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  1  

INTRODUCTION: FORMALIZATION AND SCHENKERIAN ANALYSIS 

Schenkerian analysis is not so much a theory or an analytical method as it is a 

symbolic language for expressing intuitions about tonal music.  The people who speak 

this language have many different theories about tonal music, and many different 

approaches to analyzing it.  After all, the state of music theory would be very sorry 

indeed if the structure of tonal music were a problem solved by somebody a hundred 

years ago and since then the primary distinction of music theory instructors was that they 

knew all about that guy and whole-heartedly agreed with him.  In truth, a music theorist 

must not only be able to speak the language of Schenkerian analysis, but also have 

insights about music to express in this language.  Schenker’s contribution was not to 

develop a theory of music—understanding “theory of music” in the sense of “quantum 

theory” or “evolutionary theory” as a set of verifiable statements about music—, nor to 

develop a method of analysis—understanding “method” as a replicable process for 

making analytical decisions.  Rather, he developed a novel language, both in his 

terminology and symbols, that is especially well suited to the expression of ways of 

hearing music. 

It is easy to run into a lot of confusion about this.  For instance, it is easy to think 

that Schenker’s Ursatz is a theoretical assertion that all the experts have come to agree 

upon, much as biologists have come to agree upon Darwin’s theory of evolution.  Or, to 

repeat a brief summary of Schenkerian theory I once heard from a knowledgeable 

musician: “Schenker said that all music basically boils down to I-V-I.”  If this were the 

case, it would be quite remarkable that in a hundred years no one has thought to 

empirically test the idea that music boils down to I-V-I.  This would be like trying to 

verify that predicates must always follow subjects because wherever one finds a thing it 

can always be said to be doing something.  Wherever one finds a piece of tonal music, it 

can be said to have a beginning, middle, and ending. 

For instance, David Beach (1977) says of the Urlinie and Ursatz that “Schenker 

arrived at them, or more precisely discovered their existence, after years of searching for 
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the fundamental and natural laws of tonality” (280).1  Beach’s statement implies that the 

Ursatz is something that objectively exists in music apart from any person’s theoretical 

formulation of it.  For this to be true there ought to be some formulation of the idea of an 

Ursatz that makes it possible to say, for a particular piece of music, that it is not in fact 

derived from an Ursatz.  (That is, the existence of the Ursatz and Urlinie ought to be 

falsifiable).  However, neither Schenker nor Beach has ever proposed such a formulation: 

in fact, according to the conventions of Schenkerian analysis, any piece of music that 

includes some sort of cadence in the tonic key can be (and will be) derived from the 

Ursatz in a Schenkerian analysis.2  This is not a flaw of Schenker’s theory because 

Schenker didn’t propose it as a scientific theory; it only becomes a flaw if one wishes to 

make a scientific theory out of it (to prove, perhaps, that the Ursatz was something that 

Schenker discovered, not something he just made up).  

Actually, the Ursatz is not a theoretical assertion but a linguistic convention.  Not 

only that, it is quite an important convention because it enables one to speak 

meaningfully about such things as head tones, structural dominants, and structural 

endings.  The rebel theorist is free to test such propositions as “every piece of tonal music 

has a V chord with its fifth in the upper voice,” but she should not be surprised if 

falsifying this proposition by finding a piece of tonal music that has no such V chord fails 

to stop people from talking about structural dominants.  The rebel theorist will hear 

responses such as, “actually, the fifth in the structural dominant is an implied tone here,” 

                                                
1 This is not an isolated claim of Schenker’s “discovery” of the Ursatz: in fact these 
claims follow the lead of Schenker himself, who says in Meisterwerk II, “alles 
Religionsempfinden, alle Philosophie, Wissenschaft drängt zur kürzeften Formel, ein 
ähnlicher Trieb ließ mich auch das Tonstück nur aus dem Kern des Ursatzes als der 
ersten Auskomponierung des Grundklangs (Tonalität) begreifen; ich habe die Urlinie 
erschaut, nicht erreichnet!”  Schenker uses deliberately biblical (or perhaps Husserlian?) 
language here (“ich habe die Urlinie erschaut”).  He certainly doesn’t mean to imply 
discovery in the scientific sense. 
2 Schenker himself claimed that certain composers, such as Wagner and Bruckner, did 
not compose from the Ursatz.  However, this doesn’t mean that one could not interpret 
their work in terms of an Ursatz with a certain amount of effort, only that these 
composers didn’t hear their own work through the Ursatz and therefore such an 
interpretation wouldn’t reveal the artistic agency of the composer. 
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or “the structural dominant in this piece is actually not a V chord.”  The problem is not 

that the term “structural dominant” is ill-defined; rather, it is not defined in terms of the 

elements of music—as a V chord, a metrically emphasized chord, or anything of the 

sort—but normatively: “from the top down,” as that musical event that represents the 

penultimate event in the Ursatz.  To be sure, there are many conventions about what 

musical elements tend to make up a structural dominant, but any of them may be broken; 

what it “basically boils down to” is that when I say “X is the structural dominant of this 

piece of music,” I am asserting something about how I hear the music, that I hear X as the 

musical event that fundamentally prepares the conclusion of the piece. 

Fields of mathematics are also languages, not theories.  It would not be an 

especially worthwhile expenditure of one’s time to test whether, in all cases, putting nine 

things together with seven other things always results in sixteen things.  Trying to convince 

algebraists that, actually in some cases it is possible to put nine things together with seven 

things and get four things, would be like trying to convince Schenkerians that, actually 

there are some pieces of tonal music that don’t have structural endings.  Neither of these 

claims would strike the listener as verifiable claims about the world so much as  pleas that 

we should change the rules of the language game—as in, “sometimes, it is better to adopt 

the convention that 9 + 7 = 4 when adding things like pitch classes,” or “when talking 

about this particular genre of music it better expresses my hearing to have a rule that says 

some pieces have endings whereas others do not.”  To elaborate on the latter case, it is 

certainly possible to give a standard Schenkerian analysis of the Schumann song “Im 

Wunderschönen Monat Mai” and to discuss “the structural ending of ‘Im Wunderschönen 

Monat Mai.’”  However, it would also be reasonable for someone to say “It better 

expresses my hearing of this song to say that it lacks an ending” and to develop an 

analytical method that resembles Schenkerian analysis but revises the standard Ursätze in 

order to give a meaningful sense to “lacking an ending.”  Yet, this would in no way 

“disprove” Schenkerian “theory”; the most it could do would be to become such a popular 

way of speaking about music that it supplanted the older Schenkerian terminology. 

This being said, it would be irresponsible to paint over the vast differences 

between a field of mathematics and Schenkerian analysis by saying that when you get 
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right down to it, they both are languages.  There is good reason why we distinguish 

between languages that are mathematical and those that are not.  A mathematical 

language is one that is valuable for its rigor and precision, not for its ability to 

communicate.  To demand the same precision of a natural language would strangle the 

language’s function as a medium for formulating novel ideas.  It would be impossible for 

mathematicians to carry on their work only expressing themselves in mathematical 

languages: the work of a mathematician is not “speaking mathematics,” although that is 

something a mathematician can do.  The work of a mathematician is creating, modifying, 

and describing mathematical languages, and that work is done with the aid of some 

(necessarily) non-mathematical language; call it a “meta-language” if you will. 

On the other hand, there is nothing wrong, in principle, with musicians carrying 

on a discourse about music purely in the language of Schenkerian symbols.  Natural 

languages such as English or German are useful as supplements to the language of 

Schenkerian symbols, only because the Schenkerian language is relatively simple and 

confining in its scope, but they aren’t necessary as a “meta-language” although they can 

serve this function also.  That is, the work of Schenkerian theory is not only to describe 

and modify the Schenkerian language, but also substantively to make statements about 

music in the language.  In this sense the Schenkerian language is more like natural 

languages than mathematical ones.3 

It is essential to keep all this in mind when embarking on the project of 

“formalizing Schenkerian analysis,” because the question, “what is the point of doing 

this?” inevitably arises.  Of course, the reason one hears this question so often is probably 

                                                
3 John Rahn (1989a) makes a related point in explicitly Wittgensteinian terms: “Theories 
are language-like, and using formal theories is a language-game.  The game played by 
music theorists emphasizes communication, not segregation or prediction.  One of the 
reasons that Schenker’s theory is so popular is its ability to support discourse among 
analysts, so that significantly differing perceptions of the structure of a piece can be 
articulated precisely.”  I concur with Rahn’s fundamental philosophical stance, although I 
question the precision of the Schenkerian language as it presently stands.  This entire 
paper, in fact, can be read as a revelation of the imprecision of Schenkerian language, 
showing the countless ways one might interpret concepts as basic to Schenkerism as 
prolongation. 
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that some people find the task of formalizing musical analysis more fun than playing 

chess while others find it more dull and laborious than doing their taxes, but it’s fair to 

expect a ready explanation of what a formalization is supposed to do and what it isn’t 

supposed to do.  “Formalizing” something means incorporating it into a mathematical 

language.  In the case of Schenkerian analysis, the formalization is not intended to 

supplant the Schenkerian language; indeed, it is not possible to formalize every 

imaginable statement one could make in this language.  For instance, we will be 

especially concerned below with statements saying that one thing prolongs another; these 

are a highly important class of statements in the Schenkerian language and we can and 

should formalize them.  However, this says nothing about statements about, for instance, 

voice exchange.  These could also be formalized—perhaps they should—, and the formal 

model of prolongation probably would inform the process of formalizing voice exchange.  

Yet, this is a separate matter, and there is no end to such separate matters. 

To be sure, often it is the formalizers who are to blame for the bad reputation of 

formal and mathematical theories because they conflate the process of formalization with 

one of its functions, that of generating testable hypotheses.  Thus, mathematical theories 

have a reputation for being prescriptive.  It is true that formal theory is necessarily 

prescriptive of terminology, but it is never in principle prescriptive of analysis.  That is, 

formal theory sets limits on how one can use certain terms, because such limits make it 

possible for speaker and listener to achieve a fuller understanding of one another’s 

insights.  However, a formal theory should never tell us that there is only one way to hear 

a particular piece of music, only that the analyst with unusual insights should express 

them with language that has not already been claimed for other purposes. 

Presenting formalization as prescriptive falsely separates analysts into camps like 

warring nations who are unified in accepting national identities that are, in reality, 

completely arbitrary.  When the “other side” accepts the mistaken idea that formalization 

is inherently prescriptive of analysis, they become needlessly mystical about “musical 

truth.”  For instance, consider the following comment of Carl Schachter in his article 

“Either/Or,” in which he passingly maligns the idea of a “theory of reduction:” 
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I strongly doubt that such methods or theories can be made to work, for I 
believe that the understanding of detail begins with an intuitive grasp of large 
structure, however imperfect or incomplete, a process that is ultimately 
resistant to rigorous formalization. (167) 

Schachter seems to present here two paths to musical truth: intuition and 

formalization, and decides in favor of intuition, believing that formalization leads to a 

labyrinth of dead-ends.  The result is a quite a nebulous recommendation to the reader 

desiring a better understanding of music: improve your musical intuition—what is, in 

fact, a mystical smoke screen on the model of Schenker’s own “if you’re not one of the 

geniuses, you just aren’t ever going to get it.” 

This is not really what Schachter means, though.  The observation he makes in 

this article is that many analytical conundrums must be solved in novel or unanticipated 

ways, through a comprehensive understanding of the music.  The problem is that 

Schachter accepts the false premises of the authors—I would guess that Lerdahl and 

Jackendoff, whose theory I will discuss in part two, are foremost among them—who he is 

reacting against: that the ultimate goal of formal theory is to replace analytical insight 

with mechanical processes.  Schachter is quite right to point out that this is impossible, 

since the formal theory cannot hope to anticipate every analytically relevant insight one 

might have about a piece of music.  However, the dichotomy between intuition and 

formalism is a false one: without intuition, there is no formalism; formalism is built upon 

intuition.  And yet, without the means of expression provided by formalism, intuition 

inevitably evaporates into the Brownian motion of misunderstanding.  Intuition and 

formalization are not two things that one must choose between; they are two essential 

components to the process of constructing a theory of music. 

Although we can’t expect, and indeed shouldn’t hope, to eradicate all imprecise 

speech by replacing it with mathematical speech, it is irresponsible to not use precise 

language when it is possible.  Consider, for instance, a physicist who is describing the 

motion of a ball thrown in the air.  It would inappropriate for her to say, “the ball moves 

in a kind of arch-like shape” when she could say, “the trajectory of the ball traces a 

parabola.”  The latter statement, in the context of a world with Cartesian geometry, is 

fairly precise: the listener knows how to check for himself whether it is true.  The first 
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statement is vague: the listener doesn’t know exactly what counts as arch-like and what 

doesn’t.  In a world without Cartesian geometry, in which an “arch” was something one 

walks under on their way to the garden and no one had really thought of describing a 

shape as “arch-like,” the first statement might be appropriate.  But if this started a trend 

of people talking about arch-shapes, eventually the community of ballisticians would do 

well to make up their minds about what exactly “arch-like” is supposed to mean, or else 

develop a set of terms to replace “arch-like” (semicircular, parabolic, hyperbolic, et c.).  

Furthermore, neither of these statements about the motion of a ball is 

mathematical; a ball is not a mathematical object.  However, the second statement 

invokes a mathematical language by using the geometrical term “parabola.”  The value of 

having a language of Cartesian geometry is not, ultimately, to make statements in the 

language itself (except insofar as this is an amusing mental exercise), but to lend 

precision to terms that can be used in a broader linguistic context. 

Similarly, the more music theorists talk about prolongation, the more they will 

disagree about particular statements regarding prolongation.  Such arguments will be 

valuable if they address the question of how exactly we should define prolongation and 

related concepts—that is, if they address the question of how best to construct a formal 

theory of prolongation.  If they fail to do this, the debate will be endless and futile, like 

fans of opposing football teams heckling one another from either end of the stadium, 

because it will be a debate over statements that have been insufficiently defined.   

Furthermore, “formalization” doesn’t necessarily have to look like mathematics.  

Thoughtful people who cringe at the word probably engage in formalization all the time; 

they just prefer to leave the top of the mathematical toolbox latched or use a handsaw 

rather than install an electrical system to power the table saw.  While it certainly is 

possible to take formalism much further than what the situation at hand calls for, the 

reader who takes some time to familiarize herself with a certain amount of mathematics 

will make the effort well worth the while by reaping a comprehensive understanding of 

what is at stake in submitting music-analytic concepts to formal description. 

To illustrate the need of formalization in the case of the idea of prolongation, 

consider the following comment of William Benjamin from his article “Models of 
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underlying tonal structure.”  He argues in this part of his article that in tonal music one 

will frequently find four consecutive events, call them W, X, Y, Z in that order, where Y 

is a “prolongation” of W by reiteration while X is a “prolongation” of Z by anticipation.  

In his example Y is a reiteration of a cadential dominant chord, W, with an intervening 

cadential 6/4, X, resolving to a tonic chord, Z.  Most theories of prolongation would 

make such “overlapping” prolongations impossible, requiring the cadential 6/4 to be part 

of the prolonged cadential dominant rather than an anticipation of the resolution.  

According to Benjamin, the cadential 6/4 is also a prolongation of the tonic resolution by 

anticipation.  He goes on to say, 

That prolongations, and particularly high-level prolongations, routinely 
overlap in tonal music may seem self-evident to many readers.  This would 
make it seem all the more remarkable that virtually the whole of our recent 
theoretical tradition asserts that they do not. (44-5) 

Obviously there’s a problem here.  Benjamin uses the word prolongation as if it 

meant something quite definite and unambiguous and sees the problem as being that the 

whole of our recent theoretical tradition has simply ignored the self-evident truths of the 

music it has been analyzing and the prolongations contained therein.  Of course, this is 

preposterous: the problem is that, while most people understand the word “prolongation” 

in such a way that the idea of overlapping prolongations is an oxymoron, Benjamin 

understands the word in a much more general way.  What is going on here is not that 

Benjamin has discovered something happening in music that no one had ever noticed 

before, but that he disagrees over the way that words should be used to describe what is 

happening in the music.  If he had presented the problem in this way, he could have given 

more appropriate arguments in favor of his case—e. g. explaining how the word 

prolongation would be more useful under his definition—and avoided the misplaced 

condescension of the passage quoted above. 

Furthermore, a brief consideration of the matter makes it quite clear, I think, that 

Benjamin’s and other’s extension of the term prolongation to allow overlapping 

relationships actually causes a great deal of confusion and would thus be undesirable.  On 

the one hand, prolongations would only overlap in particular and localized circumstances: 

saying that prolongations can overlap arbitrarily would tremendously water down and 
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otherwise substantially alter the meaning of the term.  Yet, to take away such a nicely 

straightforward and definite aspect of the term for such a relatively insignificant 

phenomenon would needlessly complicate its meaning. 

Furthermore, the proper resolution to the “problem” is not very difficult to see: 

Benjamin uses the phrase “prolongation by anticipation” to describe something that isn’t 

really a structural tonal relation.  There’s no reason that we can’t notice such an 

anticipation without calling it a kind of prolongation: indeed, in the case of the cadential 

6/4 it is nothing like what we usually refer to as a prolongational relationship, because the 

relationship between the cadential 6/4 and the tonic resolution is one that doesn’t make 

sense unless it is mediated by the intervening resolution to the cadential dominant.  This 

kind of anticipation is more like motivic relationships in music.  For example, in the 

finale to Brahms’ first symphony, the introduction anticipates the second theme of the 

movement, yet nothing could abuse terminology more than calling the introduction a 

prolongation of the second theme by anticipation.  Such a usage would make bread 

pudding out of the noble grilled-cheese sandwich that is Schenkerian analysis. 

A formalization of prolongation thus serves many functions.  Above all, it focuses 

the discussion of prolongational issues by separating out claims about prolongation in 

music from those that address the usage of the word prolongation, and it eliminates 

misunderstandings from discourse of the latter kind.  It also separates prolongational 

claims from ones that engage some aspect of music that is not properly prolongational.  

Furthermore, it allows us to divorce the term “prolongation” from the historical person of 

Schenker, in that once the question becomes “how should we use the word 

prolongation?” issues about how Schenker himself used the term only become relevant 

insofar as Schenker’s usage is preferable to some other being proposed.  Finally, it allows 

us to confidently move “beyond Schenker.”   That is to say, it is only possible to 

distinguish extensions of Schenkerian theory from advances in music theory outside of 

the Schenkerian framework if we a definite sense of what the Schenkerian framework 

includes.  Otherwise, debates over whether the Schenkerian model provides a more 

interesting or useful account of music than some other model will be inextricably tangled 

up with debates about music that properly belong within the Schenkerian framework. 
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PART 1: THE MOP MODEL OF PROLONGATION 

The Concept(s) of Prolongation 

The meaning of the term “prolongation” turns out to be a complicated subject 

meriting careful consideration.  Therefore, before proceeding with any formal models of 

prolongation, it is necessary to examine the ways in which different authors use the term.   

Putting one’s finger on the concept of prolongation is complicated for two 

reasons.  The first reason is a lack of clarity about the abstractness of the subjects and 

objects of prolongation—that is, it is often ambiguous whether the things prolonging and 

being prolonged are particular musical events or more abstract theoretical constructs. The 

second is the history of the term (the main topic of this section): the concept of 

prolongation has metamorphosed extensively—by revision, reinterpretation, and 

misinterpretation—since Schenker first introduced it. 

The primary source of ambiguity in concepts of prolongation is the common 

usage “to prolong a harmony.”  Such a turn of phrase points to the abstract object of a 

“harmony,” which consists not in any particular configuration of notes but in a context in 

which one evaluates the notes of a musical passage—e. g. as “harmonic tones” or “non-

harmonic tones.”  This abstract concept of “harmony”—as I consider in more detail 

below—is akin to the Schenkerian Stufe (scale-degree).  However, the word “harmony” 

also tends to take the more concrete meaning of a particular set of simultaneously 

sounded pitches—i. e. a chord.  The ambiguity between these two senses of “harmony” is 

a source of confusion in the phrase “to prolong a harmony.” 

This ambiguity may also extend to melodic pitches that appear in voice-leading 

graphs, especially those in background graphs.  These melodic pitches are generally 

associated with particular foreground events, but can also accrue a sense of abstractness 

similar to that of “harmonies.”  The analyst may then speak of the “prolongation of the 

initial tone” of the Urlinie and mean, at one moment, that the music is to be understood in 

the context of a melodically unresolved tonic harmony, and at the next moment, that the 

“initial tone” is a literal melodic event occurring (e. g.) in the first violins in measure 32. 
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If allowing such ambiguities may make a convenient cover for loose analytical 

reasoning, it certainly also presents an impediment to understanding the concept of 

prolongation.  There is often a tension in Schenkerian analysis between the ideas 

expressed in language, which always entices us towards the more abstract and figurative, 

and the staff-notation symbolism central to Schenkerian dialogue, which is always 

moored to literal pitches and limited in its storehouse of conventional symbols.  

Throughout this paper I will focus on the relationships between literal pitch events, since 

one must ultimately construct any abstract tonal entities out of more concrete tonal 

material to give them a secure foundation of meaning.  Abstract tonal entities are 

important and useful also, of course, but it’s critical to always make their meaning clear 

and unambiguous. 

There are two distinct and incompatible ways that the term prolongation may be 

used to relate concrete musical objects.  Perhaps the more familiar usage is what I will 

call the static sense of prolongation.  According to this convention, musical events 

themselves are the subjects and objects of prolongation.  This is a common way to 

understand melodic prolongation, to view each less structural note as prolonging some 

more structural note.  It is also possible to understand harmonic prolongation in the static 

sense—that is, to associate each harmony with a particular event, a chord, and to see each 

less structural chord as prolonging some more structural chord.  However, the ambiguity 

of the term harmony discussed above sometimes makes it difficult to pinpoint examples 

of the static conception of harmonic prolongation. 

A different understanding of prolongation—what I will call the dynamic sense—, 

views the motion between tonal events as prolonged by motions to other tonal events.  

That is, instead of saying that some event, X, prolongs some other more structural event, 

Y, according to the dynamic usage one says that an event X prolongs the motion from 

one more structural event, Y, to another more structural event, Z.  Other ways one might 

say this are, for example, “the motion to X prolongs the progression from Y to Z,” “X 

expands/prolongs the space between Y and Z,” or “X delays the progression/resolution of 

Y to Z.”  The paradigmatic example of dynamic prolongation is the passing tone: to 
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interpret a note as a passing tone is to identify it both as a stepwise progression from 

some note and to some other note. 

In parts one and two of this paper, I’ll crystallize these two usages into two 

distinct formal models, respectively, the MOP model (the subject of part one) and the 

phrase-structure model (the subject of part two).  The brief tour through the history of 

“prolongation” that follows here first explores Schenker’s own conception of 

prolongation and its transformation from his first uses of the term to his last writings, and 

then demonstrates the emergence of the dynamic sense of prolongation in the earliest 

English language interpretations of the Schenkerian approach and also how these early 

works opened the way for the static concept of prolongation. 

If the evolution of language is supposed to proceed from the more literal to the 

more figurative, then the word prolongation is an odd duck, having charted the opposite 

course.  Schenker’s earliest employment of the word comes in a discussion in the first 

volume of Kontrapunkt of the possibility of an incomplete neighbor or passing tone in 

free composition, a license forbidden in strict counterpoint.  In this case, the object of 

prolongation is not any musical entity but a basic law (Urgesetz) of dissonance treatment.  

Referring to the incomplete neighbor/passing tone figure he says,  

One sees, then, how one and the same basic phenomenon manifests itself in 
so many forms, yet without completely losing its identity in any of them!  
However much a given variant may conceal the basic form, it is still the latter 
alone that occasions and fructifies the new manifestation.  But to reveal the 
basic form together with its variants, and thereby to uncover only 
prolongations of a fundamental law even where apparent contradictions hold 
sway—this alone is the task of counterpoint! (241)4 

Thus, at its gestation the term prolongation reveals its central function in the task 

that was to consume the latter part of Schenker’s published work, to show how the laws 

                                                
4 “Man sieht also, wie ein und dasselbe Urphänomen in so vielen Formen sich 
manifestiert und doch in keiner von ihnen sich ganz verliert!  Will nun auch fürs erste die 
jeweilige Abwandlung noch so wenig den Urtypus erkennen lassen, gleichwohl ist es der 
letztere allein, der auch die neue Erscheinung zeitet und befruchtet.  Gerade aber den 
Urtypus samt dessen Abwandlungen aufzuzeigen, und eben nur Prolongationen eines 
Urgesetzes zu enthüllen, auch dort, wo scheinbar Widersprüche gegen dieses zu Tage 
treten, ist allein Aufgabe des Kontrapunktes!” (315) 
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of strict counterpoint underlie the phenomena of free composition though they are 

sometimes hidden.  A “prolongation,” quite generally, is a rewriting of a strict law that 

preserves its spirit if not its letter, a movement from the more rigidly rule-governed to the 

less, not by breaking the rule but by following the rule in a freer way. 5  The purpose of 

the term for Schenker was to allow him to discuss the non-observance of a law while 

suggesting continuity from the law to the apparently contrary phenomena: thus 

“Prolongation des Gesetzes.”6 

Schenker uses the term prolongation throughout the second volume of 

Kontrapunkt, always in this figurative sense.7  The thing being prolonged is always a law 

or procedure, never a particular musical passage or object.  It’s only in his subsequent 

analytical work that Schenker begins to employ the term prolongation more literally.  The 

genesis of this new sense comes in Tonwille 5, in an otherwise modest analysis of number 

five of Bach’s Zwölf Kleine Präludien.  Schenker’s analyses of the first five of the Kleine 

Präludien appear in Tonwille 4-5.  In all of these he presents an Urlinie-Tafeln, a practice 

                                                
5 As it turns out, “prolongation” is not the best translation of Schenker’s “Prolongation” 
because of the temporal associations the term necessarily evokes in English.  Thus the 
phrase “to prolong a law” sounds odd and inscrutable in English.  In German the word is 
a borrowing from Latin associated primarily with commercial usages, such as extending a 
loan or renewing a contract.  Thus, a better translation for “Prolongation” and 
“prolongieren” would be “extension” and “to extend.”  Thus “Prolongation eines 
Gesetzes” is an extension of a law.  One must admit, however, that the somewhat poor 
translation of the term, which is now irrevocable in any case, has produced interesting 
results in English language Schenkerism.  See also Alpern (2005), 51-3. 
6 Schenker finds frequent occasion in Kontrapunkt to air his dissatisfaction with the 
teaching of counterpoint that asserts a law only to admit that music is full of exceptions to 
the law.  See in particular the author’s introduction to Kontrapunkt I.  See also Dubiel 
1990. 
7 Counterpoint II, xviii-ix, 3, 4, 77, 119, 176, 179, 180, 192, 196, 213, 216, 228, 257, 
271, 272  (Kontrapunkt II, xiv-xv, 3, 4, 77, 118, 171, 174, 176, 188, 192, 208, 211, 222, 
248, 261, 262), and also in some of the section titles.  The term also occurs in its 
figurative sense in Counterpoint I, 278 and 323 (Kontrapunkt I, 358-9 and 417); Tonwille 
2, 53 (German ed., 4-5); Beethoven, die Letzten Sonaten: op. 101, 18; and Tonwille 5, 175 
(German, 3).  (The first three volumes of Tonwille were published between the 
publications of Kontrapunkt I and II).  Note that the word “prolong” on p. 57 of 
Counterpoint II is not actually a translation of “prolongieren” but of “forttragenden,” and 
similarly, “prolong its effectiveness” on 262 is Rothgeb’s rendering of “fortwirken.” 
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he uses throughout the analyses in Tonwille and Meisterwerk.  These are illustrations on a 

single grand staff of the fundamental melodic line of a piece, indicated with large note-

heads and scale-degree numbers above the system, accompanied by its elaborations and 

accompaniment in smaller noteheads.  Though the Urlinien consist almost exclusively of 

stepwise motion (excepting transfer of register) they aren’t Urlinien in the sense of 

Schenker’s later theory, where only - - , - - - - , and - - - - - - -  qualify.  For 

example, the Urlinie in Schenker’s graph for number four of the Kleine Präludien (a 

scant 18 measure piece!) is - - - - - - - - - - - - - - . 

In the analysis of the third of the preludes, however, Schenker finds an elegantly 

simple Urlinie: - - - , a mere fourth-progression.  Schenker cautions the reader not to 

misinterpret this simplicity:  

The reader must be profoundly shaken when following the paths of 
imaginative power that coaxes out such a bold manifestation from such an 
intrinsically simple progression of the Urlinie and harmonies (shown in 
figure 1)—not in any way to disavow the simple as too simple, but indeed to 
confirm faith in its creative infinity though such diverse phenomena. (175)8 

Schenker’s figure 1 is reproduced in figure 1.1; it represents the first published example 

of Schenker illustrating the successive elaborations of the Urlinie in a series of vertically 

aligned voice-leading layers.  His use of durational values in this early example is 

interesting: the apparent thirty-second-note runs on the lower system each represent a 

measure or two in duration in the music itself.  

Schenker devised this illustration, as his comment explains, to show the reader 

that the simplicity of such an Urlinie may belie a fascinating and multifarious working-

out even in the most background stages of elaboration.  He obviously was fond of this 

method, as he immediately begins to apply it to subsequent analyses.  He expands on the 

technique in the analysis of the fifth Klein Präludium, and gives these graphs the title of  
                                                
8 “Mit tiefer Erschütterung muß der Leser in der nachstehenden Figur den Wegen der 
Einbildungskraft folgen, die aus einem an sich einfachen Vorgang in Urlinie und Stufen 
eine so kühne Erscheinung hervorlockt, nicht um das Einfache als zu einfach etwa zu 
verleugnen sondern um den Glauben an sein Zeugend-Ewiges noch durch die so 
weitfaltig.” (Tonwille 5, 3) 
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FIGURE 1.1: SCHENKER’S ANALYSIS OF BACH’S KLEIN PRÄLUDIUM NO. 3 
 
 
 

 

 
 

FIGURE 1.2: SCHENKER’S ANALYSIS OF BACH’S KLEIN PRÄLUDIUM NO. 5 
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Stimmführungsprolongationen (Voice-leading prolongations). (Tonwille 5, 8-9; English, 

180)  This example is reproduced in figure 1.2. 

Schenker revisits the analysis of Klein Präludium no. 5 in the “Miscellanea” of 

Tonwille 5, as a means of illustrating “the Urlinie . . . as the source of voice-leading.” 

(212)9  It is clear that what he has in mind is that the Stimmführungsprolongationen 

reveal the operation of the laws of strict counterpoint in composition.  He says, “in figure 

1a,” (figure 1.2a),  

the notes of the Urlinie can be seen in the two-voice Ursatz.  One may 
already observe that this setting is somewhat freer than the voice-leading that 
would be formed in the setting of an actual cantus firmus—the material 
would not be enough for a cantus firmus setting—but in any case the purity 
in the progression of intervals is in accordance with the precepts of strict 
counterpoint.10 (212-3) 

He goes on to explain how b) and c) are prolongations of a), saying that 

Although within the octave descent [of prolongation b)] the voice-leading 
may also . . . comply with the demands of strict counterpoint, its principle 
validity remains the derivation from the fundamental voice-leading in figure 
1a, which alone authenticates it as an octave descent.11 (213) 

In other words, even though b) itself essentially follows the laws of strict counterpoint 

rather than their prolongations, it still should be considered a prolongation because it is 

properly understood only in the context of the more basic strict counterpoint in a).  

Similarly, the voice leading of c) “is based on the insertion of chromatic notes, which are 

                                                
9 “die Urlinie . . . als den Ursprung der Stimmführung.” (45) 
10 “Bei a) der Figure. 1 sind die Urlinie-Töne zu sehen, in zweistimmigen Ursatz.  Man 
darf schon diesen Satz als eine erste Freiheit gegenüber einer auf einen wirklichen Cantus 
firmus gestellen Stimmführing betrachten—für einien C. f.-Satz als wäre das hier 
gegebene Material zu klein—, jedenfalls aber entspricht die Reinheit in der Führung der 
Intervalle den Geboten des strengen Satz.” (45) 
11 “Mag auch innerhalb der Octavsenkung die Stimmführung schon an sich . . . den 
Forderungen des strengen Satzes entsprechen, ihre Hauptgewähr aber bleibt die Herkunft 
von der grundlegenden Stimmführung bei a), die allein sie als eine Octavsenkung . . .  
beglaubigt.” (45) 
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forbidden in strict counterpoint. . . .  The justification for this voice-leading lies once 

again above all in its derivation from b) and a), even if it also has its own justification.”12 

This explains how Schenker arrived at his new use of the term “prolongation.”  In 

constructing series of voice-leading layers to show the connection between the Urlinie 

(the image of strict counterpoint in the composition) and the music itself, it occurred to 

him that the prolongations of the laws of counterpoint in free composition could be 

broken down and illustrated through this powerful technique.  Thus, since they are 

generally arrived at through prolonged laws, the process of getting from one voice-

leading layer to another is a “prolongation,” an extension of the more basic voice 

leading.13 

The Stimmführungsprolongationen quickly become a staple of Schenker’s 

analytic procedure.  He even adds one to the analysis of the second movement 

Beethoven’s Fifth Symphony, which was conceived long before its publication in 

Tonwille 5.14  This is the second figure of the analysis of the second movement (Tonwille 

5, 33; English edition, 202).  They elucidate only a small part—the first eight notes, 

occupying the first 15 measures—of the sprawling Urlinie he identifies in the movement.  

