
Architecture Description Languages (ADLs) 1

CS 612: Software Architectures February 23, 1999

Introduction

■ Architecture is key to reducing development costs
❏ development focus shifts to coarse-grained elements

■ Formal architectural models are needed

■ ADLs have been proposed as a possible answer

■ Several prototype ADLs have been developed

→ What an ADL is and its role are still open questions

❏ ACME
❏ Aesop
❏ ArTek
❏ C2
❏ Darwin
❏ LILEANNA

❏ MetaH
❏ Rapide
❏ SADL
❏ UniCon
❏ Weaves
❏ Wright

Architecture Description Languages (ADLs) 2

CS 612: Software Architectures February 23, 1999

ADL Roles

■ Provide models, notations, and tools to describe
components and their interactions

■ Support for large-scale, high-level designs

■ Support for principled selection and application of
architectural paradigms

■ Support for abstractions
❏ user-defined
❏ application-specific

■ Support for implementing designs
❏ systematic
❏ possibly automated

→ Close interplay between language and environment
❏ language enables precise specifications
❏ environment makes them (re)usable

Architecture Description Languages (ADLs) 3

CS 612: Software Architectures February 23, 1999

What Does and ADL Description Look Like? (1)

■ A Rapide Component

■ A Wright connector

type Application is interface
extern action Request(p : params);
public action Results(p : params);

behavior
(?M in String) Receive(?M) => Results(?M);;

end Application;

glue = let ROnly = R.read ROnly
R.read-eof R.close
R.close

in let WOnly = W.write WOnly
W.close

in W.write glue
R.read glue
W.close ROnly
Reader.close WriteOnly

→
→ →

→
→

→
→

→
→

→

connector Pipe =
role W = write W close
role R =

let Exit = close
in let DoR = (read R

read-eof Exit)
in DoR Exit

→ →

→
→

→

Architecture Description Languages (ADLs) 4

CS 612: Software Architectures February 23, 1999

What Does and ADL Description Look Like? (2)

■ An ACME architecture

RPC

System simple_cs = {
Component client = {Port send-request}
Component server = {Port receive-request}
Connector rpc = {Roles {caller, callee}}
Attachments : {

client.send-request to rpc.caller;
server.receive-request to rpc.callee

}
}

Client Server

Architecture Description Languages (ADLs) 5

CS 612: Software Architectures February 23, 1999

Attempts at Understanding and Classifying ADLs

■ Previous ADL surveys
❏ Kogut and Clements
❏ Vestal

■ Insights from individual systems
❏ Luckham and Vera
❏ Shaw et al.

■ Identifying underlying ADL characteristics
❏ Tracz
❏ Shaw and Garlan
❏ Medvidovic, Taylor, and Whitehead
❏ Medvidovic and Rosenblum

■ Architecture interchange
❏ ACME

Architecture Description Languages (ADLs) 6

CS 612: Software Architectures February 23, 1999

Example Attempts at Understanding ADLs

■ Shaw and Garlan
❏ composition
❏ abstraction
❏ reusability
❏ (re)configuration
❏ heterogeneity
❏ analysis

■ Tracz
❏ components
❏ connectors
❏ configurations
❏ constraints

Architecture Description Languages (ADLs) 7

CS 612: Software Architectures February 23, 1999

ADL Definition

■ ADL Definition
❏ An ADL is a language that provides features for modeling a

software system’s conceptual architecture.

■ Essential features: explicit specification of
❏ components

❏ interfaces

❏ connectors
❏ configurations

■ Desirable features
❏ specific aspects of components, connectors, and

configurations
❏ tool support

Architecture Description Languages (ADLs) 8

CS 612: Software Architectures February 23, 1999

Differentiating ADLs

■ Approaches to modeling configurations
❏ implicit configuration
❏ in-line configuration
❏ explicit configuration

■ Approaches to associating architecture with
implementation

❏ implementation constraining
❏ implementation independent

Architecture Description Languages (ADLs) 9

CS 612: Software Architectures February 23, 1999

Related Notations

■ High-level design notations

■ Module interconnection languages (MIL)

■ Object-oriented notations

■ Programming languages

■ Formal specification languages

Architecture Description Languages (ADLs) 10

CS 612: Software Architectures February 23, 1999

ADL Components

■ Definition
❏ A component is a unit of computation or a data store.

Components are loci of computation and state.

■ All ADLs support component modeling

■ Differing terminology
❏ component
❏ interface
❏ process

Architecture Description Languages (ADLs) 11

CS 612: Software Architectures February 23, 1999

Component Classification Categories
■ Interfaces

❏ model both required and provided services

■ Types
❏ enable reuse and multiple instances of the same functionality

■ Semantics
❏ facilitate analyses, constraint enforcement, and mapping of

architectures across levels of refinement

■ Constraints
❏ ensure adherence to intended component uses, usage boundaries,

and intra-component dependencies

■ Evolution
❏ components as design elements evolve
❏ supported through subtyping and refinement

■ Non-Functional Properties
❏ enable simulation of runtime behavior, analysis, constraints, processor

specification, and project management

ACME

Aesop

C2

Darwin

MetaH

Rapide

SADL

UniCon

Weaves

E
vo

lu
tio

n

C
on

st
ra

in
ts

S
em

an
tic

s

Ty
pe

s

In
te

rf
ac

e

C
om

po
ne

nt
s

Wright

N
on

-F
un

ct
.

