 0)  1.

Proposition (de la Pena (1999)) Let {} be a sequence of uniformly bounded
S-measurable random variables such that for every  > 1  (|S−1) =
0 and || ≤  0   ∞ Let  ≡ 

¡
()

2 |S−1
¢
. Then,

P(Σ

=1 

Σ
=1 

≥  Σ
=1  ≥

1


for some ) ≤ exp(− 2

2(1 + )
)
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1. Introduction

A central result in learning theory is that Bayesian forecasts eventually become
accurate under suitable conditions, such as absolute continuity of the data
generating process with respect to the agent�s beliefs (see Kalai and Lehrer,
1993). Hence, multiple repetitions of Bayes�Rule may transform the historical
record into a near perfect guide for the future. However, a series of experiments
suggest that people may repeatedly process information using non-Bayesian
heuristics (see Kahneman and Tversky, 1974, and surveys by Camerer, 1995
and Rabin, 1998). These experiments contributed to a growing interest in
the properties of non-Bayesian learning (see, for example, Golub and Jackson,
forthcoming, and Gilboa et al., 2008, 2009).1

Departures from Bayesian updating can occur either because subjects tend
to ignore the prior and overreact to the data (we refer to this bias as overreac-
tion), or alternatively because subjects place excessive weight on prior beliefs
and underreact to new observations (we refer to this bias as underreaction).
We investigate a non-Bayesian updater who faces a statistical inference

problem and may either overreact or underreact to new data. Consider an
agent who is trying to learn the true parameter in a set �. Updating of beliefs
in response to observations s1; :::; st, leads to posterior beliefs f�tg where each
�t is a probability measure on �. Bayesian updating leads to the process

�t+1 = BU (�t; st+1) ,

where BU (�t; st+1) denotes the Bayesian update of �t given the new observa-
tion st+1. A more general model is the process

�t+1 =
�
1� t+1

�
BU (�t; st+1) + t+1�t, (1.1)

where t+1 � 1. If t+1 = 0, the model reduces to standard Bayesian model.
If t+1 > 0, then the updating rule can be interpreted as attaching too much
weight to the prior �t and hence underreacting to observations. Conversely, if
t+1 < 0 then the updating rule can be interpreted as overreacting to obser-
vations.2

1The complexities of Bayesian procedures may make Bayesian updating rules excessively
costly to implement in many practical applications. So, even agents who would prefer to use
Bayes�Rule often rely on simpler, non-Bayesian heuristics for updating beliefs (see, among
others, Bala and Goyal, 1998). Thus, there exists a normative motivation for analyzing
non-Bayesian updating rules in addition to the positive motivation coming from laboratory
and �eld experiments (see also Gilboa et al., forthcoming, and Aragones et al. (2005) for
normative motivations on non-Bayesian updating rules).

2Naturally, t+1 must not be excessively negative so that �t+1 remains a probability
measure.
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While there may be more than one way to provide a rationale for the non-
Bayesian updating rules in (1.1), choice-theoretic foundations of related models
were provided in Epstein (2006) and Epstein et al. (2008) in an axiomatic
framework where an agent is self-aware of her biases and fully anticipates her
updating behavior when formulating plans.3 Foundations take the form of
a representation theorem for suitably de�ned preferences such that both the
prior and the way in which it is updated are subjective. In this paper, we
describe the asymptotic properties of the process of beliefs de�ned by (1.1).
We show that, like Bayesian updating, multiple repetitions of non-Bayesian

updating rules that underreact to observations eventually lead to accurate
forecasts (e.g., forecasts close to the actual data generating process).4 Thus,
non-Bayesian updaters who underreact to the data eventually forecast accu-
rately. The case in which the agent overreacts to the data is quite di¤erent.
Multiple repetitions of non-Bayesian updating rules that overreact to the ob-
servations eventually lead to accurate forecast with positive probability. In
some cases, however, with strictly positive probability, non-Bayesian updaters
become certain that a false parameter is true and thus converge to incorrect
forecasts. Hence, overreaction may not be a transient phenomenon - it may
have long-run implications.
Our results suggest a fundamental di¤erence between underreacting and

overreacting to new data. Bayesian and underreacting agents eventually fore-
cast as if they have uncovered the data generating process. However, there
is a broader range of possible long-run forecasts for agents who overreact to
new observations. These agents may eventually forecast accurately, but they
may also permanently forecast incorrectly. Unlike Bayesian and underreacting
agents, the ultimate fate of overreacting agents is not entirely pre-determined
by the data generating process itself. It also depends on the historical record.
The paper proceeds as follows: In section 2, we present the main concepts

and the basic results on overreaction and underreaction. In addition, in section
2, we also consider a bias akin to the hot hand fallacy and show that, like
the underreaction bias, agents who update beliefs consistently with this bias
also eventually uncover the data generating process. Section 3 concludes and
suggests directions for future work. Proofs are in the appendix.