This is a general rule for Stimmführungsprolongationen in the Tonwille analyses: except 

in very short pieces, Schenker uses them to explain parts of the Urlinie that occupy only a 

fragment of the entire piece.  In the continuation of the Fifth Symphony analysis in 

Tonwille 6 (9-25), Schenker uses the technique in three different places, all for relatively 

short spans of music: the transition to the last movement in mm. 325-374 of the third 

movement (15), measures 72-132 of the fourth movement (25), and measures 281-312 of 
                                                
12 “[Die Prolongation bei c)] beruht auf der Einschaltung der im strengen Satz noch 
verbotenen Chromen. . . .  Die Rechtfertigung auch dieser Stimmführung liegt wieder vor 
allem in ihrer Herkunft von b) und c), wenn sie in sich auch eine eigene trägt.” (45) 
13 Indeed, the idea of Stimmführungprolongationen is crucial in Schenker arriving at the 
canonical Urlinie and Ursatz of Der Freie Satz.  As I have shown, the procedure 
originated in an analysis with an Urlinie that was too simple and therefore needed to be 
derived in stages to show precisely its connection to the music.  Once the process was 
established, however, the obvious question must have presented itself: why not extend the 
process backwards from the more complex Urlinien to arrive at a simple canonical form 
of Urlinie that can integrate the entire piece? 
14 See the preface to the English edition of Tonwille 1-5. 
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the last movement (27).  He also uses them for brief passages in five different places in 

his analysis of Beethoven’s op. 57 Sonata (Tonwille 7, 3-33). 

Further examples where Schenker uses the stimmführungsprolongation graphs for 

short sections of a piece are the short analysis of Beethoven’s op. 127 String Quartet 

(Tonwille 7, 39-41), the analysis of the fugue of Brahms’ Variationen und Fuge über ein 

Thema von Händel (Tonwille 8-9, 28-35), the Schubert Impromptu op. 90, no. 1 (Tonwille 

10, 14-21), and Mendelssohn’s Venetianisches Gondellied op. 30, no. 6 (Tonwille 10, 25-

9).  He uses the technique for entire short pieces in the analyses of “Erbarm es Gott” from 

Bach’s Matthäuspassion (Tonwille 7, 34-8), the theme of Brahms’ Variationen und Fuge 

über ein Thema von Händel (Tonwille 8-9, 3-5) and also many of the variations,  the 

Mendelssohn Lied ohne Worte op. 67, no. 6 (Tonwille 10, 30-1), the Haydn 

Österreichische Volkshymne (Tonwille 10, 11-3), and the Schumann Kinderszenen op. 15, 

nos. 1 and 9 (Tonwille 10, 34-5, 36-9).  In fact, in all of the analytical essays in Tonwille 

volume 6 and onward, only three do not use the stimmführungsprolongation technique, 

all of them very slight.  In volume I of  Das Meisterwerk in der Musik, the continuation 

of the Tonwille essays, Schenker begins to apply the method more boldly, analyzing nine 

pieces in their entirety with large stimmführungsprolongation graphs.  And in 

Meisterwerk II he takes the procedure to its logical conclusion: an extensive 

stimmführungsprolongation analysis for each movement of Mozart’s G minor symphony 

in its entirety.15 

Thus, “prolongation” adopts a more concrete sense in Schenker’s later writings, 

referring to the elaboration of a particular voice leading pattern, and this new sense for 

the most part supplants the earlier usage of “prolongation of a law.”  The term however 

retains its association with the connection between strict and free composition.  For 

example, in a commentary on a letter of Beethoven’s that plays on the term Wechselnote 

                                                
15 Schenker sometimes refers to these graphs as simply Stimmführungsschichten (levels 
of voice-leading), or “Wandlungen der Stimmführung” or Stimmführungsverwandlungen 
(“transformations of voice-leading”).  Some other interesting designations are 
Stimmführungsvergangenheit (“voice-leading history,” Tonwille 10, 34) and “der weg 
vom Hinter- zum Vordergrund” (“the path from the background to the foreground,” 
Tonwille 10, 36). 
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(literally “changing-note,” i. e. cambiata), Schenker takes the opportunity to censure “the 

sort of musicians whose brains are always incapable of prolongation,” 

those who go through "the school of the changing-note" first with Fux, then 
with Albrechtsberger, yet are never capable of grasping the generality of the 
term and at the same time its unfolding in the particular, those who thus do 
not recognize the strict counterpoint in free composition.  Yet there are even 
fewer who are able to produce prolongations that, seemingly detached from 
each law and unrestrained in their liberty, in truth are fulfillments of a 
fundamental law of strict composition.16 

The latter, of course, is the exclusive property of the musical genius, and the purpose of 

music analysis is to hear these prolongations, so seemingly unrestrained at the surface, as 

fulfillments of the fundamental laws. 

Although the more literal usage of “prolongation” becomes primary in Schenker’s 

later writings, Das Meisterwerk in der Musik and Der Freie Satz, the word never adopts 

the yet more concrete sense that it takes on in North American Schenkerism.  In Freie 

Satz Schenker uses it frequently to refer to prolongational techniques (arpeggiation, 

unfolding, octave coupling, reaching-over, motion from an inner voice, mixture, 

interruption, neighbor-note, register transfer, substitution, and linear progression).  

Otherwise, Schenker generally uses the term to relate entire voice-leading passages, not 

individual musical events such as a chords, harmonies, notes, pitches, et c. 

Ernst Oster’s translation of Freie Satz is quite misleading on this point.  Most of 

the instances of the word “prolongation” in the English are not translations of the German 

“Prolongation” but free translations of Auskomponierung, Verwandlung, and other terms 

into the modern American usage of “prolongation,” which is quite different than 

                                                
16 “die Gattung der ewig unprolongierbaren Musikergehirne, die mit Fux, dann mit 
Albrechtsberger . . . ‘die schule der Wechselnoten’ durchgehn, niemals aber das 
Allgemeine des Begriffs und zugleich seine Ausfaltung ins Besondere zu erfassen 
vermögen, . . . diejenigen also, die im freien Satz den strengen nicht wiedererkennen, 
noch viel weniger jene Prolongationen schaffen können, die, losgelöst schienbar von 
jedem Gesetz und ungezügelt in ihrer Freiheit, in Wahrheit Erfüllung eines 
Grundgesetzes des strengen Satz sind” (Tonwille 8-9, 42, my translation). 
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Schenker’s usage of “Prolongation.”17  One example of how misleading this can be —

arbitrarily chosen from numerous possible examples—is Oster’s translation in §74 of  

Es besteht . . . die Möglichkeit, auf das Sinken der Urlinie durch zwei 
Quintfälle des Basses einzuwirken, was sich später auch auf die aus einem 
beliebigen Einzelklang gezogene Oberstimme übertragen lässt, (67) 

as  

It is possible to strengthen the descent of the fundamental line by two 
descending fifths in the bass; at later levels this procedure can be transferred 
to an upper voice that prolongs a harmony on any scale-degree. (33) 

As my added underlines show, the phrase “einem beliebigen Einzelklang gezogene 

Oberstimme,” which literally means simply “an upper voice drawn from any single 

chord,” becomes “an upper voice that prolongs a harmony on any scale-degree,” 

introducing the technical terms “prolongation” and “scale-degree” where Schenker 

doesn’t actually use them, and furthermore giving the impression that Schenker’s concept 

of prolongation includes the possibility of prolonging a particular harmony. 

While Schenker generally uses “prolongation” in Freie Satz to refer to entire 

voice-leading graphs, either as a whole or split into individual voices, in a few instances 

we find him breaking down prolongations of the Ursatz into parts.  In §65 he asserts the 

impossibility of “a prolongation of the descending arpeggiation V—I” (“eine 

Prolongation der Abwärtsbrechung V—I”)18 at the first level.  He refers to this fact again 

in §86, saying, “because of the step of a second in the Ursatz,   provides no 

                                                
17 For reference: Schenker uses some form of “Prolongation” in §§18, 26, 45, 48, 53, 62, 
64, 65, 66, 70, 71, 73, 82, 86, 89, 117, 123, 127, 133, 138, 143, 149, 155, 157, 184, 185, 
186, 189, 192, 204, 243, 257, 278, 280, 282, 283, 284, 286n, 308, 312, 313, 323 (also 
erste Abschnitt chapter 3).  Oster translates a form of “Auskomponierung” to 
“prolongation” in §§32, 166, 170, 189, 206, 230, 247, 248, 249, 297, 301, 310, 311, 313, 
320, and a form of “Verwandlungen” to “prolongation” in §§12, 30, 47, 49, 50, 51, 68, 
83, 168, 169, 170.  Other introductions of some form of “prolongation” by Oster that 
don’t correspond to “Prolongation” in the original are in §§49 (“Stimmführungschicht”), 
71 (“Wandlungen”), 74, 77 (“Übertragung”), 86 (“Fassung”), 99 and 101 
(“Durcharbeiten”), 133, 194 (“Stimmführungschicht”), 204, 212 (“Gliederung”), 224, 
247 (“Diminution”), 277 (“Stimmführungschichten”), 279 (“Übertragung”), and 324 
(“Dehnungen”). 
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occasion for any further rhythmic conflict.  Only at later levels can possible prolongations 

of the  also provide opportunity for a special contrapuntal melodic development of the 

bass.”19  This is the only instance in Freie Satz where we find Schenker referring to a 

particular event in the voice-leading graph as an object of prolongation.  However,  

“prolongations of the ” here is apparently a shorthand for “prolongations of the 

progression from ”—that is, the “step of a second” from the previous sentence—

because later in the sentence he says that these prolongations “have their origin in the 

descending fifth ,” and gives a reference to §189, which discusses “prolongations 

of V—I” (“Prolongationen bei V—I”).20  Schenker also mentions “prolonged versions of 

I—V” (“prolongierten Fassungen von I—V”) in §186 and “prolongational forms of the 

ascending arpeggiation I—V” (“Prolongationsformen der Aufwärtsbrechung”) in §189.21 

These passages demonstrate a certain degree of precedent in Schenker’s writing 

for the dynamic sense of prolongation, in that he applies the term to isolated two-element 

progressions from the Ursatz.  However, Schenker only infrequently uses the term in 

such a specific way.  Contrastingly, the first extended works on Schenkerian theory in the 

English language, Adele Katz’s Challenge to Musical Tradition and Felix Salzer’s 

Structural Hearing, use the word prolongation broadly and extensively both as a general 

concept and to explain details of analyses, investing a great amount of theoretical 

significance in it.  Indeed, this focus on prolongation is appropriate given its association 

with the fundamental motivation behind Schenker’s theory, the demonstration of the 

principles of strict counterpoint operating in free composition, but the meaning of the 

                                                                                                                                            
18 Free Composition, 31; Freie Satz, 233 (Note the spelling error in the original).  
19 Free Composition, 36 (I have altered the translation slightly to make it more literal). 
“

 

 gibt wegen des secondschrittes der Urlinie keine Veranlassung zu einer weiteren 
rhythmischen Auseinandersetzung mehr.  Erst in den späteren Schichten können etwaige 
Prolongationen der  zu einer besonderen kontrapunktisch-melodischen Entfaltung auch 
des Basses Veranlassung geben.” (Freie Satz, 70). 
20 Free Composition p. 69; Freie Satz p. 113. 
21 Free Composition p. 69; Freie Satz p. 112-3. 
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word has already been altered significantly in these early introductions to the Schenkerian 

approach. 

Although precise attribution is impossible, the evidence points to Salzer as the 

motivating force behind crucial aspects of the transformation of the term at its 

introduction into the language of North American music theory.  Though Challenge to 

Musical Tradition (1945) was published seven years in advance of Structural Hearing 

(1952), much of the content of Katz’s book was influenced by her discussions with 

Salzer, who arrived in New York in 1940 and was a student of Schenker’s before the 

latter’s death in 1935.22  In the case of the new concept of prolongation we can infer 

Salzer’s influence from the remarkable similarities between the accounts in Challenge to 

Musical Tradition and Structural Hearing, and the differences between these and Katz’s 

concept of prolongation in her 1935 article “Heinrich Schenker’s Method of Analysis,” 

written before she met Salzer. 

Katz and Salzer both introduce the concept of prolongation in their books with a 

critique of mainstream American harmonic analysis and suggest curing it by recognizing 

a “structure and prolongation” dichotomy.  This critique of roman-numeral analysis as a 

motivation for the Schenkerian method was a means of presentation they inherited from 

their common teacher, Hans Weisse.  Weisse used the same approach in his article, “The 

Music Teacher’s Dilemma,” a publication of a lecture he gave at a meeting of the Music 

Teacher’s National Association in 1935.23  It’s quite likely that he used a similar polemic 

in his teaching. 

The term “structural” in itself was not new: Katz used it in her 1935 article, but in 

a limited way.  However the technical sense conferred on “structural” through the 

structure/prolongation dichotomy and the identification of chordal events as “structural” 

and “prolonging” first appears in Challenge to Musical Tradition. 

                                                
22 Katz expresses this debt in her acknowledgements: “to Dr. Felix Salzer I am especially 
grateful for the warm and unflagging interest he has shown from the inception of this 
book through its final phases, and for his provocative point of view which evoked so 
many stimulating discussions of problems dealt with in this book.”  See also Berry 2002,  
118. 
23 See Berry 2003, 124. 
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Katz’s 1935 definition of prolongation, which she identifies as a central concept 

to the Schenkerian approach, draws on the “Elucidations” (“Erläuterungen”) section of 

Das Meisterwerk.24  She defines it as “the extension of the simple form of 

Horizontalization by filling in the Space.”  “Horizontalization,” as indicated by its 

capitalization, is Katz’s translation of Schenker’s “Auskomponierung”25  (though a 

somewhat specialized version of Auskomponierung in that it applies only to the triad and 

its tonal spaces, – , – , and – ).  In Katz’s definition, “filling in the Space” (where the 

capitalized “Space” is a translation of “Tonraum,” the tonal spaces of the triad) suggests 

that prolongation is adding passing motion in the horizontalized triad.  Yet Katz includes 

the Zug (the composed-out triadic interval with passing motion) as a form of 

“Horizontalization.”  She doesn’t include it in her list of prolongational techniques, 

although she does include transformation of the passing tone into a consonance.  This, 

                                                
24 Masterwork I, 112-4; Meisterwerk 201-6; Masterwork II 118-20; Meisterwerk II 193-8.  
Katz probably gave careful attention to this source because Schenker presented it as 
content from the not-yet-published Freie Satz.  In it we find the comment, “dissonance is 
transformed into a consonance because only consonance, with its tonal spaces . . . can 
[give rise to] new passing-note progressions and freshly burgeoning melodies.  This 
comes about through prolongations in ever-renewing layers of voice-leading, through 
diminution, through motive, through melody in the narrower sense.”  (“Die Dissonanz 
wird in eine Konsonanz verwandelt, weil . . . nur diese allein mit ihren Tonräumen . . . 
wieder zu neuen Durchgängen, zu neu sich zweigender Melodie führen kann.  Dies 
geschieht nun durch Prolongationen in immer neuen Stimmführingschichten, durch 
Diminution, Motiv, Melodie im engeren Sinn.”)  This notion of transforming dissonance 
into consonance as the mechanism for continually expanding voice-leading progressions 
originates in Kontrapunkt II (xv, 172, 181-2; Counterpoint II, xviii-xix, 176, 185-6) and it 
is crucial to the connection between strict and free composition so fundamentally tied to 
Schenker’s concept of prolongation.  (See “Prolongations as Passing Events” below.)  
This notion takes a prominent place in the exposition of “Heinrich Schenker’s Method of 
Analysis,” but evidently only because of Katz’s choice of source: in Challenge to 
Musical Tradition Katz abandons the idea, apparently not seeing it as not especially 
relevant to the concept of prolongation. 
25 The term actually comes from Weisse: he uses it in multiple places in his Mozart 
analysis in “The Music Teacher’s Dilemma,” though not in an explicitly technical way.  
The first published source of the translation of Auskomponierung to “horizontalization” is 
Victor Vaughn Lytle’s 1931 polemic, which, though scant on actual music theory, 
represents the earliest publication in the English language to deal with some of the 
technical details of Schenker’s method.  See Berry 2003, 148-9. 
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and the fact that she introduces “Horizontalization” before prolongation, suggests that the 

concepts are exclusive.  However she speaks of “Prolongation by Horizontalization” later 

in the article (referring to Schenker’s analysis of the E major Sonata for Violin Solo), 

demonstrating a certain amount of confusion at this point in her assimilation of 

Schenker’s concepts of prolongation and Auskomponierung. 

This confusion here stems from the fact that Katz is missing a critical element of 

Schenker’s concept of prolongation that lies beneath the “Erläuterungen” article: the 

relationship between strict counterpoint and free composition.  Though this aspect of the 

concept is not absent from Meisterwerk, it is more clearly expressed in the second 

volume of Kontrapunkt.  The linear progression (Zug) is indeed a form of 

Auskomponierung, however, it isn’t necessarily a “prolongation.”  This is because the 

third and fourth progressions (the generalized passing-tone figure, the filling in of the 

tonal space of the triad) are themselves perfectly in accord with the laws of strict 

counterpoint, whereas a prolongation, for Schenker, indicates a relaxation of strict 

counterpoint in free composition.26  A prolongation, in other words, is a passing motion 

                                                
26 Schenker says in Masterwork II, “free composition, through prolongation, supplements 
the third- and fourth-progressions, taken from strict counterpoint, with fifth- and sixth-
progressions” (10.  I have simplified Rothgeb’s translation).  (“Der freie Satz fügt den 
vom strengen Satz übernommenen Zügen im Terz und Quartraum prolongierend nun 
auch noch Quint- und Sextzüge,” Meisterwerk II, 26).  In Kontrapunkt I Schenker assigns 
the filling-in of a fourth to free composition, where either of the two intermediate 
diatonic notes might function as a passing event even though it must progress by third to 
one of the notes of the fourth. (248-9; Counterpoint I, 184-5)  However, he also 
demonstrates a true fourth progression as an acceptable figure in third species. (298; 227)  
In Kontrapunkt II he more explicitly demonstrates the fourth progression as an element of 
three-voice third species counterpoint where both passing notes may be made dissonant, 
which is preferable to the more ambiguous situation of a consonant passing note: “it is 
precisely the dissonant nature of the middle tones that most fully promotes the concept of 
the fourth-space.” (Counterpoint II, 73)  (“Gerade . . . die dissonante Natur der mittlener 
Töne den Begriff des Quartraums am ehesten fördert,” Kontrapunkt II, 118).  He goes on: 
“the process of composing out that manifests itself in the sparse material of strict 
counterpoint thus undergoes, through development of the fourth space, an enrichment and 
intensification, even though it may still be far removed from the definiteness and 
precision of free composition.”  (“Die im kargen Material des strengen Satzes sich 
auswirkende Auskomponierung erfährt so durch die Entwicklung des Quartraumes eine 
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in disguise.  Schenker’s prolongational techniques are ways in which a composer may 

disguise the passing motion—by transferring into a different register, into a different 

voice, and so forth.  Therefore, the third progression of the Ursatz in particular is not a 

prolongation. 

Katz is correct that the transformation of a passing tone into a consonance is a 

prolongation, because it is disallowed in strict counterpoint where the cantus firmus 

(against which the passing tone is dissonant) is present.  (In free composition the “cantus 

firmus” is imaginary, taking the form of a progression of Stufe).27  She must have been 

acquainted with the essay in Meisterwerk II on the Urlinie28 that includes a section 

entitled “the dissonance is always a passing event, it is never a chord.” (9)29  In this 

section Schenker writes, 

The characteristics that the dissonant passing tone acquired at its birth in the 
second species of two-voiced strict counterpoint remain with it also in the 
third species in a two-voice setting, and in the second and third species of 
settings of three and more- voices. . . .  Even in the combined species certain 
prolongations of the dissonant passing tone may rest only on the fact that in 
them the horizontal tension above all is emphasized, even to the point of 
permitting a dissonance to be transformed into a consonance without 
relinquishing the inner nature of a passing tone. . . . 

                                                                                                                                            

Bereicherung und Steigerung, mag dieser auch, wie oben zu sehen ist, von der 
Unbedingtheit und Bestimmtheit des freien Satzes noch weit entfernt sein.”)   
27 See Kontrapunkt II, 259-62; Counterpoint II, 269-71. 
28 Besides the “Erläuterungen” article at the end of Meisterwerk I and II (201-6 and 193-
8), Katz quotes analyses from Meisterwerk I, 75-98 (the Bach Sonata for Violin Solo) and 
Meisterwerk II, 55-98 (the C minor Prelude from WTC I).  She also uses an analysis (the 
C major prelude of WTC I) from the Fünf Urlinie Tafeln.  I have not been able to identify 
the source of Katz’s apparent translation of Schenker calling the Ursatz the “perfect 
realization of tonality (the life of one and the same tone throughout the work) expressed 
through the Horizontalization of the tonic triad in two voices.”  It is possible that she 
perhaps had acquired unpublished advance material of Freie Satz through Hans Weisse. 
29 “Die dissonanz ist immer ein Durchgang, niemals ein Zusammenklang.” (24-40)  
Rothgeb renders dissonanz as “dissonant interval.”  Note that the German term 
“Durchgang” can take the technical sense of “passing tone” as it does in second species 
counterpoint, but can also indicate more generally any passing event, such as a 
contrapuntal chord.  Thus, Schenker is claiming that the passing tone of second species 
counterpoint is the model for all dissonance. 
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The consonance that comes about this way to substitute for a 
dissonance is then further employed by free composition to sprout additional 
linear progressions; . . . but all this freedom to delude, to create tensions, is 
drawn only from the law of the dissonant passing note! (10)30 

This passage makes a clear distinction between the passing tone itself, and the 

prolongations of the passing tone—i. e. figures derived from a prolongation of the law of 

the dissonant passing tone—, which here is its transformation into a consonance. 

Katz is thus also correct in identifying prolongations as kinds of passing motions, 

ways of “filling in” the tonal space.  However, she is not able to explain why the passing 

tone of the Ursatz is a “Horizontalization” rather than a prolongation of a 

horizontalization, because she doesn’t invoke the relationship between strict and free 

counterpoint that motivates Schenker’s theory of prolongation. 

In Challenge to Musical Tradition, Katz clears up all this conceptual confusion by 

translating Schenker’s concept of Auskomponierung of a harmony as “prolongation of a 

chord.”  This is convenient in a number of ways: first, it resolves the problematic 

relationship between horizontalization and prolongation, making horizontalization 

unambiguously a type of prolongation.  Furthermore, it means that all expansions of 

musical material from one voice-leading level to the next count as prolongations.  Also, 

Katz can now use the term horizontalization more freely: it no longer functions as a 

translation of a particular concept of Schenker’s.  In any case “Horizontalization” was 

never sufficient as a translation of Auskomponierung, because while “composing-out” 

usually applies to harmonies, Schenker also sometimes speaks of composing-out notes or 

melodic ideas. 
                                                
30 “Die Merkmale, die der dissonante Durchgang bei seiner Geburt in der 2. Gattung des 
zweistimmigen strengen Satzes empfangen hat, bleiben ihm auch in der 3. Gattung des 
zweistimmung Satzes, in der 2. und 3. Gattung des drei- und mehrstimmigen Satzes 
erhalten. . . .  Schon stehen in den Mischungsgattungen gewisse Prolongationen des 
dissonanten Durchgangs nur darauf, daß sich in ihnen vor allem die horizontale 
Spannung betont, bis zu dem Grade sogar, daß sie die Verwandlung der Dissonanz in 
eine Konsonanz gestattet, ohne das Wesen eines Durchgangs aufzuheben. . . .  

Die Konsonanz, die so an Stelle einer Dissonanz tritt, benutzt der freie Satz dann 
wieder zur Spaltung in weitere Auskomponierungszüge . . . , doch wird alle diese Freiheit 
zu täuschen, zu spannen, allein aus dem Gesetz des dissonanten Durchgangs bezogen!” 
(25) 
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As a result, a new concept of “prolongation of a chord” emerges in this work.31  

Katz introduces prolongation with the idea of “widening the motion within a single chord 

through the use of prolongations.” (15)  The following passage fully explains this idea: 

Thus, when we speak of motion within a chord, the reader will understand: 
(1) that the chord has been horizontalized; (2) that the arpeggiated interval 
forms a space-outlining motion; (3) that the passing chords within this space 
are of a contrapuntal and prolonging nature, and (4) that the motion as a 
whole constitutes a prolongation of a single horizontalized chord. (16) 

Thus Katz’s notion of prolongation is explicitly dynamic.  The prolongation of a chord is 

the expansion of a motion arpeggiating the chord.  The notion also includes motion 

between different chords: 

In some instances the contrapuntal chords expand a single arpeggiated chord, 
while in others they prolong the space between two different chords of a 
harmonic progression. (16) 

These concepts of prolongation of chord progressions extend readily to melodic 

prolongation in the voices that make up the progression (see Katz’s chorale analysis on 

pages 21-2). 

Salzer uses the term prolongation in the dynamic sense also.  He introduces his 

first discussion of prolongation (in part I of Structural Hearing, intended as an exegesis 

of basic Schenkerian ideas) with a description of music an expression of directed motion. 

(11)  He explains this by means of a distinction between structural and prolonging chords 

and describes prolonging chords as “filling the space between” structural chords, a 

“means of passing” from one structural chord to another, and as “prolonging the motion” 

between the structural chords. (12-3) 

                                                
31 There is only one isolated instance of a usage like this in Schenker’s major 
publications.  This is in his analysis of the Mendelssohn Lieder ohne Worts op. 67, no. 6.  
Schenker points out “a very artful prolongation of the simple V7” (“einer sehr kunstvollen 
Prolongation der einfachen V7”) in his voice-leading graph. (Tonwille 10, 31)  In all other 
instances, he reserves such a usage for the term Auskomponierung. 



 

 

 

28 

The idea of “chord prolongation” is quite prominent in Salzer’s Structural 

Hearing, suggesting that he may have been the source of this translation of Schenker’s 

Auskomponierung of a harmony (see above).  Salzer introduces the idea thus,  

Contrapuntal chords do not only appear between two members of a harmonic 
progression; very often they move within a single harmony or chord.  In such 
cases the function of these contrapuntal chords is to prolong and elaborate 
that single harmony or chord. (16) 

Clearly the potential for confusion between the abstract and literal senses of “harmony” 

or “chord” is great here, but Salzer makes it clear that he intends the dynamic sense of 

prolongation: 

The role of the chords within the horizontalized and thus prolonged . . . chord 
is that of passing chords, not between two different harmonies but within the 
horizontalized intervals of a single harmony. (16) 

Note also his adoption of the Katz/Weisse terminology of “horizontalization.” 

Katz’s and Salzer’s focus on chords in their introductory texts to the Schenkerian 

approach was momentous for the history of North American Schenkerism.  In Schenker’s 

work, the notion of Stufe (exposited first in Harmonielehre and expanded in 

Kontrapunkt) precedes most of his other most original and influential ideas.  The Stufe 

concept, as I pointed out above, situates the principles of harmony in an imaginary cantus 

firmus that accompanies the composition, and thereby eliminates the necessity for 

discussing harmony in terms of literal chords.  As a result, Schenker never needs to 

define any of his ideas in terms of chords.  Katz’s and Salzer’s presentation of the 

Schenkerian approach in terms of chords in chorales has a subtle but profound effect: it 

locates harmonies in literal events, the structural chords, instead of the coordination of 

several contrapuntal factors suggesting a particular Stufe to the ear.  This opens the door 

to the ambiguous notion of harmony that I mentioned at the beginning of this section.  

When Katz speaks of the “prolongation of a harmony,” she means motion within the 

intervals of a harmony presented melodically.  However, if a “harmony” is also a chord, 

the phrase “prolongation of a harmony” can also be used in the static sense. 

By now it should be clear that the lines that define the static and dynamic senses 

of prolongation become easily blurred.  We will see in subsequent sections of this paper 
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(especially in Part 2) however that the distinction is crucial in the formalization of 

prolongation.  Indeed, that is the reason for examining it so carefully here, and—looking 

at it from a different vantage point—the service of articulating a formal model is that it 

brings such distinctions, those that are significant but easily obscured, into relief. 

A crucial aspect of the static/dynamic difference is that to conceive a musical 

event as a dynamic prolongation is to understand that event equally in terms of the 

structural event that it departs from and the structural event that it leads to, just as 

describing a note as a passing tone implies something both about its preparation and its 

resolution.  Static prolongation conceives of the prolonging event as either departing 

from some more structural event or anticipating the more structural event. 

One problem that arises immediately with the concept of dynamic prolongation is 

the instance of a prolonging event that occurs at the beginning of a piece.  Katz faces this 

problem in her explanation of the initial ascent, which she identifies as a prolongation of 

the structural line.  She says  

It may seem a contradiction to call these tones [those of the initial ascent] 
prolongations of structural top voice when they precede the tone . . . on which 
the structural descent begins.  However, the ascending motion . . . forestalls 
the entrance of [the initial tone of the fundamental line] and thus expands the 
top-voice motion as a whole.  Because of this expanding function, the tones 
which comprise the ascending motion are prolonging tones. (18-9) 

Interestingly, Katz falls back on two Schenkerian concepts here.  Most explicitly, 

she invokes Schenker’s use of the term Prolongation (in Meisterwerk and Freie Satz) 

where it refers to the expansion of an entire voice-leading graph.  She also describes the 

prolongation as a forestalling, invoking Schenker’s concept of Aufhaltung as articulated 

in Freie Satz.  Here Schenker describes many of the prolongational techniques as a kind 

of “delaying” (Aufhaltung), including initial ascent (§124) as well as prolongations of the 

Baßbrechung (§70), interruption (§90), and the neighbor-note (§§109-11). 

The same problem presents itself to Salzer in Structural Hearing.  Figure 1.3 

(Salzer’s example 5) shows a melody from Schumann’s Album for the Young and 

Salzer’s analysis of it.  This melody, though its analysis is straightforward, presents a 

difficulty for description in terms of dynamic prolongation.  The thirds are composed-out 
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harmonic intervals, but the more structural notes of each third in this case follow the less 

structural.  Salzer, using “prolongation” in its Schenkerian sense, says “the ascending 

thirds are the prolongations of a melodic structure directed downwards from G to C.” 

(42) 32  This is fine and perfectly accurate: Schenker himself probably would have 

considered this a sufficient description of the situation.  But Salzer, writing an 

introductory and pedagogical text, must explain in more detail exactly how these 

ascending thirds prolong this progression.  Here the dynamic sense of prolongation fails 

us, because there is nothing preceding the initial C to initiate a motion to E that one can 

say the C prolongs.  Consequently Salzer temporarily abandons the dynamic sense of 

prolongation and says, “we now realize that prolongations may also precede the structural 

tones.”33  Salzer’s next example shows the retention of a note over the majority of a short 

melodic phrase, and summarizing the analysis he says, “for the greatest part of its course 

this melody does not move from one structural point to another, but around one structural 

tone.” (43) 

 
 

  
 

FIGURE 1.3: SALZER’S ANALYSIS OF A MELODY FROM SCHUMANN’S ALBUM FOR THE YOUNG 
 
 

The Introduction to Schenkerian Analysis textbook of Forte and Gilbert, 

published 30 years after Structural Hearing, remarkably echoes this discussion in its 

                                                
32 It’s interesting that Salzer and Katz both fall back on the more general, neutral 
Schenkerian usage of “prolongation” when the analytical situation presents a difficulty 
for the dynamic sense of the term. 
33 Note that this departure from the dynamic sense of prolongation occurs not in Part I of 
Structural Hearing, Salzer’s introduction to the concepts of Schenker’s analytical 
approach, but in Part II, “the pedagogic and systematic approach to structural hearing.”  
(xvii) 
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definition of melodic prolongation.  Forte and Gilbert claim that there are three different 

types of melodic prolongation “motion from a given note,” “motion to a given note,” and 

“motion about a given note.” (144)  Thus, in the most widely used introductory text to the 

Schenkerian approach, the static sense of melodic prolongation has essentially replaced 

the dynamic sense of the term in the earliest extended English language works on the 

subject. 

The narrative here, the biography of the concept of prolongation, is clear enough: 

the original Schenkerian concept of prolongation becomes volatile through the severing 

of the concept from its mother, the relationship between strict counterpoint and free 

composition, and its expansion through the translation of Schenker’s Auskomponierung 

as prolongation.  Then the new Schenkerians add the catalyst, a need for more careful 

systematization of the analytical procedure for introducing the concept to the new 

audience of English-speaking music theorists and students of music theory.  The concept 

first adopts the dynamic sense but this state proves unstable, leading to a combustion that 

eventually leaves us with the equilibrium of static prolongation.  In the following two 

sections I will try to restore stability to the concept of dynamic prolongation, to help 

prolongation retain its “free energy,” in preparation for its formalization in the 

subsequent sections of this part of the paper. 

