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Review — The Origins

■ For many years, software engineers have been
employing software architectures without knowing it!

■ Origins of explicit architectures lie in issues encountered
and identified by researchers and practitioners

❏ essential software engineering difficulties
❏ unique characteristics of programming-in-the-large
❏ need for software reuse

■ Origins of explicit architectures also lie in solutions
developed to deal with those issues

❏ module interconnection languages
❏ megaprogramming
❏ formal specification methods and languages
❏ transformational programming
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Review — Essential Difficulties

■ At best, only partial solutions exist

■ Hey, this bullet is not silver!

■ Some promising attacks on complexity
❏ buy vs. build
❏ requirements refinement and rapid prototyping
❏ incremental development
❏ grow great designers

❏ changeability
❏ invisibility

❏ complexity
❏ conformity

❏ graphical programming
❏ program verification
❏ environments and tools
❏ workstations

❏ high-level languages
❏ OO programming
❏ AI
❏ automatic programming
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Review — Megaprogramming

■ A s/w development framework that unites ideas of

■ Shifts focus to components and their compositions

■ Aims for conventionalized structures and standards

■ Economic issues
❏ recognize the canonical reuse roles
❏ change organizational incentive structure
❏ educate for reuse and megaprogramming
❏ build a component marketplace

■ Great idea but still needs an accompanying methodology
❏ not there yet

❏ component-based development
❏ domain-specific approaches

❏ software reuse
❏ product lines
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Review — Formal Methods

■ Body of software specification techniques supported by
precise mathematics and reasoning tools

■ Applicability in software development

■ Desirable effects
❏ reliable, secure, safe systems

❏ clarify customer’s requirements

❏ reveal ambiguity, inconsistency, incompleteness

❏ more efficient production

■ Problems
❏ difficult to understand
❏ typically impractical for large problems

❏ system models
❏ constraints
❏ designs

❏ requirements specifications
❏ automated implementation
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Review — Transformational Systems

■ Goals
❏ general support for program modification

❏ program synthesis from a formal specification

❏ program adaptation to different environments

❏ verification of program correctness

■ Transformational programming guarantees that the final
program satisfies the initial formal specification

■ Several problems
❏ fully automated transformational systems are infeasible
❏ extremely difficult to use
❏ typically used on “toy” problems
❏ require extensive expertise
❏ generated systems are inefficient
❏ generated systems are difficult to debug
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Where Now?

■ Control inherent software complexity
❏ elevate abstraction levels
❏ match developers’ mental models

→ Explicitly address a system’s conceptual architecture
❏ modifying a completed building is difficult
❏ modifying its blueprint is easy in comparison

→ Software architecture is a software system’s blueprint
❏ addresses complexity
❏ increases reuse and component marketplace potential
❏ subsumes formal methods
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Focus and Scope of Software Architectures

■ Two primary foci
❏ system structure
❏ correspondence between requirements and implementation
→ components + rules of composition + rules of behavior

■ A framework for understanding system-level concerns
❏ global rates of flow
❏ communication patterns
❏ execution control structure
❏ scalability
❏ paths of system evolution
❏ capacity
❏ throughput
❏ consistency
❏ component compatibility
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Definitions of Software Architecture

■ Perry and Wolf
❏ Software Architecture = { Elements, Form, Rationale }

■ Shaw and Garlan
❏ Software architecture [is a level of design that] involves

→ the description of elements from which systems are built,

→ interactions among those elements,

→ patterns that guide their composition,

→ and constraints on these patterns.

■ Kruchten
❏ Software architecture deals with the design and

implementation of the high-level structure of software.
❏ Architecture deals with abstraction, decomposition,

composition, style, and aesthetics.

WHAT HOW WHY
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Why Architecture?

■ A key to reducing development costs

■ A shift in developer focus
❏ component-based development philosophy
❏ explicit system structure

■ Separation of concerns

■ A natural evolution of design abstractions
❏ structure and interaction details overshadow the choice of

algorithms and data structures in large/complex systems

■ Benefits of explicit architectures
❏ a framework for satisfying requirements
❏ technical basis for design
❏ managerial basis for cost estimation & process management
❏ effective basis for reuse
❏ basis for consistency and dependency analysis
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Key Architectural Concepts

■ Three canonical building blocks
❏ components
❏ connectors
❏ configurations

■ Ideally, building blocks are defined independently
❏ supports reuse in different contexts
❏ supports interconnections unforeseen by original developers
→ difficult in practice
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Components

