1. J.R. Gayvert and K.B. Bravaya. Projected CAP-EOM-CCSD method for electronic resonances. J. Chem. Phys., 156:094108, 2022. [http].
  2. J.R. Gayvert and K.B. Bravaya. Application of box and Voronoi CAPs for metastable electronic states in molecular clusters. J. Phys. Chem. A, 126:5070–5078, 2022. [http].
  3. E.A. Karnaukh and K.B. Bravaya. The redox potential of a heme vofactor in Nitrosomonas europaea : a Polarizable QM/MM study. Phys. Chem. Chem. Phys., 23:16506–16515, 2021. [http].
  4. Y. Kim, Y. Bui, R.N. Tazhigulov, K.B. Bravaya, L.V. Slipchenko. Effective fragment potentials for flexible Molecules: Transferability of parameters and amino acid database. J. Chem. Theor. Comp., 16:7735–7747, 2020. [http].
  5. Ragesh Kumar T.P., J. Kocisek, K.B. Bravaya, and J. Fedor. Electron-induced vibrational excitation and dissociative electron attachment in methyl formate. Phys. Chem. Chem. Phys., 22:518–524, 2020. [http].
  6. A.A. Kunitsa and K.B. Bravaya. Feshbach projection XMCQDPT2 model for metastable electronic states. 2019, submitted. [arXiv.org].
  7. R.N. Tazhigulov, J.G. Gayvert, M. Wei, and K.B. Bravaya. eMap: a Web Application for Identifying and Visualizing Electron or Hole Hopping Pathways in Proteins. J. Phys. Chem. B., 123:6946–6951, 2019. [http].
  8. R. N. Tazhigulov, P. K. Gurunathan, Y. Kim, L. V. Slipchenko, and K. B. Bravaya. Polarizable Embedding for Simulating Redox Potentials of Biomolecules. Phys. Chem. Chem. Phys., 21:11642–11650, 2019. [http].
  9. Z. Li, M. M. Dawley, I. Carmichael, K.B. Bravaya and S. Ptasinska. Dipole-Supported Electronic Resonances Mediate Electron-Induced Amide Bond Cleavage. Phys. Rev. Lett., 122:073002, 2019. [http].
  10. M.K. Lee, K.B. Bravaya, and D.F. Coker. Ensembles of accurate model Hamiltonians for photosynthetic light harvesting from first principles. J. Am. Chem. Soc., 139:7803–7814, 2017. [http].
  11. A.A. Kunitsa, A.A. Granovsky, and K.B. Bravaya. CAP-XMCQDPT2 method for molecular electronic resonances: theory and benchmarks. J. Chem. Phys., 146:184107, 2017. [http].
  12. T.C. Jagau, K.B. Bravaya, and A.I. Krylov. Extending quantum chemistry of bound states to electronic resonances. Annu. Rev. Phys. Chem., 68:525–553, 2017. [http].
  13. A. Acharya, A. Bogdanov, B. Grigorenko, K. Bravaya, A. Nemukhin, K. Lukyanov, and A. Krylov. Photoinduced chemistry in fluorescent proteins: curse or blessing? Chem. Rev., 117:758–795, 2017. [http].
  14. R.N. Tazhigulov and K.B. Bravaya. Free energies of redox half-reactions from the first principles calcualtions. J. Phys. Chem. Lett., 7:2490–2495, 2016. [http].
  15. A. M. Bogdanov, A. Acharya, A. V. Titelmayer, A. V. Mamontova, K. B. Bravaya, A. B. Kolomeisky, K. A. Lukyanov, and A. I. Krylov. Turning on and off photoinduced electron transfer in fluorescent proteins by pi-stacking, halide binding, and Tyr145 mutations. J. Am. Chem. Soc., 138:4807–4817, 2016. [http].
  16. A.A. Kunitsa and K.B. Bravaya. Electronic structure of excited states of para-benzoquinone anion revisited. Phys. Chem. Chem. Phys., 8:3454–3462, 2016. [http].
  17. A. Kunitsa and K.B. Bravaya. First-principles calculations of the energy and width of the 2Au shape resonance in p-benzoquinone, a gateway state for electron transfer. J. Phys. Chem. Lett., 6:1053–1058, 2015. [http].
  18. B.L. Yoder, K.B. Bravaya, A. Bodi, A.H.C. West, B. Sztáray, and R. Signorell. Barrierless proton transfer across weak CH...O hydrogen bonds in dimethyl ether dimer. J. Chem. Phys., 142:114303, 2015. [http].
  19. Y. Shao, Z. Gan, E. Epifanovsky, A. TB Gilbert, M. Wormit, and others. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys., 113:184–215, 2015. [http].
  20. J. Lazzari-Dean, A.I. Krylov, and K.B. Bravaya. The effects of resonance delocalization and the extent of system on ionization energies of model fluorescent proteins chromophores. Int. J. Quant. Chem., 115:258–1264, 2015. [http].
  21. V.A. Mironov, K.B. Bravaya, and A.V. Nemukhin. On the role of zwitterions in kindling fluorescent protein photochemistry. J. Phys. Chem. B, 119:2467–2474, 2015. [http].
  22. D. Zuev, T.-C. Jagau, K.B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M. Head-Gordon, and A.I. Krylov. Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks. J. Chem. Phys., 141:024102, 2014. [http].
  23. T.C. Jagau, D. Zuev, K.B. Bravaya, E. Epifanovsky, and A.I. Krylov. A fresh look at resonances and complex absorbing potentials: Density matrix-based approach. J. Phys. Chem. Lett., 5:310–315, 2014. [http].
  24. R.B. Vegh, K.B. Bravaya, D.A. Bloch, A.S. Bommarius, L.M. Tolbert, M. Verkhovsky, A.I. Krylov, and K.M. Solntsev. Chromophore photoreduction in red fluorescent proteins is responsible for bleaching and phototoxicity. J. Phys. Chem. B, 118:4527–4534, 2014. [http].
  25. K.B. Bravaya and A.I. Krylov. On the photodetachment from the green fluorescent protein chromophore. J. Phys. Chem. A, 117:11815–11822, 2013. [http].
  26. K.B. Bravaya, D. Zuev, E. Epifanovsky, and A.I. Krylov. Complex-scaled equation-of-motion coupled-cluster method with single and double dubstitutions for autoionizing excited states: Theory, implementation, and examples. J. Chem. Phys., 138:124106, 2013. [http].
  27. K. Khistyaev, A. Golan, K.B. Bravaya, N. Orms, A.I. Krylov, and M. Ahmed. Proton transfer in nucleobases is mediated by water. J. Phys. Chem. A, 117:6789–6797, 2013. [http].