Prolongations as Passing Events 

In the previous section (“The Concept(s) of Prolongation”) we saw that 

Schenker’s own use of the term “prolongation” is more limited than either the dynamic or 

static usages.  The dynamic sense of prolongation, however, as I will argue here, most 

closely reflects the original intent of the term in Schenker’s writings.  Of course, “original 

intent” itself shouldn’t hold any currency in music theory; formal modeling of 

Schenkerian analysis is not constitutional law.  If I cast my own lot in the end with 

dynamic prolongation it is not because of its historical priority but because I find that it 

leads to a more compelling theoretic construct.  The reader, of course, is free to make up 

her own mind about this. 
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In this section I will attempt to restore to “prolongation” the critical aspect that is 

missing in the understanding of the term in North American music theory: prolongation 

as the link between strict and free composition.  At the end of this survey of Schenker’s 

theory of the strict/free counterpoint connection we will see that Schenker’s model of 

prolongation is the dissonant passing tone of second species counterpoint.  It is because 

the dissonant passing tone admits of an accurate description in terms of dynamic but not 

static prolongation that I claim dynamic to be the more Schenkerian of the two senses of 

prolongation.  However, I engage this aspect of Schenker’s theory here not only for this 

historical interest, but because his ideas of prolongation are themselves compelling and 

help to motivate the formal model that I pursue in the remainder of this part of the paper. 

As we have already seen in the last section, the strict/free counterpoint 

relationship is essential to an understanding of its prolongation’s place in Schenker’s 

theory; it’s the reason for Schenker’s original introduction of the term and remains with it 

throughout its life in Schenker’s writings, despite a considerable evolution in its usage.  

Therefore the logical place to look for an explanation of prolongation is in the writings in 

which Schenker tries to spell out the connection between strict and free composition in 

detail.  Unfortunately this project of Schenker’s was somewhat cut short.  Throughout his 

completion of the second volume of Kontrapunkt, Schenker intended to compose an 

entire third volume that would address this subject.34  However, this plan was set back by 

the questions of music analysis that increasingly occupied him, and Freie Satz was 

eventually to focus more on analysis than on the more theoretical content of the planned 

third volume of Kontrapunkt.35 

The primary published source we have on which to base our understanding of 

prolongation then is the last part of Kontrapunkt, “Bridges to Free Composition” 

(“Übergänge zum Freien Satz”).  Here Schenker identifies the phenomenon of the 

“passing event in multiple voices” (mehrstimmig Durchgang) as the crucial aspect of the 

bridge from strict to free composition. (Kontrapunkt II, 171-3; Counterpoint II, 175-7)  

The mehrstimmig Durchgang is a harmonized passing tone.  That is, a passing tone 
                                                
34 See Hedi Siegel, “When Freie Satz was part of Kontrapunkt.” 
35 See William Drabkin’s review of Counterpoint.  
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dissonant with the cantus firmus accompanied by and consonant with one or more notes 

in other voices (that may or may not be passing tones themselves), so that if the cantus is 

removed only consonance remains.  When leaping motion in the other voices 

accompanies the dissonance, Schenker calls this a “leaping passing tone” (springend 

Durchgang), and describes the situation thus: 

Although the progression of both voices adheres most precisely to the 
principles of strict counterpoint, the difference between the two 
simultaneously operating laws nevertheless causes a conflict, which has the 
result that the dissonant nature of the passing tone cancels the consonant 
effect of the leaping interval.  That it is precisely the dissonant passing tone 
which prevails in this situation probably rests on the fact that . . . such a 
passing tone confirms and extends the harmony of the downbeat in far greater 
measure—that is, it preserves the harmonic unity of the bar much more 
decisively—than does a consonant half-note.  Thus one might even say that 
by its superior influence, this dissonant passing tone in a way ensnares the 
consonant leap into the realm of its own dissonance, so that in such a 
situation it may appear by no means inappropriate to speak of 
horizontalization of the leap—that is, of the leap as, again, only a passing 
tone—and to speak even of a “leaping passing tone.” (181-2)36 

Because the leaping passing tone must be consonant with the passing tone proper 

as well as the cantus, if the cantus is removed, or “elided,” the result is a transformation 

of the dissonant passing tone into a consonance.  In free composition, the function of the 

cantus is taken over by Stufen as Schenker explains at the end of the “Bridges to Free 

Composition” chapter (Counterpoint II, 269-71, Kontrapunkt II, 259-62); this elision of 

                                                
36  “Entspricht dann zwar die Führung jenes wie dieses dem strengen Satze aufs 
genaueste, so zeitigt die Verschiedenheit der sich gleichzeitig auswirkenden Gesetze 
dennoch einen Widerstreit, der nun in der Weise ausgetragen wird, daß die dissonante 
Natur des Durchganges die konsonante Wirkung des springend Intervalles aufhebt.  Daß 
hiebei gerade der dissonante Durchgang siegt, beruht wohl darauf, daß durch einen 
solchen ja . . . die Harmonie des Niederstreichs in viel stärkerem Maße bestätigt und 
forgesetzt, das heißt, die harmonische Einheit des Taktes viel entschiedener verbürgt 
wird, als durch eine konsonante Halbe.  Man darf daher auch sagen, daß der dissonante 
Durchgang durch seinen überlegenen Einfluß den konsonierenden Sprung gleichsam in 
die eigene Dissonanz mitreißt, weshalb in einer solchen Lage von einer 
Horizontalisierung des Sprunges, das heißt vom Sprung als weider nur von einem 
Durchgang, und zwar von einem “springenden Durchgang” zu sprechen durchaus nicht 
unangebracht erscheinen mag.” (177) 
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the cantus makes such illusory consonances possible in free composition.  (The previous 

section, “The Concept(s) of Prolongation,” also discusses this aspect of the Stufe 

concept.) 

Schenker promises, in the “Bridges to Free Composition” chapter, to show the 

“great fecundity” of this technique of fulfilling “dissonant concepts by means of illusory 

consonances” in Freie Satz. (Counterpoint II, 186; Kontrapunkt II, 182)  In fact he 

apparently considered this to be the most important aspect of the work-in-progress, as it 

makes up the majority of the theoretical content of the “Erläuterungen” section Schenker 

published repeatedly in Tonwille and Meisterwerk as a preview of the content of Freie 

Satz (quoted above, in “The Concept(s) of Prolongation”).  Nor was Schenker to disavow 

this theoretic standpoint by the time he had assembled Freie Satz for publication.  He 

writes there, 

The Ursatz exhibits the first transformation of the primal dissonant Urlinie 
tone into a consonance. . . . This principle continues through all levels of the 
middleground, creating more and new levels which present new possibilities 
of transformation for dissonant passing tones . . . until the foreground, with 
its greatest freedom, shows voice-leading which is not recognizable as 
passing motion without the interpretation of relationships in the 
middleground and background.37 

This passage illustrates that Schenker conceived voice-leading prolongations, even in his 

last theoretical work, as ultimately derived from the law of the passing tone in strict 

counterpoint.  The recursive aspect of prolongations is a consequence of the principle of 

transformation of a dissonance into a consonance, which is why this principle and the 

                                                
37 “Schon im Ursatz zeigt sich die erste Verwndlung eines ursprünglich dissonanten 
Urlinie-Tones in eine Konsonanz. . . .  Durch alle Schichten des Mittelgrundes pflanzt 
sich dieses Gesetz fort, wodurch sich immer neue Schichten bilden mit neuen 
Verwandlungsmöglichkeiten für dissonante Durchgänge . . . bis die Vordergrund in 
seiner äußersten Freiheit Stimmführungen bringt, die ohne Deutung der Zusammenhänge 
in Mittel- und Hintergrund als Durchgang nicht zu erkennen sind.” Freie Satz (103).  I 
have altered Oster’s translation (Free Composition p. 61) to make it more literal.  
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“leaping passing tone” that instantiates it are fundamental to understanding the transition 

from strict to free composition.38 

In Schenker’s later analytical work, this theoretic stance is reflected in his 

preoccupation with identifying Züge, or linear progressions, in the works he considers.  In 

the “Further Considerations on the Urlinie” essays of Meisterwerk I and II, he identifies 

linear progressions as essential to the understanding of voice leading; he says 

“Translation from vertical to horizontal is effected by means of linear progressions 

[Züge]. . . .  Anyone who has not heard music as linear progressions of this kind has not 

heard it at all!” (Masterwork I, 107)39  (He repeats this declaration in the Meisterwerk II 

essay as well for added emphasis. (11))  Schenker makes it clear in these essays that the 

linear progression is the image of strict counterpoint in free composition.  First, since 

both of the outer voices express linear progressions, he says (in the Meisterwerk I essay) 

that they must be thought of as a “prolonged form” (“prolongiert Form”) of the outer 

voice setting of strict counterpoint, as “a setting of a treble and an inner voice above a 

conceptual lower voice, which carries the fundamental, or scale-degree, notes.” (105)40  

This reiterates the idea of elision from Kontrapunkt II (explained above), which is crucial 

to the manifestation of passing motion in free composition.  Schenker also writes in this 

essay, 

Access to the third-progression is given already by the initial stages of 
counterpoint in the second species of two- and three-voice writing . . . ; there, 
the unitary cantus-firmus note at once guarantees the perceived unity of the 
third progression as well.  But even in free composition, the unity of the third 
progression is not cancelled merely by the fact that the prolongation 
occasionally turns the middle note of the third-progression—the dissonant 

                                                
38 For a reference to more examples of Schenker describing various dissonance-
formations as prolongations of the passing-tone figure, see Dubiel 1990. 
39 “Die Auswicklung bewegt sich in Zügen. . . . Wer Musik nicht in solchen Zügen gehört 
hat, hat sie überhaupt nie gehört!” (Meisterwerk I, 192)  Rothgeb renders “die 
Auswicklung,” “unfolding,” freely as “translation from vertical to horizontal.” 
40 “der Satz einer Ober- und Mittelstimme über einer gedachten Unterstimme, die die 
Grund- oder Stufentöne führt.” (188) 



 

 

 

36 

passing note—into a consonance (see ‘Elucidations’).  And thus it is also 
with the perceived unity of the fourth-, fifth-, and sixth-progressions. (107)41 

He pursues this further in the “Further Consideration on the Urlinie” essay of 

Meisterwerk II.  I have already quoted in the previous section (“Concept(s) of 

Prolongation”) a lengthy passage from this essay in which Schenker traces the 

development of the Durchgang from second species in two voices through third species, 

three-, four-voice, and mixed species counterpoint to free composition, where “all this 

freedom to delude, to create tensions, [through linear progressions] is drawn only from 

the law of the dissonant passing-tone!” (10)  Schenker quotes a passage from 

Kontrapunkt II concerning the leaping passing tone in this discussion.  He also declares, 

at the beginning of the section, 

A linear progression always presupposes a passing note: there can be no 
linear progression without a passing tone, no passing note without a linear 
progression.  Therefore, it is only by means of the linear progression—by 
means of the passing note—that it is possible to achieve coherence, to 
achieve synthesis of the whole! (9)42 

And at the beginning of the essay, where he characterizes the linear progression as a 

“perceived tension” (“geistige Spannung”) he states,  

This tension alone engenders musical coherence.  In other words, the linear 
progression is the sole vehicle of coherence, of synthesis. (1)43 

                                                
41 “Den Terzzug offenbaren schon die ersten Schritte des Kontrapunktes in der zweiten 
Gattung des zwei- und dreistimmigen Satzes . . . ; zugleich ist dort durch den einen 
cantus firmus-Ton auch die geistige Einheit dieses Zuges gesichert.  Aber auch im freien 
Satze wird die den mittleren Ton des Terzzuges, den dissonierenden Durchgang unter 
Umständen konsonierend macht, siehe ‘Erl.’.  Und so ist es auch mit der geistigen Einheit 
der Quart-, Quint- und Sextzugs.” (192)  I have changed “free counterpoint” and 
“conceptual” in Rothgeb’s translation to “free composition” and “perceived.” 
42 “Der Auskomponierungszug setzt immer einen Durchgang voraus: kein 
Auskomponierungszug ohne Durchgang, kein Durchgang ohne Auskomponierungszug.  
Und also auch: nur durch den Auskomponierungszug, durch den Durchgang geht es zum 
Zusammenhang, zur Synthese des Ganzen!” (24). 
43 “Diese Spannung allein schafft den musikalischen Zusammenhanges, das heist: der 
Auskomponierungszug ist der alleinige Träger des Zusammenhanges, der Synthese.” (11) 
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Schenker could hardly make this point less equivocally, that all compositional 

elaborations, all prolongations, must be understood as having their origins in the law of 

the dissonant passing tone of second species counterpoint.  He repeats the point in Freie 

Satz also,  

Whatever the goal may be, the qualities inherent in the linear progression of 
the Urlinie and in the linear progressions at the first level remain the same at 
the later levels: a linear progression is, above all else, the principle means of 
creating content in passing motions—that is, of creating melodic content.44 

It’s worth considering more closely here the idea of the linear progression as a 

psychologically perceived tension span, the subject of the first section of the “Further 

considerations on the Urlinie” essay in Meisterwerk II.  Schenker explains that this 

tension comes from the retention of the initial tone of the linear progression, because “the 

primary note [Kopfton des Zuges] is to be retained until the point at which the concluding 

tone appears.” (1)45  This recalls a discussion from Kontrapunkt II: 

Alongside all of the corporeality (which is always to be understood as 
independent) of the intervals available in strict counterpoint, the first 
appearance of the dissonant passing tone produces a curious intrusion of the 
imaginary: it consists in the covert retention, by the ear, of the consonant 
point of departure that accompanies the dissonant passing tone on its journey 
through the third-space.  It is as though the dissonance would always carry 
along with it the impression of its consonant origin, and thus we comprehend 
in the deepest sense the stipulation of strict counterpoint, which demands of 
the dissonant passing tone that it always proceed by the step of a second and 
always in the same direction. 

The implications of this effect are of great importance: we recognize 
in the dissonant passing tone the most dependable—indeed the only—vehicle 
of melodic content. (57-8)46 

                                                
44 “Wie immer das Ziel aber sei: die dem Urlinie-Zug und den Zügen der ersten Schicht 
anhaftenden Eigenschaften bleiben dieselben.  Daher bedeutet auch in den späteren 
Schichten ein Zug vor allem das Hauptmittel einer Inhaltsbeschaffung in Durchgängen, 
das ist der Beschaffung eines melodischen Inhalts.” (118-9)  I have altered Oster’s 
translation (73) to reflect Schenker’s use of “Urlinie-Zug” rather than simply “Urlinie.” 
45 “ist doch der Kopfton des Zuges so lang fortzutragen, bis der Endton erscheint.” (11) 
46 “Bei aller stets als unabhängig zu verstehenden Körperlichkeit der im strengen Satze 
möglichen Intervalle enthüllt sich somit bei der Urerscheinung des dissonanten 
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He reiterates this point also in Freie Satz:  

In all linear progressions, whether descending or ascending, the principle of 
the primary tone holds: coherence is achieved through the mental retention of 
the primary tone.  Each previous level vouches for the succeeding one, thus 
guaranteeing the indivisibility at the later levels so that unity prevails in the 
foreground as well as in the background.47 

I’ll invoke Schenker’s ideas about mental retention and tension spans in the development 

of the MOP model of prolongation below. 

Thus, it’s clear that Schenker considered the dissonant passing tone to be the 

model of prolongation in general.  The passing tone, furthermore, fits the dynamic sense 

of prolongation: it is an expansion of a motion from one note to another.  Therefore, if we 

adopt Schenker’s view that prolongations are applied extensions of the law of the 

dissonant passing tone, we should understand “prolongation” in the dynamic sense. 

The static sense of melodic prolongation, on the other hand, fails to adequately 

describe the passing tone, because in the passing tone the dissonant event must relate to 

both the preceding and following melodic events.  Relating the dissonant event to only a 

single, preceding or following, melodic event would be inadequate.  To describe the 

situation in terms of static prolongation, then, one would have to say that the passing tone 

prolongs an interval and that interval is a particular event.  That the passing tone prolongs 

an interval is perfectly accurate; yet that interval is melodic, so considering it as an event 

                                                                                                                                            

Durchganges gleichwohl schon ein seltsamer Einschlag von Vorgestelltem: er besteht in 
der geheimnisvoll wirkenden Erinnerung an den konsonanten Ausgangspunkt, die den 
dissonanten Durchgang auf seinem Weg durch den Terzraum begleitet.  Es ist, als würde 
die Dissonanz auch den Einschlag der Ausgangskonsonanz stets mit sich führen, und man 
begreift so aus tiefstem Grunde die Vorschrift des strengen Satzes, die von dissonanten 
Durchgang fordert, daß er durchaus nur im Sekondschritt und durchaus nur in derselben 
Richtung fortgehe. 
 Die Tragweite dieser Wirkung ist höchst bedeutsam: 
 Wir erkennen im dissonanten Durchgang den verläßlichsten, ja einzigen Träger 
des Melodischen überhaupt.” (59) 
47 “In allen Zügen, fallenden wie steigenden, wirkt sich das Gesetz des Kopftones aus: 
Das Forttragen des Kopftones erwirkt den Zusammenhang.  Jede rückliegende Schicht 
bürgt für die nachfolgende also auch für die Unteilbarkeit und Einheit der Züge in den 
späteren Schichten, so daß einheit im Vordergrund wie im Hintergrunde waltet.” (119)  
I’ve altered Oster’s translation (79) to make it read more smoothly. 
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itself would use the term “event” in quite a different sense than it is used in the case of 

the passing tone itself.  This mixing of insoluble meanings of “event” makes 

formalization of this idea—and, consequently, a consistent understanding of it—difficult 

if not impossible.  Therefore there appears to be no satisfactory way to model Schenker’s 

concept of prolongation using the term in its static sense. 

Some Conceptual Problems in Theories of Prolongation 

Before embarking on explicit formalization, I’d like to touch on some problems 

that arise in the theories of prolongation discussed above.  I’ll deal with three such 

problems here.  The first is one I have not yet mentioned because it transcends the 

dynamic/static distinction and therefore doesn’t appear to have played a significant role 

in the historical interaction between the two concepts.  This is the problematic notion of 

voice in Schenker’s writings.  The later two conundrums are those we saw emerging  

with the systematic application of the idea of dynamic prolongation in the first extended 

English language works on Schenkerian analysis.  The first of these, which we saw 

rearing its head in both Katz’s and Salzer’s books (see “The Concept(s) of Prolongation” 

above), is how to characterize a prolonging event dynamically when it occurs at the 

beginning or end of a piece—that is, when no more structural event either precedes or 

follows it.  The last problem, a related one, is how to characterize incomplete 

progressions dynamically. 

The problem of voices is specific to Schenker’s own conception of prolongation.  

As we have seen in the previous two sections, Schenker’s concept of prolongation 

emerged out of his attempts to show the laws of strict counterpoint operating in free 

composition, and the idea eventually became closely tied to his analytical procedure of 

illustrating voice-leading strata.  Thus, the idea of a “voice” is essential to Schenkerian 

prolongation.  However, Schenker’s idea of “horizontalization,” or “unfolding” 

(Auswicklung) introduces confusion into the notion of a voice. 

In the previous section, we found that linear progressions (Züge) are the model of 

prolongation in Schenker’s theory.  Schenker portrays linear progressions as unfoldings 
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of harmonic intervals represented by the initial and final tones of the progression.  He 

therefore views the initial and final tones of the progression as belonging to different 

voices.  Yet, this seems to contradict the characterization of the linear progression as a 

kind of passing motion: by its definition (in strict counterpoint), the passing motion must 

occur within a single voice.  If the intermediate notes of the linear progression constitute 

a voice-leading motion, we are left wondering exactly what voice they belong to. 

Schenker’s cavalier neglect of such obvious theoretic quandaries issuing from his 

assertions should encourage us to sympathize with his early interpreters, and shows why 

Schenker’s ideas were never to maintain their integrity entirely as they assimilated into 

the broader world of tonal theory.  In fact it’s immediately apparent that the only possible 

way to formulate a consistent sense of “unfolding” is to view voices as relative with 

respect to voice-leading strata.  That is, the set of voices is distinct at each prolongational 

level, and an event participates in a different voice at each level in which it occurs. 

Fortunately, the unfolding concept is not essential to the prolongation concept.  

Therefore my approach in the formal modeling will be simply to ignore unfolding for the 

purpose of defining prolongational structures and to address separately the question of 

how to represent unfoldings.  See “Refinements of the MOP Model” below. 

The next problem I would like to touch on here is that of describing on the 

dynamic model the circumstance of a prolonging event that has no more structural event 

either preceding or following it.  Katz’s solution to this problem in the case of an initial 

prolonging event—discussed above in “The Concept(s) of Prolongation”—was to appeal 

to Schenker’s idea of a prolongation as a delaying or forestalling (Aufhaltung).  Thus, if a 

prolongation of a motion from event X to event Y is a delaying of the progression from X 

to Y, then we can similarly regard the delay of the entry of an initial structural event as a 

kind of prolonging. 

To make this more precise, consider the circumstance of an autonomous section 

of a larger piece, such as the trio of a minuet and trio, that begins with a relatively non-

structural event.  This event delays the first structural event of the trio, so that in the 

context of the entire movement seen as an integrated piece, it delays the progression of 

the structural conclusion of the minuet to the first structural event of the trio.  However, 



 

 

 41 

 

because the minuet itself has a structural conclusion, the initiation of the trio is not 

necessitated by anything that precedes it.  It is the initiation of the trio itself—i. e. the fact 

that the trio begins—, then, that brings about the necessity of the trio’s first structural 

event, the event to which the initial prolonging event progresses. 

In a sense, then the initial prolonging event of the trio prolongs the initiation of 

the trio to its first structural event.  In other words, we can see the initiation of the trio 

itself as an event, and say that an event “prolongs a motion from the initiation of the 

piece” when it is an initial event at some structural level.  Exactly which structural level 

is determined by the nature of the goal of this prolonged motion.  In particular, if that 

event is the most structural of the entire piece, then it prolongs the motion of the initiation 

of the piece to its termination—where “the termination of the piece” is an event 

analogous to “the initiation of the piece.” 

When the trio is contextualized in the minuet and trio, the structural conclusion of 

the minuet adopts the place of the “initiation” event.  Therefore, the “initiation” and 

“termination” events can be seen as stand-ins for the context of a musical passage.  That 

is, when we analyze an autonomous passage independently of the larger piece of which it 

is a part, the initiation and termination events take the place of the context created by the 

entire piece.  It is the autonomy of the passage that makes this semantically possible: the 

initiation of motions at all levels within the passage are not necessitated by events lying 

outside of the passage, so the initiation and termination events can take the place of this 

context without affecting the analysis of the passage itself.  One way to think of the 

initiation and termination events for a complete piece, then, is to consider that the piece 

has the potential to be integrated into a yet larger context (even if it is not) and these 

formal events act as place-holders for that context. 

Thus, in the formal model for dynamic prolongation below, every analysis has 

initiation and termination events as its most structural events.  Saying that an event X 

prolongs the motion from the initiation event to another event Y is equivalent to saying 

that X is initial at some structural level or that it delays the entry of Y, and similarly for 

the termination event.  If an event X prolongs the motion from the initiation to the 
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termination, then it is the most structural event of the piece.  That is, there is some highest 

level of reduction at which X, initiation, and termination are the only events. 

Finally, let’s consider the problem of incomplete progressions.  It is this problem 

that perhaps persuaded Salzer to reject Katz’s semantic resolution of the initial/terminal 

prolongation problem and provisionally adopt a static usage of the term prolongation. 

In particular, consider the problem in terms of the melodic example that 

motivated Salzer’s deliberation on it (shown in figure 1.3 and discussed in “The 

Concept(s) of Prolongation” above).  This is reproduced again in figure 1.4 for reference.  

While the problem of the initial E of the melody being a prolonging event could be 

solved by saying that it functions as a delay of that event, this impairs the representation 

of the obvious parallelism of the passage shown in Salzer’s analysis because it seems to 

represent the prolonging function of the initial E in a slightly different way than that of 

the D of the first measure and the C of the second measure.48  Furthermore, though it’s 

true that the D of the first measure, for example, prolongs the progression of G to F, it 

relates to F in a more direct way than it relates to G. 

 
 

  
 

FIGURE 1.4: SALZER’S ANALYSIS OF A MELODY FROM SCHUMANN’S ALBUM FOR THE YOUNG 
 
 

Such relationships must be understood on the dynamic model of prolongation as 

incomplete progressions.  This is a generalization of the idea of an incomplete neighbor.  

That is, it’s a motion that must be understood as having an elided origin or goal.  This fits 

well with the Schenkerian idea of prolongation, which views the passing tone as the basic 
                                                
48 Salzer actually takes this from measures 4-8 of the Stückchen of Schumann’s Album for 
the Young, but it’s nearly the same as measures 0-4 and I will simply refer to it as if it is 
the beginning of the piece. 
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model of prolongation, and the neighbor note as the simplest transformation of it.  

Passing and neighboring tone figures include both an origin and goal.  The incomplete 

neighbor figure, being less fundamental, is a neighboring or passing motion whose origin 

or goal has been left out. 

In Salzer’s example, the incomplete progressions are arpeggiations from F to D 

and E to C.  That is, the G of measure 1 descends by step to F, and F is prolonged by 

arpeggiation to D.  However, the F preceding D is missing; we must infer it from the F 

that follows.  One way to understand this might be to view the prolonging D as a motion 

from an imaginary event.  Such a way of thinking cannot take us very far though, because 

the literal motion it tries to mitigate, the motion from G to D in this case, may itself be 

prolonged.  In the Schumann melody the G-D is in fact prolonged—by an incomplete 

neighboring motion.  In other cases, such a motion, at the “loose end” of an incomplete 

progression, might be prolonged by a more basic passing motion.  Therefore, the G and D 

in question, and other similarly juxtaposed events, cannot be completely unrelated; they 

constitute, in some sense, a motion. 

A more successful solution is to assert that the elided event leaves an empty 

space, a vacuum, if you will, that is filled by the nearest structural event.  Thus, in 

Salzer’s example, the G fulfills the function left vacant by the elided F of the arpeggiation 

to D; it serves as the origin of this arpeggiating motion.  In other words, the G event 

substitutes for F as the head of this prolongation.  Thus, it is true that “D prolongs the 

motion from G to F,” but one could also say more precisely that “D prolongs the motion 

from G to F as an incomplete arpeggiation to F,” or “D prolongs the motion from G (as a 

substitute for an elided F) to F,” emphasizing the asymmetrical nature of the 

prolongation. 

Recognition of the asymmetry of dynamic prolongations in Salzer’s example 

solves the parallelism problem.  In particular, according to my explanation of initial 

prolonging events above, the E of the anacrusis is a prolongation of the motion from the 

initiation of the melody to the first structural event, the G of measure 1.  This is an 

incomplete progression, as it must always be for such initial prolongations since the 

initiation event is always a stand-in for a musical context.  In this case the initiation event 
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substitutes for a G event in this prolongation, defining the note E of the anacrusis as 

prolongation of G by arpeggiation.  The situation is exactly the same for D in measure 1 

and C in measure 2, restoring the sense of parallelism to the passage.  In fact, the 

parallelism is now enriched: we see that the prolongation of D in measures 3-4 is in fact 

the same arpeggiation observed in the previous prolongations but now in complete form. 

I will invoke this discussion in development of the formal model below.  As the 

model takes shape, it will be possible to see more clearly why I have resolved these 

semantic problems in just the way I have, although the less explicitly formal explanations 

here are self-sufficient. 

Graphs and Digraphs as Analytical Models 

Existing formal models of prolongation, which I’ll discuss in part two, formalize 

what I’ve called the static sense of melodic and/or harmonic prolongation.  (See “The 

Concept(s) of Prolongation” above).  In this section, I’ll develop a contrasting formal 

model for dynamic prolongation that I call the MOP model (for reasons that will soon 

become clear).   It will be useful to first have some basic graph theory terminology on the 

table right away.  I will explain the necessary terminology now, but save the more 

mathematical definitions for part four of the paper. 

“MOP” stands for “maximal outerplanar graph,” which is a particular kind of 

undirected graph.  A graph is a set of objects, called vertices, and a set of relationships 

between the objects, called edges.  (The terms “graph” and “vertices” are interchangeable 

with “networks” and “nodes” respectively, although “networks” are usually directed). 

In our music-analytic application, the set of objects, the vertices, will be events in 

a piece of music.  Of course, the term “events” is general enough to allow for many 

interpretations.  For now, we will focus on the simple and important case where each 

event is a note in a melody, and the graph is a prolongational analysis of that melody.  

However, it will be worth keeping in mind other possible interpretations of the term 

events: an event can be a simultaneity of notes, for instance, or it can be a harmony.  The 

reader can probably imagine all kinds of other interpretations of the term “events.”  

However, it’s important that an event is something that can be located temporally in a 
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particular piece of music.  It is indeed possible also to use graphs to represent 

relationships between abstract musical objects that linger in the musical background like 

platonic ideals—for example “the pitch-class G” in general rather than “this particular 

G”—but I will not regard these as “events” and not address this particular analytical 

application of graphs. 

An edge in a graph always relates two vertices.  We say that these vertices are the 

endpoints of the edge, and they are incident upon the edge.  In addition, if two vertices 

share an edge in a graph, we say that they are adjacent in that graph.  (Because 

“adjacent” has this technical meaning, I will avoid using it otherwise). 

In an undirected graph, I define the edge set as a subset of the set of all vertex 

pairs.  This way of defining the edge set has a few important implications.  First, it’s 

impossible for an edge to relate a vertex to itself.  (In graph theory terminology the graph 

has no loops).  Second, there can be no more than one edge between any two vertices.  

(The graph has no multiple edges).  And finally, the edges are undirected.  That is, if u 

and v are vertices of the graph, there is no difference between an edge “from u to v” and 

“from v to u.”  Unless I indicate otherwise, a “graph” is always an undirected graph. 

These features distinguish an undirected graph from one that might be more 

familiar to some readers, the directed graph, or digraph.  This construct is essentially the 

same as what David Lewin calls a “node-arrow system” in Generalized Musical Intervals 

and Transformations.  (See the next section, “David Lewin’s Node-Arrow Systems”).  In 

fact, Lewin’s analytical application of the node-arrow system is quite similar to the 

application I have suggested for graphs, in spite of the fact that I have chosen to revert to 

the mathematically more standard terminology. 

An edge of a digraph is a two-member list of elements of the vertex set.  

Therefore, an edge can go from a vertex to itself, there can be two edges between any 

particular pair of vertices, and an edge has an inherent direction. 

The distinctions between graphs and digraphs have important semantic 

implications.  In a MOP defined as an undirected graph, the edges represent inherently 

undirectional relationships between musical events.  These relationships are undirectional 

simply because of their generality: an edge in the MOP indicates that two events bear a 



 

 

 

46 

direct relationship to one another.  The edges also can (more usefully) represent more 

specific relationships that are directional in nature; for example, an edge from u to v can 

represent “v is a prolongation of an interval involving u,”49 “v is a more foreground event 

than u,” “u is the initial and v is the final event of a prolongational span,” or “u directly 

precedes v in some reduction of the music.”  All of these imply an orientation to the 

edges of the MOP, making it into a digraph.  However, while the first and second 

produce the same orientations and the third and fourth also produce the same orientations 

(ones that always point from an earlier to a later event), the orientations of the first two 

are different from those of the second two.  Eventually it will be best to think of the MOP 

analysis as a sort of doubly oriented graph (and, in fact, my representations of MOP 

analyses always reflect this in the horizontal and vertical placement of vertices).  These 

orientations will be demonstrated in the second part (in the sections “Combinatorial 

Comparison of MOPs and Binary Phrase-Structure Trees” and “Comparisons of MOPs 

and Phrase-Structure Trees via Backgroundness Partial Orderings”)  For the time being, 

however, it is simpler to develop MOPs as undirected graphs and save the orienting of the 

graph for later.  

David Lewin’s Node-Arrow Systems 

The only difference between Lewin’s node-arrow system and the general concept 

of a digraph is that in Generalized Musical Intervals and Transformations Lewin 

stipulates that a node-arrow system must have loops on all of its nodes.  It is not entirely 

clear why Lewin adds this condition to the definition of a node-arrow system, especially 

considering that it was not included in the earlier formulation of a node-arrow system in 

“Transformational Techniques in Atonal and Other Music Theories.”  Also, Lewin adds 

this to the definition with the qualification, “for present purposes,” suggesting that he 

only put it there to simplify some later definition or proof. 