3Hence, an agent may revise her beliefs in a non-Bayesian way even if she is aware of her
biases. See also Ali (2009) for a model of learning about self-control.

4This result requires an important quali�er. It is also needed that the weights t+1 for
prior and Bayesian posterior depend only on the observations realized until period t and not
upon the observation st+1 realized at period t+ 1.
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2. Basic Model and Results

At each period t = 0; 1; 2; :::., one element st of (a �nite set) S is realized .
Thus, the complete uncertainty is given by the state space 
 = �1t=1St, where
St = S for all t > 0. Let �(S) be the set of probability measures on S. A
stochastic process (Xt) on 
 is adapted if Xt is measurable with respect to the
�-algebra St that is generated by all sets of the form fs1g� :::�fstg��1t+1S� .
Unless otherwise noted, stochastic processes (Xt) on �1t=1St are adapted.
Let � denote a countable set of possible parameters. The prior belief over

� is �0 2 �(�), where �(�) is the set of probability measures over �. The
�-algebra associated with � is suppressed.
Conditional on parameter �, at each period t � 0, an observation st 2 S is

independently generated with a likelihood function `( st j �). Let �� 2 � be the
parameter determining the data generating process. We de�ne a probability
triple (
;S;P�), where S is the smallest �-�eld containing all St for t > 0 and
P� is the probability measure induced over sample paths in 
 by parameter ��.
That is, P� = 
1t=1`(� j ��). Let E�[�] be the expectation operator associated
with P�.
We now de�ne the measures �t on the parameter set � by induction. The

prior �0 on � is given. Suppose that �t is constructed and de�ne �t+1 by

�t+1 =
�
1� t+1

�
BU (�t; st+1) + t+1�t, (2.1)

where BU (�t; st+1) (�) is the Bayesian update of �t given the new observation
st+1 at period t+1, and t+1 is St+1-measurable process such that t+1 � 1: As
mentioned in the introduction, t+1 determine weights given to the Bayesian
update of �t and the prior belief �t at period t+1. So, if t+1 is positive then the
posterior belief �t+1 is a mixture of the Bayesian update BU (�t; st+1), which
incorporates the Bayesian response to the new observation st+1, and the prior
�t, which does not respond to the new observation st+1 at all. In a natural
sense, therefore, an agent with weight t+1 � 0 underreacts to data. Similarly,
if t+1 � 0, then the Bayesian updateBU (�t; st+1) is a mixture of the posterior
belief �t+1 and the prior �t, which suggests overreaction to new data. Clearly,
if t+1 = 0 then the model reduces to the Bayesian updating rule. We refer
to equation (2.1) as the law of motion for beliefs about parameters. Finally,
de�ne

mt (�) =
Z
�

` (� j �) d�t:

as the belief at period t over observations at period t+1 given measure �t over
the parameters in �:

3
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2.1. Learning with underreaction and overreaction

We now turn to the question of what is learned in the long run. Learning
may either signify learning the true parameter or learning to forecast future
outcomes.5 The latter kind of learning is more relevant to choice behavior and
thus is our focus.

De�nition 2.1. Forecasts are eventually accurate on a path s1 2 
 if, along
that path,

mt (�) �! ` (� j ��) as t �!1.

That is, if forecasts are eventually accurate then, in the long-run, agents�
beliefs converge to the data generating process.6

Theorem 2.2. Assume (2.1). Also assume that t � 1 � � for some � > 0
(this assumption rules out the case in which t = 1 and no learning occurs
because prior and posterior always coincide). Let �0 (�

�) > 0 (so, there is a
�grain of truth" in prior beliefs).
(a) Suppose that t+1 � 0 for all periods t (i.e., underreaction) and that

t+1 is St�measurable for all periods t � 0. Then, forecasts are eventually
accurate P� � a:s:
(b) Suppose that t+1 is St�measurable (both underreaction and overreac-

tion are allowed in di¤erent periods). Then forecasts are eventually accurate
with P��strictly positive probability.
(c) There exists a model (S;�; `; �0) and weights t =  < 0 (hence over-

reaction) and a false parameter � 6= �� such that

mt (�) �! ` (� j �) as t �!1,

with P��strictly positive probability. In these cases, the forecast are eventually
based on a wrong parameter.

