Designing Use-Case Realizations with GoF Design Patterns

Example: POS

Concerns:

· External third party services

· More complex product pricing rules

· Pluggable business rules

· Adapter Pattern

The polymorphism pattern (GRASP) example covered in the earlier lecture and its solution is more specifically an example of the GoF Adapter pattern.

Context/Problem: How to resolve incompatible interfaces, or provide a stable interface to similar components which have different interfaces?

Solution: Convert the original interface of a component into another interface, through an intermediate adapter object.

Discussion:

The POS system needs to support several kinds of external third-party services, including tax calculators, credit authorization services, inventory systems, accounting systems, etc. Each has a different API which we don’t have any control.

A solution is to add a level of indirection with objects that adapt the varying external interfaces to a consistent interface used within the application.

Figure 23.1

Using an Adapter

A particular adapter instance will be instantiated for the chosen external service, such as SAP for accounting. This instance will adapt the postSale request to the external interface.

Figure 23.2

Relationship with GRASP patterns

The above application of the Adapter pattern is a specialization of the GRASP building blocks. It offers Protected Variations from changing external interfaces or third-party packages through the use of Indirection object that applies interfaces and Polymorphism.

Domain Model Changes during Design

The getTaxes operation returns a list of TaxLineItems. The tax line items are associated with a Sale. The TaxLineItem class will now be both a software (design) class as well as a domain concept.

Figure 23.3

Related Patterns

An adapter that hides an external system may also be considered a Façade object, as it wraps access to the system with a single object. Strong motivation to call it an adapter since the wrapping object provides adaptation to varying external interfaces.

· Factory Pattern

Consider the problem discussed in the Adapter pattern: who creates the adapters? How to determine which class of adapter to create?

If some domain object creates them, the responsibilities of the domain object are going beyond pure application logic and into concerns related to connectivity with external software components.

Goal: Design to maintain a separation of concerns. If a domain object is chosen, a lower cohesion results.

Apply the (concrete) Factory pattern, in which a Pure Fabrication “factory” object is defined to create objects. Thus, we

· Separate the responsibility of complex creation into cohesive helper objects

· Hide potentially complex creation logic

Context/Problem: Who should be responsible for creating objects when there are special considerations such as complex creation logic, a desire to separate the creation responsibilities for better cohesion, etc.?

Solution: Create a pure fabrication object called a Factory that handles the creation.

The code for getTaxCalculatorAdapter()

{

if (taxCalculatorAdapter == null)

{

 String className = System.getProperty(“taxcalculator.class.name”);

 TaxCalculatorAdapter = (ITaxCalculatorAdapter) Class.forName(className).newInstance();

}

return taxCalculatorAdapter;

}

The factory methods return objects typed to an interface, rather than a class, so that the factory can return any implementation of this interface.

Related Patterns: Factories are often accessed with the Singleton pattern.

· Singleton Pattern

A new problem with the ServicesFactory approach: who creates the factory itself, and how it accessed?

· Only one instance of the factory is needed with the application

· The methods of this factory may be called from anywhere in the code. How to get visibility to this single instance?

· One Solution: Pass the ServicesFactory instance around as a parameter to whenever a visibility is needed for it. This approach is inconvenient.

· Alternative approach: The Singleton pattern. Sometimes, it is desirable to support global visibility or a single access point to a single instance of a class.

Context/Problem: Exactly one instance of a class is allowed – it is a “singleton”. Objects need a global and a single point of access.

Solution: Define a static method which returns the singleton.

Note: instance is the singleton static variable, getInstance() is the singleton static method.

The code for the getInstance() method:

{

public static synchronized ServicesFactory getInstance()

{

 if (instance == null)

instance = new ServicesFactory();

 return instance;

}

}

The key idea is that class X defines a static method getInstance that itself provides a single instance of X. Now, a programmer has global visibility to this single instance:

public class Register

{

public void initialize()

{

…

accountingAdapter = ServicesFactory.getInstance().getAccountingAdapter();

…

}

}

UML for Singleton Access:

Figure 23.6

This approach avoids explicitly showing the getInstance message to the class before sending a message to the singleton interface.