                                                
49 Note that I often use the term “interval” to mean a particular melodic interval.  That is, 
I don’t take the term “interval” to imply harmonic or vertical, nor do I use it only in the 
abstract sense of a general distance between pitches. 
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I suspect that the reason for Lewin’s addition of the loop condition was to reduce 

the possible types of homomorphism between node-arrow systems.  With the loop 

condition, an onto mapping of arrows to arrows implies an onto mapping of nodes to 

nodes (because if there’s a node x in the second node-arrow system with no 

corresponding node in the first, then there’s a loop in the second system, (x, x), that 

cannot have a corresponding arrow in the first system).  Without it, there could be a node 

x in the second system that participates in no arrows, so that an onto mapping of arrows is 

possible even if there is no node in the first system corresponding to x.  More 

importantly, with the loop condition an injective mapping of arrows implies an injective 

mapping of nodes—by contrapositive, if x → z and y → z then (x, x) → (z, z) and (y, y) 

→ (z, z).  Therefore Lewin doesn’t need to worry about a special kind of homomorphism 

where a non-injective mapping of nodes produces an injective mapping of arrows.  (Note 

also that simply eliminating loops entirely doesn’t accomplish this). 

The loop condition has interesting repercussions when the semigroup of the 

transformational graph has no identity element.  Consider, for example, the set of 

multiplicative pitch-class transformations {M0, M3, M4, M6, M8, M9} acting on pitch-

classes.  This set is closed under composition despite the exclusion of the identity M1, so 

it is indeed makes a semigroup under composition.  Without the loop condition on node-

arrow systems, there is nothing especially wrong with the graph in figure 1.5, although its 

rightmost node is forced to have the contents 0.  However, given the loop condition, this 

graph is impossible, because there is no possible label for the loop on the node in the 

middle.  If we expand the semigroup to include an identity M1, then the graph in figure 

1.5 is ambiguous: the loop on the leftmost node can be labeled by either M3 or M1 and the 

loop on the rightmost node can be labeled by M8 or M1.  These labels are not trivial: for  

 
 

FIGURE 1.5: AN IMPOSSIBLE NODE-ARROW SYSTEM 
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instance, if M1 is the label on the leftmost node then this node can have any pitch-class as 

its contents, but if M3 is its label it can only contain pitch-classes 0, 3, 6, or 9. 

To give a fuller comprehension of the situations that arise with Lewin 

transformation networks, I offer to the reader figure 1.6 as an exercise.  The semigroup 

for this transformational graph is the set of integers {0, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 

16, 18, 20, 21, 22, 24, 25, 26, 27, 28} acting on the integers 0-29 by multiplication 

modulo 30, under the operation of composition.  (This set of integers is just the integers 

from 0-29 that are not coprime to 30, excluding 1).  There are three parts to the exercise: 

first, I claim that there is only one possible labeling of the loops for each node.  What are 

they?  Second, I claim that there are only fifteen possible ways to add contents to this 

graph: what are they? 

The third part of the exercise is to give a music theoretic interpretation of the 

graph.  I will do this part myself: first, consider the isomorphism of Z5 × Z3 × Z2 → Z30 

given by (a, b, c) → (6a + 10b + 15c) mod 30.  This changes the labels of figure 1.6 to 

those of figure 1.7.  I leave it to the reader to convince herself that this is an isomorphism 

under the multiplicative operation, defined on the direct product group as  

(a, b, c) • (d, e, f) = (ad, be, cf).50 

The contents of the nodes are now ordered triples to which I give the following 

interpretation: each object refers to a note of a jig in a pentatonic scale, (G, A, B, D, E) ≡ 

(0, 1, 2, 3, 4), written in 6/8.  The first number in the triple gives the pitch-class of the 

note while the second gives its eighth-note metrical value: 0 for on-beat, 1 for an eighth- 

note after the beat, and 2 for two eighth-notes after the beat, and the third gives its beat 

value: 0 for the first half of the measure and 1 for the second.  As a multiplicative 

transformation, a zero in the first place turns all notes into G, a one retains the pitch, a 

four inverts the scale around G (exchanging A with E, and B with D), and two and three 

permute the pitch-classes A, B, D, and E cyclically and leave G alone.  In the second 

place, a zero puts every note on the beat, one is the identity, and two exchanges the first 

                                                
50 Or the reader could just trust me on this.  If some of the mathematical jargon here is 
unfamiliar, a good reference is the first chapter of David Dummit and Richard Foote, 
Abstract Algebra. 
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FIGURE 1.6: A NODE-ARROW SYSTEM WITH ONLY ONE POSSIBLE LABELING FOR ITS LOOPS 
 
 

 
 

FIGURE 1.7: A NODE-ARROW SYSTEM ISOMORPHIC TO THAT OF FIGURE 1.6 
 
 

and second offbeat eighth-notes.  In the third place, one is the identity and zero moves all 

notes to the first half of the measure. 

An example analysis using the network of figure 1.7 is given in figure 1.8.  This is 

the first two measures of a traditional Irish jig called Christie Barry’s #2.  As I have 

formulated the transformational graph, the contents of figure 1.8 are actually “illegal,” 

because three of the nodes have contents that are non-trivially transformed by the 

semigroup element on the loop for that node.  Therefore, we have to imagine the graph  

 
 

 
 

FIGURE 1.8: AN ANALYTICAL APPLICATION OF THE NODE-ARROW SYSTEM OF FIGURE 1.7  
TO THE FIRST TWO MEASURES OF “CHRISTIE BARRY’S JIG #2” 
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either without Lewin’s loop condition on node-arrow systems or with a semigroup that 

includes the identity.  (Note that the choice between these doesn’t appreciably change the 

semantics of the analysis). 

I mainly intend this analysis as an illustration that the transformational graph of 

figure 1.7 can in fact reflect musical intuitions, not that the particular intuitions of figure 

1.8 are especially interesting.  However, it is interesting in any case to see how such 

transformational graphs work.  Because the semigroup is restricted to elements of Z5 × Z3 

× Z2 that include at least one zero (excepting, perhaps, the identity element), every arrow 

reflects some kind of “normalization,” either metrical or tonal.  We can think of an arrow 

pointing forwards in time as a stabilization and an arrow pointing backwards as a 

destabilization.  The first E going to G shows a tonal stabilization accompanying a 

metrical transformation at the eighth-note level.  The G then destabilizes in pitch to D and 

metrically by moving to the second half of the measure.  This D then stabilizes 

metrically, moving to the first beat of the measure, and so forth.  I think the reader can 

imagine how such semigroup transformations could be quite useful in reflecting 

intuitions about tonal music in a way that group operations fall short.51  (A funny 

                                                
51 For the reader interested in pursuing these matters further, I offer the following 
suggestions.  A simple representation of pitch-class in a tonal context is given by Z3 × Z3 
where (0, 0) refers to the tonic note, (1, 0) to the tonic third, and (2, 0) to the tonic fifth.  
The second place can then represent stepwise displacements of these: 1 for upward and 2 
for downward.  The reader should work out how the elements of this set act on such 
diatonic pitch-class representations as multiplicative operations.  Various elaborations of 
this simple semigroup are possible by simply extending the direct product: for example 
Z3 × (Z3 × Z3) might be useful with the elements of the first Z3 representing tonic, 
dominant, and subdominant harmonies.  Or, we could use Z3 × (Z3 × Z2) with the two 
Z3’s interpreted as in the simple case, and the Z2 indicating diatonic neighbors for 0 and 
chromatic neighbors for 1.  (These all have interesting semantic repercussions when they 
give multiple representations to the same pitch-class). 

We could combine such multiplicative semigroups with additive groups if we 
extend Lewin’s transformational graphs to “algebraic graphs” by replacing the semigroup 
of the definition of a transformational graph with a ring.  (For definitions of and 
information about rings, see Dummit and Foote’s Abstract Algebra, chapter 7).  
However, this recommendation comes with a warning that devising a ring that reflects 
intuitions about pitch relationships in tonal music is not quite as straightforward as it may 
seem! 
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consequence of the combination of pitch-class and metrical transformations is that it is 

impossible for a transformation to simultaneously destabilize a note metrically and 

stabilize it tonally, or vice versa). 

This example illustrates a few points about transformational networks.  First, 

transformational networks using semigroups that are not groups have potential for 

musically interesting analytical applications.   Second, the only reason to label a loop of a 

transformational graph with a non-identity element is to restrict the contents of the node 

(where there is presumably some general analytical reason for doing so).  Third, there is 

generally no especially compelling semantic reason to exclude the identity from the 

semigroup of a transformational network.  In the example, the exclusion of the identity 

transformation from the semigroup means, for one thing, that every note analyzed either 

has to be a G, on a beat, or in the first half of the measure (making the D on the fifth 

eighth of the first measure of the jig impossible contents for any node of the network).  

Beyond that, every note analyzed must have a zero in at least one place in common with 

the labels on every arrow it participates in.  (This is the problem with the E’s on the 

second eighths of the first two measures as node contents).  It’s difficult to think of a 

reason why one would want to impose such a restriction as a general rule. 

Thus, these odd repercussions of the loop condition on node-arrow systems when 

the semigroup of the transformational graph lacks an identity element certainly do not 

constitute a reason for its inclusion.  If Lewin had left out the condition, there would be 

no obvious analytic reason for adding a loop labeled with the identity transformation to 

any node of a transformational graph.  While there may be a reason for adding a loop 

labeled by a non-identity element in some cases where the semigroup of the graph is not a 

group, when the loop condition on node-arrow systems forces every node to have a loop, 

labeling one of these loops with a non-identity element serves the same semantic 

function. 

A more fundamental problem that arises with Lewin’s use of directed graphs is 

the lack of flexibility in orienting them.  As I suggested above, the advantage of 

developing a model of prolongation with undirected graphs is that it is easier to add 

orientations to an undirected graph than it is to change the orientations of a digraph.  In 
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music theory applications, the orientations of edges have a great deal of semantic 

importance.  However, in Lewin’s system, especially in its application to tonal music, a 

great amount of difficulty comes about from the fact that there are multiple ways that the 

orientation of an edge can be meaningful.  For example, an arrow labeled DOM from x to 

y properly means “x is a dominant of y.”  This is different from the meaning of an arrow 

labeled SUBDOM from y to x, which means “y is a subdominant of x,” even though x and 

y can often have the same contents in either case.  If x, y, and z are nodes with the 

contents C major, G major, and C major respectively, then it is impossible to have arrows 

from x to y to z reflecting the order of events and modeling the intuition that x-y-z 

represents a I-V-I progression in C major.  This is because the only choice of label for x 

→ y is SUBDOM, which means something quite different.  The problem is that when an 

arrow is used to ascribe tonicity to the event at its head, it cannot independently reflect 

the order of events (unless “more tonic” events always follow “less tonic” events, which 

obviously is not always the case).   

Lewin makes various attempts at incorporating temporal information into 

transformational networks in section 9.7.6 of Generalized Musical Intervals and 

Transformations.  I find none of these especially satisfying next to the comparatively 

simple solution of allowing multiple orientations of the same undirected graph, one of 

which can represent temporal information while the other represents relative structural 

weight. 

Maximal Outerplanar Graphs 

So much for the “graph” part of “maximal outerplanar graph,” but what about the 

“maximal outerplanar” part?  Given a set of musical events, there are many different 

ways of building a graph out of them.  Saying that an analysis of prolongation consists in 

any way of relating events pairwise wouldn’t give much of a useful meaning to the term 

prolongation.  Therefore, for a graph to represent the prolongational relationships 

between events, there must be a more particular definition of what qualifies as a graph of 

prolongational relationships.  It seems to me that the most intuitively appealing and 
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useful such definition identifies prolongational relationships between events with a 

particular class of graph, which is the maximal outerplanar graph. 

Unfortunately, defining this class of graphs as “maximal outerplanar” is not the 

most musically enlightening way to define them.  The last two sections of the paper 

describe a number of other ways of circumscribing the class of MOPs that tell us 

something musically relevant about the graphs.  I have chosen MOP as the general term 

for the class because it is mathematically the most obvious way of defining it and 

consequently is the name that this type of graph goes by in the existing literature of graph 

theory. 

It will be easiest to understand the meaning of “maximal outerplanar” in the 

context of an example, so I beg the reader’s patience concerning its definition for the 

moment as I construct an example. 

The simplest and also most important type of prolongational relationship is that 

between notes of a melody.  For this reason, a fugue subject will provide an ideal 

example for development of the theory, since it is relatively short, monophonic, and plays 

an important role in establishing the tonality of a piece.  In the third section of the paper, 

I’ll show how to expand the use of graphs as representations of prolongation beyond 

single melodies, giving them a more general analytical applicability. 

Consider the subject of the C major fugue from book II of the WTC, shown in 

figure 1.9.  Below the music is an analysis taken from William Renwick’s insightful 

book, Analyzing Fugue. (116)  I will construct a MOP that interprets Renwick’s analysis 

in terms of dynamic prolongation.  Of course, the analysis leaves it up to the reader to 

figure out what to do with the many notes that it excludes: this is not difficult to do, but to 

simplify matters I will deal with just the reduced melody in reconstructing the analysis as 

a MOP. 

As another preliminary note, there is one obvious aspect of the analysis that I will 

ignore: that is the C, the last eighth-note of the first measure, which Renwick presents as 

part of an independent line.  This note is very important: it immediately orients the 

listener to the tonality of C major.  Also, Renwick’s analysis of this note, I think all will 

agree, is a good one: this C gives a fleeting aspect of compound melody to the subject,  
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FIGURE 1.9: THE SUBJECT OF BACH’S C MAJOR FUGUE (WTC 2) AND RENWICK’S ANALYSIS 
 
 

serving more of a harmonic than a linear function.  However, because the C is part of a 

different voice according to the analysis, it doesn’t properly participate in the 

prolongational relationships of the main line considered by itself (although it does help us 

to hear those prolongational relationships). 

As I said above, the vertex set of the graph consists of all events of the passage 

being analyzed.  I’ll call these events by their pitch-class names (since there is no danger 

of confusion concerning the register of notes), and pre-index them according to what 

measure they occur in (to distinguish the various G’s, E’s and F’s).  The sequence of 

events in the analysis, then, is 1G, 2A, 2G, 3F, 3E, 4D, 4G, 4F, 5E.  We can write an edge of 

the graph by simply concatenating the names of the edges—e. g., 1G-5E might be an 

edge.  (The dash here is only to make it easy to read.)  If we think of the graph as 

undirected then 5E-1G (for example) indicates the same edge as 1G-5E.  However, I will 

generally write the edge names as if the graph is directed by temporal precedence.  (So 

1G-5E could be an edge but 5E-1G cannot).  The graph will also include vertices to 

represent the initiation and termination events (described in “Some Conceptual Problems 

in Theories of Prolongation” above), which I will denote i and t. 

The edge set of the graph includes all event pairs that define the boundaries of a 

prolongational span.  By “prolongational span,” I mean something analogous to the span 

of a linear progression in Schenker’s theory—i. e., where a melodic analysis identifies a 

linear progression, the initial and final notes of the progression should make an edge 
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representing that linear progression.  The edge set of a MOP generalizes this: a 

prolongational span could indicate the retention of a note (e. g., over a neighboring 

motion), a motion filled in by arpeggiation, or an incomplete motion where one of the 

events involved conceptually substitutes for a missing event (—see “Some Conceptual 

Problems in Theories of Prolongation” above). 

A more precise way of indicating the meaning of an edge in the graph is to appeal 

to Schenker’s idea of retention of the head-tone.  (See “Prolongations as Passing Events” 

above).  There is an edge between any two events that are in direct succession in the 

analysis, where that direct succession could either be literal or could occur through the 

mental retention of the initial note over a particular prolongational span.  (In other words, 

a prolongational span is a period of time over which a single event is mentally retained, 

either because the event is a note that sounds over that span of time or because it initiates 

a motion whose continuation is delayed over that period of time, while other events may 

intervene).  In other words, two events that make up an edge are consecutive in some 

reduction of the passage.  Thus, in a melodic analysis, notes that are connected by a slur 

or beam in Schenkerian notation will be connected by an edge in the MOP representation 

of the analysis. 

The initiation and termination events always form a prolongational span, i-t.  

Semantically, this edge, i-t, indicates that the passage under analysis constitutes a 

complete and coherent whole. 

The edge set also will contain a set of edges that represent trivial prolongational 

spans, where a trivial prolongational span is one between two events that are literally 

consecutive in the sequence of events.  I call them “trivial” because there is nothing in the 

sequence of events that could be said to be “prolonging” these motions.  In our analysis, 

these edges are 1G-2A, 2A-2G, 2G-3F, 3F-3E, 3E-4D, 4D-4G, 4G-4F, and 4F-5E.  As it turns 

out, all of these event-pairs are in fact prolonged in the music, since we are analyzing a 

reduction of the subject itself.  However, these trivial relationships are necessary even if 

we are analyzing the musical surface, because the prolongational relationship is a 

generalization of the idea of the motion of one event to another governing a particular 

span of time in the music, which is literal in the case of trivial prolongations.  
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Furthermore, the more background prolongational relationships are built out of the more 

foreground ones, beginning with the trivial ones.  Also among the trivial relationships we 

should include i-G1 and 5E-t, which say that 1G is the first note and 5E the last note of 

the passage. 

Figure 1.10 shows the edges so far included in the graph’s edge set (where an 

edge is represented by a line connecting the incident vertices of the edge).  This type of 

graph is called a cycle-graph, for obvious reasons (I will save the more formal definition 

for later).  Note that the positioning of the vertices in the drawing is completely arbitrary 

as far as the graph (as an undirected graph) is concerned.  Yet, I have drawn them so that 

horizontal position corresponds to melodic order and no two lines in the drawing cross 

one another.  A graph that can be drawn without intersecting lines in this way is called 

planar.  (Not to be confused with the use of the term “plane” in “plane tree,” a term I will 

use in part two). 

Cycle-graphs are the basis of MOP representations of musical phrases, 

understanding the term “phrase” here very generally to mean a sequence of events that 

can be heard as consecutive and as a whole make up a single coherent motion.  Thus, the 

cycle-graph consists of a series of edges relating consecutive events, plus one edge 

relating the initial event to the final event representing the complete prolongational span 

of the sequence.  So far, then, our graph asserts that the passage under analysis makes up 

a complete phrase, but fails to identify any internal relationships between these events. 

 
 

 
 

FIGURE 1.10: A CYCLE REPRESENTING THE REDUCED MELODY OF THE FUGUE SUBJECT 
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Yet, there is one important thing missing from the cycle-graph of figure 1.10 as a 

representation of a musical phrase: as a mathematical object, none of the edges of the 

cycle are distinguishable from any others.  Thus, the cycle-graph by itself doesn’t tell us 

which edge represents the prolongational span and which represents an interval between  

consecutive events.  Therefore, one edge of the graph must be distinguished as the edge 

of the prolongational span.  I will call this the root edge.  In this case, the root-edge of the 

cycle-graph is i-t (as it always is, by convention, for a cycle that includes these 

vertices).  Furthermore, we must have some way of telling which is the initial and which 

is the final event on the root edge (without reference to the names on the vertices).  This 

is accomplished by assigning an orientation to the root-edge pointing from the initial to 

the final event.  Thus, the MOP representation of a musical phrase is an oriented-edge 

rooted cycle-subgraph of the MOP. 

Fortunately, the definition of a cycle allows us to avoid the somewhat cumber-

some construction of an oriented-edge rooted cycle-subgraph.  The usual definition of a 

cycle follows naturally from the idea of a paths.52  Imagine that you’re traveling from one 

musical event to another in the fugue subject in such a way that each two consecutive 

events you visit share an edge in figure 1.10.  If you never visit the same vertex twice, the 

sequence of vertices that results is called a path.  For instance, 1G-i-t-5E-4F-4G-4D is a 

path in figure 1.10.  By writing out the names of the events on the path in order, we can 

see both the vertices and the edges included in the path.  For instance, the edges of 1G-

i-t-5E-4F-4G-4D are 1G-i, i-t, t-5E, 5E-4F, 4F-4G, and 4G-4D. 

A cycle is a path that includes an edge between its initial and final vertices.  One 

cycle of figure 1.10 is given by the sequence i, 1G, 2A, 2G, 3F, 3E, 4D, 4G, 4F, 4E, t.  

To distinguish this notationally from the path i-1G-2A-2G-3F-3E-4D-4G-4F-4E-t, I will 

indicate the final edge with a closed bracket: i-1G-2A-2G-3F-3E-4D-4G-4F-4E-t].  A 

cycle has the same number of vertices and edges, unlike a path whose number of edges is 

one fewer than the number of vertices.  Also, every cycle-graph of n vertices actually 

                                                
52 See Brandstädt, Le, and Spinrad 1999 (2). 



 

 

 

58 

includes 2n different cycles, because you can in principle start and end on any of the n 

events and there are two possible directions to travel around the cycle. 

Although this definition of cycle is standard, most of the mathematical literature 

fails to draw such a careful distinction between “cycles” and “cycle-graphs” or “cycle-

subgraphs.”  In the case of the MOP model of prolongation, the semantic importance of 

the distinction makes it worth the terminological nit-picking.  A cycle of a graph 

technically designates not only a cycle-subgraph, but more specifically an oriented-edge 

rooted cycle-subgraph, because the edge from the initial to the final vertex of the cycle 

can be interpreted as an oriented root edge. 

The edges in the graph of figure 1.10 tell us only the order of events in the 

passage; they don’t say anything about the analysis.  To complete the graph, we’ll add 

edges to represent each prolongational span in the analysis.  It is important to recognize 

that the goal here is simply to represent the shape of the music as implied by a particular 

analysis (in this case, the analysis of figure 1.9).  The reader may be accustomed to 

thinking of formalizations as prescriptive of analysis, as attempts to “prove” that a certain 

analysis is the correct one.  But this sort of prescriptiveness is not at all an inherent 

property of formal modeling.  In the present case, I don’t think figure 1.9 gives the only, 

or even the best, possible analysis of the fugue subject.  However, I would like to show 

that some of its most basic properties can be represented in a mathematical construction.  

This construction is quite general: in its essential form it doesn’t even make any 

necessary reference to the nature of the events (their pitch, metrical placement, et c.) that 

label the vertices of the graph. 

I’ll show two ways to approach the completion of the MOP analysis of the fugue 

subject: a top-down (“synthetic”) and a bottom-up (“analytic”) method. 

The top-down method proceeds as follows: first we find the most background 

event of the passage, the one that can represent the passage in a wider context.  Of 

Renwick’s beamed notes (in figure 1.9), the note G will function as a head-tone for the 

entire piece, so we choose 1G.  This is then attached to the root edge of the basic cycle 

shown in figure 1.10 (i-t) by adding the edges i-1G and 1G-t, as shown in the first 

stage of figure 1.11.  (i-1G is already in the cycle of figure 1.10).  These edges say that 
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1G is both an initial and final note of the passage (that is, it may remain after all other 

events of the passage have been reduced out), and the triangle that is formed, i-1G-t], 

indicates a prolongation; in this case 1G prolongs the motion from initiation to 

termination.  (This is all redundant information, of course). 

Of the new prolongational spans created by choosing 1G as the prolongation of 

i-t, i-1G is trivial (meaning that there are no events preceding 1G), so we look for an 

event to prolong 1G-t.  In other words, we’re looking for a note that’s terminal and 

completes a motion from 1G.  Such a motion is shown by the beams in figure 1.9, and is 

completed by 5E.  Therefore 1G-5E is an edge representing that third-progression, 5E-t 

(already in the cycle of trivial prolongations) indicates that 5E is terminal, and the triangle 

1G-5E-t] represents the prolongation of 1G-t by 5E—that is, 5E delays the termination 

of a phrase dominated by the event 1G.  This is shown in the second stage of figure 1.11. 

Again, of the new prolongational spans created, only one, 1G-5E is non-trivial.  

The event that most directly prolongs this motion is the passing tone 3F, as shown by the 

beams in Renwick’s analysis.  So we add the edges 1G-3F and 3F-5E to the graph, as 

shown in the third stage of figure 1.11.  Because both 1G-3F and 3F-5E are non-trivial, this 

creates two smaller cycles that, along with the triangle 1G-3F-5E] (which represents the 

prolongation of 1G-5E by 3F that we have just identified), split up the larger cycle 1G-2A-

2G-3F-3E-4D-4G-4F-4E].  These are 1G-2A-2G-3F] and 3F-3E-4D-4G-4F-5E]. 

These smaller cycles can be considered as melodic phrases, just as the overall 

event sequence.  Thus, we analyze them in the same way.  Renwick shows with his stems 

that he considers 2A to be the most direct prolongation of 1G-3F.  It isn’t clear from figure 

1.9 whether 2A is simply an incomplete upper neighbor to 1G or a subdominant  

arpeggiation to 3F, but this distinction is inconsequential to the resulting structure of the 

MOP.  The ambiguity of the prolongation of 3F-5E is more problematic, because, since 

Renwick stems both 4D and 4G it’s unclear which of these is the more fundamental 

prolongation of 3F-5E.  The choice of 4G would mean that 4D would have to be explained 

in terms of an arpeggiation, either from 3F or to 4G.  Since Renwick indicates only tonic 

harmony in effect here, perhaps allowing 4D to appear as a lower neighbor to 5E, as in the  
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FIGURE 1.11: THE TOP-DOWN CONSTRUCTION OF A MOP 
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FIGURE 1.12: THE BOTTOM-UP CONSTRUCTION OF A MOP 
 
 

fourth graph of figure 1.11, is a better choice.  I’ll discuss this further in the next section 

(“Notational Enrichments of MOPs”). 
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Because we’ve represented the prolongations 1G-2A-3F] and 3F-4D-5E] as 

incomplete progressions in this analysis, the note 3F—according to the discussion in 

“Some Conceptual Problems in Theories of Prolongation” above—substitutes for 1G as 

the destination of 2A, and 3F substitutes for E as the origin of 4D.  The edges 2A-3F and 

3F-4D represent the prolongational spans created by these substitutions (see the fourth 

graph of figure 1.11).  In the next section we’ll supplement the notational system of 

MOPs to reflect the special nature of these prolongational spans, but for now our primary 

concern is simply which edges to include in the graph. 

The edge 1G-2A that shows 2A as a neighbor to 1G is trivial, and the edge 4D-5E 

creates a new cycle, 4D-4G-4F-5E].  The analysis is completed by finding the event that 

directly prolongs 4D-5E to fill in this last “hole” in the graph.  In this case the slur from 

4G to 5E that denotes the third-progression gives the edge 4G-5E to complete the graph. 

Figure 1.12 shows the bottom-up analytical procedure, which starts from the 

edges representing trivial prolongations in figure 1.10.  First we find the events that 

Renwick depicts as most foreground; these are 2G, 3E, and 4F, shown as passing tones by 

Renwick’s slurs.  These can be reduced out by adding edges between the events adjacent 

to them on the cycle: 2A-3F, 3F-4D, and 4G-5E—that is, the notes connected by slurs in the 

analysis.  This leaves the cycle i-1G-2A-3F-4D-4G-5E-t], a reduction of the fugue 

subject, as shown in the first graph of figure 1.12. 

Then the process of elimination continues: 2A is subsumed by the beamed 

stepwise progression of 1G to 3F, and 4G by the stepwise progression from 4D and 5E.  

The second graph of figure 1.12 includes the new edges, 1G-3F and 4D-5E, leaving the 

smaller hole of i-1G-3F-4D-5E-t].  The edge 3F-5E, shown by beams in Renwick’s 

analysis, further reduces this, as in the third graph of figure 1.12.  The final steps, then, 

are similar to the first steps of the top-down construction, and result in the same MOP. 

Recalling my explanation of the term planar above, the drawing of the completed 

MOP in figure 1.13 illustrates the planarity of the MOP (because none of its lines cross).  

This is not all, though: the drawing of figure 1.13 also presents the MOP as an 

outerplanar graph.  This means that there’s a way to draw the graph so that, not only do 
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no two lines intersect, but also if we imagine that the edges of the graph enclosing a 

region in the plane, all of the vertices are on the perimeter of this region. 

Now, imagine that we add another edge to the MOP—say 2G-3E, as in figure 1.14.  This 

graph is no longer outerplanar: the note 3F is surrounded by the cycle  

1G-2A-2G-3E-4D-5E], and there is no way to draw the graph on a plane without crossing 

edges and avoid this.  In fact, if we add any new edge to the graph of figure 1.13, the 

result will be a graph that isn’t outerplanar.  This is what maximal outerplanar means: the 

graph is outerplanar and there is no way to add a new edge and still have an outerplanar 

graph. 

As I said above, this characterization, while mathematically interesting, doesn’t 

say much about how the graph makes a good model of dynamic prolongation.  However, 

a small modification of it will prove more enlightening. 

 
 

 
 

FIGURE 1.13: A MOP ANALYSIS OF THE FUGUE SUBJECT 
 
 

 
 

FIGURE 1.14: AN EDGE ADDED TO A MOP MAKES IT NO LONGER OUTERPLANAR 
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Notice that there are many ways to pick cycles out of the graph in figure 1.13 that 

correspond to a melodic phrases.  Some cycles pick out coherent parts of the passage, 

such as 1G-2A-2G-3F], 3F-3E-4D], and 4D-4G-4F-5E].  Some include i-t and represent 

reductions of the passage—as does the cycle i-1G-2A-3F-4D-5E-t].  Still others may 

pick out coherent parts of some such reduction, such as 3F-4D-4G-5E].  There’s always 

one cycle that includes every event in the melody.  This is called the Hamiltonian cycle. 

A Hamiltonian cycle, in the terminology of graph theory, is one that includes 

every vertex in the graph.  In a MOP, such as figure 1.13, there is always exactly one 

Hamiltonian cycle-subgraph and it is the one that includes every edge between 

consecutive events and i-t.  By specifying i-t as an oriented root-edge we identify 

precisely the Hamiltonian cycle that represents the entire sequence of events as a musical 

phrase.  In figure 1.13, for instance, this is i-1G-2A-2G-3F-3E-4D-4G-4F-5E-t]. 

Say that C is any cycle of a MOP, and it has n vertices.  This cycle corresponds to 

some musical phrase.  If we delete all the events of the MOP that are not part of C (and, 

of course, all the edges they participate in), what we ought to be left with is a 

prolongational analysis of the musical phrase defined by C.  To make the notion of 

dynamic prolongation we’ve been pursuing thus far precise, I’ll define two conditions on 

what counts as a prolongational analysis of C. 

First, if C has more than 3 vertices, there must be at least one edge between two 

vertices of C other than the edges of C itself.  Such an edge is called a chord.  A 

chordless cycle of four or more vertices in a graph is called a hole.  Semantically, a hole 

tells us that the phrase defined by the cycle makes up a prolongational span, but it 

neglects to relate the notes within that span.  In the construction of the fugue subject we 

made a point of filling all such holes, because the holes leave the analysis incomplete: 

they fail to distinguish between possible ways of relating events within the chordless 

cycle.  Below (in the section “Maximality and Chordality”) I will entertain the possibility 

of leaving holes in an analysis, but for now let’s stipulate that the analysis should be 

complete.  Such a graph, one with no holes, is called a chordal graph. 

Second, if C has more than one chord, these chords can’t cross.  That is, if a, b, c, 

and d are four events occurring in that order in the cycle, then ac and bd would be 
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crossing chords.  They are called crossing because there’s no way of drawing them inside 

the cycle without having the lines cross.  The reason we put this condition on a 

prolongational analysis is that crossing chords create the unintelligible situation where b 

prolongs the interval a-c while c prolongs the interval b-d. 

This is precisely the restriction that William Benjamin and others would like to 

eliminate from the definition of the word prolongation.  I think I have already sufficiently 

argued this case in the introduction, but it’s worth adding the observation here that 

Benjamin’s idea of prolongation relies heavily on the static sense of the term.  According 

to Benjamin’s usage, prolongation is simply a relationship between two events: one 

prolongs the other.  And, in addition, the temporal relationship between events is not 

particularly important: the event c can prolong a without that fact necessarily affecting an 

event b that occurs between them in sequence.  I find this quite counterintuitive, 

especially considering the temporal implications of the word “prolong.” 

In contrast, according to the dynamic sense I pursue here, “prolonging” is a 

relationship that an event can hold to a time span that includes that event, a time span that 

is defined by the events that delineate its boundaries (and not, for instance, by a clock or 

a meter).  For instance, if 3F is a passing tone between 1G and 5E, then 3F prolongs the 

motion from 1G to 5E.  One could say that 3F bears a relationship of prolonging to both 

1G and 5E individually in some sense, but 3F cannot prolong 1G unless 1G is going 

somewhere and 3F provides a stop along the journey.  Otherwise 1G and 3F are just two 

events, one after the other. 

These three conditions give one way to completely define a MOP: it is a 

crosschord-free chordal Hamiltonian graph.  Given Hamiltonicity, I think it is not 

difficult to see how the crosschord-free condition replaces outerplanarity, and the chordal 

condition replaces maximality in the definition of a MOP.  I will prove this rigorously in 

part five of the paper.  For now, it is important only to recognize how in the context of a 

particular musical interpretation of the mathematical object of a graph, the conditions that 

circumscribe the class of graphs suitable as a representation of prolongation help to 

remove much of the ambiguity about the meaning of the word.  Furthermore, debates 

about my usage of the term prolongation can be directed at particular aspects of the 
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model.  (For example, if one disagrees about the necessity of completeness in a 

prolongational model, they can modify the chordality condition that helps to define a 

MOP). 