(d) Assume that the weights t+1 � 0 are still nonnegative (i.e., under-
reaction), but that they may depend upon observations at period t + 1 (i.e.,
t+1 is St+1�measurable). Then, there exist a model (S;�; `; �0) and a false
parameter � 6= �� such that

mt (�) �! ` (� j �) as t �!1,

with P��strictly positive probability.
5See Lehrer and Smorodinsky (1996) for the distinction between these two kinds of

learning.
6This de�nition is also known in the merging literature as weak merging. (See, among

others, Blackwell and Dubins, 1962, Jordan, 1992, Kalai and Lehrer, 1993, 1993b, 1994,
Lehrer and Smorodinsky, 1996, 1996b, 1997, Nyarko, 1994, Sandroni, 1998, and Vives,
1993.)
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Assume that before any data are observed, prior belief puts positive weight
on the true parameter, that is, �0 (�

�) > 0: Then, the basic result in Bayesian
updating holds: multiple repetition of Bayes�Rule leads to accurate forecasts.
This result is central in the Bayesian literature because it shows that the mere
repetition of Bayes�Rule eventually transforms the historical record into a near
perfect guide for the future. Part (a) of Theorem 1 generalizes the Bayesian
result to underreaction. Multiple repetitions of non-Bayesian updating rules
in (2.1) that underreact to the new observations (and the measurability as-
sumption on the weights), eventually produce good forecasting. So, in the case
of underreaction, agent�s forecasts converge to rational expectations although
the available information is not processed by the Bayesian laws of probability.
Part (b) shows that, with positive probability, non-Bayesian forecasts are

eventually accurate. This applies to both underreaction and overreaction. Per-
haps surprisingly, the results hold even if the forecaster sometimes overreacts
and sometimes underreacts to new information.
Parts (c) and (d) are based on examples. The example in part (c) shows

that convergence to wrong forecasts may occur for overreacters. The weight
t is constant, but negative, corresponding to a forecaster that su¢ ciently
overreacts to new information. In the example, the forecasts converge, but not
necessarily to the data generating process. The forecasts may be eventually
accurate, but they may also be eventually incorrect (i.e., correspond to a
wrong parameter). Hence, whether overreacting updating rules eventually
converge to the data generating process may not be pre-determined - it depends
upon the realized historical record. In addition, the probability that multiple
overreacting updating rules may lead to incorrect forecasts may be greater
than 0:5.
The assumption that t+1 is St�measurable made in parts (a) and (b) of

Theorem 1 may seem merely technical, but it is restrictive. The assumption
excludes updating rules where the weight on the Bayesian update depends on
the current signal. Our example in part (d) shows that this proviso cannot
be dropped. In the example, the weight t+1 is positive corresponding to
underreaction, but it depends on the current signal and, therefore, t+1 is
only St+1-measurable. As in the case of overreaction, forecasts may eventually
converge to an incorrect limit. Moreover, wrong long-run forecasts are at least
as likely to occur as are accurate forecasts. Thus, even non-Bayesian updaters
who underreact to the new observations may eventually forecast based on a
wrong parameter if the weights depend upon the new observation.

5
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2.2. Intuition behind Theorem 2.2

Let �t (�
�) be the probability that �t assigns to the true parameter �

�. The ex-
pected value (according to the data generating process) of the Bayesian update
of �t (�

�) (given new information) is greater than �t (�
�) itself. This submartin-

gale property ensures that, in the Bayesian case, �t (�
�) must converge to some

value and cannot remain in endless random �uctuations. The submartingale
property follows because under the Bayesian paradigm future changes in be-
liefs that can be predicted are incorporated in current beliefs. It is immediate
from the linear structure in (2.1) that this basic submartingale property still
holds in our model as long as the weight between prior and Bayesian posterior
depends upon the history only up to period t. Hence, with this assumption,
�t (�

�) must also converge and, as in the Bayesian case, cannot remain in end-
less random �uctuations.7 This convergence result holds even if overreaction
and underreaction occur in di¤erent periods. In the case of underreaction,
�t (�

�) tends to grow and forecasts are eventually accurate. In the case of
su¢ ciently strong overreaction, it is possible that forecasts will settle on an
incorrect limit. This follows because the positive drift of the above mentioned
submartingale property on �t (�

�) may be compensated by su¢ ciently strong
volatility which permits that, with positive probability, �t (�

�) converges to
zero.

