
Introduction to Software Architectures 1

CS 612: Software Architectures January 21, 1999

Review — The Origins

■ For many years, software engineers have been
employing software architectures without knowing it!

■ Origins of explicit architectures lie in issues encountered
and identified by researchers and practitioners

❏ essential software engineering difficulties
❏ unique characteristics of programming-in-the-large
❏ need for software reuse

■ Origins of explicit architectures also lie in solutions
developed to deal with those issues

❏ module interconnection languages
❏ megaprogramming
❏ formal specification methods and languages
❏ transformational programming

Introduction to Software Architectures 2

CS 612: Software Architectures January 21, 1999

Review — Essential Difficulties

■ At best, only partial solutions exist

■ Hey, this bullet is not silver!

■ Some promising attacks on complexity
❏ buy vs. build
❏ requirements refinement and rapid prototyping
❏ incremental development
❏ grow great designers

❏ changeability
❏ invisibility

❏ complexity
❏ conformity

❏ graphical programming
❏ program verification
❏ environments and tools
❏ workstations

❏ high-level languages
❏ OO programming
❏ AI
❏ automatic programming

Introduction to Software Architectures 5

CS 612: Software Architectures January 21, 1999

Review — Megaprogramming

■ A s/w development framework that unites ideas of

■ Shifts focus to components and their compositions

■ Aims for conventionalized structures and standards

■ Economic issues
❏ recognize the canonical reuse roles
❏ change organizational incentive structure
❏ educate for reuse and megaprogramming
❏ build a component marketplace

■ Great idea but still needs an accompanying methodology
❏ not there yet

❏ component-based development
❏ domain-specific approaches

❏ software reuse
❏ product lines

Introduction to Software Architectures 6

CS 612: Software Architectures January 21, 1999

Review — Formal Methods

■ Body of software specification techniques supported by
precise mathematics and reasoning tools

■ Applicability in software development

■ Desirable effects
❏ reliable, secure, safe systems

❏ clarify customer’s requirements

❏ reveal ambiguity, inconsistency, incompleteness

❏ more efficient production

■ Problems
❏ difficult to understand
❏ typically impractical for large problems

❏ system models
❏ constraints
❏ designs

❏ requirements specifications
❏ automated implementation

Introduction to Software Architectures 7

CS 612: Software Architectures January 21, 1999

Review — Transformational Systems

■ Goals
❏ general support for program modification

❏ program synthesis from a formal specification

❏ program adaptation to different environments

❏ verification of program correctness

■ Transformational programming guarantees that the final
program satisfies the initial formal specification

■ Several problems
❏ fully automated transformational systems are infeasible
❏ extremely difficult to use
❏ typically used on “toy” problems
❏ require extensive expertise
❏ generated systems are inefficient
❏ generated systems are difficult to debug

Introduction to Software Architectures 8

CS 612: Software Architectures January 21, 1999

Where Now?

■ Control inherent software complexity
❏ elevate abstraction levels
❏ match developers’ mental models

→ Explicitly address a system’s conceptual architecture
❏ modifying a completed building is difficult
❏ modifying its blueprint is easy in comparison

→ Software architecture is a software system’s blueprint
❏ addresses complexity
❏ increases reuse and component marketplace potential
❏ subsumes formal methods

machine
language

developer’s
mental

assembly
language

procedural
programming

language

object-oriented
programming

language

(semi)formal
specification

language

binary
bits

model

elementary
instructions

lines-of-code
or procedures

lines-of-code
or classes

mathematical
constructs

Introduction to Software Architectures 9

CS 612: Software Architectures January 21, 1999

Focus and Scope of Software Architectures

■ Two primary foci
❏ system structure
❏ correspondence between requirements and implementation
→ components + rules of composition + rules of behavior

■ A framework for understanding system-level concerns
❏ global rates of flow
❏ communication patterns
❏ execution control structure
❏ scalability
❏ paths of system evolution
❏ capacity
❏ throughput
❏ consistency
❏ component compatibility

Introduction to Software Architectures 10

CS 612: Software Architectures January 21, 1999

Definitions of Software Architecture

■ Perry and Wolf
❏ Software Architecture = { Elements, Form, Rationale }

■ Shaw and Garlan
❏ Software architecture [is a level of design that] involves

→ the description of elements from which systems are built,

→ interactions among those elements,

→ patterns that guide their composition,

→ and constraints on these patterns.