Refinements of the MOP Model 

In the previous section (“The MOP Model of Prolongation”) I pointed out that the 

model developed there is restricted to relatively basic information about the 

prolongational analysis of a sequence of events.  In particular, while the analyst is 

concerned with the particular nature of the events being related in the analysis, the 

mathematical construction is otherwise blind to them: it regards them as just a sequence 

of so many events.  This has the advantage of freedom and simplicity: it offers the analyst 

many possible prolongational structures—some of them plausible, many of them junk—

and allows for a concise description of the mathematical object that represents the 

analysis.  The disadvantage, of course, other than having to sift out the junk analyses, is 

that certain musically important distinctions are lost: for instance, the fugue subject 

analysis in figure 1.13 doesn’t tell us whether 2A-3F is heard as a prolonged interval of 

the subdominant, or as the loose-end of an incomplete neighbor progression (as I 

described it above). 

To remedy these flaws I propose a few notational conventions that make the 

drawings of MOPs more expressive.  I won’t rigorously formalize these notational 

conventions here, but it certainly is possible to do so, and also to use them to fence off 

some of the junk analyses.  I’ll develop this notation here in the context of melodic 

prolongation that I’ve already set up, and extend it later (in part 3) to contrapuntal 

prolongation.  Also, at the end of this section I’ll briefly address the problem of 

unfoldings that I brought up in “Some Conceptual Problems in Theories of 

Prolongation.” 

The notational convention here consists in drawing edges in four different 

possible ways to indicate different types of prolongational spans.  First, ordinary lines 

will be reserved for the most fundamental types of melodic prolongation, passing and 

neighboring motion.  Such edges, thus, will always be incident on stepwise-related notes.  
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Arpeggiations, on the other hand, are indicated by bold lines, whereas the retention or 

octave transfer of a pitch is shown with a bold line crossed by two slashes. 

The fourth and last type of edge is drawn with a broken line, and denotes a 

relationship created by substitution—in other words, recalling the discussion from “Some 

Conceptual Problems in Theories of Prolongation” above, the “loose end” of an 

incomplete progression.  To illustrate, let’s return to the melodic analysis of Salzer’s 

(shown in figures 1.3 and 1.4) that motivated that earlier discussion.  Figure 1.15 gives a 

MOP representation of this analysis with the enriched notation. 

Consider, for example, the motion from 1G to 2F in measures 1-2.  This motion is 

prolonged by an incomplete arpeggiation from F to D, so a bold line for 1D-2F indicates 

the arpeggiation while a broken line for 1G-1D shows that this edge results from a 

substitution of 1G for the origin of the arpeggiation.  This edge, 1G-1D, is itself prolonged 

by an incomplete motion, here an upper neighbor from G.  The ordinary line for 1G-1A 

shows the neighbor relationship while the dotted line for 1A-1D indicates that the 

resolution of the upper neighbor is elided resulting in the juxtaposition of 1A and 1D. 

The edges involving the initiation and termination vertices are also considered 

incomplete progressions, since these “formal” events substitute for the possible ways of 

musically contextualizing the given passage.  So, in figure 1.15, 0E-1G and 1G-4C are 

incomplete arpeggiations.  This example also includes an example of retention in 

 
 

 
 

FIGURE 1.15: A MOP REPRESENTATION OF SALZER’S ALBUM FOR THE YOUNG ANALYSIS 
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measures 3-4 with the edge 3D-4D, and a fifth-progression made up of a passing 

arpeggiation 1G-3E-4C and the passing-tone progressions 1G-2F-3E and 3E-3D-4C. 

Figure 1.16 uses this notation to add content to the MOP representation of the 

fugue subject analysis in figure 1.13.  Excluding the formal prolongations, there are three 

incomplete progressions in this analysis, the incomplete neighboring motions 1G-2A and 

4D-5E and the incomplete arpeggiation 4G-5E.  Passing tones prolong the loose-end spans 

2A-3F and 3F-4D, illustrating why such spans must be included in the graph in spite of the 

fact that they aren’t considered to be intervals of harmonic significance. 

The two arpeggiations of this analysis, both of them from G to E, reflect the 

choice to avoid implying any harmony other that C major in the analysis (by making 4D 

an incomplete lower neighbor to 5E).  In fact, this is not really an accurate representation 

of Renwick’s conception of the fugue subject, as I will show momentarily.  First, let’s 

explore some other ways of hearing the subject through dynamic prolongation. 

Figure 1.17 gives the same MOP, but shows the motion 2A-3F as a subdominant 

arpeggiation rather than a substitution.  The possibility of such a prolongation is 

interesting: 2A is still in a sense an incomplete upper neighbor to 1G, but this doesn’t 

seem to preclude its also being an incomplete arpeggiation to 3F, rather than a mere 

juxtaposition with 3F.  What has actually happened is that by attaching two different 

types of incomplete progression (neighboring and arpeggiating) to one another, we obtain 

a new sort of composite complete progression: arpeggiation to (or from) a neighbor. 

 
 

 
 

FIGURE 1.16: A NOTATIONALLY ENRICHED VERSION OF RENWICK’S FUGUE SUBJECT ANALYSIS 
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FIGURE 1.17: A SLIGHTLY DIFFERENT READING OF RENWICK’S ANALYSIS 
 
 

The reader will probably have noticed already an interesting fact about this 

notational system: the labels on the vertices themselves basically determine whether an 

edge is drawn as a thin line or double-slashed line.  Stepwise progressions will always 

receive a thin line, while retentions and octave-transfers will always receive a slashed 

line.53  The thick lines and broken lines are left, in this game of musical chairs, to fight 

over the leaping motions.  Thus, as far as actual content goes (beyond making the 

drawings of MOPs more expressive in appearance), the choices made in applying this 

notational system to a melodic MOP analysis are whether the leaping motions are actual 

arpeggiations or not. 

While it’s no skin off the back of the formal model to allow for such distinctions, 

they begin to appear often arbitrary and fictitious upon closer examination.  The analysis 

of Renwick’s in figure 1.9 comes from a larger analysis of the exposition of the fugue, 

and the ambiguities we observed in it are simply a result of its abbreviation in service of a 

wider analytical picture.  Figure 1.18 shows his more detailed analysis of the subject.  

Here we see that Renwick hears the subject as not merely a composing-out of I, but 

implying an entire progression, I-IV-V7-I.  If one holds a very rigid view on “structure 

and prolongation,” one might see this as a contradiction: are those IV and V chords 

structural or aren’t they?  Yet, it’s difficult to maintain such an absolutist stance: in fact  
                                                
53 One might dispute whether a stepwise progression might sometimes constitute an 
arpeggiation (i. e. of a seventh chord).  Schenker’s notion that the seventh of a chord 
always be heard as a passing motion from the root argues against this possibility, but 
there is presently no pressing formal reason to exclude it. 
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FIGURE 1.18: RENWICK’S MORE DETAILED ANALYSIS OF THE FUGUE SUBJECT 
 
 

the implied IV and V are relatively structural in the very narrow context of an analysis of 

the subject by itself, but not very structural in the context of the entire exposition. 

If we thus acknowledge the relativity of “structure and prolongation,” and also 

adhere to the Schenkerian idea that harmonic progression is not an independent reality 

but arises out of contrapuntal patterns (—see the discussions of Schenker’s Stufen in 

“The Concept(s) of Prolongation” and “Prolongations as Passing Events” above—), it 

calls into question the idea of distinguishing between “harmonic” and “non-harmonic” 

leaps.  It’s simpler to say: a leap by itself is nothing more than a leap and any leap has the 

potential and tendency to suggest an arpeggiation, but it’s the extent of the leap, the 

backgroundness of the prolongational span it defines, that gives it power to trump other 

leaps in the defining the harmonic progression that we hear.  It is natural, therefore, that 

the detail of the harmonic patterns we observe depends proportionately on the distance 

from which we take our vantage of the music.  Nevertheless, the distinction between 

incomplete neighbors and arpeggiating neighbors is useful and I will retain it. 

While we have Renwick’s analysis of the fugue subject in figure 1.18 on the table, 

let’s look again to find the source of ambiguity about the prolongation of the step 3F-5E.  

In Renwick’s more detailed analysis here we can see that he is unclear about this in figure 

1.9 because in fact he hears both 4D progressing stepwise to 5E and 3F-5E being 

prolonged by 4G as a sort of interruption.  Perhaps at this point, William Benjamin will 



 

 

 71 

 

say “Aha!,” because to incorporate both of these into a melodic analysis would create 

crossing prolongations.  Unfortunately for Benjamin, Renwick seems to share the view 

that such melodic prolongations are incomprehensible, because he finds it necessary, in 

order to show these two prolongations, to separate the notes of the subject conceptually 

into two voices, making 4D a passing tone from 1C to 5E in the lower voice so that the 

motion to 4G can occur simultaneously in a higher voice that expresses the main 

progression G-F-E. 

In “Some Conceptual Problems in Theories of Prolongation” above, I pointed out 

that Schenker’s notion of unfolding introduces problems into the important contrapuntal 

idea of a voice.  In particular, to fully adopt the idea that progressions can express 

unfoldings, it’s necessary to accept that the number of voices and content of voices can 

change depending on the level at which one views the music. 

Here’s a possible formal way of dealing with this situation: I’ve already 

developed a model in which a particular sequence of notes, once fixed and assigned to a 

single voice, can be given a prolongational structure.  Such a structure can also apply to a 

sequence of simultaneities, seen as a sort of first species counterpoint of consonances.  

(I’ll explore this idea in more depth in part three of the paper.)  For instance, consider 

figure 1.19 as a reduction of Renwick’s analysis of figure 1.18 to a simple two-voice 

counterpoint of consonances over an imaginary cantus firmus of Stufen.  Here, each event 

is a dyad, expressed as an ordered list of notes with the lower voice in the first place.  The 

notation from melodic MOPs can be loosely extended to such an analysis: the 

progression (1C, 1G)(5E, 5E) is an arpeggiation in both voices, the progression 

(3F, 2A)(3F, 3F) as an arpeggiation of the upper voice over a stationary lower voice, and 

(3F, 3F)(4D, 3F) similarly an arpeggiation in the lower voice against a stationary upper 

voice, so these all are drawn with thick lines.  The other prolongational spans have 

stepwise motion in at least one voice, so (following Schenker’s idea of “ensnaring the 

leap”—see “Prolongations as Passing Events” above) they’re drawn with ordinary lines. 

Of course, the voices individually should have the same prolongational structure 

as the composite, though with equivalent notes contracted into a single vertex.  Thus, the 

graph of figure 1.20 gives the basic structure of the upper voice.  Now consider the  
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FIGURE 1.19: A “FOLDED” VERSION OF RENWICK’S ANALYSIS 
 
 

 
 

FIGURE 1.20: THE UPPER VOICE ISOLATED FROM THE ANALYSIS OF FIGURE 1.19 
 
 

 
 

FIGURE 1.21: THE UNFOLDED ARPEGGIATIONS OF RENWICK’S ANALYSIS 
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FIGURE 1.22: THE UNFOLDED VERSION OF RENWICK’S ANALYSIS WITH PASSING TONES 
 
 

transformation of the counterpoint of figure 1.19 in figure 1.21: all of the notes are 

incorporated into a single voice by unfolding the consonant intervals into arpeggiations.  

That is, the basic structure of the upper voice in figure 1.20 is retained, while the lower 

voice notes are added as prolonging arpeggiations that either precede or follow the note 

they arpeggiate to.  In the case of 1C this results in an incomplete arpeggiation from 1G, 

while 4D is a complete arpeggiation since it accounts for the unfolding of both (4D, 3F) 

and (4D, 4G).  This basic structure can then be filled-out with passing motion as in figure 

1.22.  (The fourth-progression from 4D to 4G in this analysis is discussed briefly in 

“Maximality and Chordality” below).  We can regard Salzer’s Album for the Young 

analysis (figure 1.15) as an unfolding in a similar fashion, as figure 1.23 illustrates. 

Figure 1.22 is particularly interesting in that some of the events in the analysis 

appear to take on multiple harmonic meanings.  For instance, 3F is the root of the 

subdominant in the arpeggiation 2A-3F, but in the following arpeggiation 3F-4D the same 

event appears as a seventh of the dominant.  Similarly, 4G seems to take on the meaning 

of both tonic fifth (in 4G-5E) and dominant root (in 4D-4G).  This calls to mind Schenker’s 

concept of “nodal points” (Knotenpunkten).  (See Counterpoint II, 58; Kontrapunkt II, 

57-8).  Schenker demonstrates the phenomenon in second species counterpoint where a 

note on the downbeat can complete a passing motion from a previous measure and  
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FIGURE 1.23: UNFOLDING TRANSFORMATIONS IN SALZER’S ALBUM FOR THE YOUNG ANALYSIS 
 
 

initiate a different consonant leaping motion over a new cantus firmus note, so that as a 

completion of the preceding motion it has a different harmonic meaning than it does in 

the motion it initiates.  This phenomenon is particularly interesting because it illustrates 

the fact that harmonic meaning is not a property of the melodic event itself; rather 

harmonic meaning is a property of the motions from one event to another.  In the analysis 

of figure 1.22, 3F isn’t exactly a subdominant event or a dominant event; rather, 3F 

completes a subdominant motion and initiates a dominant motion. 

I won’t rigorously formalize the model of unfolding offered here due to 

limitations of space and time, but this brief exposition demonstrates a couple of important 

points about prolongation.  First, unfolding can be developed as a construct independent 

of the most basic aspects of prolongation.  According to the formal model of unfolding 

I’ve suggested here, we can identify prolongational structures both for melodies and for 

counterpoints of melodies and view unfoldings as a transformations relating such 
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prolongational structures.  Second, it’s impossible to go very far with a model of 

prolongation that doesn’t account for multiple voices, since we tend to hear counterpoint 

and harmony even in the simplest of melodies.  The discussion of unfolding here offers a 

small preview of the contrapuntal model of dynamic prolongation described in part three 

of this paper. 

A Comparison of Analyses Using the MOP Model 

After laying out an unambiguous model of at least the most essential 

characteristics of dynamic prolongation, having such a model proves to be an invaluable 

tool for analysis.  In the introduction I quoted Carl Schachter’s misgivings about a 

“theory of reduction,” and while I certainly don’t pretend to have formalized anyone’s 

intuitive grasp of large structure, I would like to show how even the simple formal model 

of prolongation I have developed in the previous section greatly clarifies what is at stake 

in making the analytical “either/or” choices that Schachter discusses.  (Schachter, 1990)  

I will revisit this analysis in the third part, at which point some added formal apparatus 

will allow a much more complete representation of Schachter’s analytical insights. 

Figure 1.24 shows a passage from the second movement of Haydn’s Symphony 

No. 99 and Schachter’s analysis below it. (170)  Since we have only discussed the 

prolongation of melodic events so far, saving counterpoint for the third part, I will 

represent Schachter’s analysis as a prolongational analysis of the main melodic line.  This 

will be sufficient to demonstrate the points he makes in his discussion of the excerpt.  

Schachter presents two plausible conflicting analyses of this passage and decides in favor 

of the one shown in figure 1.24.  Below Schachter’s analysis are the harmonic 

progression implied by this analysis, and the one implied by the non-preferred analysis, 

which Schachter doesn’t show in Schenkerian notation.  The point of contention between 

the two analyses is in the interpretation of measures 7-12. 

Schachter’s idea of a “theory of reduction,” as I pointed out in the introduction, is 

that of a prescriptive formal model, one that prescribes a particular analysis given a 

particular passage of music.  Our model of prolongation, on the other hand, itself gives no  
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FIGURE 1.24: HAYDN SYMPHONY NO. 99, 2ND MOVEMENT, AND SCHACHTER’S ANALYSIS 

 
 

preference to either of Schachter’s two conflicting analyses.  In fact, the model defines a 

finite (but huge) number of possible analyses, many of which are worthless, and makes 

no claim for any of them in particular.  The musical observer is still indispensable, to 

filter out the worthless analyses and to deliberate on the relative merits of the remaining 

analyses, not to mention to evaluate the usefulness of the formal apparatus itself.  

Whether you agree with Schachter that a single correct or artistically truest structural 

analysis for most any musical passage exists but there’s no practical limit to the musical 

expertise required to discover that analysis, and hence no mechanical way of deciding it, 

or you take the position that each analysis expresses a different hearing, some more 

plausible than others but none absolutely correct, the clarity of discourse that a 

formalized model makes possible—not it’s potential to make analytical decisions for 

you—is indispensable to the process of evaluating an analysis. 
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My goal here, then, is to provide representations of Schachter’s two analyses to 

illuminate the relative merits of each.  Because I’m using the MOP model, I’ll also be 

characterizing Schachter’s analysis in terms of dynamic prolongation.  While I make no 

presumptions on whether Schachter himself would agree that the dynamic sense of 

prolongation accurately reflects his own sense of the term, the discussion of his analysis 

in these terms shows that the language of dynamic prolongation is able to faithfully 

communicate the musical intuitions he illustrates in his analysis of the Haydn excerpt. 

To use the MOP model as developed so far, we must first pin down a sequence of 

melodic events to analyze.  Schachter’s analysis boils measures 1-6 down to the events 

that operate at the level of the entire first 16-measure phrase.  These are the initial tonic 

third B and the dominant fifth A of measure 4.  This works well for the MOP model, 

since this reduces the first 6 measures to those events that bear some dynamic 

prolongational relationship to events in the music in question, measures 7-12.  As for 

measures 7-12, a fairly complete list of melodic events, excluding only those that belong 

to an inner voice, is 7G-7B-8A-8G#-9A-9B-9C-9D-9E-10D-10C-10B-11A-11B-11C-12B (using 

the by-now-familiar notation where the index on each note refers to the measure number 

in which the event occurs). 

Figure 1.25 shows the prolongational relationships that both analyses agree upon.  

These include the foreground prolongations by passing tone, 7B-8A-8G#, 9A-9B-9C, 9C-

9D-9E, 10D-10C-10B, and 11A-11B-11C, the arpeggiation 8A-9C-9E, and 8G# as an 

arpeggiating neighbor, as well as the most background relationships, 1B as the main event 

of the passage, 7B and 12B as retentions of 1B, and 11C as a structural neighbor.  This 

leaves a short sequence of six events where the analytic dispute lies: 7B-9E-10D-10B-11A-

11C shown by the “gray area” in figure 1.25. 

One thing that the graph of figure 1.25 doesn’t include is the interruption that 

Schachter indicates parenthetically in his analysis.  The reason for this is that Schachter’s 

beaming and scale-degree indications contradict the assertion of a true interruption in 

Schenkerian terms.  According to Schenker (see Free Composition, 36-7; Freie Satz 71-

2), the Urlinie tone arrived at just before the interruption— , in the case of a third- 

progression Urlinie—is the structural passing event rather than a lower neighbor to the 
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FIGURE 1.25: THE PROLONGATIONAL RELATIONSHIPS AGREED UPON  
BY SCHACHTER’S TWO ANALYSES 

 
 

preceding Urlinie tone.  Thus, to assert an interruption in the MOP analysis, 4A, rather 

than being a prolongation of 1B-7B, would have to be a prolongation of the motion from 

1B to a G that resolves the third-progression from 1B as well as a subsequent third-

progression from 7B.  This could potentially be the grace-note G in measure 12, though 

not according to Schachter’s analysis of measures 7-12.  Furthermore, there’s no arrival 

at G in the remainder of the exposition, which pushes forward to a half cadence in 

measure 16 and ends on a tonicized D major in measure 34 (which is, of course, the true 

interruption in Schenkerian terms).  Therefore Schachter puts the interruption symbol in 

parentheses, to say that the moment in measure 7 gives the “sense” of an interruption 

though not a true interruption, as in measure 34.  Since the only plausible continuation of 

a third-progression through 4A is 7G, I have represented Schachter’s analysis of these 

measures as a third-progression resulting in the retention of the initial tone B. 

Figure 1.26 shows the two potential analyses of the gray area: first, Schachter’s 

not-preferred option where 7B and 10B make up a prolongational span representing the 

tonic, 11A represents the “real” II6, and 10E is an upper neighbor to the fifth of the tonic, 

10D, and second, Schachter’s preferred analysis, where 10D is passing from 11E of the 

“real II6” to 11C, the seventh of the dominant. 
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FIGURE 1.26: THE DISPUTED PROLONGATIONS IN SCHACHTER’S TWO ANALYSES 
 
 

Thus, the mathematical properties of the formal model nicely allow us to narrow 

down the analytical dispute to a simple choice of how to place three non-crossing chords 

in a 6-cycle, even though the choice of analysis actually crucially affects the 

interpretation of three measures of music.  It also shows us that the dispute is certainly 

over the prolongational interpretation of the passage and not something else.  For 

instance, someone might dispute Schachter’s claim that the G chord in measure 10 is not 

a “real” tonic, and argue that the progression is not II6 (mm. 9-11)-V7 (m. 11)-I (m. 12), 

as Schachter has it, but II6 (m. 9)-VII7 (m. 10)-I (m. 10)-II6 (m. 11)-V7 (m. 11)-I (m. 12).  

This person, however, is still free to agree with the second analysis of figure 1.26.  If that 

person did accept the second analysis of figure 1.26, the dispute would not be over the 

prolongational interpretation of the passage but merely what the conditions are under 

which an analyst ought to call something a (“real”) harmony.  Certainly the 

prolongational interpretation would inform this dispute: for instance, Schachter would 

say that a I that prolongs a II6 is not functioning as a tonic.  In that case, the issue is not 

one of deciding upon a prolongational interpretation, but of the proper usage of the word 

“tonic” given a prolongational interpretation. 

The complete MOP corresponding to Schachter’s analysis is shown in figure 1.27.  

Only a couple of the decisions made in this representation of Schachter’s analysis are not 

explicitly shown in the analysis Schachter gives in Schenkerian notation.  First, in the 

passage 7B-8A-8G#-9A-9B-9C-9D-9E, he shows the notes 8A, 9B, and 9D as passing tones 

by a slur and 9C as an arpeggiation in the supertonic chord.  However, his analysis 

doesn’t specify the choice of analysis for 7B-8G#-9A-9E, whether to connect 7B to 9A or 

8G# to 9E.  Yet it is obvious that connecting 7B to 9A is correct, since a prolongation of  
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FIGURE 1.27: THE MOP REPRESENTATION OF SCHACHTER’S ANALYSIS OF THE UPPER VOICE 
 
 

8G#-9E would have to be a arpeggiating motion over measure 9 which wouldn’t fit with 

the hearing of a II6 harmony in that measure. 

Second, in the prolongation of 10D-11C, Schachter’s slurs show 10C and 11B as 

passing tones.  This leaves the cycle 10D-10B-11A-11C], where I chose to add the edge 

10D-11A rather than 10B-11C.  While Schachter’s stemming shows the connection from 10D 

to 11C, the choice of 10D-11A versus 10B-11C is a choice between two pairs of events 

involving one stemmed and one unstemmed note.  Yet the direction of the melodic line, 

which completes a descent at 11A as well as its strong metrical position and its 

coincidence with an important arrival in the bass suggest that 11A take on a more 

structural status here.  Therefore I interpret 10D-11A-11C] as an incomplete arpeggiation.  

(I will address this question further in the next section, “Maximality and Chordality”). 

This shows two things: first, the Schenkerian symbols themselves do not require 

the analyst to produce an analysis that is unambiguous in terms of prolongation.  Second, 

despite this fact, Schachter is very careful to leave no prolongational relationship 

ambiguous: in those places where the Schenkerian notation itself does not determine all 

of the prolongational relationships, they can be inferred from Schachter’s harmonic 

analysis.  This is not at all accidental: Schachter is careful to present an analysis that 

gives a complete account of measures 7-12, and the ease with which his analytical 
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symbols translate into the form of a MOP supports the proposition that Schachter’s idea 

of prolongation is consistent with the concept of dynamic prolongation as I have 

formalized it here. 

The elements of a MOP analysis correspond closely to the slurs, stems, and beams 

of Schenkerian notation.  Furthermore, the graphical presentation of a MOP has the 

advantage of showing very clearly what is required to make an analysis complete and 

what is not required.  Despite this and other advantages, I don’t intend to propose that my 

visual depictions of MOPs replace Schenkerian notation.  Schenkerian notation has 

obvious advantages of its own: because it uses staff notation it is easy to see how it 

corresponds to the score and it readily invokes musical intuitions, and in addition the 

analyst can use it in combination with Schenkerian symbols that are not purely 

prolongational in nature. The graphical presentation of MOPs is more useful as a 

supplement to the usual Schenkerian notation than it is on its own. 

Just to alleviate any confusion, however, I should point out that the formalization 

I have proposed is independent of any way of representing it with dots and lines.  I offer 

these visualizations as an aid to understanding the nature of the mathematical object.  Too 

often the music theorist tries to transplant a formal model without being careful to dig up 

the roots, the mathematical ideas that the visual paraphernalia strives to express, without 

which the formal model cannot grow and thrive.  Though I’ll admit to a fondness for the 

visual presentations of figures 1.9 and 1.14, my goal here is not to advance the cause of 

such drawings but rather the mathematical object of a maximal outerplanar graph as a 

representation of a prolongational analysis, a mathematical object that could be visually 

represented in numerous ways, including with noteheads and slurs on a staff. 

Finally, before leaving the topic Schachter’s article, let me address once again his 

general distaste for formal models.  The formal model I have injected into his discussion 

of the Haydn slow movement is not concerned about “working.”  That is, it doesn’t try to 

successfully reproduce Schachter’s analysis through a mechanical procedure, or give a 

formal representation to anything as complex and multifaceted as Schachter’s intuition 

about large structure.  Schachter’s choice of analysis, while it certainly implicitly takes 

into account all the resulting prolongational relationships shown in figure 1.27, is 
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ultimately based on motivic factors that themselves have little to do with prolongation.  

While the MOP model certainly informs prolongational decisions by helping the analyst 

understand exactly what each decision entails, it doesn’t prescribe a solution to any 

analytical dilemma.  It simply enumerates the possible analytical decisions and gives a 

representation to the prolongational structures that result from each one.  I hope that 

Schachter himself would agree that this tool helps music analysts do their job without 

putting any of them out of work. 

Maximality and Chordality 

The assertions about the nature of prolongation made by the MOP model divide 

up neatly into mutually independent parts.  The underpinning of the entire model is the 

framework provided by the graph-theoretic interpretation of the concept of dynamic 

prolongation.  In the section “Maximal Outerplanar Graphs” above I erected three walls 

upon that foundation intended to house a recognizable concept of prolongation.  These 

three walls are represented by the graph properties of Hamiltonicity, outerplanarity or the 

property of being crosschord-free, and maximality or chordality. 

Hamiltonicity represents the assumptions that a sequence of events has a definite 

order and comprises a prolongationally autonomous musical phrase.  For an analysis of 

melodic prolongation, these are essential.  In part three, we’ll see that strictness about the 

ordering of events must be relaxed to some extent in representing music in multiple 

voices in counterpoint.  The individual voices must still adhere to strict ordering, 

however, to avoid allowing the relaxation of Hamiltonicity in contrapuntal analysis to 

destroy the temporal nature of the analysis.  Thus, the melodic MOP, for which 

Hamiltonicity is an essential condition, is a necessary precursor to the construction of a 

contrapuntal model of dynamic prolongation. 

The property of outerplanarity or of being free of crossing chords is also essential 

to a unified and comprehensible prolongational analysis, as I have argued already in the 

introduction and in “Maximal Outerplanar Graphs.”  To give another angle on this, 

outerplanarity is crucial, in addition to Hamiltonicity, to assigning consistent time-

orientations to prolongational spans.  For instance, while a Hamiltonian outerplanar graph 
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may only have one Hamiltonian cycle-subgraph, one that isn’t outerplanar may in general 

have multiple.  This means that it would be possible, given a non-outerplanar graph as a 

prolongational analysis, to infer multiple orderings to the events analyzed.  More 

precisely: given any non-outerplanar Hamiltonian prolongational analysis on a fixed set 

of events (including an initiation and a termination event), for at least one edge of the 

graph it will be impossible to determine the order of the events in the prolongational span 

it represents.  (See the description of confluence in part 4).  Therefore, outerplanarity is 

essential to the notion that a prolongational span is a motion in time. 

This leaves the property of maximality or chordality, the one property of a MOP 

whose necessity for a description of melodic prolongation is debatable.  In “Maximal 

Outerplanar Graphs,” I argued in favor of this condition on the grounds that a hole (a 

non-trivial chordless cycle) is an unanalyzed sequence of events in a prolongational span.  

Therefore a non-maximal Hamiltonian outerplanar graph (or “HOP”) might be character-

ized as an incomplete prolongational analysis: it includes passages that could be further 

elucidated in terms of their prolongational structure but are not.  Yet there may be cases 

where such “incompleteness” is desirable; the question is just how much incompleteness 

does it take before a graph is too “thin” to constitute a prolongational analysis. 

Let me approach the issue from a somewhat different angle: the chordality 

condition means that all prolongations (of any number of events) can be built up out of an 

easily circumscribed set of possible elemental prolongation-types (given that the type of 

events participating in the analysis is well-defined and limited).  For instance, in the 

model of melodic prolongation we’ve developed in this part the paper, there are seven 

basic types of elemental prolongations: passing/neighboring motion, arpeggiation, the 

arpeggiating neighbor, incomplete neighbor, incomplete arpeggiation, and 

repetition/anticipation or octave transfer. Each of these has a particular look in the graph-

drawing notation developed in “Refinements of the MOP model” above, and each 

categories could also be further broken down by what type of motion they prolong, in 

some cases by the order in which different types of motion occur, and in other ways as 
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well. 54  Yet, even this short list of six categories is sufficient to allows us to survey the 

possibilities and acknowledge for each that in general it represents a phenomenon that we 

would call prolongation.  This is important because the fidelity of the model to our 

common-sense notion of prolongation is dependent on the comprehensibility of each of 

the possible building blocks. 

Admitting the possibility of holes means admitting the possibility of 

prolongations that aren’t constructed out of these simple building-blocks involving only 

three events.  Furthermore, admitting the possibility of holes without restriction would 

mean making it impossible to survey the possible types of “atomic” prolongations, 

because then in principle any number of events could constitute an irreducible 

prolongational span.  I think the surveyability of atomic prolongations is important to the 

evaluation and understanding of the model and its musical implications, however.  

Therefore, the admission of holes into the analytical model comes with a qualifier: each 

hole should be identified by type in such a way that one can evaluate whether it 

represents a musical phenomenon that constitutes a type of prolongation, and one, 

furthermore, that cannot or should not for whatever reason be broken down into smaller 

prolongational spans. 

Two instances from the analyses above arguably provide examples of legitimate 

prolongational holes.  Both are prolongational spans of four notes.  (I see no compelling 

justification for larger holes).  The first type is a fourth-progression.  Usually, a fourth-

progression can be broken down into a third progression and a step, but it might be 

desirable sometimes to leave the fourth-progression unanalyzed.  For instance, in the 

somewhat more detailed analysis of the C major fugue subject presented in figure 1.22, 

the interval 4D-4G expands to the fourth progression 4D-4E-4aF-4G].  I broke this down 

into an incomplete neighbor 4aF-4G and third-progression 4D-4E-4aF].  Because of the 

                                                
54 For completeness we should technically add to the list the “formal” prolongation 
indicated by two broken lines from the initiation and termination vertices, which 
designates a particular event as the most background of the passage.  Also, of the six 
categories, all are determined by both prolonging edges except the last, which is 
characterized by only one of its two edges.  We could break this last category down into 
four accordingly, but somehow it only seems to deserve one. 
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foregroundness of the progression, one might find such an analysis to be so much 

unwarranted splitting of hairs.  The addition of the edge 4D-4aF, while not especially 

revelatory, in any case doesn’t contradict the assertion of a fourth-progression.  Thus the 

admission of unanalyzed fourth-progressions is certainly a possible, though not 

necessary, innovation in the model. 

For another example, consider the one prolongational relationship that was 

ambiguous in Schachter’s analysis, the analysis of 10D-10B-11A-11C] into the arpeggiating-

neighbor progressions 10D-10B-11C] and 10B-11A-11C].  (See figure 1.27 and the discussion 

there).  Here’s a different description of the situation that may indeed best reflect 

Schachter’s own understanding of it: the motion of 10D to 10B and from 11A to 11C each 

represent unfoldings of harmonic intervals.  There is a significant stepwise relationship 

between the upper notes of these thirds, 10D and 11C, and—thinking in terms of the model 

of unfolding I offered in “Refinements of the MOP Model” above—the unfolding from 

10D is projected forwards in time while the unfolding from 11C is projected backwards in 

time.  (In Schenker’s terminology, this is an Untergreifen).  One might claim that this 

offers a complete account of such a prolongation, and that, indeed, prolongational 

relationships shouldn’t be asserted between the inner voice and upper voice notes other 

than the unfolding relationships.  Again, the assertion of an incomplete arpeggiation at 

11A-11C is perfectly accurate and consistent with the Untergreifen account of this passage.  

Therefore, one might accept Untergreifen and Übergreifen as exceptions to chordality in 

the prolongational model, but one can also recognize Untergreifen and Übergreifen as 

phenomena while adhering to the strictly chordal model. 

Thus, while reasonable exceptions to the chordality condition may be musically 

justified, they appear to be few and isolated and do not appear to be necessary exceptions.  