2.3. Sample-Bias

In this section, we consider a bias akin to the hot-hand fallacy - the tendency
to over-predict the continuation of recent observations (see Kahneman and
Tversky, 1971, Camerer, 1989, and Rabin, 2002). Suppose that there are K
possible states in each period, S = fs1; :::; sKg and that `

�
sk j �

�
= �k for each

parameter � = (�1; :::; �K) in �, where � is the set of points � = (�1; :::; �K) in
the interior of the K-simplex having rational coordinates. De�ne

t+1 (�) =

�
1 if the empirical frequency of sk is �k, for all k, 1 � k � K,
0 otherwise.

The law of motion now takes the form

�t+1 = (1� t)BU (�t; st+1) + t t+1; 0 � t � 1: (2.2)

If t = 1, then probability one is assigned to the parameter that coincides
with the observed past frequencies, and if t = 0, the model reduces to the

7We conjecture that beliefs �t (�
�) may not converge in some examples when the weight

t+1 is St+1-measurable. In our example, it does converge, but to an incorrect limit.
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Bayesian model. If 0 < t < 1 posterior beliefs are linear combinations of
the Bayesian posterior and the observed frequencies. We have the following
partial counterpart of part (a) of Theorem 2.2.

Theorem 2.3. Suppose that (�t) evolve by (2.2), where 0 <  � t � 1.
Then forecasts are eventually accurate P� � a:s:

The positive lower bound  excludes the Bayesian case. The result does
hold in the Bayesian case t+1 = 0: However, unlike the proof of Theorem
2.2, the proof of Theorem 2.3 is in some ways signi�cantly di¤erent from the
standard proof used in the Bayesian case. We suspect that the di¤erences
in the approach make the lower bound assumption technically convenient but
ultimately disposable. We also conjecture (but cannot yet prove) that just
as in part (d) of Theorem 2.2, convergence to the truth fails in general if the
weights t+1 are allowed to be St+1-measurable, instead of being St-measurable
as in Theorem 2.3.

3. Conclusion and Directions for Future Work

Our results show an asymmetry between long-run implications of overreaction
and underreaction. Multiple revision of beliefs with biases such as underreac-
tion and the sample bias may, like multiple revisions of Bayes�Rule, eventually
transform the historical record into a near perfect guide for the future. In the
case of overreaction, we show examples such that beliefs may remain incor-
rect inde�nitely. In future work, it is valuable to determine how prevalent
is the case of overreaction leading to incorrect forecasts in the long run. In
our example, the weight t on the Bayesian update is constant. However, it
follows from the proof that, in this example, if the weights t are below a
given threshold (b = (0:5 � b)), then forecasts may be (i.e., they will be with
positive probability) inaccurate in the long-run. A natural conjecture is that,
in general, there exists a threshold such that if the weights on the Bayesian
update remain below this threshold (i.e., if overreaction is su¢ ciently severe)
then forecasts may be inaccurate in the long-run. However, if the weights on
the Bayesian update are always above this threshold (i.e., overreaction, if it
occurs, is not too severe) then forecasts will necessarily become accurate in
the long-run. The extent to which this conjecture holds is beyond the scope
of this paper.

7
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A. Appendix: Proofs

Proof of Theorem 2.2 : (a) Given our measurability assumption, we can replace
the weights t+1 with t in parts (a) and (b). First we show that log �t (�

�) is
a submartingale under P�. Because

log �t+1 (�
�)� log �t (��) = log

�
(1� t)

`(st+1j��)
mt(st+1)

+ t

�
, (A.1)

it su¢ ces to show that

E�
h
log
�
(1� t)

`(st+1j��)
mt(st+1)

+ t

�
j St
i
� 0, (A.2)

where E� denotes expectation with respect to P�. By assumption, t is con-
stant given St. Thus the expectation equalsX

st+1

` (st+1 j ��) log
�
(1� t)