■ Kruchten
❏ Software architecture deals with the design and

implementation of the high-level structure of software.
❏ Architecture deals with abstraction, decomposition,

composition, style, and aesthetics.

WHAT HOW WHY

Introduction to Software Architectures 11

CS 612: Software Architectures January 21, 1999

Why Architecture?

■ A key to reducing development costs

■ A shift in developer focus
❏ component-based development philosophy
❏ explicit system structure

■ Separation of concerns

■ A natural evolution of design abstractions
❏ structure and interaction details overshadow the choice of

algorithms and data structures in large/complex systems

■ Benefits of explicit architectures
❏ a framework for satisfying requirements
❏ technical basis for design
❏ managerial basis for cost estimation & process management
❏ effective basis for reuse
❏ basis for consistency and dependency analysis

Introduction to Software Architectures 12

CS 612: Software Architectures January 21, 1999

Key Architectural Concepts

■ Three canonical building blocks
❏ components
❏ connectors
❏ configurations

■ Ideally, building blocks are defined independently
❏ supports reuse in different contexts
❏ supports interconnections unforeseen by original developers
→ difficult in practice

Introduction to Software Architectures 13

CS 612: Software Architectures January 21, 1999

Components

■ A component is a unit of computation or a data store
❏ Perry & Wolf’s processing and data elements

■ Components are loci of computation and state
❏ clients
❏ servers
❏ databases
❏ filters
❏ layers
❏ ADTs

■ A component may be simple or composite
❏ composite components describe a system

Introduction to Software Architectures 14

CS 612: Software Architectures January 21, 1999

Connectors

■ A connector is an architectural element that models
❏ interactions among components
❏ rules that govern those interactions

■ Simple interactions
❏ procedure calls
❏ shared variable access

■ Complex and semantically rich interactions
❏ client-server protocols
❏ database access protocols
❏ asynchronous event multicast
❏ piped data streams

Introduction to Software Architectures 15

CS 612: Software Architectures January 21, 1999

Configurations/Topologies

■ An architectural configuration or topology is a
connected graph of components and connectors which
describes architectural structure.

❏ proper connectivity
❏ concurrent and distributed properties
❏ adherence to design heuristics and style rules

■ Composite components are configurations

C3 C4 C5

A

B C

D

C2C1

C7C6

Introduction to Software Architectures 16

CS 612: Software Architectures January 21, 1999

Architectural Perspectives

Architectural
View

Level of
Abstraction

structural

structural

data flow

control flow

process

implementation

source
code

designhigh level
architecture

. . .

requirements

textual

graphical

Introduction to Software Architectures 17

CS 612: Software Architectures January 21, 1999

Example Architecture — Compiler

Lexer

Parser

Semantor

Optimizer

Code
Generator

Sequential

Lexer Parser Semantor

Internal
Representation

Parallel

Introduction to Software Architectures 18

CS 612: Software Architectures January 21, 1999

Example Architecture — Video Game
Clock
Logic

Status
Logic

Tile
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Tile Match
Logic

Next Tile
Placing Logic

Status
ADT

Manager
Layout

Manager

Introduction to Software Architectures 19

CS 612: Software Architectures January 21, 1999

Analogies to Software Architecture

■ Hardware architecture
❏ small number of design elements
❏ scale by replication of (canonical) design elements

■ Network architecture
❏ focus on topology
❏ only a few topologies considered

❏ e.g., star, ring, grid

■ Building architecture
❏ multiple views
❏ styles

Introduction to Software Architectures 20

CS 612: Software Architectures January 21, 1999

Current Treatment of Software Architectures

■ Understood at the level of intuition, anecdote, and folklore

■ Informal descriptions
❏ boxes and lines
❏ informal prose

■ Semantically rich vocabulary that conveys a lot
❏ RPC
❏ client-server
❏ pipe and filter
❏ layered
❏ distributed
❏ OO

■ Is this level of informality really a critical problem?