That is, the strict MOP model of prolongation that ignores such exceptions is not a 

terrible distortion of musical intuition.  Therefore, while we’ll keep the possibility of 

four-holes in melodic analyses in mind, in general I will assume that graphs of melodic 

prolongation are chordal. 
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PART 2: PHRASE-STRUCTURE MODELS OF PROLONGATION 

The General Phrase-Structure Model of Prolongation 

The idea of formalizing Schenkerian analysis is not new, of course.  Three groups 

of authors stand out for proposing relatively rigorously formulated analytical models: 

John Rahn (1979), Stephen Smoliar (1980), and Fred Lerdahl and Ray Jackendoff (1983).  

While their formalizations tend to focus more on rules of derivation than the structure of 

the model itself, all of these authors draw upon concepts from linguistics to structure the 

analytical model.  More specifically, they borrow Chomsky’s idea of a phrase structure 

grammar to structure the representation of musical analysis.  This is propitious for a 

comparison with the present approach, since a phrase-structure-grammatical analysis can 

be represented with an elaborated graph (called a rooted plane tree). 

Chomsky uses the term “phrase structure grammar” to distinguish this type of 

grammar from two other general models, one weaker and the other stronger: the finite-

state grammar and the transformational grammar. (Chomsky (1965))  All of these models 

can be thought of as “generative”: i.e. as algorithms for generating a set of sentences, 

which is presumably the set of all grammatical sentences if the rules of the grammar are 

properly defined.  However, it is not only important that the generative grammar 

produces a particular sentence: the way in which the grammar produces the sentence 

describes a grammatical structure for the sentence, and this structural description ought to 

have some sort of explanatory power to make the theory worthwhile.  The same is true in 

the case of a “generative grammar” for music theory: the production of a piece of music 

by the grammar is actually a structural description of the music. 

The finite-state grammar, while appealingly simple, is too weak to represent 

language because its rules can relate a word only to the words directly before it or after it, 

without taking into account the context of the word in the entire sentence.  This is also 

true, speaking in somewhat vague generalities, of Schenkerian analysis: a finite-state 

grammar will fail to represent it because of its lack of sensitivity to the context of a note 

or phrase within a piece. 
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A phrase structure grammar, on the other hand, generates a sentence by beginning 

with a string S (which stands for “sentence”) and successively rewriting the string until 

arriving at a terminal string.  The designation “terminal string” serves to distinguish the 

sentences themselves from abstractions of sentences such as NP + VP (which means 

“noun phrase followed by a verb phrase”).  The rules of rewriting are restricted to those 

that replace a single constituent of the string with one or more constituents.  For instance, 

a rule might say NP → D + N, which means, “You can replace a noun phrase with a 

determiner followed by a noun.” 

We can represent the structural description resulting from such a production with 

a directed graph in the following way: let the graph have a vertex corresponding to each 

constituent of each string in the derivation, and let there be an edge to from each 

constituent not in the terminal string to those derived from it by some rule.  The result is 

called a phrase-structure tree.  As an illustration, figure 2.1 shows a phrase structure tree 

for the sentence “Bach is a great composer.”  The rewriting rules represented in this tree 

are S → NP + VP, NP → N, VP → V + NP, NP → D + N, and N → A + N.  The tree in 

figure 2.1 is a digraph, as are all phrase-structure trees, but since the relative vertical 

position of vertices is sufficient to show the orientation of edges, the arrowheads are 

usually left out and it is understood that all edges are directed downwards. 

 
 

 
 

FIGURE 2.1: A GRAMMATICAL PHRASE-STRUCTURE TREE 
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Similarly, one can define a phrase-structure tree that analyzes a series of musical 

events.  I will define a general model of such a phrase-structure tree to give an overall 

picture of how Rahn’s, Lerdahl and Jackendoff’s, and Smoliar’s theories compare to 

MOPs as formal models of prolongation.  While this gereral model is faithful to Lerdahl 

and Jackendoff, it departs from both Rahn and Smoliar in significant ways.  There are 

two reasons for these departures: first, I would like to compare these models to the basic 

MOP model presented in the previous chapter, which applies only to a single sequence of 

events, as in a single melody.  Both Rahn’s and Smoliar’s theories apply to a more 

complex contrapuntal organization of events, but for the purpose of comparison I have 

taken the liberty of formulating a theory that separates out the simple from the 

contrapuntal aspects, which I will deal with in the next part.  Second, I am only interested 

in these theories insofar as they deal with prolongation. 

In the phrase-structure model, the foreground events are the terminal vertices (the 

leaves) of the tree.  Non-terminal vertices are labeled with one of the events below them.  

Therefore, in general every rule must be of one of the forms x → a1 + a2 + . . . + am + x + 

b1 + b2+ . . . + bn or x → x + b1 + . . . + bn or x → a1 + . . . + am + x or x → x, where m 

and n may be any positive integers, and a1, a2, . . . , am, b1, b2, . . . , bn are events such that 

in the music a1 precedes a2 precedes . . . precedes am precedes x precedes b1 precedes . . . 

precedes bn.  Usually, however, rules of the form x → a + x and x → x + b are most 

common.  The reason for this will become clearer below.  The exact nature of these rules 

and their dependence on the nature of the musical objects involved is of particular interest 

to all of the authors mentioned.  However, we are presently concerned only with the 

general form of representation given by this method of analysis. 

An example of such an analysis is shown in figure 2.2, and gives a possible 

analysis of the reduced C major fugue subject similar to that of figure 1.16.  This digraph 

is called a tree because there is one vertex, called the root, which has no vertices above it, 

and all other vertices have exactly one edge with a higher vertex.  If v is a vertex of such 

a tree, the vertex adjacent to and above v is called the parent of v, the vertices adjacent  
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FIGURE 2.2: A BINARY PHRASE-STRUCTURE ANALYSIS OF THE FUGUE SUBJECT 
 
 

to and below v are called children of v.  If there is a directed path from a vertex u to a 

vertex v, then u is an ancestor of v.  A vertex with no children is a leaf.55 

This model is somewhat different than Smoliar’s in that Smoliar’s analyses are in 

the form of such a phrase-structure tree, but, in a monophonic analysis, all of the non-

terminal vertices are labeled SEQ (for “sequence”) rather than with one of the events 

below them.  (I will discuss the other possible label, SIM, in the next part as a tool for 

contrapuntal analysis).  Figure 2.3 shows an example of such an analysis (extracted as an 

analysis of the upper part from the analysis of Mozart K. 283 that Smoliar provides in “A 

Computer Aid for Schenkerian Analysis”).  Obviously, such a tree simply gives a 

grouping of events rather than an analysis of prolongations, since it doesn’t tell us what a 

sequence of events prolongs.  This wouldn’t be much of an analysis by itself; in fact, in 

Smoliar’s theory, it is in the history of construction of the tree that most of the analysis 

itself lies. 

                                                
55 The reader will no doubt notice that the analogy to genealogical trees implied by this 
terminology is misguided unless we’re talking about a genealogy of amoebae.  
Interestingly, the terminology would be more appropriate for MOPs—where every child 
has two parents—except that it imputes a somewhat disturbing inverted morality to 
MOPs, since vertices in MOPs are only allowed to have children with their closest 
relatives and can only have one child with each of their multiple partners. 



 

 

 

90 

 
FIGURE 2.3: SMOLIAR’S ANALYSIS OF THE UPPER PART IN MOZART K. 283 

 
 

This history of construction is a series of transformations that convert a trivial tree 

step by step into the final phrase-structure tree.  Smoliar views these as transformations 

on the model of Chomsky’s transformational grammars. 

Transformational grammars, in Chomsky’s theory, consist of two things: a set of 

terminal strings of a phrase-structure grammar, and a set of transformations that apply to 

those terminal strings and their constituent structure (where a constituent structure is the 

structure imposed on the string by its phrase-structure derivation).  In other words, the 

construction of a sentence in a transformational grammar is a two-stage process: first, a 

series of phrase-structure rules is applied to the symbol S in one or more different ways to 

produce a terminal string with a constituent structure, or a set of multiple terminal strings 

with constituent structures.  Then, a series of transformational rules derives a sentence 

from these terminal strings.  In “Refinements of the MOP Model” in part one, I suggested 

a similar such transformational system to represent the Schenkerian concept of unfolding 

in the MOP model, where the MOPs represent prolongational structures on the “folded” 

and “unfolded” versions of the melody and a transformation between these two MOPs 

represents the unfolding (though I didn’t rigorously formalize this process). 

However, unlike Chomsky, Smoliar doesn’t separate his operations into 

transformational and phrase-structure rules, although many of them can be represented as 
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phrase-structure rules.  This makes the task of interpreting the history of construction of 

the tree as an analysis somewhat difficult. 

Figure 2.4 shows a history of construction for the tree of figure 2.3, showing the 

operations used at each step (but leaving out the node to which the operation applies, 

which is obvious from an inspection of the trees).  The first two transformations are 

couched in Smoliar’s URSATZ operation.  In addition, the first and fourth transformations 

are actually compositions of two operations: PAR (“parallel”) and RAUSKOMP (“reverse 

Auskomponierung”).  The result of these two operations is a downward arpeggiation.56  

The other transformations represented are EXTEND, which copies a note, and PT, which 

adds passing tones between two notes.  The operations PAR o RAUSKOMP and EXTEND 

could be readily defined as phrase-structure rules, and thus imply event labels for the 

non-terminal vertices as shown in figure 2.5. 

 
 

 
 

FIGURE 2.4: THE HISTORY OF CONSTRUCTION OF SMOLIAR’S ANALYSIS 

                                                
56 By composing these operations, I gloss over the fact here that there are intermediate 
steps with SIM vertices representing simultaneous events.  This aspect of Smoliar’s 
system reflects the idea that arpeggiations are composed-out simultaneities. 
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FIGURE 2.5: SMOLIAR’S ANALYSIS WITH ADDED NON-TERMINAL VERTEX LABELS 

 
 

However, the operation PT doesn’t work like a phrase-structure rule.  Consider the 

second transformation: the operation adds a non-terminal vertex between the notes D0 

and G0 to show that the children of these vertices have an equal prolongational 

dependence on both D0 and G0.  Therefore, semantically PT is more like the top-down 

construction of a MOP demonstrated in part one.  This is also true of Smoliar’s lower 

auxiliary and upper auxiliary operations (LA and UA).  Thus, Smoliar’s model strives to 

represent linear prolongations (neighboring and passing motions) as per the dynamic 

sense of prolongation, where the prolonging event relates equally to the preceding and 

following events, while it represents arpeggiation and repetition in a more standard 

phrase-structure fashion, as a relationship between two foreground events with one being 

prolongationally prior to the other (—that is, one event arises earlier in the prolongational 

history than the other). 

Unfortunately Smoliar’s system is too limited in the types of melodic 

relationships it can express.  For example, it’s impossible to accurately represent 

Renwick’s analysis of the C major fugue subject as I explained it in the section “Maximal 

Outerplanar Graphs” in part one.  According to that description, an overall passing 

motion 1G-3F-5E is elaborated by incomplete neighbors 2A and 4D and passing tones 2G 

and 3E.  Figure 2.6 derives the analysis of 1G-2A-3F-4D-5E in Smoliar’s model 

(illustrating Smoliar’s method for generating incomplete neighbors), and figure 2.7 gives 

non-terminal vertex labels for the resulting phrase-structure tree.  It is impossible at this 

point to add passing tones between 2A and 3F or between 3F and 4D, because the PT  
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FIGURE 2.6: A PARTIAL ANALYSIS OF THE FUGUE SUBJECT IN SMOLIAR’S MODEL 
 
 

 
 

FIGURE 2.7: NON-TERMINAL VERTEX LABELS FOR THE ANALYSIS OF FIGURE 2.6 
 
 

operation cannot apply to events such as these that aren’t siblings in the tree, even if they 

are consecutive in the order of foreground events implied by the tree. 

Another approach might be to adopt the more complete version of Renwick’s 

analysis of the fugue subject that I gave in the discussion of unfolding in “Refinements of 

the MOP Model.”  Figure 2.8 presents a tree with non-terminal vertex labels to represent 

such an analysis.  (I leave it up to the reader at this point to reconstruct the prolongational 

history that the non-terminal vertex labels imply.)  Smoliar’s system fares better in 

representing such an analysis, but it is still impossible, once we have derived 4D as an  



 

 

 

94 

 
 

FIGURE 2.8: A DIFFERENT ANALYSIS OF THE FUGUE SUBJECT IN SMOLIAR’S MODEL 
 
 

arpeggiation from 3F to assert the arpeggiation 4D-4G or to fill this motion in with passing 

tones, as the MOP analysis of figure 1.22 does. 

We can understand this more fully if we show the relationships of Smoliar’s trees 

in the graph notation of MOPs.  Figure 2.9 shows the sequence of events with slurs 

between notes with some horizontal harmonic relationship in the tree of figure 2.8 (above 

the note-names) and slurs between notes in some linear relationship below the note-

names.  The harmonic relationships are those between events that label some two vertices 

sharing an edge in the tree (—i. e., one is derived from the other through PAR and 

AUSKOMP or EXTEND operations in the prolongational history—), and the linear 

relationships are those between events labeling some two vertices that have an aunt/niece 

relationship in the tree (—one is derived from the other through PT, UA, or LA operations).  

Figure 2.10 rearranges these relationships visually in a MOP-like format with thick lines 

for arpeggiations and thin lines for linear motions.  This illustrates that Smoliar’s 

analyses include some prolongational building blocks similar to those of MOPs, the 

triangles that show passing motion within the arpeggiation of a third or neighboring 

motion from a repeated note, but unlike MOP analyses, these are linked together by 

sharing individual events rather than pairs of events. 

Another difference between Smoliar’s model and general phrase-structure model 

I’ve proposed is that the leaves of Smoliar’s trees are, properly speaking, simply pitches 
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FIGURE 2.9: RELATIONSHIPS IMPLIED BY THE ANALYSIS OF FIGURE 2.8 
 
 

 
 

FIGURE 2.10: ANOTHER ARRANGEMENT OF THE RELATIONSHIP OF FIGURE 2.9 
 
 

rather than events (which is why the note-names in figures 2.6, 2.7, and 2.8 are 

unindexed).  Yet they still are meant to correspond to particular events in the music, so 

regarding them as events themselves is not a great distortion.  This change in the 

definition of events only really affects Smoliar’s EXTEND operation, which replaces a 

single pitch with two copies of the pitch in sequence.  In the general phrase-structure 

model I propose here the copies have to refer to distinct musical events, one of which is 

also associated with the parent event, whereas Smoliar’s analyses don’t say that either of 

the identically pitched prolonging events is associated with the parent any more than the 

other. 

The general phrase-structure model is also not equivalent to Rahn’s model, but 

with some minor qualifications it is equivalent to a limited version of it.  In Rahn’s 

system, which I’ll explore in more detail in part three, the collection of “events” is not a 

sequence of labels but a set of pitches, each with a time-point of initiation and release.  
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Thus, the raw material of Rahn’s model is essentially a schematic representation of the 

pitch-time information of a score.  Prolongations are then represented as transformations 

of this schematic score, and they come in two types: neighbor prolongations and arp-

prolongations.  The neighbor prolongations behave like phrase-structure rules.  In an arp-

prolongation, on the other hand, a sequence of pitches at one level becomes a 

simultaneity of pitches at a next-higher level.  The phrase-structure model of this part 

won’t include anything like these arp-prolongations.  This is necessary because arp-

prolongation introduces a contrapuntal element into the analysis, which is properly the 

subject of part three.  In that part (in “The Representation of Counterpoint in Rahn’s 

Model”) I’ll consider ways of incorporating arp-prolongations into a phrase-structure. 

However, Rahn’s system includes all the tools for constructing an analysis 

without arp-prolongations.  If we define all the necessary chords as reference collections, 

then we can define arpeggiations as neighbors with respect to one of these chordal 

reference collections according to Rahn’s definition VC.  For instance, in figure 2.2, the 

necessary chordal reference collections are a tonic and subdominant chord in C major.  

According to this and the previous modification of Rahn’s system, one can view every 

edge in figure 2.2 as representing an NC-prolongation relationship. 

However, there is one complication in that Rahn’s system requires the arp 

operation to deal with repeated notes because it’s impossible to define two notes of the 

same pitch as neighbors using Rahn’s definition VC.  So to fit the general phrase-

structure model Rahn’s definition of a “neighbor” would need to be modified so that two 

notes with the same pitch can be neighbors, or we must add a “repeated note” operation. 

Second, the events labeling non-terminal vertices in Rahn’s theory differ in 

substance from the events below them.  In particular, an event in Rahn’s system includes 

a time-point of initiation and release, and the non-terminal event, while it adopts the pitch 

of one of its children, adopts the initiation point of the earliest child and the release point 

of the latest, so that it is not properly identical to either.  This is an obstacle to the 

comparison of Rahn’s model with the MOP model, since the MOP model applies to 

events as labels distinguished by their place in a sequence but lacking such specific 

durational characteristics. 
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Yet, in the simplified version of Rahn’s system given by the general phrase-

structure model, where events are defined as they are for MOPs, the initiation and release 

points are unambiguously implied by the labels and their position in the tree (because the 

labels refer to a particular piece of music, which includes all the necessary durational 

information).  In this sense, switching the way the model labels events is trivial, since one 

can derive pitch/time-point event labels unambiguously from the referent event labels. 

The converse of this is not quite true: the pitch/time-point labels do not 

unambiguously refer to an event in the music when a repetition of a note is reduced via 

the repeated-note operation we needed to add above.  The referent labeling requires that 

one of these repeated notes be identified as the prolonged event for the time-span, 

whereas Rahn’s method simply asserts that the pitch is prolonged, not a particular event 

with that pitch.  (This is essentially the same situation that arises with respect to the 

EXTEND operation of Smoliar’s model). 

Thus, Rahn’s model of prolongation in “Logic, Set Theory, Music Theory” is 

different than the general phrase-structure model I am discussing here, in that 

prolongation in Rahn’s model is a relationship between sets of pitches that correspond to 

some time-span in the music but not necessarily any particular event within that time 

span, rather than a relationship between particular foreground musical events.  However, 

the general phrase-structure model resembles Rahn’s model closely enough that the 

comparisons between it and the MOP model also illuminate the differences between 

Rahn’s model and the MOP model. 

Comparison of Chomsky’s Phrase-Structure Grammar to the General Phrase-
Structure Model of Prolongation 

There are some significant differences between the phrase-structure approach to 

grammar and the phrase-structure approach to musical analysis.  In the linguistic model, 

the constituents of the terminal string, which are actual words, are distinguished from all 

other constituents, which are abstract grammatical labels.  Furthermore, they are derived 

from these grammatical labels by rules that replace a single abstract object with a single 
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concrete object and are of a different sort than those that replace grammatical labels with 

other grammatical labels.  In the musical case, all objects and rules are of the same kind. 

Thus the situation in language and music would be more analogous if a sentence 

consisted of a string of grammatical labels such as N + V + D + A + N.  Or, better yet, if 

we could write a phrase structure grammar where all objects were actually words of the 

sentence itself, so that we had such rules as “Bach” → “Bach is”, “is” → “is composer”, 

and so forth.  The closest we can come to a solution of this problem is to make careful 

distinctions between multiple vertices labeled by the same event when interpreting 

musical phrase-structure trees.   For instance, the note 5E is a label on three different 

vertices in figure 2.2, each at a different level of abstraction, or reductional level; one 

vertex refers to a foreground note 5E, another refers to 5E as a reduction of the phrase 

4G-4F-5E and another as a reduction of 4D-5E (at a level “above” 4G and 4F). 

The musical grammar of Allan Keiler (1979), a forerunner to Lerdahl and 

Jackendoff’s theory, is closer to Chomsky’s theory in this way.  Keiler’s theory of 

prolongation, however, is not Schenkerian in that its prolongations are not derived from 

the melodic motion of voices in counterpoint, but simply as relationships between roman 

numeral labels for chords.  Yet this method does allow Keiler to differentiate between 

abstract labels such as “Tonic,” “Dominant,” “Dominant Prolongation,” “Tonic 

Completion,” and the less abstract terminal labels “I,” “V,” and so on. 

Another significant difference between the linguistic and music-theoretic phrase 

structures is that in linguistics there is a notion of grammaticality that the phrase-structure 

grammar is meant to capture.  In music, there are no distinctions to be drawn between 

“well-formed” and “ill-formed” musical phrases that compare to grammaticality both in 

definiteness and comprehensiveness.  That is to say, while it may be possible to find 

sentences (in English, for example) where there is some question about their 

grammaticality, the vast majority of sentences are unambiguously grammatical or 

ungrammatical.   Furthermore, the distinction applies to novel sentences, sentences that 

have never been spoken before or at least heard before by a particular listener.  The first 

test of a model of grammar is that it is able to distinguish between obviously grammatical 

and obviously ungrammatical sentences. 
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In music, on the other hand, there are no such clear-cut distinctions between 

“correct” and “incorrect” musical phrases.  Lerdahl and Jackendoff, in their attempt to 

make a generative theory of tonal music (i. e. a theory that distinguishes between tonal 

music and not-tonal music the way a generative grammar distinguishes between 

grammatical and non-grammatical sentences) appeal to stylistic norms as a correlate to 

grammaticality.  However, they only show how the theory generates existing pieces of 

tonal music, not how it might exclude pieces of not-tonal music or generate novel pieces 

of tonal music.  One must admit that it not even reasonable to hold this out as an eventual 

goal of the theory, since no matter how we draw the stylistic boundaries we think a 

generative theory will demarcate (“all tonal music,” “the eighteenth-century keyboard 

sonata first movement,”  “the Chopin Nocturne,” et c.) there is no obvious way to decide 

whether the theory has succeeded.  If the criterion is the agreement of expert listeners, we 

cannot hope for the kind of broad unanimity one gets with judgments of grammaticality. 

If the criterion is circumstantial in nature, as in “that the piece is one composed by 

Chopin,” then we are dealing with a finite category and “novel utterances” are 

impossible.  If our criterion is theoretical in nature, such as “that the piece follows the 

rules of modal counterpoint,” then we would simply be begging the question. 

For this reason, authors such as Rahn (1989b) quite reasonably reject any such 

“generative” aspirations in their formal theories.  Nor is this especially a problem: even in 

the case of grammars, making grammaticality distinctions is simply a requirement of a 

sound theory, not the purpose of the theory itself.  The primary purpose of a theory of 

grammar is to give an intuitively appealing analysis of language, just as in a theory of 

music.  However, building a theory of grammar that correctly distinguishes grammatical 

sentences is difficult enough that the primary way of evaluating such a theory is testing 

whether it “works.”  Whether the theory is intuitively appealing is a secondary concern.  

On the other hand, intuitive appeal is the primary concern in a music theory, so that the 

mode of evaluation for the theories of Rahn, Smoliar, and Lerdahl is quite different from 

the mode of evaluation of Chomsky’s theory. 
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Comparisons between the MOP and Phrase-Structure Models of Prolongation  

It probably appears on the surface that the formalization by MOPs and the phrase-

structure formal models differ fundamentally and are incommensurable.  In fact, it is 

possible to show that the two approaches in some sense are comparable apples-to-apples. 

First (in “The MOP Model of Prolongation as a Binary Phrase-Structure Model”), 

I'll show that a MOP analysis can be thought of as a sort of phrase-structure analysis, 

except than the objects of the phrase-structure are not the events themselves, but intervals 

between events.  This comparison corresponds to the difference between static and 

dynamic concepts of prolongation as I describe it in part one: static prolongation is a 

relation between events whereas dynamic prolongation is a relation between motions 

from one event to another. 

For a more direct comparison, I will consider phrase-structure models as a set of 

assertions about the relative backgroundness of events and the possible melodic 

reductions of the music (in “Relative Backgroundness in Phrase-Structure Models”).  In 

order to do so, it’s necessary to separate phrase-structure models into different types.  

Some detailed consideration of different formalisms and their semantics in the sections 

“Unstratified Phrase-Structure Models” and “Backgroundness Partial Orderings for 

Phrase-Structure Trees” shows that the most plausible and useful types of phrase-

structure models fall into the categories of “stratified” or “strictly binary” models.  In the 

latter section, I present some detailed formal considerations to eliminate another possible 

type of unstratified model.  These considerations are interesting but the reader may skim 

over them and still get a basic grasp on why I limit unstratified models to the “strictly 

binary” type. 

My eventual goal in this discussion of relative backgroundness is to construct a 

meaningful mapping from phrase-structure to MOP analyses.  A mapping (or function) is 

a way of associating each object in one set (e.g. the set of labeled MOPs), called the 

“domain,” to exactly one object in another set (e.g. the set of phrase-structure trees), 

called the “range.”  In other words, it’s a process of “getting from x (in the domain) to y 

(in the range)”, where I never need to make a decision that affects what y is.  We will be 



 

 

 101 

 

especially interested in bijective mappings.  A bijective mapping is one that can be 

inverted.  That is, if I have a bijective mapping from set A to set B, I can define a 

mapping from B to A such that if the first mapping maps a to b, the second maps b to a.  

(Or, to put it differently, if I apply the two mappings in sequence, I always get back to the 

object I started with).  A bijective mapping is interesting because it defines a one-to-one 

correspondence between two sets with the same number of members. 

In constructing such a mapping, it’s particularly important to keep in mind the 

difference between the abstractness of objects in the two analytical models, which is a 

critical barrier to their comparison.  In the analysis by MOP, the objects in the graph are 

all literal: a particular musical event labels each node.  Contrariwise, in the analysis by 

phrase-structure tree, the graph, properly speaking, shows literal events only in the leaves 

of the tree.  Thus, in phrase-structure trees we have to distinguish between foreground 

events (the leaves of the tree) and abstract copies of foreground events (the non-terminal 

vertices of the tree), while in MOPs all events are foreground events.  The non-terminal 

vertices of a phrase-structure tree show a literal event standing in for or governing a 

passage of music, and are thus abstract in nature. 

The first comparison (in “The MOP Model of Prolongation as a Binary Phrase-

Structure Model”) can be expressed in terms of a bijective mapping from binary phrase-

structure trees to MOPs.  However, this mapping ignores the nature of the vertex labels 

so it isn’t properly a mapping from phrase-structure analyses to MOP analyses.  

Therefore, this comparison skirts the abstractness-of-objects problem by finding the 

nature of the objects itself to be the distinction between the two analytical methods. 

The following sections look for common ground between the analytical 

perspectives in relative backgroundness and reduction-lists for the purpose of 

constructing a mapping that preserves the analytical objects (the events).  The method of 

surmounting the abstractness-of-objects problem here is to view phrase-structure trees in 

terms of their foreground events—that is, the events that label the leaves of the tree.  

Therefore much of the discussion in these sections is concerned with deriving 

relationships between these foreground events from the form of the phrase-structure tree.  

This allows us ultimately to compare these relationships with those between events as 
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represented in the MOP, and hence arrive at a better understanding of the kinds of 

relationships proposed in the two models and how they differ. 

The comparison of relative-backgroundness assertions through prolongation trees 

discussed in “Backgroundness Partial Orderings for Phrase-Structure Trees” and 

“Backgroundness Partial Orderings for MOPs” proves unsatisfactory because of its 

misrepresentation of the semantics of the MOP model.  However, prolongation trees 

serve as a good starting point for a more successful comparison on the basis of reduction 

lists, described in the section, “Comparing MOPs and Phrase-Structure Trees through 

Reduction-Lists.”  This section also goes into many technical details to semantically 

justify the particularities of the mapping.  For the interested reader, all of the formal 

subtleties are worked out here.  However, it’s also possible to skim over some of these 

technicalities and get a general idea of the mechanism of the mapping and its more 

significant semantic implications.  The idea of “consecutivity” worked out here is 

particularly worthy of attention.  This is discussed further in the following section, 

“Semantics of the Mapping from Phrase-Structure Trees to MOPs.” 

The combinatorial discussions in “Combinatorial Comparisons of MOPs and 

Binary Phrase-Structure Trees” and “Unstratified Phrase-Structure Models” are revealing 

but not essential to understanding main narrative of this part. 

In the end, the distillate of the following sections should be a more comprehensive 

appreciation of the differences between the dynamic and static concepts of prolongation 

introduced in part one and their implications.  We will see that the concept of “possible 

reductions” gives the most secure common ground between the two concepts and can 

therefore be regarded as the essential core of the idea of prolongation.  The differences 

between the two models, however, gets at the crucial issue of what it means for a 

particular event to appear in a particular possible reduction and the kinds of relationships 

between events that are asserted by a set of possible reductions. 

The MOP Model of Prolongation as a Binary Phrase-Structure Model 

The first comparison of the MOP and phrase-structure models is by means of a 

single bijective mapping, which I’ll call the edge-to-vertex mapping, that transforms a  
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FIGURE 2.11: THE EDGE-TO-VERTEX MAPPING OF A MOP TO A PHRASE-STRUCTURE TREE 
 
 

MOP into a binary plane tree.  The mapping is demonstrated in figure 2.11 for the 

analysis of the C major fugue subject.  For each edge in the MOP, there’s a 

corresponding vertex in the binary planar tree.  The vertices of the tree are therefore  

labeled with the notes that label the endpoints of the corresponding edge in the MOP.  

There is an edge between every pair of vertices in the tree whose corresponding vertices 

share a triangle in the MOP.  For example, there’s an edge from 1G-5E to 1G-3F, 

reflecting the fact that {1G, 3F, 5E} is a triangle of the MOP. 

This describes the tree obtained from the edge-to-vertex mapping as a simple 

graph.  However, the tree is not only a simple graph but also a rooted plane tree.  This 

means that we need to define a root of the tree and designate the children of each vertex 

as left and right children.  Recall that the MOP is rooted by the oriented edge from the 
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initiation to the termination event.  The root of the tree is the vertex corresponding to this 

edge in the MOP. 

Consider, then, the MOP as a directed graph as shown in figure 2.12.  The 

orientation of the root edge is given, and the orientation of the other edges is defined 

byapplying a simple recursive rule: if two edges make up a triangle with an oriented 

edge, give them orientations so that the edge which shares a vertex with the tail of the 

oriented edge points away from it, and the edge which shares a head with the oriented 

edge points towards it.  It is easy to see from figure 2.12 that this unambiguously defines 

an orientation to all edges of the MOP, and that these orientations correspond to 

precedence in the melody.  Comparing figure 2.12 to figure 2.11 shows how these 

orientations define a left-to-right ordering in the binary plane tree.  For example, 1G-5E 

has the children 1G-3F and 3F-5E.  Since the arrow in the MOP points from 1G to 5E, 1G-

3F is on the left and 3F-5E on the right. 

From this perspective the MOP analysis is in fact a phrase structure analysis, one 

whose elements are not the notes of the melody, but the intervals between successive 

notes of the melody, which make up the leaves of the tree derived from the edge-to- 

vertex mapping.  This is not exactly correct as I have labeled the tree in figure 2.11, since 

the leaves of the tree seem to have a mutual dependence which has nothing to do with the 

phrase structure; for instance, since the 2G-3F is the third leaf of the tree, reading from left 

to right, the fourth leaf must be an interval from 3F to some other note, even though 2G-3F 

and 3F-3E are distantly related in the phrase structure.  However, this seeming 

dependence is easily eliminated as figure 2.13 shows: the first part of this figure presents  

 
 

 
 

FIGURE 2.12: THE PRECEDENCE ORIENTATION OF THE EDGES OF A MOP 
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FIGURE 2.13: THE PHRASE-STRUCTURE TREE OF A MOP WITH SLURS AS VERTICES 
 
 

the reduced fugue subject with slurs between all notes that share an edge in the MOP 

analysis, as well as slurs for initiation and termination edges.  Considering these slurs as 

objects representing melodic motions, the relationship of direct containment between 

slurs defines a tree structure on these objects (where “direct containment” means: “slur A 

contains slur B and no other slur that also contains B”).  The second half of the figure 

shows this tree explicitly with lines connecting each slur. 

Combinatorial Comparison of MOPs and Binary Phrase-Structure Trees 

As I mentioned above, the edge-to-vertex mapping is in fact a bijective mapping.  

This means that there are the same number of MOPs on n vertices as binary trees on  

(2n – 3) vertices (where 2n – 3 is the number of edges in a MOP—for instance, the MOP 

in figure 2.2 has 11 vertices and 2(11) – 3 = 19 edges, so the corresponding tree has 19 
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vertices) and the edge-to-vertex mapping gives a one-to-one correspondence between 

these. 

Thus, the number of possible MOP and binary phrase-structure analyses for a 

given set of events are counted similarly.  For a passage with n foreground events, the 

tree corresponding to a MOP analysis has 2(n + 2) – 3 = 2n + 1 vertices (—n + 2 counts 

the vertex for each event plus the two formal vertices—), whereas a binary phrase-

structure tree has 2n – 1 vertices.  Or, equivalently, the tree corresponding to a MOP 

analysis has n + 1 leaves for the n + 1 intervals between successive events, while a binary 

phrase-structure tree has n leaves.  The number of plane binary trees is counted by a 

sequence called the “Catalan numbers.”  The number of plane binary trees with n – 1 

leaves (or the number of MOPs on n + 2 vertices) is equal to the nth Catalan number, 

denoted Cn, which is given by the formula (2n choose n)/(n + 1) or (2n)!/(n + 1)!n!.  The 

first ten Catalan numbers are 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796.  (See Stanley 

(1997b), 216ff.) 