`(st+1j��)
mt(st+1)

+ t

�
�

X
st+1

` (st+1 j ��) (1� t) log
�
`(st+1j��)
mt(st+1)

�
=

(1� t)
X
st+1

` (st+1 j ��) log
�
`(st+1j��)
mt(st+1)

�
� 0

as claimed, where both inequalities are due to concavity of log (�). (The second
is the well-known entropy inequality.)
Clearly log �t (�

�) is bounded above by zero. Therefore, by the martingale
convergence theorem, it converges P � � a:s: From (A.1),

log �t+1 (�
�)� log �t (��) = log

�
(1� t)

`(st+1j��)
mt(st+1)

+ t

�
�! 0

and hence `(st+1j��)
mt(st+1)

�! 1 P� � a:s:

Part (b)

E�
h�
(1� t)

`(st+1j��)
mt(st+1)

+ t

�
j St
i
= (1� t)E

�
h
`(st+1j��)
mt(st+1)

j St
i
+ t

� (1� t) + t = 1:

The last inequality is implied by the fact that

min
X

n
E�
h

1
X(st+1)

j St
i
: E� [X (st+1) j St] = 1

o
= 1.

8
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The minimization is over random variable X�s, X : St+1 �! R1++, and it
is achieved at X (�) = 1 because 1

x
is a convex function on (0;1).) Deduce

that E�
h
�t+1(�

�)

�t(�
�) j St

i
� 1 and hence that �t (�

�) is a submartingale. By the
martingale convergence theorem,

�1 (�
�) � lim �t (�

�) exists P� � a:s:

Claim: �1 (�
�) > 0 on a set with positive P�-probability.

By the bounded convergence theorem,

E��t (�
�) �! E��1 (�

�) ;

and E��t (�
�)% because �t (�

�) is a submartingale. Thus �0 (�
�) > 0 implies

that E��1 (�
�) > 0, which proves the claim.

It su¢ ces now to show that if �1 (�
�) > 0 along a sample path s1 2


, then forecasts are eventually accurate along s1. But along such a path,
�t+1(�

�)

�t(�
�) �! 1 and hence

(1� t)
�
`(st+1j��)
mt(st+1)

� 1
�
�! 0.

By assumption, (1� t) is bounded away from zero. Therefore,�
`(st+1j��)
mt(st+1)

� 1
�
�! 0.

Part (c): Convergence to wrong forecasts may occur with P�-positive proba-
bility when t+1 < 0, even where t+1 is St-measurable (overreaction); in fact,
we take the weight t =  < 0 to be constant.
Think of repeatedly tossing an unbiased coin that is viewed at time 0 as

being either unbiased or having probability of Heads equal to b, 0 < b < 1
2
.

Thus take S = fH;Tg and ` ( H j �) = � for � 2 � = fb; 1
2
g. Assume also

that

1 < � < b
1
2
� b

. (A.3)

The inequality  < �1 indicates a su¢ cient degree of overreaction.
The other inequality is motivated by the need of having measures non-

negative valued in the choice-theoretic model of Epstein (2006) and Epstein
et al. (2008) that underlies these laws of motion.
We now show that if (A.3), then

mt (�) �! ` (� j b) as t �!1,
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with probability under P� at least 1
2
.

Abbreviate �t
�
1
2

�
by ��t .

Claim 1: ��1 � lim��t exists P� � a:s: and if ��1 > 0 for some sample
realization s11 , then mt (H) �! 1

2
and ��t �! 1 along s11 . The proof is

analogous to that of part (b). Deduce that

��1 2 f0; 1g P� � a:s:

Claim 2: f (z) �
h
(1� )

1
2

z
+ 
i h
(1� )

1� 1
2

(1�z) + 
i
� 1, for all z 2 [b; 1

2
].

Argue that f (z) � 1 () g (z) � [(1� ) + 2z] [(1� ) + 2(1� z)] �
4z (1� z) � 0. Compute that g

�
1
2

�
= 0, g0

�
1
2

�
= 0 and g is concave because

 < �1. Thus g (z) � g (0) = 0.

Claim 3: E�
�
log

�
(1� )

`(st+1j 12)
mt(st+1)

+ 

�
j St
�

= 1
2
log

�
(1� )

1
2

b+( 12�b)��t
+ 

�
+ 1

2
log

�
(1� )

1� 1
2

(1�b�( 12�b)��t )
+ 

�
= 1

2
log

�
f
�
b+

�
1
2
� b
�
�t
�
1
2

���
� 0, by Claim 2.

