we we have a second sec Newton's Universal Law of Gravitation

Summary of Angular Variables

Centripetal Acceleration

$a_c = \frac{v^2}{r}$

Direction: inward

Laboratory centrifuge: separate blood cells from plasma

"Aluminum tubes": centrifuges to separate ²³⁵U from ²³⁸U

Centrifuge used to train pilots at sustained levels of high gravity (simulated)

Shockwave: Six Flags Over Texas

Col. John Stapp (1954) 43 G's

Cavendish apparatus: torsion balance measures gravitational attraction of two masses in the laboratory

Lagrange Points: Gravitational forces cancel allowing orbit with a fixed relative position.

L4 and L5 are stable equilibrium and stuff (asteroids) tend to accumulate there.

The Centre of the Milky Way (VLT YEPUN + NACO)

ESO PR Photo 23a/02 (9 October 2002)

© European Southern Observatory

The Motion of a Star around the Central Black Hole in the Milky Way ESO PR Photo 23:02 (9 October 2002) © European Southern Observatory

S2:

closest approach = 17 light-hours speed: 5000 km/s

Black hole:

2.6±0.2 million \times mass of Sun

Diagram of a black hole warping spacetime, from a T-shirt. The radius of the black hole, R_s , is $R_s=2MG/c^2$, where G is Newton's constant, M is the mass of the black hole, and c is the speed of light.

S112E05823

TABLE 7.1

Free-Fall Acceleration g at Various Altitudes

ISS altitude	Altitude (km) ^a	$g (\mathrm{m}/\mathrm{s}^2)$
is 354 km	1 000	7.33
	2 000	5.68
	3 000	4.53
	$4\ 000$	3.70
	5 000	3.08
	6 000	2.60
	7 000	2.23
	8 000	1.93
	9 000	1.69
	$10\ 000$	1.49
	50 000	0.13

^aAll figures are distances above Earth's surface.

© 2006 Brooks/Cole - Thomson

Claudius Ptolemy

Epicycles: successfully used to describe planetary motion (such as retrograde) in earth-centered system.

Nicolas Copernicus

Tycho Brahe

O to the second Ð

Tycho Brahe. This engraving clearly shows the part of his nose, cut off in a duel, which Tycho remade with gold, silver and wax

Mixed geocentric+heliocentric.

More epicycles!

Johannes Kepler

Conic Sections

A conic section is formed by the intersection of a plane with a right circular cone. The "kind" of curve produced is determined by the angle at which the plane intersects the surface.

T = any unit of time (hour, day, week, etc.)

Star Trails

Point camera at sky, leave lens open

What would a geosynchronous satellite look like among star trails?