Implementation and Design issues:

· Lazy initialization

public static synchronized ServicesFactory getInstance()

{

 if (instance == null)

instance = new ServicesFactory();

 return instance;

}

· Eager initialization

public class ServicesFactory

{

private static ServicesFactory instance = new ServicesFactory();

public static ServicesFactory getInstance()

{

return instance;

}

}

Lazy initialization is preferred for the following reasons:

· Creation work is avoided if the instance is never actually accessed.

· If the getInstance lazy evaluation contains complex and conditional creation logic.

Question: Why not make all the service methods static methods of the class itself, instead of using an instance object with instance-side methods? We prefer this approach for the following reasons:

· Instance-side methods permit subclassing and refinement of the singleton class into subclasses. Static methods are not polymorphic and don’t permit overriding in subclasses.

· In case of, say Java RMI, remote enabling of instance methods is only allowed. A singleton instance could be remotely enabled.

· If a class is not always a singleton in all application contexts. More flexibility.

Summary: We have used a combination of Adapter, Factory, and Singleton patterns to provide Protected Variations from the varying interfaces of external tax calculators, accounting systems, and so on. So, to handle the problem of varying interfaces for external services, let us use Adapters generated from a Singleton Factory.

· Strategy Pattern

How to provide more complex pricing logic, e.g., store-wide discount for the day, senior discounts, etc.

The pricing strategy for a Sale can vary. During one period, it may be 5% off all sales, later it may be $15 off if the total sale > $100, etc.

Context/Problem: How to design for varying, but related, algorithms or policies? How to design for the ability to change these algorithms or policies?

Solution: Define each algorithm/policy/strategy in a separate class, with a common interface.

Figure 23.8

Since the behavior of pricing varies by strategy (or algorithm), we create multiple SalePricingStrategy classes, each with a polymorphic getTotal method. Each getTotal method takes the Sale object as a parameter, so that the pricing strategy object can find the pre-discounted price from the Sale, and then apply the discounting rule.

A strategy object is attached to a context object – the object to which it applies the algorithm, e.g., Sale. When a getTotal message is send to a Sale, it delegates some of the work to its strategy object.

Figure 23.9

Observe that the context object (Sale) needs attribute visibility to its strategy.

Figure 23.10

Creating a Strategy with a Factory

There are different pricing algorithms or strategies, and they change over time. Who should create the strategy? Let us apply the Factory pattern.

E.g. PricingStategyFactory can be responsible for creating all strategies needed by the application. It can read the name of the implementation class of the pricing strategy, and then make an instance of it.

A new factory was used for the strategies. This supports high cohesion – each factory is cohesively focused on creating a related family of objects.

Note that because of the frequently changing pricing policy, it is not desirable to cache the strategy instance in the field PricingStrategyFactory. The PricingStrategyFactory will be a singleton and accessed via the Singleton pattrern.

Figure 23.11

Figure 23.12

Related Patterns: Strategy is based on polymorphism, and provides protected variations with respect to changing algorithms. Strategies are often created by a Factory.

accountingAdapter: IAccountingAdapter

inventoryAdapter: IInventoryAdapter

taxCalculatorAdapter: ITaxCalculatorAdapter

ServicesFactory

getAccountingAdapter(): IAccountingAdapter

getInventoryAdapter(): IInventoryAdapter

getTaxCalculatorAdapter(): ITaxCalculatoryAdapter

instance: ServicesFactory

accountingAdapter: IAccountingAdapter

inventoryAdapter: IInventoryAdapter

taxCalculatorAdapter: ITaxCalculatorAdapter

getInstance(): ServicesFactory

getAccountingAdapter(): IAccountingAdapter

getInventoryAdapter(): IInventoryAdapter

getTaxCalculatorAdapter(): ITaxCalculatoryAdapter

ServicesFactory