By Claim 1, it su¢ ces to prove that ��1 = 1 P�� a:s: is impossible. Com-
pute that

��t = ��0

"
�t�1k=0 (1� )

`
�
sk+1 j 12

�
mk (sk+1)

+ 

!#
,

log ��t = log �
�
0 + �

t�1
k=0 log (1� )

`
�
sk+1 j 12

�
mk (sk+1)

+ 

!
= log ��0 + �

t�1
k=0 (log zk+1 � E� [log zk+1 j Sk]) + �t�1k=0E

� [log zk+1 j Sk] ,

where zk+1 = (1� )
`(sk+1j 12)
mk(sk+1)

+ . Therefore, log ��t � 1
2
log ��0 i¤

�t�1k=0 (log zk+1 � E� [log zk+1 j Sk]) � �1
2
log ��0 � �t�1k=0E

� [log zk+1 j Sk] � at.

Let
at � �1

2
log ��0 � �t�1k=0E

� [log zk+1 j Sk] .
By Claim 3, at > 0. The random variable log zk+1 � E� [log zk+1 j Sk] takes
on two possible values, corresponding to sk+1 = H or T , and under the truth
they are equally likely and average to zero. Thus

P�
�
�t�1k=0 log zk+1 � E� [log zk+1 j Sk] � at

�
� 1

2
.
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Deduce that
P�
�
log ��t � 1

2
log ��0

�
� 1

2

and hence that
P� (log ��t �! 0) � 1

2
.

Part (d): Convergence to wrong forecasts may occur with P�-positive proba-
bility when t+1 > 0, if t+1 is only St+1-measurable.
The coin is as before - it is unbiased, but the agent does not know that

and is modeled via S = fH;Tg and ` (H j �) = � for � 2 � = fb; 1
2
g. Assume

further that �t+1 and �t+1 are such that

t+1 � �t+1(1� �t+1) =

�
w if st+1 = H
0 if st+1 = T ,

where 0 < w < 1. Thus, from (2.1), the agent updates by Bayes�Rule when
observing T but attaches only the weight (1� w) to last period�s prior when
observing H. Assume that

w > 1� 2b.
Then

mt (�) �! ` (� j b) as t �!1,
with probability under P� at least 1

2
.

The proof is similar to that of Example in part (c). The key is to observe
that

E�
�
log

�
(1� )

`(st+1j 12)
mt(st+1)

+ 

�
j St
�
� 0 under the stated assumptions (e.g.,

those concerning �t+1and �t+1).
The proof of Theorem 2.3 requires the following lemmas:

Lemma A.1. (Freedman (1975)) Let fztg be a sequence of uniformly bounded
St-measurable random variables such that for every t > 1; E� (zt+1jSt) = 0:
Let V �

t � V AR (zt+1jSt) where V AR is the variance operator associated with
P �. Then,

nX
t=1

zt converges to a �nite limit as n!1, P �-a:s: on
( 1X
t=1

V �
t <1

)
and

sup
n

nX
t=1

zt =1 and inf
n

nX
t=1

zt = �1, P �-a:s: on
( 1X
t=1

V �
t =1

)
:
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De�nition A.2. A sequence of fxtg of St-measurable random variables is
eventually a submartingale if, P� � a:s:; E� (xt+1jSt) � xt is strictly negative
at most �nitely many times.

Lemma A.3. Let fxtg be uniformly bounded and eventually a submartingale.
Then, P� � a:s:; xt converges to a �nite limit as t goes to in�nity.

Proof. Write

xt =
tX
j=1

(rj � E� (rjjSj�1)) +
tX
j=1

E� (rjjSj�1) + x0; where rj � xj � xj�1:

By assumption, P��a:s:; E� (rjjSj�1) is strictly negative at most �nitely many
times. Hence, P� � a:s:;

inf
t

tX
j=1

E� (rjjSj�1) > �1:

Given that xt is uniformly bounded, P� � a:s:;

sup
t

tX
j=1

zj <1; where zj � rj � E� (rjjSj�1) :

It follows from Freedman�s result that P� � a:s:,

tX
j=1

zj converges to a �nite limit as t!1.