P
ro

pe
rt

ie
s

Architecture Description Languages (ADLs) 13

CS 612: Software Architectures February 23, 1999

ADL Connectors

■ Definition
❏ A connector is an architectural building block used to model

interactions among components and rules that govern those
interactions.

■ All ADLs support connector modeling
❏ several ADLs do not model connectors as first-class entities
❏ all ADLs support at least syntactic interconnection

■ Differing terminology
❏ connector

❏ connection

❏ binding

Architecture Description Languages (ADLs) 14

CS 612: Software Architectures February 23, 1999

Connector Classification Categories
■ Interfaces

❏ ensure proper connectivity and communication of components

■ Types
❏ abstract away and reuse complex interaction protocols

■ Semantics
❏ analyze component interactions, enforce constraints, and ensure

consistent refinements

■ Constraints
❏ ensure adherence to intended interaction protocols, usage boundaries,

and intra-connector dependencies

■ Evolution
❏ maximize reuse by modifying or refining existing connectors

■ Non-Functional Properties
❏ enable simulation of runtime behavior, analysis, constraint

enforcement, and selection of OTS connectors

ACME

Aesop

C2

Darwin

MetaH

Rapide

SADL

UniCon

Weaves

E
vo

lu
tio

n

C
on

st
ra

in
ts

S
em

an
tic

s

Ty
pe

s

In
te

rf
ac

e

C
on

ne
ct

or
s

Wright

N
on

-F
un

ct
.

P
ro

pe
rt

ie
s

Architecture Description Languages (ADLs) 16

CS 612: Software Architectures February 23, 1999

ADL Configurations

■ Definition
❏ An architectural configuration or topology is a connected

graph of components and connectors which describes
architectural structure.

■ ADLs must model configurations explicitly by definition

■ Configurations help ensure architectural properties
❏ proper connectivity
❏ concurrent and distributed properties
❏ adherence to design heuristics and style rules

Architecture Description Languages (ADLs) 17

CS 612: Software Architectures February 23, 1999

Configuration Classification Categories (1)

■ Understandability
❏ enables communication among stakeholders
❏ system structure should be clear from configuration alone

■ Compositionality
❏ system modeling and representation at different levels of

detail

■ Heterogeneity
❏ development of large systems with pre-existing elements of

varying characteristics

■ Constraints
❏ depict dependencies among components and connectors

Architecture Description Languages (ADLs) 18

CS 612: Software Architectures February 23, 1999

Configuration Classification Categories (2)

■ Refinement and Traceability
❏ bridge the gap between high-level models and code

■ Scalability
❏ supports modeling of systems that may grow in size

■ Evolution
❏ evolution of a single system or a system family

■ Dynamism
❏ enables runtime modification of long-running systems

■ Non-Functional Properties
❏ enable simulation, analysis, constraints, processor

specification, and project management

ACME

Aesop

C2

Darwin

MetaH

Rapide

SADL

UniCon

Weaves
R

efi
ne

m
en

t &

C
on

st
ra

in
ts

H
et

er
og

en
ei

ty

C
om

po
si

tio
na

lit
y

U
nd

er
st

an
da

bi
lit

y

S
ca

la
bi

lit
y

E
vo

lu
tio

n

D
yn

am
is

m

Tr
ac

ea
bi

lit
y

C
on

fig
ur

at
io

ns

Wright

N
on

-F
un

ct
.

P
ro

pe
rt

ie
s

Architecture Description Languages (ADLs) 20

CS 612: Software Architectures February 23, 1999

ADL Tool Support

■ Formality of ADLs enables their manipulation by tools
❏ toolset is not part of an ADL
❏ usefulness of an ADL depends on its support for

architecture-based development

■ Every ADL provides some tool support

■ Focus typically on a particular area and/or technique

■ Limited overall support motivated the need for
architectural interchange

❏ ACME

Architecture Description Languages (ADLs) 21

CS 612: Software Architectures February 23, 1999

Tool Support Classification Categories
■ Active Specification

❏ support architect by reducing cognitive load

❏ proactive vs. reactive

■ Multiple Views
❏ support for different stakeholders

■ Analysis
❏ upstream evaluation of large, distributed, concurrent systems

■ Refinement
❏ increase confidence in correctness and consistency of refinement

■ Code Generation
❏ ultimate goal of architecture modeling activity

❏ manual approaches result in inconsistencies and lack of traceability

■ Dynamism
❏ enable changes to architectures during execution

ACME

Aesop

C2

Darwin

MetaH

Rapide

SADL

UniCon

Weaves

D
yn

am
is

m

C
od

e

R
efi

ne
m

en
t

A
na

ly
si

s

M
ul

tip
le

A
ct

iv
e

S
pe

ci
fic

at
io

n

V
ie

w
s

G
en

er
at

io
n

To
ol

 S
up

po
r

t

Wright

Architecture Description Languages (ADLs) 23

CS 612: Software Architectures February 23, 1999

Discussion

■ Goal: distinguish different kinds of ADLs

■ ADL definition is a simple litmus test

■ Several ADLs straddle the boundary
❏ implementation constraining languages

❏ in-line configuration languages

■ Support extensive in certain areas, lacking in others
❏ implementation of complex connectors

❏ non-functional properties

❏ refinement

❏ dynamism

■ Determine relative “value” of an ADL

■ Aid development of ADLs

■ Aid architecture interchange
❏ identifying complementary ADLs