However, this is not the complete story as far as binary phrase-structure trees are 

concerned: it only takes into account the way in which the events are grouped, but 

ignores the labels on the “abstract” vertices.  The labeling of the leaves is given by the 

order of events, but if a vertex has children, it can be labeled with the event of either of 

its children.  Therefore there are two choices of label for each non-leaf vertex, and since 

there are always (n – 1) such vertices for a binary tree with n leaves, each binary tree with 

n leaves can be labeled in 2n – 1 different ways.  Therefore the number of conceivable 

binary phrase-structure tree analyses for a passage with n events is 2n – 1Cn – 1.  

In the case of the phrase-structure tree corresponding to a MOP, the labeling of all 

vertices is given by the sequence of intervals and the form of the tree.  So the number of 

conceivable MOP analyses on n foreground events is simply Cn. 

It’s useful to compare these numbers of possibilities to our analytical choices to 

see that the formal model accurately represents the analytical idea.  However, at any 

reasonable length of musical passage, the number of possibilities is too enormous to 

come to terms with directly.  However, the nature of the combinatorial series shown in 

table 2.1 makes it easy to characterize in a general way the proportionate change in  



 

 

 107 

 

TABLE 2.1: A COMBINATORIAL COMPARISON OF MOPS AND BINARY PHRASE-STRUCTURE TREES 
 

Foreground Events MOPs Binary Phrase-Structure Trees 
 

1 1 1 

2 2 2 

3 5 8 

4 14 40 

5 42 224 

6 132 1,344 

7 429 8,448 

8 1,430 54,912 

9 4,862 366,080 

10 16,796 2,489,344 

 
number of possibilities as we add events.  This proportion increases rapidly at small 

numbers of events and gradually levels off as it approaches an asymptotic value.  In the 

case of the number of MOPs, this value is four.  For binary phrase-structure trees, the 

value is eight.57 

Focusing on the proportionate change in the number of analyses allows us to give 

a sort of recursive account of the choices made in arriving at a particular analysis.  

Imagine that someone has built the analysis by adding one event at a time and we’re 

trying to reverse the process with only the knowledge of the resulting analysis looks like.  

Let’s call the set of events that could have been added in the last step for a given analysis 

the “foreground-originating events.”  In a MOP, a foreground-originating event is one 

whose vertex is degree 2 (i.e. is incident on only two edges).  The number of foreground-

originating events in the resulting MOP tells us how many ways there are to get this 

analysis from one with one fewer event.  Furthermore, there are (n – 1) ways to add an 

event to a MOP with n vertices, corresponding to the (n – 1) foreground intervals in the 
                                                
57 The convergent of four for MOPs is arrived at by expanding Cn/Cn – 1 via the formula 
Cn = (2n)!/(n + 1)! n!, which gives, after some manipulation, 4(n – 1)/(n + 1).  Letting n 
go to infinity gives the value 4.  For binary phrase-structure trees the value is  
2nCn/2n – 1Cn – 1, which is obviously equal to 8(n – 1)/(n + 1).  The added factor of two 
reflects the doubling of the number of possible labelings as we add leaves to the tree. 
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MOP.  (That is, the new event can be placed in between any two adjacent events already 

present in the MOP). 

Therefore, if rn is the ratio comparing the number of MOPs on n vertices to the 

number of MOPs on (n – 1) vertices and fn is the average number of foreground events in 
a MOP on n vertices, then rn = (n – 1)/fn, or fn = (n – 1)/rn.  This means that the number of 

foreground-originating events in a large MOP is on average about a quarter of the number 

of vertices. 

We can give a similar account for binary phrase-structure trees.  A foreground-

originating event in a phrase-structure tree is one that is prolonged by no other event and 

whose leaf in the tree has a leaf for a sibling.  For instance, in figure 2.2, the foreground-

originating events are 3E and 4F.  2G is not foreground-originating because its sibling 3F is 

not a leaf.  4G is not foreground-originating because it is prolonged by 4F.  Notice that a 

foreground-originating event occurs always and only when there are two leaves that are 

siblings (although the actual foreground event could be either of these).  The situation is 

the same for MOPs when we transform them into phrase-structure trees by the edge-to-

vertex mapping.  Here, the foreground events also occur exactly where there are two 

leaves that are siblings.  For instance, in figure 2.11, there are three such pairs, 2A-4G / 

2G-3F, 3F-3E / 3E-4D, and 4G-4F / 4F-5E.  This tells us that 2G, 3E, and 4F are foreground-

originating events.  The only difference here is that we think of both of these leaves as 

foreground motions (trivial prolongational spans), whereas in the event-labeled phrase-

structure tree, only one of the two leaves represents a foreground-originating event. 

Therefore the number of foreground events is the same in MOPs as in binary 

phrase-structure trees.  The combinatorial difference between the two comes from the 

fact that in the process of constructing a phrase-structure tree, we not only must choose 

from (n – 1) locations for each new vertex, but we also must choose whether to attach it 

to the preceding or following leaf.  Thus there are twice as many choices for each step in 

the construction of a binary phrase-structure tree. 

Thus the process of construction of a binary phrase-structure analysis, from this 

perspective, is quite similar to the process of constructing a MOP: at each step, the 

analyst precedes from background to foreground by choosing the interval of the current 



 

 

 109 

 

analysis into which to fit the next event.  In the case of a phrase-structure tree, the new 

event must prolong an event already in the analysis, so the analyst must make an 

additional choice between the events making up the interval into which she has placed the 

new event, whereas in the case of MOPs, the new event is seen as prolonging that interval 

itself, so no additional choice need be made. 

This comparison takes into account only phrase-structure analyses restricted to 

binary plane trees, as is the case in Lerdahl and Jackendoff’s analytical method.  Other 

authors, however, allow for a more general class of plane trees.  This of course greatly 

expands the number of possible analyses.  However, general plane trees in phrase-

structure analyses should not deviate greatly from strict binary branching, so the 

comparison is relevant even for this analytical method.  A phrase-structure tree can 

deviate from strict binary in two ways: by having vertices with single children (1-

branchings) or by having vertices with more than two children.  

The first possibility is demonstrated in figure 2.14, which adds vertices with single 

children to the analysis of figure 2.2.  In this case, the 5E vertex just below the root has 

only one child, and the 3F below the second 1G also has only one child.  These are called 

1-branchings.  The other 1-branchings in the tree serve to extend each event to the 

foreground level.  1-branchings are common in the analytical methods outlined by Rahn 

and Smoliar.  Note that such a vertex is always labeled with the same note as its single 

child, so if we are interested in the way in which the edges of the graph represent 

particular notes prolonging others, removing a vertex with a single child removes no such 

information from the graph.  The reason for having such vertices in the analysis is that 

the distance of a vertex from the root may be used to represent the level (of relative 

backgroundness) of the note labeling the vertex.  For instance, the purpose of using the 

analysis of figure 2.14 may be to show that the note 4D arises at a more foreground level 

than 3F, a distinction that is not made in the analysis of figure 2.2.  Without this notion of 

“level” it would be impossible to make such a comparison between these vertices, since 

they are in entirely different parts of the tree.  
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FIGURE 2.14: A PHRASE-STRUCTURE TREE WITH 1-BRANCHINGS 
 
 

The second possibility is that a vertex has more than two children.  For instance, 

in figure 2.15 the note 3F has three children, 2G, 3F, and 3E.  The difference between this 

analysis and a strictly binary one such as that of figure 2.2 is that in figure 2.15, we make 

no choice between 2G and 3E as to which is the more background event.  Thus, allowing a 

vertex to have more than two children has the opposite effect of allowing 1-branchings: it 

allows the analyst to avoid making a relative-backgroundness comparison between two 

events.  Obviously, there is a limit to how much an analyst would want to do this.  I will 

consider some precise limitations below. 

 
 

 
 

FIGURE 2.15: A PHRASE-STRUCTURE TREE WITH A 3-BRANCHING 
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Relative Backgroundness in Phrase-Structure Analyses 

For a second comparison between the MOP approach to formalized analysis and 

the phrase-structure approach, let’s return to the issue of relative backgroundness or level 

of an event.  As I indicated above, the “events” of a MOP are comparable to the 

foreground events of a phrase-structure tree, since the phrase-structure concept of events 

is more general, including abstract events.  Therefore, in the case of phrase-structure 

trees, we aren’t interested so much in the relative backgroundness of “events,” but the 

relative backgroundness of the origin of foreground events. 

More precisely, let an origin-event be the root of the phrase-structure tree or any 

event whose parent has a different label.  Then the origin-event for some event x is the 

earliest origin-event ancestor of x.  (In other words, the origin-event that has the same 

label as x).  It is not hard to see that there is a one-to-one correspondence between the 

foreground events of the tree and their origin-events.  I will develop the relative 

backgroundness relationships of phrase-structure trees, then, in terms of origin-events, it 

being understood that the foreground events inherit these relationships from their 

corresponding origin-events. 

I have already pointed out that it is possible in the analytical systems of Rahn and 

Smoliar to represent the analytical level of an event with that distance from the root of the 

vertex labeled by the event.  Here, the “distance” between two vertices is the length of the 

path between them.  (In a general graph, distance would be the length of the shortest path 

between two vertices, but in a tree there is only one such path.)  Thus, we can assign an 

integer to each origin-event representing its level under this interpretation.  However, the 

integer itself has no absolute meaning—for instance, level 3 might contain only 

background events in one analysis and in another analysis might contain the most 

foreground events.  Rather, the level numbers are a means of comparison between two 

events, to assess their relative backgroundness.  The numbers might be thought of as an 

indexing of melodic reductions, so that if object A occurs at level n and object B occurs 

at level m where m > n, then A is more background than B. 
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For example, the analysis of figure 2.14 above asserts six levels.  Every non-

terminal event has a similarly-labeled event as a child and all leaves are on the same 

level.  So, for instance, since “5E” labels an event in the level 3 reduction, it also labels an 

event in every more foreground reduction.  One could perhaps relax the restriction that all 

events extend to the foreground (i.e. that all leaves are on the same level) in order to 

represent “imaginary notes” or, alternatively, something akin to the conjugation and 

agreement symbols used in phrase-structure grammars, but for the time being we should 

retain the restriction in order not to digress.  Thus, we can characterize a foreground 

event by its level of origin—i. e. the earliest level at which a similarly labeled event 

occurs.  For example, the foreground event 1G originates at level one while the 

foreground event 3F originates at level three in figure 2.14. 

Note that the choice of what exactly constitutes an analytical level is up to the 

analyst.  For instance, the analyses in figure 2.16 are similar except that the first includes 

fewer analytical levels.  That is, both analyses share a basic set of reductions, but the first 

makes more detailed assertions about the relative backgroundness of different 

prolongations.  Thus, if one says “3E originates three levels below 5E” in the second 

analysis, this is roughly the same claim as “3E originates seven levels below 5E” with 

reference to the first analysis.  Therefore, in general, even the numerical difference  

 
 

 
 

FIGURE 2.16: TWO SIMILAR PHRASE-STRUCTURE ANALYSES WITH  
DIFFERENT NUMBERS OF LEVELS 
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between levels has no absolute meaning, and we should regard “analytical level” in this 

context as an ordinal scale—i. e., one in which assertions such as “m is greater than n” or 

“m is equal to n” have meaning, but numerical assertions such as “m is five” or “m is two 

greater than n” have no meaning.  

That being said, it would be possible to regard “relative backgroundness level” as 

an interval scale given a suitable set of restrictions on how one can get from one level to 

the next.  (In an interval scale, assertions such as “m is five” have no absolute meaning, 

but assertions such as “m is two greater than n” do have some such absolute meaning).  

Rahn’s analytical system is a good example of how such a set of rules might look.  Since 

it’s enough for us to focus here on the structure of the analysis itself, I won’t discuss such 

systems of rules, though they’re the primary focus of Rahn, Smoliar, and Lerdahl and 

Jackendoff.  The important point here is that level distinctions in phrase-structure 

analytical systems are primarily ways of comparing events in terms of relative 

backgroundness.  The purpose of adding a vertex with a single child in figure 2.14 is not 

to say that 4D arises at level 4 rather than level 3, because “level 3” and “level 4” have no 

absolute meaning.  Rather, figure 2.14 asserts that 4D arises at a more foreground level 

than 3F, and at the same level as A. 

If we consider the matter more carefully, however, there are a number of different 

ways in which two origin-events can be distinguished by relative backgroundness, each 

of which is semantically quite different.  These semantic differences are plowed over by 

using only differences in distance from the root as a way of comparing events.  To 

recover these differences, consider the following division of relative backgroundness 

distinctions into three categories: 

(1) The strongest relative backgroundness distinction is between an origin-event 

and the origin-event of its parent.  For instance, there is an edge in figure 2.14 between a 

1G event and the origin-event for 5E.  This indicates that 5E prolongs 1G.  This distinction 

also extends to any ancestor of an origin-event.  For instance, in figure 2.14 4D prolongs 

5E while 5E prolongs 1G, making 1G more background than 4D.  Thus, the (1)-relation can 

be stated succinctly:  
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Origin-event x is type-(1) more background than origin-event y iff x is an ancestor of 
y in the phrase-structure tree. 

(2) Weaker, but also important, are the relations between two events that are not 

(1)-related but each prolong a third event at a different level.  For instance, in figure 2.14, 

3F and 5E both prolong 1G.  However, the tree is drawn so that the origin-events of 3F and 

5E are adjacent to different 1G-events.  In particular, 3F prolongs 1G at a more foreground 

level than does 5E.  Therefore, the phrase-structure analysis asserts that 5E is more 

background than 3F.  Moreover, if A is more background than B in this sense, the 

distinction should also carry over to any events prolonging B.  Therefore, a good 

definition  of the type-(2) backgroundness distinction is:  

Origin-event x is type-(2) more background than origin-event y iff x has a sibling z 
which is not itself an origin-event and is an ancestor of y. 

(3)  Finally, the weakest distinctions are those made between remote events by 

means of measuring a distance from the root of their origin-events, as we did in figure 

2.14 for 4D and 3F.  By “remote” here, I mean those for which it is impossible to make 

distinctions of types (1) or (2).  More precisely, let two events, x and y, be remote iff they 

are not (1)-related and the parents of the origin-events of x and y do not themselves share 

the same origin-event.  (In other words, if we move upwards in the tree from x and y one 

step beyond their origin-events, we arrive at differently labeled events).  As we will see 

below, if two events are not comparable in the tree by (2) but also not remote, it is 

possible to change the tree to make a type-(2) distinction between these events while 

preserving all the other type-(1) and type-(2) distinctions.  Here is the definition of the 

type-(3) backgroundness distinction: 

Origin-event x is type-(3) more background than origin-event y iff all ancestors of y 
that aren’t ancestors of x are remote from x and the distance from the root to x is 
smaller than the distance from the root to y. 

By restricting the possible types of phrase-structure trees, it is possible to 

eliminate each of these weaker backgroundness distinctions. This is the sense in which 

distinctions of type (3) are weaker than those of type (2) and those of type (2) are weaker 

than those of type (1).  An analytical framework that excludes trees with 1-branchings 



 

 

 115 

 

eliminates distinctions of type (3) without affecting distinctions (1) and (2).  That is, 

under this framework, after having drawn the tree in order to make relative background-

ness distinctions of types (1) and (2) between events, the analyst has no control over type-

(3) relations between remote events.  Consequently, if one imposes a restriction against 

1-branchings, there is no reason to read type-(3) distinctions from the tree. 

Similarly, allowing a maximum of two vertices per event-label eliminates 

distinctions of type (2) without affecting distinction (1).   That is, if the type-(1) relations 

are considered as a given, the only way to add type-(2) distinctions between events which 

are not (1)-related is to have at least three manifestations of some event-label in the tree. 

Clarifying these semantic distinctions between types of relative backgroundness 

makes the job of comparing MOPs and phrase-structure trees much easier.  First, 

consider the weakest type of distinction.  This type of distinction is not possible in 

Lerdahl and Jackendoff’s system of analysis, but is quite a salient feature of Rahn’s.  In 

analysis by MOP, these “level” types of distinctions are impossible to infer from the 

structure of the graph.  The MOP model of prolongation asserts that distant vertices are 

incomparable as far as any prolongational relationship is concerned.  Or, to put it 

differently, it is an essential feature of the MOP approach that the order of presentation of 

distant events in a sequence of melodic reductions is unconstrained.  (I will define 

“distant” more precisely below).  In Rahn’s system, the analysis prescribes a definite 

sequence of melodic reductions.  A MOP, on the other hand, gives a large set of possible 

sequences of melodic reductions, differing precisely in the order in which distant vertices 

appear.  (Note that this does not mean, either in Rahn’s system or in a sequence of 

melodic reductions consistent with a MOP analysis, that there must be a total ordering on 

the appearance of events in the sequence.  However, in Rahn’s system the analysis must 

definitely fix which events appear simultaneously in the sequence, whereas a MOP could 

be interpreted so that distant events appear at the same time or at different times.) 

For example, the analysis of figure 2.14 (reproduced in figure 2.17) might be a 

possible representation of an analysis using Rahn’s model.  This analysis asserts that 

there are six reductions of the fugue subject: it can all be thought of as a prolongation of  
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FIGURE 2.17: THE PHRASE-STRUCTURE TREE OF FIGURE 2.14 AND 
 A SIMILAR TREE WITH ONE MORE LEVEL 

 
 

1G, it’s an arpeggiation from 1G to 5E, it’s a stepwise descent, 1G-3F-5E, and so on.  Of 

course, there are many other ways of fixing the possible set of reductions.  For instance, 

the second graph of figure 2.17 is like the first, but it asserts that the stepwise descent 

from 4G is more background than the one from 3F. 

In the MOP of figure 1.13 (also in figure 2.11), on the other hand, all of these 

melodic reductions (with at least three notes) occur as cycles: 1G-3F-5E], 1G-2A-3F-4D-

5E], 1G-2A-3F-4D-4G-5E], 1G-2A-2G-3F-4D-4G-5E], and 1G-2A-2G-3F-4D-4G-4F-5E].  It’s 

even possible to have two reductions that couldn’t possibly occur in the same phrase 

structure tree: for example 1G-2A-3F-5E] and 1G-3F-4D-5E].  A phrase-structure tree would 

force the analyst to choose whether 2A is more background than 4D, 4D more background 

than 2A, or if they are both equally background.  Therefore, a MOP makes fewer 

assertions about what reductions of the passage are possible. 

Unstratified Phrase-Structure Models 

Because an analysis with 1-branchings, as those in figure 2.17, separates events 

into well-defined layers, or levels, I will call these “stratified models.”  Both Rahn’s and 

Smoliar’s models of prolongation are stratified.  It is also possible to assert an unstratified 
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model with phrase-structure trees.  For instance, Lerdahl and Jackendoff’s model of 

prolongation is unstratified.  The formally distinguishing characteristic of an unstratified 

phrase-structure model is that its phrase-structure trees do not have 1-branchings, because 

the only semantic purpose of a 1-branching is to increase the distance to the root for some 

event below the 1-branching.  In unstratified phrase-structure models the distance of a 

vertex from the root is not a relative measure of backgroundness.  Thus, for instance, all 

of the reductions I mentioned above as ones that could be found in the MOP of figure 

1.13 (2.11) are also consistent with the phrase-structure tree of figure 2.2 when it is 

considered in the framework of an unstratified model. 

The advantage of an unstratified model is that the analyst is not forced to make 

particular decisions as to whether events that may be far apart in the music arise at the 

same or different levels.  Stratified models assert that a specific set of reductions is a 

necessary condition for the analysis of prolongations, so an allowance for ambiguity in 

exactly how a set of reductions may be formulated can only be made through a 

comparison of different possible analyses of the same passage. 

I pointed out above that phrase-structure trees without 1-branchings can also 

deviate from strict binary branching by having vertices with more than two children, but 

also that such deviations should be minimal in the case of musical analysis.  Let’s 

examine in more detail why this is so. 

First, let’s consider the situation combinatorially, as we did to compare MOPs and 

binary trees.  Table 2.2 compares the number of binary trees to the total number of 

unstratified phrase-structure trees, first ignoring the possible labelings (the second and 

third columns) and then including them (the fourth and fifth columns).  The series in the 

third column is called the Schröder numbers. (See Stanley (1997b), 176-8).58  

Table 2.2 shows that the total number of unstratified phrase-structure trees grows 

at a significantly faster rate than the number of binary phrase-structure trees.  In the 
                                                
58 My method of enumeration in the third and fifth columns is to separate the total set of 
trees according to how many 2-branchings, 3-branchings, 4-branchings, and so on, that 
they have.  The formula on page 34 of Stanley (1997b) then calculates the number of 
plane trees in each case.  For the third column, each of these is multiplied by the number 
of possible labelings, given by 2(# of 2-branchings)3(# of 3-branchings)4(# of 4-branchings) . . . . 
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TABLE 2.2: A COMBINATORIAL COMPARISON OF UNSTRATIFIED  
PHRASE-STRUCTURE TREES AND MOPS 

 

Foreground 

Events 

Unlabeled 

Binary 

Plane Trees 

Unlabeled 

Unstratified 

Plane Trees 

Labeled Binary  

Phrase-Structure  

Trees 

Labeled 

Unstratified 

Phrase-Structure 

trees MOPs 
 

1 1 1 1 1 1 

2 1 1 2 2 2 

3 2 3 8 11 5 

4 5 11 40 74 14 

5 14 45 224 556 42 

6 42 197 1,344 4,472 132 

7 132 903 8,448 37,667 429 

8 429 4,279 54,912 328,010 1,430 

9 1,430 20,793 366,080 2,929,230 4,862 

10 4,862 103,049 2,489,344 26,679,916 16,796 

 
 

discussion above, I characterized the number of binary phrase-structure analyses in terms 

of a recursive process of construction, so that each factor of the number of possible 

analyses would correspond to a choice made in the process of analysis.  Each step of the 

process consists of choosing an interval in the existing set of events to place a new event.  

Then one must also choose whether this event prolongs the preceding or following event.  

Finally, the number of foreground-originating events in the resulting analysis tells us how 

many ways there are to construct it from an analysis with one fewer event. 

General unstratified phrase-structure trees differ from strictly binary in two ways.  

First, the average number of foreground-originating events in a general phrase-structure 

tree is greater than in a strictly binary one, which actually reduces the proportional 

change in the number of analyses in the general case.  Second, when we add an event to a 

general phrase-structure tree, we may have more than two choices of how to attach this 

event to the tree.  As in the case of binary phrase-structure trees, we can assert that it is a 

prolongation of the preceding or following event, but if either of these events has only 
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leaves as siblings we can also attach it directly to the parent of the preceding or following 

leaf.  Thus, there are between 2 and 4 choices of how to attach the new event. 

This accounts for larger rate of growth for general phrase-structure trees.  Yet it 

fails to address the question of what analytical reasons one might have for attaching an 

event to the parent of an adjacent leaf rather than attaching it to the leaf itself. 

Consider the two triple branchings in the analysis of figure 2.18: 3F and 5E are 

prolonged at the foreground by 2G-3F-3E and 4G-4F-4E respectively.  In terms of relative 

backgroundness the purpose of analyzing the music this way is to assert that 2G and 3E 

and 4G and 4F are incomparable.  In the former case, then, figure 2.18 avoids choosing 

between 2G and 3E with a type-(2) distinction, as shown in figure 2.19.  In the latter case, 

on the other hand, the only type-(2) distinction which we can make between 4G and 4F 

(given that they both prolong 5E) is one which asserts that 4G is more background than 

4F, as in figure 2.19.  This is because the prolongational relationship from 4G to 5E occurs  

 
 

 
 

FIGURE 2.18: A PHRASE-STRUCTURE ANALYSIS WITH TWO 3-BRANCHINGS 
 

 
 

FIGURE 2.19: THE POSSIBLE EXTENSIONS OF A 3-BRANCHING TO TWO 2-BRANCHINGS 
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over a time-span that includes 4F.  Since it difficult to imagine that 4F is more background 

than 4G and yet 4G is a prolongation of 5E and not of 4F, it is appropriate that the phrase-

structure model makes such type-(2) distinctions impossible.  However, by the same 

token it seems unreasonable to make the assertion which figure 2.18 seems to make—that 

there is no backgroundness distinction between 4G and 4F —when the span of 4G-

prolonging-5E includes the event 4F. 

Therefore, it makes sense to constrain phrase-structure trees in such a way that 

analyses like figure 2.18 are impossible.   To do this, let us recall our definition of 

“remoteness” above and contrast it with another way of asserting that two events are “far 

away” from one another, which I will call “distance.”  Two events, x and y, are distant if 

another event that is more background by (1) than both x and y occurs between them in 

the sequence of events.  Notice that two events can be remote but not distant, and also 

can be distant but not remote.  For example, in figure 2.18, the foreground events 3E and 

4D are remote, because they are not prolongationally related and directly prolong 

different events (3F and 5E).  However 3E and 4D are certainly not distant, since 4D 

directly follows 3E in the sequence of foreground events!  On the other hand, the 

foreground events 2G and 3E are not remote, because they both prolong the same event 3F 

directly.  However, they are distant because 3F is between them and is more background 

than either of them. 

Now we can make a restriction which requires that all pairs of events which are 

neither distant nor remote to be comparable by a type-(1) or type-(2) distinction.  This 

means that a vertex can only have two children labeled differently than their parent if 

they are distant, making all non-binary branchings impossible except for triple branchings 

where the middle child is labeled the same as the parent.  Since this constraint limits the 

possibility of multiple children, I’ll call it the “family-planning” model. 

We go further and say that all events that are not remote should be comparable.  

Thus, in figure 2.18, not only would the analysis of the passage 4D-4G-4F be inadmissible, 

but so would be the analysis of the passage 2G-3F-3E, because it prevents a type-(2) 

distinction between 2G and 3E, which are not remote (but are distant).  In fact, this 

constraint is equivalent to saying that the tree must be strictly binary. 
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In terms of our recursive process of analysis construction, the family-planning 

constraint says that the new event must be a direct prolongation of a time-adjacent event.  

(Note that this event won’t necessarily be time-adjacent at some later stage of analysis-

construction, but will always be more background than any intervening events).  Yet if 

the parent of the leaf corresponding to that time-adjacent event has the same label we can 

attach the new event to the parent rather than the leaf.  This allows the analyst to assert 

that the new event A prolongs some time-adjacent event B, and there is no relative 

backgroundness distinction to be made between the A and any other event prolonging B. 

Comparing the combinatorial situation of binary and family-planning phrase-

structure trees to the general unstratified case, the results are quite different, as table 2.3 

shows.  The family-planning phrase-structure analyses are closer to binary phrase-

structure analyses in their rate of growth, showing that the constraint is quite strong. 

 
 

TABLE 2.3: A COMBINATORIAL COMPARISON OF TYPES OF PHRASE-STRUCTURE TREES59 
 

Foreground Labeled Unstratified Phrase-Structure Trees   

Events Binary Family-Planning Total 
 

1 1 1 1 

2 2 2 2 

3 8 9 11 

4 40 50 74 

5 224 311 556 

6 1,344 2,072 4,472 

7 8,448 14,460 37,667 

8 54,912 104,346 328,010 

9 366,080 772,255 2,929,230 

10 2,489,344 5,829,583 26,679,916 

                                                
59 The process of calculating the number of family-planning trees is the same as that 
described above for finding the total number of unstratified trees, except that we can 
ignore any possibility of 4-branchings, 5-branchings, and so forth.  Also, the number of 
labelings for a family planning tree is simply 2(# of 2-branchings), since there is only one 
choice of label for the parent event of a 3-branching. 
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Backgroundness Partial Orderings for Phrase-Structure Trees 

Backgroundness distinctions define what is called a partial order on the 

foreground events in an analysis.  Partial orderings are a common mathematical 

generalization of the idea of an ordering.  In a well ordering of a set of objects, for any 

two distinct members of the set, A and B, either A < B or B < A in the ordering.  To 

properly define an ordering, the relation < must be antireflexive, antisymmetric and 

transitive.  “Antireflexivity” means that it is not the case that A < A for any A.  

“Antisymmetry” means that if A and B are distinct and A < B, then it cannot also be the 

case that B < A.  “Transitivity” means that if A, B, and C are distinct members of the set 

such that A < B and B < C, then A < C.  The reader can verify that all of these are traits 

of type-(1), -(2), and -(3) relative backgroundness distinctions.60 

Obviously, in a well ordering on a set of size n, each member of the set can be 

indexed with an integer from 1 to n so that A < B if and only if A’s index is less than B’s 

index.  This means that every well ordering on n objects is of the same form.  However, 

the situation is more complex if we allow some pairs of elements of the set to be 

incomparable, meaning that there is no ordering relation between them.  This is what we 

call a partial ordering. 

Partial orderings are typically represented with digraphs called “Hasse diagrams.”  

In a Hasse diagram, a directed edge from A to B means B < A.  Because of the 

transitivity of <, however, it’s not necessary to represent all such relations with an edge in 

the Hasse diagram, since any directed path from A to C such as A → B → C tells us that 

C < A. (More to the point, an edge in the Hasse diagram from A to B means B < A and 

there is no X such that B < X < A). 

Figure 2.20 illustrates the backgroundness partial ordering derived from the 

analysis of figure 2.2 (reproduced in figure 2.21) as a Hasse diagram by including all 

type-(1) and type-(2) backgroundness distinctions.  The direction of edges in figure 2.20 

                                                
60See Stanley (1979a), chapter 3.  Stanley defines the basic relation as ≤ instead of <, 
which is reflexive rather than antireflexive.  Although Stanley’s approach is standard, I 
have chosen to define < straightaway, since it is sufficient for our purposes while ≤ is not 
especially useful. 
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is indicated by the relative vertical position of vertices, while the horizontal positions 

represent the chronological order of events.  Thus, the edge between 1G and 5E is from 1G 

to 5E, since 1G is drawn above 5E.  Note the following two aspects of figure 2.20: 

First, the Hasse diagram has one vertex for each foreground event analyzed in the 

tree of figure 2.2.  Thus, figure 2.20 has the same number of vertices that a MOP analysis 

of the same passage would have, and like the MOP, has no vertices corresponding to 

abstract events.  Thus, the transformation of the tree of figure 2.2 into the tree of figure 

2.20 brings us a step closer to being able to draw a comparison between the two 

analytical methods.  Furthermore, when discussing such partial orderings, we can drop 

the qualifier “foreground” on events, since all events in the partial ordering, like all 

events in the MOP, are foreground. 

Second, the Hasse diagram in figure 2.20 is a directed rooted tree.  This is not true 

for all partial orderings, but it is true for all relative backgroundness partial orderings 

derived in this way from phrase structure trees. 

Figure 2.20 is missing important information about the analysis of figure 2.2 

though because it draws no distinctions between backgroundness relations of type (1) and 

(2).  For instance, the second phrase-structure tree in figure 2.21 would yield the same 

backgroundness partial ordering, although it shows 4G prolonging 4D rather than 5E.  For 

a clearer picture of the prolongational relationships in the analysis, we need to either label 

the edges of the Hasse diagram to indicate what kind of relations they represent or 

present a second partial ordering which includes only the type-(1) relations.  Figure 2.22 

presents the first solution.  The two labeled Hasse diagrams here correspond to the two 

trees of figure 2.21 respectively, and differ in the label on the edge from 4D to 4G. 

 
 

 
 

FIGURE 2.20: THE HASSE DIAGRAM OF A BACKGROUNDNESS PARTIAL ORDERING 
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FIGURE 2.21: THE PHRASE-STRUCTURE TREE OF FIGURE 2.2 AND A DIFFERENT TREE  
WITH THE SAME BACKGROUNDNESS PARTIAL ORDERING 

 
 

 
 

FIGURE 2.22: EDGE-LABELED HASSE DIAGRAMS FOR BACKGROUNDNESS PARTIAL ORDERINGS 
 
 

To interpret figure 2.22, we need to know what relations exist between vertices in 

the diagram that don’t share a labeled edge but instead are connected by a directed path.  

For instance, what’s the relation between 1G and 3F?  Fortunately, these relations are 

implied by those already labeled.  In particular, if the (downward) directed path from A 

to B begins with an edge labeled (2), then A is more background than B by (2), whereas 

if the path begins with an edge labeled (1), then A is more background than B by (1).  For 

example, the relation from 1G to 3F is of type (1).  In general, to find the immediate 

prolongational parent of an event, take a path upward from that event in the edge labeled 

Hasse diagram that ends with an edge labeled (1) and has no other edges labeled (1).  

Observing this rule, we can take diagrams like figure 2.22 to be suitable representations 

of a partial ordering which distinguishes between the two different kinds of relations. 

Here’s a reading, then, of the first tree of figure 2.22, starting from the root: the 

entire passage is a prolongation of 1G (all events prolong 1G). 1G is most directly 
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prolonged by 5E.  3F prolongs 1G at a more foreground level than 5E, and 2A prolongs 1G 

at a more foreground level than either 3F or 5E.  Here, the parents of 3F and 2A are (2)-

related to them, so they each prolong their nearest ancestor to which they connect with an 

edge labeled (1), which is 1G.  And so on. 