It now follows from xt uniformly bounded that sup
t

tX
j=1

E� (rjjSj�1) < 1.

Because E� (rjjSj�1) is strictly negative at most �nitely many times,

tX
j=1

E� (rjjSj�1) converges to a �nite limit as t!1.

Therefore, P� � a:s:; xt converges to a �nite limit as t goes to in�nity.

Proof of Theorem 2.3:
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Claim 1: De�ne f (�;m) =
P

k �
�
k
�k
mk
on the interior of the 2K-simplex. There

exists �0 2 RK++ such that

j �k � ��k j< �0k for all k =) f (�;m)� 1 � �K�1
X
k

j mk � �k j .

Proof: f (�; �) = 1, f (�; �) is strictly convex and hence

f (�;m)� 1 >
X
k 6=K

�
@f (�;m)

@mk

� @f (�;m)

@mK

�
jm=� (mk � �k)

=
X
k 6=K

�
� ��k
�k
+

��K
�K

�
(mk � �k) .

But the latter sum vanishes at � = ��. Thus argue by continuity.

Given any � 2 RK++, � << �0, de�ne

�� = (�� � �; �� + �) � �Kk=1 (��k � �k; �
�
k + �k)

and ��t = ��2���t (�).

Claim 2: De�ne m�
t

�
sk
�
= ��2���k�t (�) = �

�
t . Then

j mt

�
sk
�
�m�

t

�
sk
�
j � 1� ��t .

Proof: mt

�
sk
�
�m�

t

�
sk
�
=

��2���k�t(�)
��t

(��t � 1) + ��=2���k�t (�) . Therefore,

(��t � 1) � m�
t

�
sk
�
(��t � 1) =

��2���k�t (�)

��t
(��t � 1) � mt

�
sk
�
�m�

t

�
sk
�
�

��=2���k�t (�) � 1� ��t :

Claim 3: For any � << �0 as above,X
k

��k
m�
t (sk)

mt(sk)
� 1 � � (1� ��t ) .

Proof: Because j m�
t

�
sk
�
� ��k j< �k < �

0

k, we have thatX
k

��k
m�
t (sk)

mt(sk)
� 1 � �K�1

X
k

j mt

�
sk
�
�m�

t

�
sk
�
j .
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Now Claim 3 follows from Claim 2.

Compute that E�
�
�t+1 (�) j St

�
=

�
1� t+1

� "X
k

��k
�k

mt(sk)

#
�t (�) + t+1E

� � t+1 (�) j St� , (A.4)

where use has been made of the assumption that t+1 is St-measurable. There-
fore,

E�
�
��t+1 j St

�
� ��t =�

1� t+1
�X

k

�
��k

m�
t (sk)

mt(sk)

�
��t + t+1��2��E

� � t+1 (�) j St�� ��t

=
�
1� t+1

� "X
k

�
��k

m�
t (sk)

mt(sk)

�
� 1
#
��t + t+1��2��E

� � t+1 (�) j St�� t+1�
�
t .

By the law of large numbers, P� � a:s: for large enough t the frequency of sk

will eventually be ��k and

��2��E
� � t+1 (�) j St� = 1:

Eventually along any such path,

E�
�
��t+1 j St

�
� ��t =

�
1� t+1

� "X
k

�
��k

m�
t (sk)

mt(sk)

�
� 1
#
��t + t+1 (1� ��t )

�
�
�
�
1� t+1

�
��t + t+1

�
(1� ��t ) � 0,

where the last two inequalities follow from Claim 3 and the hypothesis 
� t+1.
Hence (��t ) is eventually a P

�-submartingale. By Lemma A.3, ��1 � lim��t
exists P� � a:s: Consequently, E�

�
��t+1 j St

�
� ��t �! 0 P� � a:s: and from

the last displayed equation,
�
�
�
1� t+1

�
��t + t+1

�
(1� ��t ) �! 0 P��a:s:

It follows that ��1 = 1. Finally, mt (�) =
R
` (� j �) d�t eventually remains in

�� = (�� � �; �� + �).
Above � is arbitrary. Apply the preceding to � = 1

n
to derive a set 
n such

that P�(
n) = 1 and such that for all paths in 
n; mt eventually remains in�
�� � 1

n
; �� + 1

n

�
: Let 
 � \1n=1
n: Then, P�(
) = 1 and for all paths in 
;

mt converges to �
�.
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