Introduction to Software Architectures 21

CS 612: Software Architectures January 21, 1999

What Are Software Architectures Used for?

■ Architectural domains
❏ classes of problems or areas of concern in architecture

Representation

Design Process Support

Analysis

Evolution

Refinement

Traceability

Simulation/Executability

Static

Dynamic

Specification-Time

Execution-Time

Introduction to Software Architectures 22

CS 612: Software Architectures January 21, 1999

Representation

■ Principal problems
❏ aid stakeholder communication and understanding

■ Desired solutions
❏ multiple perspectives

■ Achievable via
❏ graphical notations
❏ additional views: control flow, data flow, process, resource

utilization
❏ explicit configuration modeling

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability

Introduction to Software Architectures 23

CS 612: Software Architectures January 21, 1999

Design Process Support

■ Principal problems
❏ (de)compose large, distributed, heterogeneous systems

■ Desired solutions
❏ multiple perspectives
❏ design guidance and rationale

■ Achievable via
❏ active support for specification

❏ proactive vs. reactive

❏ non-intrusive vs. intrusive

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability

Introduction to Software Architectures 24

CS 612: Software Architectures January 21, 1999

Static Analysis

■ Principal problems
❏ evaluate system properties upstream to reduce number and

cost of errors
❏ architecture is analyzed without executing it

■ Desired solutions
❏ internal consistency
❏ concurrent and distributed properties
❏ design heuristics and style rules

■ Achievable via
❏ parsers, compilers, model checkers
❏ schedulability and resource utilization
❏ design critics

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability

Introduction to Software Architectures 25

CS 612: Software Architectures January 21, 1999

Dynamic Analysis

■ Principal problems
❏ same as static analysis
❏ architecture is analyzed during execution

→ how do you execute an architecture?

■ Desired solutions
❏ testing and debugging
❏ assertion checking
❏ specification and checking of important runtime properties

■ Achievable via
❏ scenarios
❏ discovering properties through simulation
❏ event visualization and filtering

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability

Introduction to Software Architectures 26

CS 612: Software Architectures January 21, 1999

Specification-Time Evolution

■ Principal problems
❏ evolution of design elements, systems, and system families

■ Desired solutions
❏ architectural equivalent of subtyping/refinement
❏ incremental specification
❏ system families

■ Achievable via
❏ heterogeneous, flexible subtyping mechanisms
❏ explicit and flexible connectors
❏ explicit specification of application family

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability

Introduction to Software Architectures 27

CS 612: Software Architectures January 21, 1999

Execution-Time Evolution

■ Principal problems
❏ same as specification-time evolution
❏ must be accomplished during system execution

■ Desirable solutions
❏ replication, insertion, removal, and reconnection
❏ planned or unplanned
❏ constraint satisfaction

■ Achievable via
❏ constrained and unconstrained (“pure”) dynamism
❏ conditional configuration
❏ replication
❏ analysis of architecture during system modification

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability

Introduction to Software Architectures 28

CS 612: Software Architectures January 21, 1999

Refinement

■ Principal problems
❏ bridge the gap between informal diagrams and programming

languages

■ Desired solutions
❏ specify architectures at different abstraction levels
❏ correct and consistent refinement across levels

■ Achievable via
❏ correctness-preserving mappings
❏ comparative simulations of mapped architectures

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability

