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Introduction

■ Architecture is key to reducing development costs
❏ development focus shifts to coarse-grained elements

■ Formal architectural models are needed

■ ADLs have been proposed as a possible answer

■ Several prototype ADLs have been developed

→ What an ADL is and its role are still open questions

❏ ACME
❏ Aesop
❏ ArTek
❏ C2
❏ Darwin
❏ LILEANNA

❏ MetaH
❏ Rapide
❏ SADL
❏ UniCon
❏ Weaves
❏ Wright
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ADL Roles

■ Provide models, notations, and tools to describe
components and their interactions

■ Support for large-scale, high-level designs

■ Support for principled selection and application of
architectural paradigms

■ Support for abstractions
❏ user-defined
❏ application-specific

■ Support for implementing designs
❏ systematic
❏ possibly automated

→ Close interplay between language and environment
❏ language enables precise specifications
❏ environment makes them (re)usable
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What Does and ADL Description Look Like? (1)

■ A Rapide Component

■ A Wright connector

type  Application is interface
extern action  Request(p : params);
public action  Results(p : params);

behavior
(?M in  String) Receive(?M) => Results(?M);;

end  Application;

glue = let ROnly = R.read ROnly
R.read-eof R.close
R.close

in let WOnly = W.write WOnly
W.close

in W.write glue
R.read glue
W.close ROnly
Reader.close WriteOnly

→
→ →

→
→

→
→

→
→

→

connector Pipe =
role W = write W close
role R =

let Exit = close
in let DoR = (read R

read-eof Exit)
in DoR Exit

→ →

→
→

→
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What Does and ADL Description Look Like? (2)

■ An ACME architecture

RPC

System simple_cs = {
Component client = {Port send-request}
Component server = {Port receive-request}
Connector rpc = {Roles {caller, callee}}
Attachments : {

client.send-request to rpc.caller;
server.receive-request to rpc.callee

}
}

Client Server
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Attempts at Understanding and Classifying ADLs

■ Previous ADL surveys
❏ Kogut and Clements
❏ Vestal

■ Insights from individual systems
❏ Luckham and Vera
❏ Shaw et al.

■ Identifying underlying ADL characteristics
❏ Tracz
❏ Shaw and Garlan
❏ Medvidovic, Taylor, and Whitehead
❏ Medvidovic and Rosenblum

■ Architecture interchange
❏ ACME
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Example Attempts at Understanding ADLs

■ Shaw and Garlan
❏ composition
❏ abstraction
❏ reusability
❏ (re)configuration
❏ heterogeneity
❏ analysis

■ Tracz
❏ components
❏ connectors
❏ configurations
❏ constraints
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ADL Definition

■ ADL Definition
❏ An ADL is a language that provides features for modeling a

software system’s conceptual architecture.

■ Essential features: explicit specification of
❏ components

❏ interfaces

❏ connectors
❏ configurations

■ Desirable features
❏ specific aspects of components, connectors, and

configurations
❏ tool support
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Differentiating ADLs

■ Approaches to modeling configurations
❏ implicit configuration
❏ in-line configuration
❏ explicit configuration

■ Approaches to associating architecture with
implementation

❏ implementation constraining
❏ implementation independent
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Related Notations

■ High-level design notations

■ Module interconnection languages (MIL)

■ Object-oriented notations

■ Programming languages

■ Formal specification languages

Architecture Description Languages (ADLs) 10

CS 612: Software Architectures February 23, 1999

ADL Components

■ Definition
❏ A component  is a unit of computation or a data store.

Components are loci of computation and state.

■ All ADLs support component modeling

■ Differing terminology
❏ component
❏ interface
❏ process
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Component Classification Categories
■ Interfaces

❏ model both required and provided services

■ Types
❏ enable reuse and multiple instances of the same functionality

■ Semantics
❏ facilitate analyses, constraint enforcement, and mapping of

architectures across levels of refinement

■ Constraints
❏ ensure adherence to intended component uses, usage boundaries,

and intra-component dependencies

■ Evolution
❏ components as design elements evolve
❏ supported through subtyping and refinement

■ Non-Functional Properties
❏ enable simulation of runtime behavior, analysis, constraints, processor

specification, and project management

ACME

Aesop
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ADL Connectors

■ Definition
❏ A connector  is an architectural building block used to model

interactions among components and rules that govern those
interactions.

■ All ADLs support connector modeling
❏ several ADLs do not model connectors as first-class entities
❏ all ADLs support at least syntactic interconnection

■ Differing terminology
❏ connector

❏ connection

❏ binding
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Connector Classification Categories
■ Interfaces

❏ ensure proper connectivity and communication of components

■ Types
❏ abstract away and reuse complex interaction protocols

■ Semantics
❏ analyze component interactions, enforce constraints, and ensure

consistent refinements

■ Constraints
❏ ensure adherence to intended interaction protocols, usage boundaries,

and intra-connector dependencies

■ Evolution
❏ maximize reuse by modifying or refining existing connectors

■ Non-Functional Properties
❏ enable simulation of runtime behavior, analysis, constraint

enforcement, and selection of OTS connectors
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ADL Configurations

■ Definition
❏ An architectural configuration or topology  is a connected

graph of components and connectors which describes
architectural structure.

■ ADLs must model configurations explicitly by definition

■ Configurations help ensure architectural properties
❏ proper connectivity
❏ concurrent and distributed properties
❏ adherence to design heuristics and style rules
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Configuration Classification Categories (1)

■ Understandability
❏ enables communication among stakeholders
❏ system structure should be clear from configuration alone

■ Compositionality
❏ system modeling and representation at different levels of

detail

■ Heterogeneity
❏ development of large systems with pre-existing elements of

varying characteristics

■ Constraints
❏ depict dependencies among components and connectors
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Configuration Classification Categories (2)

■ Refinement and Traceability
❏ bridge the gap between high-level models and code

■ Scalability
❏ supports modeling of systems that may grow in size

■ Evolution
❏ evolution of a single system or a system family

■ Dynamism
❏ enables runtime modification of long-running systems

■ Non-Functional Properties
❏ enable simulation, analysis, constraints, processor

specification, and project management
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ADL Tool Support

■ Formality of ADLs enables their manipulation by tools
❏ toolset is not part of an ADL
❏ usefulness of an ADL depends on its support for

architecture-based development

■ Every ADL provides some tool support

■ Focus typically on a particular area and/or technique

■ Limited overall support motivated the need for
architectural interchange

❏ ACME



Architecture Description Languages (ADLs) 21

CS 612: Software Architectures February 23, 1999

Tool Support Classification Categories
■ Active Specification

❏ support architect by reducing cognitive load

❏ proactive vs. reactive

■ Multiple Views
❏ support for different stakeholders

■ Analysis
❏ upstream evaluation of large, distributed, concurrent systems

■ Refinement
❏ increase confidence in correctness and consistency of refinement

■ Code Generation
❏ ultimate goal of architecture modeling activity

❏ manual approaches result in inconsistencies and lack of traceability

■ Dynamism
❏ enable changes to architectures during execution
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Discussion

■ Goal: distinguish different kinds of ADLs

■ ADL definition is a simple litmus test

■ Several ADLs straddle the boundary
❏ implementation constraining languages

❏ in-line configuration languages

■ Support extensive in certain areas, lacking in others
❏ implementation of complex connectors

❏ non-functional properties

❏ refinement

❏ dynamism

■ Determine relative “value” of an ADL

■ Aid development of ADLs

■ Aid architecture interchange
❏ identifying complementary ADLs


