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Break a single molecular bond: 1018 ]



Split a single nucleus: 10-t ]



Hopping flea: 107 J



Depress a keyboard key: 102 J



Newton’s Apple: 1 J



1 kg of TNT has

about 102 0 i
molecules x 10-18] ‘ P
to break one bond

per molecule N
] 0

1 kg of TNT: 106 ]



Gallon of gasoline: 108 ]



Lightning bolt: 1010 J



1 kg of 235U has about 1024 nuclei
x 10-11] to split one nucleus. So a
bomb such as this may have only
10 kg of uranium.

USDOE

The explosive “yield” is often quoted in kilotons of TNT.

Atom I C Bom b (FISSIOn) 1014 ‘J 10%* J would require 10 kton = 10,000,000 kg of TNT.

The Hiroshima bomb was 15 kton.




Meteor Impact: 1016 J




Hydrogen Bomb: 1017 ]




Icano; 1018 J
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1994:. Comet Shoemaker-Levy strikes Jupiter
Fragment G: 1022 ]
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Output of our sun for one year: 103+ ]



99% of energy released in the form of neutrinos.
In 1987, this supernova was detected by ~ 20 neutrinos
within 12 seconds on earth (160,000 light-years away).
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2006 Nobel Prize
in Physics

Creation of the Universe: 108 ]
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Comparizon of Compound (c) and Hookeian (h) Bows
(Force versus Draw)
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Source: Energy Information Administration, Form EIA-B61, “Annual Electric Power Industry Report.”




Figure 5. Energy Consumption by Source, 1635-2005
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U.S. Total Energy Consumption Rate (102°0J/3 x 107 s)

3x 1012 W

Hoover Dam 2x10°W
Automobile at 60 mph 10° W
Electric Stove 10 kW
Clothes Dryer 5 kW
Per capita electricity in US 1.5 kW
Solar intensity at earth, per square meter 1 kW
Desktop computer 200 W
100 W lightbulb 100 W
Laptop computer 40 W
Compact fluorescent lightbulb 18 W
Pocket calculator 103 W




TABLE 6.5 Human* Power and Oxygen Consumption

Oxygen

Power Consumption
Activity (watts) (liters 0> /min)
Sleeping 83 0.24
Sitting at rest 120 0.34
Sitting in class 210 0.60
Walking slowly (4.8 km/h) 265 0.76
Cycling (13-18 km/h) 400 1.14
Shivering 425 1.21
Playing tennis 440 1.26
Swimming breaststroke 475 1.36
Climbing stairs (116/min) 685 1.96
Cycling (21 km/h) 700 2.00
Running cross-country 740 212
Playing basketball 800 2.28
Cycling, professional racer 1855 5.30
Sprinting 2415 6.90

*Normal 76-kg male.




TABLE 5.1

Maximum Power Output
from Humans over
Various Periods

Power Time
2 hp, or 1 500 W 6 s

1 hp, or 750 W 60 s
0.35 hp, or 260 W 35 min
0.2 hp, or 150 W 5h

0.1 hp, or 75 W 8 h

(safe daily level )

& 2006 Brooks/Cole - Thomson
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1 kecalh = 1.162 watts

Kleiber’s Law (1932)
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Metabolic heat production vs. body mass in
an allometric plot. The solid line has a slope
of 0.75, as required by Kleiber's law. The
broken line, which shows a slope of 0.67,
has been included for comparison.

Heat production (kcal/day)

One simple line of reasoning using scaling:

Mass ~ Volume ~ L3

Equivalently L ~ M1/3

Metabolic activity requires removal of Heat

Heat Dissipation ~ Surface Area ~ L2 ~ M?%2 (dashed line)

But data seems to show M3 (solid line)



Some scientists ... other scientists suggest that it is
suggest explanations 2/3 with more data and within
for % power... statistical uncertainty
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West, Brown, Enquist Science 276 (1977) p. 122 Dodds, Rothman, and Weitz, J. Theo. Biology 209 (2001) p. 9



Measuring the oxygen consumption of a

Exploring Biomechanics Animals in Motion
R. McNeill Alexander walking elephant: an experiment by a

Scientific American Library team led by Richard Taylor.