■ A component  is a unit of computation or a data store
❏ Perry & Wolf’s processing and data elements

■ Components are loci of computation and state
❏ clients
❏ servers
❏ databases
❏ filters
❏ layers
❏ ADTs

■ A component may be simple or composite
❏ composite components describe a system
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Connectors

■ A connector  is an architectural element that models
❏ interactions among components
❏ rules that govern those interactions

■ Simple interactions
❏ procedure calls
❏ shared variable access

■ Complex and semantically rich interactions
❏ client-server protocols
❏ database access protocols
❏ asynchronous event multicast
❏ piped data streams
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Configurations/Topologies

■ An architectural configuration or topology  is a
connected graph of components and connectors which
describes architectural structure.

❏ proper connectivity
❏ concurrent and distributed properties
❏ adherence to design heuristics and style rules

■ Composite components are configurations
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Architectural Perspectives
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Example Architecture — Compiler
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Example Architecture — Video Game
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Analogies to Software Architecture

■ Hardware architecture
❏ small number of design elements
❏ scale by replication of (canonical) design elements

■ Network architecture
❏ focus on topology
❏ only a few topologies considered

❏ e.g., star, ring, grid

■ Building architecture
❏ multiple views
❏ styles
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Current Treatment of Software Architectures

■ Understood at the level of intuition, anecdote, and folklore

■ Informal descriptions
❏ boxes and lines
❏ informal prose

■ Semantically rich vocabulary that conveys a lot
❏ RPC
❏ client-server
❏ pipe and filter
❏ layered
❏ distributed
❏ OO

■ Is this level of informality really a critical problem?
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What Are Software Architectures Used for?

■ Architectural domains
❏ classes of problems or areas of concern in architecture

Representation

Design Process Support

Analysis

Evolution

Refinement
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Simulation/Executability

Static

Dynamic

Specification-Time

Execution-Time
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Representation

■ Principal problems
❏ aid stakeholder communication and understanding

■ Desired solutions
❏ multiple perspectives

■ Achievable via
❏ graphical notations
❏ additional views: control flow, data flow, process, resource

utilization
❏ explicit configuration modeling

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability
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Design Process Support

■ Principal problems
❏ (de)compose large, distributed, heterogeneous systems

■ Desired solutions
❏ multiple perspectives
❏ design guidance and rationale

■ Achievable via
❏ active support for specification

❏ proactive vs. reactive

❏ non-intrusive vs. intrusive

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability
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Static Analysis

■ Principal problems
❏ evaluate system properties upstream to reduce number and

cost of errors
❏ architecture is analyzed without executing it

■ Desired solutions
❏ internal consistency
❏ concurrent and distributed properties
❏ design heuristics and style rules

■ Achievable via
❏ parsers, compilers, model checkers
❏ schedulability and resource utilization
❏ design critics

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability
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Dynamic Analysis

■ Principal problems
❏ same as static analysis
❏ architecture is analyzed during execution

→ how do you execute an architecture?

■ Desired solutions
❏ testing and debugging
❏ assertion checking
❏ specification and checking of important runtime properties

■ Achievable via
❏ scenarios
❏ discovering properties through simulation
❏ event visualization and filtering

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability
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Specification-Time Evolution

■ Principal problems
❏ evolution of design elements, systems, and system families

■ Desired solutions
❏ architectural equivalent of subtyping/refinement
❏ incremental specification
❏ system families

■ Achievable via
❏ heterogeneous, flexible subtyping mechanisms
❏ explicit and flexible connectors
❏ explicit specification of application family

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability
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Execution-Time Evolution

■ Principal problems
❏ same as specification-time evolution
❏ must be accomplished during system execution

■ Desirable solutions
❏ replication, insertion, removal, and reconnection
❏ planned or unplanned
❏ constraint satisfaction

■ Achievable via
❏ constrained and unconstrained (“pure”) dynamism
❏ conditional configuration
❏ replication
❏ analysis of architecture during system modification

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability
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Refinement

■ Principal problems
❏ bridge the gap between informal diagrams and programming

languages

■ Desired solutions
❏ specify architectures at different abstraction levels
❏ correct and consistent refinement across levels

■ Achievable via
❏ correctness-preserving mappings
❏ comparative simulations of mapped architectures

Representation
Design Process

Support
Analysis Evolution Refinement Traceability

Simulation /
Executability