Figure 2.23 shows the Hasse diagram of a po-set consisting of only the type-(1) 

relations in the tree of figure 2.2.  I’ll call such a po-set a prolongational po-set.  

Together, the partial orders of figure 2.20 and figure 2.23 give the same information as 

the first labeled Hasse diagram in figure 2.22. 

Let’s consider this matter as one of mapping phrase-structure trees to partially 

ordered sets (“po-sets”).  We have already demonstrated three possible mappings for the 

tree of figure 2.2.  First, we mapped it to a po-set reflecting type-(1) and -(2) relations, 

but found that other analyses mapped to the same po-set.  In the terminology of set 

theory, this mapping from binary phrase-structure analyses to po-sets is not injective.  

Furthermore, the mapping is not surjective, meaning that there are certain po-sets that 

correspond to no binary phrase-structure trees.  For our purposes injectivity and 

surjectivity are desirable in a mapping because they’re the two components of bijectivity. 

By mapping instead to the edge-labeled po-sets as in figure 2.22, we solve the 

problem of injectivity; that is, there is a unique edge-labeled po-set for each binary 

phrase-structure tree.  However, the mapping is still not surjective, because certain ways 

of labeling the edges of a tree correspond to no possible phrase-structure analysis.  Rather 

than try to further circumscribe the set of possible edge-labeled po-sets, however, it’s 

more enlightening to instead consider the mapping from phrase-structure trees 

prolongational po-sets such as that of figure 2.23. 

 
 

 
 

FIGURE 2.23: THE PROLONGATION TREE OF A PHRASE-STRUCTURE ANALYSIS 
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The constraints on prolongational po-sets are much easier to state than those on 

labeled backgroundness po-sets.  First, prolongation po-sets always have Hasse diagrams 

in the form of a tree, as in figure 2.23, because an event can only directly prolong one 

other event.  Therefore I’ll use the term “prolongation tree” for such a Hasse diagram.  

Second, if two non-adjacent events, X and Y, are related with X > Y, all events that occur 

between them must be below X.  (That is, if Z is chronologically between X and Y, then 

X > Z).  If a prolongation tree meets this condition, I will call it crossing-free.  Thus, the 

prolongation mapping from phrase-structure trees to crossing-free prolongation trees is 

surjective.61  

However, this mapping is not injective.  Consider the problem of finding a labeled 

backgroundness po-set to correspond to a given prolongation po-set.  The inverse of this 

it certainly a mapping: just remove the (2) relations from the po-set.  But how do we put 

the (2) relations back into the set?  First, we need to know what (2) relations are possible.  

In order for two events to be (2)-related, either they must prolong the same event—that 

is, they must be siblings in the prolongation tree—or one must be a descendent of a 

sibling of the other in the prolongation po-set.  In the latter case we say that the two 

events are remote zeroeth cousins (where two vertices are nth cousins in a tree, extending 

our familial analogy, iff there is a path from one to the other consisting of n upward edges 

and m downward edges, with m ≥ n—in other words, a zeroeth cousin is a sibling, 

“aunt,” “great-aunt,” et c.).  However, if two events X and Y are zeroeth cousins in the 

prolongation tree such that Z (≠ X) is a sibling of Y and ancestor of X, it is impossible to 

make a (2) relation between X and Y without also making a (2) relation between Y and Z.  

Nor is it possible to make Y >2 Z without making Y >2 X, or to make Z >2 Y and also 

relate X and Y.  (I use the symbol “>2” here to distinguish type-(2) backgroundness 

distinctions from type (1) distinctions, which may be indicated by “>1”.) 

                                                
61 Formally speaking, a prolongation tree is a set of events that are ordered in two 
independent ways.  There is a well-ordering on them reflecting temporal order and a 
partial ordering in the form of a tree reflecting prolongations.  The crossing-free 
condition places a mutual dependency between these two orderings. 
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Therefore the possible (2) relations between remote events are entirely dependent 

upon those between siblings in the prolongation tree.  Yet, as we noted above, if two 

siblings are on the same side of the parent in the chronological order of events then the 

more distant cannot be below the closer sibling in a (2) relation.  Since we are interested 

in family-planning and binary phrase-structure trees, we should also add restrictions to 

ensure that (2) relations between non-distant, non-remote events are always included.  

(Obviously, if we the labeled po-set were to correspond to any phrase-structure tree, there 

are numerous possibilities for which events are (2) related, including none at all). 

One of the advantages of working with prolongation trees rather than directly with 

labeled po-sets is that it’s easy to define distance and remoteness of events in the 

prolongation po-set. In particular, two events X and Y are distant iff there is an event Z 

such that Z > X, Z > Y, and Z is chronologically between X and Y, and two events X and 

Y are remote iff X ≠ Y and X is neither a sibling, ancestor, or descendent of Y in the 

prolongation tree.  Note that all distant events must be unrelated in the prolongation tree 

by the rule against crossings, and all remote events are unrelated by definition. 

Using these definitions, we can say that for a family-planning analysis, if events 

X and Y are non-distant siblings such that Y is chronologically between X and the parent 

of X and Y, then X >2 Y.  By the transitivity of the partial ordering we also must add 

relations X >2 Z wherever there are events X, Y, Z such that X >2 Y >1 Z.  Let’s give 

names to these rules for reference: 

Expansion Rule 1 (Transitivity of (2)-relations): Let X, Y, Z be events in a 
backgroundness partial ordering such that X >2 Y >1 Z.  Then X >2 Y. 

Expansion Rule 2 (Prolongation at a distance): Let X, Y, Z be events in a 
backgroundness partial ordering such that Y and Z prolong X, and Y is 
chronologically between X and Z.  Then let X >2 Y and apply expansion rule 1. 

Then there are also optional (2)-relations between any incomparable events which 

are siblings in the po-set after applying expansion rules 1 and 2.  In the case of binary 

trees, “optional” (2)-relations must be added until only remote events are incomparable in 

the po-set.  In this sense, the addition of these relations is not optional for binary trees, 
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but there is still a choice, wherever X and Y are incomparable non-remote events in the 

po-set, between adding X >2 Y or Y >2 X. 

However, this is not quite the complete story.  Consider the possible prolongation 

tree for the C major fugue subject shown in figure 2.24, which shows 2A as a 

prolongation of 3F (instead of 1G) and 4G as a prolongation of 4D (instead of 5E).  Figure 

2.24 also shows the process of expanding this prolongation tree into a backgroundness 

po-set.  In the first step, rule 1 recognizes that 5E prolongs 1G over a span including 3F.  

(Rule 2 also relates 5E to 2A, 2G, and 3E here.)  In the second step, by rule 1, 2A is more 

background than 2G, while rule 2 relates 3F to 4G.  However, this last step also adds a 

relation between distant vertices 3E and 2G that should be optional, but is not, as the 

phrase-structure tree of figure 2.25 shows.  Had we chosen the relation 2A >2 3E between 

distant events, we could have left 2G and 3E incomparable.  It is also possible to put 2G >2 

3E rather than 3E >2 2G.  It is only impossible to leave both 2A and 2G incomparable to 3E.  

Therefore we must add the following rule, to be applied after all optional (2)-relations 

 
 

 
 

FIGURE 2.24: AN EXPANSION OF A PROLONGATION TREE INTO  
AN EDGE LABELED HASSE DIAGRAM 

 

 
 

FIGURE 2.25: THE PHRASE-STRUCTURE TREE CORRESPONDING TO THE  
BACKGROUNDNESS PARTIAL ORDERING OF FIGURE 2.24 
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have been added: if there are events X, Y, Z such that X and Y are siblings and Y >2 Z, 

then X >2 Y.  Let’s call this expansion rule 3: 

Expansion Rule 3 (Forced level relations): Let X, Y, Z be events in a 
backgroundness partial ordering such that X and Y are siblings and Y >2 Z.  
Then X >2 Z. 

The expansion of the prolongation po-set into a backgroundness po-set then 

consists of first applying expansion rules 1 and 2, then adding any optional (2)-relations 

by rule 2, and finally applying rule 3 to the result. Therefore, in general, the 

transformation of a prolongation tree to a backgroundness po-set is not determinate either 

for family-planning or binary phrase-structure analyses, and also consequently not a 

mapping (—or, to put it differently, the mapping from labeled backgroundness po-sets to 

prolongation trees is not bijective because it is not injective). 

This third rule, however, is semantically problematic.  Purely in terms of 

backgroundness orderings, there is no reason, musically or formally, that a relation 

should be forced between such distant events.  It’s only the way we’ve defined (2)-

relations in terms of the phrase-structure tree that forces this rule upon us.  Furthermore, 

there is no satisfactory way to redefine (2)-relations in terms of the phrase-structure tree 

that circumvents this issue.  Therefore, we must count this as a flaw in the derivation of a 

backgroundness partial ordering from the family-planning phrase-structure tree.  The 

problem doesn’t exist for binary trees, and is not a problem for trees with 1-branchings 

where type-(3) relations are relevant.  Speaking metaphorically, one could say the 

problem is a vestige of the “reductional levels” approach to backgroundness that is 

allowed to leak into type-(2) relations by the weak restrictions of the family-planning 

approach as opposed to the strictly binary approach. 

The semantic problems are serious enough that it would be wise to put the idea of 

a family-planning model in which the phrase-structure tree is not strictly binary but also 

doesn’t imply a fixed set of reductional levels out of its misery at this point.  If the 

possibility of 3-branchings blurs the distinctions between (2)-relations and (3)-relations, 

then it makes little sense to discard the (3)-relations in the first place.  This is probably 

why only certain types of phrase-structure models have been proposed to model 
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prolongation: Lerdahl and Jackendoff use a strictly binary system, Smoliar uses a general 

phrase-structure model in which 1-branchings play a significant semantic role, and 

Rahn’s model (restricted to the neighbor operation, as discussed in “The General Phrase-

Structure Model of Prolongation” above) allows only 1-branchings and 2-branchings. 

Backgroundness Partial Orderings for MOPs 

Fortunately, the derivation of a backgroundness partial ordering from a MOP is 

much more straightforward than it is for phrase-structure trees.  Recall from above (in the 

section “Combinatorial Comparison of MOPs and Binary Phrase-Structure Trees” that 

the MOP analysis can be thought of as a directed graph where the orientation of edges 

reflects melodic precedence.  There is another way to represent a MOP as a directed 

graph where the orientation of edges represents prolongational rather than temporal 

precedence. 

This digraph, shown in figure 2.26 for the MOP analysis of figure 2.11, is defined 

as follows: first, let the orientation of the root edge go from the initiation to the 

termination event (by arbitrary convention).  Now there is one vertex in the MOP that 

makes a triangle with i and t, which is 1G.  Orient the edges i-1G and 1G-t towards 

the new vertex, 1G.  Now find new triangles including the newly oriented edges i-1G 

and 1G-t towards, and direct the two other edges of these towards its third vertex.  Thus, 

for 1G-t we find the triangle 1G-5E-t] and direct the edges 1G-5E and 5E-t towards 

5E.  Continue this process until all edges have an orientation, and the result is a digraph of 

the MOP oriented according to the relative backgroundness of events. 

As I pointed out in part one, these two ways of orienting a MOP are reflected by 

the way they’re drawn: the horizontal direction of an edge indicates the direction of 

melodic precedence, while the vertical direction indicates prolongation.  We could think 

of the MOP, then, as a doubly-directed graph where two vertices sharing an edge, u and 

v, may be related in one of four ways: u may be left of and above v, left of and below v, 

right of and above v, or right of and below v.  It’s significant that the prolongational and 

temporal orientations of all edges of a MOP follow from the definition of a root edge 

with a prolongational and temporal orientation. 
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FIGURE 2.26: THE PROLONGATIONAL ORIENTATION OF A MOP 
 
 

The resulting digraph could be interpreted in terms of static prolongational 

relationships for the purpose of comparing the MOP structure with phrase structures.  

That is, we could read an edge A → B in the vertically oriented MOP as denoting a 

prolongational relationship between events, B prolongs A.  Of course, this is really a 

convenient misinterpretation of the analytical meaning of the MOP, since, as the model is 

developed in part one of this paper, the MOP is designed to model dynamic rather than 

static prolongational relationships. 

From this process of defining prolongation between events in a MOP, it’s obvious 

that, while each event (excluding the formal events) is defined as prolonging exactly two 

others, these two are always themselves prolongationally related.  Therefore, if we use 

these relations to define a prolongational partial ordering on events, every event directly 

prolongs only one other, and the Hasse-diagram of such a po-set is in the form of a tree.  

I’ll call this the prolongation tree for the MOP.  The prolongation tree for the analysis in 

figure 2.11 is shown in figure 2.27. 

 
 

 
 

FIGURE 2.27: THE PROLONGATION TREE OF A MOP 
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The form of this tree is less obviously determined by analytical choices than the 

structure of the prolongation tree for a phrase-structure analysis.  For instance, in 

constructing this analysis in part one, we chose 2A as a prolongation of 1G-3F on the 

grounds that 2A was an incomplete upper neighbor to 1G.  However, it is the “loose-end” 

relationship of 2A to 3F that appears in the prolongation tree, simply because 3F prolongs 

1G, and not vice versa. 

Observe that every edge in the MOP has at most one event as a “child,” and that 

child must occur chronologically between the events incident on the edge.  This is true, 

by extension, of any descendent of an edge, and if a vertex is not a descendent of some 

edge, its event cannot be between those on the edge (because it must be between some 

other two events).  This means, for one thing, that the prolongation tree of a MOP is 

crossing-free.  (Recall that “crossing-free” for a prolongation tree means that for any 

events X, Y, Z such that X > Y in the tree, and Z is chronologically between X and Y, X 

> Z).  It also means that if two events are incomparable in the prolongation tree, there 

must be some more background event between them.  In other words, all events that are 

not distant are prolongationally related, and all events not prolongationally related are 

distant.  I will call such a prolongation tree complete crossing-free, (or, for short, a 

complete prolongation tree). 

This definition of prolongation between events in a MOP can be seen as a 

mapping from MOPs to prolongation trees.  In fact, as a mapping from MOPs to 

complete crossing-free prolongation trees with the initial event as the root and the final 

event a child of the root it is bijective.  In other words, a complete crossing-free 

prolongation tree is in a mathematical sense a faithful representation of the MOP 

analysis.  (Keep in mind that a prolongation tree by definition includes a well ordering on 

its vertices that represents the temporal order of events).  For a MOP, then, the 

backgroundness partial ordering is just the prolongation tree; there is no need to add 

anything like type-(2) or type-(3) relations. 

The reader may have noticed that the term “crossing-free,” applied here to 

prolongation trees, is similar to the term “crosschord-free” in part one, which refers to a 

characteristic of graphs.  This isn’t accidental.  Consider three vertices of a graph 1G, x, 
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y, z, that all participate in a cycle, C, in that order.  According to the derivation of 

prolongational orientations to the edges of a MOP, if there is an edge between y and a 

vertex, v, that precedes x on C, then y is necessarily more background than x—that is, y 

is above x in the prolongational partial ordering.  The same is true of y and z if there’s an 

edge between y and some vertex, v, following z on C.  This is precisely the situation in 

which crossing edges may arise in a graph: an edge between x and z would cross the edge 

between y and v, and so if 1G is a MOP it cannot include the edge xz.  This is formally no 

different from saying that x and z cannot be comparable in the prolongation partial 

ordering because a more background vertex intervenes between them chronologically. 

The MOP model and phrase-structure models agree on this point: in both cases 

the prolongation tree is crossing-free.  However, the MOP model goes one step further: 

not only does “X prolongs Y” or “Y prolongs X” imply “X and Y are not distant”; in a 

MOP the converse also holds: “X and Y are not distant” implies “X prolongs Y” or “Y 

prolongs X.” 

Comparing MOPs and Phrase-Structure Analyses through Reduction-Lists 

The common denominator of all theoretical dispositions concerning prolongation 

is the idea of reductions.  This is the typical association of the term in Schenker’s later 

writings, after his development of the stimmfuhrungsprolongation method of analysis 

(though not in the early history of the term, in the two volumes of Kontrapunkt; see 

“Concept(s) of Prolongation” in part one above).  In other words, “prolonging” always 

indicates something that appears in a later, less “reduced,” voice-leading level.  It is in the 

particular nature of the relationship between reductional levels that differences between 

concepts of prolongation, such as the static-dynamic difference, lie. 

Therefore, viewing these analytical models in terms of melodic reductions helps 

to reveal the semantic implications of the differences between the backgroundness partial 

orderings of phrase-structure and MOP analyses.  I’ll represent a way of reducing a 

passage with a reduction-list.  A reduction of a passage is simply a subset of the set of 

events in the passage.  A reduction-list is a set of reductions ordered from highest to 
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lowest such that every reduction properly contains all those above it.  In addition, a 

reduction-list always includes the complete set of events as a reduction.  Two events are 

consecutive or next to one another in a reduction if no other event in that reduction is 

between them in the time-ordering.  Two events are consecutive in a reduction-list if they 

are consecutive in any reduction on the list. 

One possible way to interpret a prolongation tree in terms of reductions is to 

consider all reduction-lists consistent with the prolongation tree in the sense that an event 

is always introduced in a lower reduction than any event it prolongs.  One interesting 

consequence of such a definition of consistency of a set of reductions is that a 

prolongation tree being crossing-free is equivalent to it being consistent with some 

reduction-list in which each event is next to its parent in the most background reduction 

in which it occurs.62 

For instance, consider the prolongation tree of figure 2.23, reproduced in figure 

2.28.  Figure 2.28 shows a possible reduction-list for this prolongation tree that 

introduces each event in a reduction where it’s next to its prolongational parent.  Such a 

reduction-list is possible because the prolongation tree is crossing-free.  Figure 2.28 also 

shows a stratified phrase-structure tree that asserts this reduction-list.63 

                                                
62 It’s simple to show that any crossing-free analysis has such a reduction-list through an 
algorithm: let the first reduction be the root by itself.  Then add to this in turn the most 
distant left child of the root, followed by the next most distant, and so on, and do the 
same for the right children of the root.  Then do the same for the children of the root in 
turn from left to right, and so on until all events are included.  To show the converse, 
assume that T is some prolongation tree with a crossing.  Then there are events X, Y, and 
Z in T with X > Y, X  Z, and Z chronologically between X and Y.  Let U be the nearest 
ancestor of Z that isn’t between X and Y, and let V be the next nearest ancestor of Z (i. e. 
the child of U).  If there is no such U then the root is chronologically between X and Y, 
and the proposition follows immediately.  Otherwise, U must be in a higher reduction 
than V, and X in a higher reduction than Y.  However, X and Y must both be in higher 
reductions than V (because V is between them), and U and V must be in higher 
reductions than X (if X is between them) or Y (if Y is between them).  In either case this 
is impossible. 
63 A stratified phrase-structure tree such as this is uniquely determined by the 
combination of the prolongation tree and the reduction-list given the semantically trivial 
restrictions that from one level to the next in the tree there must be at least one multiple 
branching and every leaf must be the same distance from the root. 
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FIGURE 2.28: A PROLONGATION TREE, REDUCTION LIST, AND STRATIFIED  
 PHRASE-STRUCTURE TREE 

 
 

It’s also worth noting the conditions under which any two events can be adjacent 

in such a reduction-list.  Recall that two events are distant iff there is an event between 

them that prolongs both of them.  Obviously two distant events cannot be time-adjacent 

in any possible reduction.  However, many non-distant events also cannot.  For instance, 

it is impossible to put 3E next to 1G in a reduction-list consistent with the prolongation 

tree in figure 2.28.  Therefore we need a weaker form of distance: let two events be 

weakly distant if an event occurs between them that prolongs either of them.  Then two 

events being weakly distant is equivalent to there being no set of reductions in which they 

occur next to one another. 

However, this sense of “consistent with a prolongation tree” is not strong enough.  

Figure 2.29 shows a reduction-list in which every event is introduced after every event it 

prolongs.  But this reduction-list doesn’t make an especially compelling analysis and 

doesn’t seem like a very faithful realization of the relationships in the prolongation tree.  

Not only that, it is impossible to convert such a reduction-list into a stratified phrase-

structure analysis that also expresses the relationships of the prolongation tree, as the 

crossing edges in the phrase-structure tree of figure 2.29 show.  The problem here is that 

3F and 2A both prolong 1G according to the prolongation tree, and 2A occurs 

chronologically between 1G and 3F, yet 2A is introduced before 3F in the reductions. 
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FIGURE 2.29: A PROLONGATION TREE AND REDUCTION LIST WITH NO ASSOCIATED  
STRATIFIED PHRASE-STRUCTURE ANALYSIS 

 
 

When we try to hear 3F prolonging 1G in such a reduction-list, the event 2A “gets in the 

way,” as figure 2.29 visually illustrates.  Therefore, it makes sense to redefine 

consistency of a reduction-list with a prolongation tree so that for each event X (other 

then the root), the reduction just above the origin-reduction of X (i.e. the highest 

reduction in which X occurs) includes the prolongational parent of X and no other event 

chronologically between X and itsprolongational parent.  A stronger version of this, 

which I’ll call conformity, requires that each event be next to its prolongational parent in 

the reduction in which it’s introduced.  Let me restate these definitions for reference: 

A reduction-list, R, is consistent with a prolongation tree, T, iff they analyze the 
same time-ordered set of events and for any event Y with parent X in T, the 
lowest reduction in which Y does not occur includes X and no event between X 
and Y in the time-ordering. 

A reduction-list, R, conforms to a prolongational tree, T, iff they analyze the same 
time-ordered sequence of events and for any event Y with parent X, Y occurs in 
some reduction that doesn’t include X, and X and Y are consecutive in some 
reduction. 

It will also be helpful to define a new, stronger kind of non-distance relation to go 

with this stronger definition of consistency of a reduction-list with a prolongation tree.  I 

will call this “proximity.”  Two events, X and Y, proximate iff there is no event, Z, 
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chronologically between them such that Z > X, Z > Y, or Z is incomparable with both X 

and Y.  In other words, if Z is between X and Y, either X or Y prolongs Z, and Z is not 

prolonged by either X or Y.  According to this definition of proximity, two events being 

proximate in a prolongation tree is equivalent to there being some reduction-list 

consistent with the tree in which they are consecutive. 

Another interesting formal aspect of proximity is that it can substitute for distance 

in the definition of a complete crossing-free prolongation tree.  That is, not only can a 

complete crossing-free prolongation tree be defined as a crossing-free prolongation tree 

in which all incomparable events are distant, it can also be defined as one in which no 

incomparable events are proximate.64 

The reduction-list in figure 2.28 is conformant with its prolongation tree 

according to our refined definition, while that of figure 2.29 are neither conformant nor 

consistent.  However, figure 2.30 shows another reduction-list that is conformant with the 

prolongation tree but asserts quite a different analysis.  The fundamental difference  

                                                
64 To see this, note that all proximate pairs of events in a complete crossing-free 
prolongation tree are comparable (because they are not distant).  Now assume that T is a 
crossing-free prolongation tree in which no incomparable events are proximate.  Let X 
and Y be any two siblings with parent Z, such that X is to the left of Y and they have no 
other siblings chronologically between them.  Assume Z is left of X.  Then we can show 
that X and Y are proximate by the crossing-free property:  Let W be any event between X 
and Y.  W is also between Z and Y, so it must prolong Z by the crossing-free property.  
But there is no child of Z between X and Y, so it must also prolong either X or Y 
(otherwise X or Y will cross an edge on the path from Z to W).  Obviously then W also 
cannot be prolonged by either X or Y (because they’re siblings).  Yet X and Y are by 
definition incomparable, so they can’t be proximate by the definition of T.  The same is 
true if Z is to the right of Y.  Therefore Z must be between X and Y.  Consequently, in 
general a vertex in T can have no more than two children, and if it does have two 
children, the parent must be chronologically between them. 

Now let U and V be any two incomparable vertices in T, such that U precedes V 
chronologically and A is their nearest common ancestor.  Let U’ be the child of A that’s 
an ancestor of U and V’ be the child of A that’s an ancestor of V.  According to the 
conclusions above, U’ must be left of A and V’ to the right of A.  By the crossing-free 
property, U and V must also be to the right and left of A (because no edge on the path 
from U to U’ or V to V’ can cross A).  Therefore, U and V are distant.   
This proves that all incomparable vertices of T are distant and T is thus complete 
crossing-free. 
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FIGURE 2.30: A DIFFERENT REDUCTION-LIST CONFORMANT WITH  
THE SAME PROLONGATION TREE AS FIGURE 2.28 

 
 

between these two reduction-lists is that different incomparable pairs of events in the 

prolongation tree are consecutive in each reduction-list.  We have already established that 

consecutivity in some reduction is closely tied to prolongation in the sense that an event 

must always occur next to its prolongational parent in some reduction (when the 

reduction-list is conformant), and the possibility of such a conformant reduction-list is 

equivalent to the prolongation tree being crossing-free.  However, in realizing a 

prolongation tree like the one in figure 2.28 in a reduction-list, we are forced to also make 

some events consecutive which are incomparable in the prolongation tree.  A comparison 

of figures 2.28 and 2.30 shows that such decisions are musically quite consequential. 

The important question then is, given a crossing-free prolongation tree, what 

consecutivity relations between incomparable events are possible?  Actually, we already 

have a general answer to this question: two events can be made consecutive in a 

reduction if and only if they are proximate.  This means that the consecutivity relations in 

a complete crossing-free tree are fixed, and given an incomplete crossing-free tree, 

certain choices can usually be made about consecutivity in a conformant reduction-list.  

Yet it’s possible to take this a bit further and show exactly which combinations of choices 

about consecutivity are possible.   The easiest way to do so is to observe the 

correspondence between making a decision about consecutivity in the set of reductions 
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and transforming a prolongation tree by adding relations between proximate 

incomparable events.  Thus, such a transformation narrows the field of possible 

reductions to those that include a particular relation.  The transformations that can be 

applied to the resulting tree represent relations compatible with those that have already 

been added.  A series of such transformations can turn any crossing-free prolongation tree 

into a complete crossing-free tree. 

Recall that such complete prolongation trees correspond bijectively with MOPs, 

so this process also gives a method of transforming any prolongation tree into a MOP.  

We can interpret this process as showing which MOP analyses are compatible with a 

particular incomplete prolongation tree.  The semantic interest of the transformation of an 

incomplete tree in to a complete one lies in the fact that the same procedure that relates a 

prolongation tree to one of its conformant reduction-lists also relates a prolongation tree 

with a possible MOP analysis of the same set of events. 

For any set of reductions, R, there is a prolongation tree conformant with R, TR, 

that is maximal with respect to prolongational relationships—that is, the set of relations 

in every prolongational po-set conformant with R is a subset of the set of relations in TR.  

TR is just the prolongational tree such that, for events X and Y, X > Y iff X and Y are 

consecutive in some reduction and X originates above Y or there’s some event Z such 

that X > Z > Y.  Let’s call this the maximal tree for a reduction-list. 

For example, consider the prolongation tree of figure 2.28 and the sets of 

reductions in figures 2.28 and 2.30.  Studying the prolongation tree reveals the following 

complete list of proximate incomparable events: 2A-2G, 2A-3F, 3F-5E, 3F-4D, 3E-4D, 3E-

5E, and 4D-4G.  The reductions in figures 2.28 and 2.30 make many of these events 

consecutive.  For instance, the maximal tree for figure 2.28 must include 5E > 3F, because 

5E and 3F are consecutive in the third reduction where 3F originates and 3F is in the 

second reduction above that.  Similarly, the tree must include 3F > 2A, 3F > 4D, 2A > 2G, 

4D > 3E, and 4D > 4G.  The remaining relation, 5E > 3E, follows from these by transitivity: 

5E > 3F > 3E.  Therefore the maximal tree for this reduction-list is complete, as figure 

2.31 shows.  The MOP corresponding to this prolongation tree, also shown in figure 2.31, 

is our original MOP analysis of the passage from part one. 
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FIGURE 2.31: THE REDUCTION-LIST OF FIGURE 2.29 AND ITS COMPLETE TREE AND MOP 
 
 

 
 

FIGURE 2.32: THE REDUCTION-LIST OF FIGURE 2.30 AND ITS COMPLETE TREE AND MOP 
 
 

 
 

FIGURE 2.33: ANOTHER REDUCTION-LIST, ITS COMPLETE TREE AND MOP 
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Notice that the MOP in figure 2.31 can be obtained directly by adding edges to 

the prolongation tree between all of the pairs of events that are consecutive in the 

reduction-list.  This is true for all such reduction-lists, permitting the interpretation of the 

edges of a MOP as a representation of consecutivity in a reduction-list. 

Figure 2.32 shows similarly that the reduction-list presented in figure 2.30 also 

has a maximal tree that’s complete.  This tree is, of course, different from that of figure 

2.30 and corresponds to a substantially different MOP analysis.  This analysis asserts that 

2G and 3E are a repetition and anticipation of 1G and 5E respectively rather than passing 

tones from 2A to 3F and 3F to 4D.  According to this analysis, it makes more sense to 

think of 2G and 3E most directly as prolongations of 1G and 5E rather than of 3F, as in the 

prolongation tree of figure 2.30.  Therefore, the reduction-list of figure 2.30 doesn’t give 

a very faithful realization of this prolongation tree even though it doesn’t contradict it. 

Figure 2.33 shows a third possible reduction-list, also conformant to the same 

incomplete prolongation tree, that gives another completely different analysis of the 

passage.  In this case, 1G-3F-4D appears as a dominant arpeggiation to the lower neighbor 

of 5E.  Again, while this is certainly a plausible analysis, it doesn’t seem to correspond 

very well to the prolongation tree of figure 2.23, although it doesn’t contradict it.  If we 

hear the passage according to the reduction-list in figure 2.33, it would make more sense 

to have 4D as a direct prolongation of 1G rather than of 5E.These three examples 

demonstrate how a complete prolongation tree can represent a reduction-list.  I will show 

momentarily how the conformance of each of these reduction-lists with the prolongation 

tree of figure 2.23 can be represented as a transformation of this tree into those 

corresponding to each reduction-list.  First, we should note however that our examples 

show that the idea of conformance of a reduction-list to a prolongation tree is still too 

admissive, because a conformant reduction-list has the potential to significantly alter the 

musical analysis suggested by a prolongation tree.  

Figures 2.34 and 2.35 each show a reduction-list conformant to the tree in figure 

2.23 but having an incomplete maximal tree.  The ambiguity of these reduction-lists is 

caused by the simultaneous introduction at some level of two events consecutive at that 

level, one of which prolongs the event to its left while the other prolongs the event to its  
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FIGURE 2.34: A REDUCTION-LIST WITH AN INCOMPLETE MAXIMAL TREE 
 
 

 
 

FIGURE 2.35: ANOTHER REDUCTION-LIST WITH AN INCOMPLETE MAXIMAL TREE 
 
 

right.  For instance, in figure 2.34 the reduction-list introduces 3E and 4D simultaneously 

in reduction 4, where 3E prolongs the previous event 3F and 4D prolongs the following 

event 5E.  The result is that while 3E and 4D are consecutive, no directed relationship can 

be established between them from the reduction-list.  Furthermore, the proximate events 

4D and 3F are allowed to remain incomparable.  

This is the only circumstance in which a reduction-list can have an incomplete 

maximal tree.  It is impossible, for instance, to give a conformant reduction-list that 

leaves larger holes in its associated outerplanar graph than those in figures 2.34 and 2.35.  

Also, these reduction-lists are substantially different semantically from those of figures 

2.31-33, which have complete maximal trees, because they assert that two events can be 

consecutive but incomparable in terms of their levels of origin.  Therefore it is formally 
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useful to separate out such reduction-lists as ambiguous.  More precisely, let an 

unambiguous reduction-list be one in which no two consecutive events have the same 

origin-reduction (where an origin-reduction of an event is the highest reduction in which 

that event occurs).  The unambiguous reduction-lists, then, are just those that have 

complete maximal trees. 

Figures 2.36-38 correspond to figures 2.31-33, and show how the complete trees 

of these examples can be constructed from the prolongation tree of figure 2.23.  The 

transformations in these figures always relate two proximate events and add any other 

relations that follow from this through transitivity. 

The analysis of figure 2.36 requires the most steps (six).  Note that each step in 

figure 2.36 relates two events that are siblings in the previous tree.  Figure 2.37 shows 

three transformations, two of which relate non-siblings.  Those transformations that relate 

non-siblings necessarily create more relations through transitivity, explaining why fewer 

steps are needed overall in this case.  The first transformation, 2G > 2A, relates a second 

descendent of 1G to a child of 1G, and forces 3F > 2A by transitivity.  The fourth 

transformation, 3E > 4D, relates a second descendent of 5E to a child of 5E, forcing 3F > 

4D by transitivity.  In figure 2.38 also, the first and third step relate proximate events that 

aren’t siblings.  In both cases, there’s no way to arrive at the same complete tree by 

relating only siblings at each step, as in figure 2.36. 

This provides an explanation as to why the reduction-list of figures 2.31 and 2.36 

seems to better represent the prolongation tree of figure 2.23 than those of figures 2.32-3 

and 2.37-8.  In figures 2.37 and 2.38 we can arrive at the correct complete tree only by at 

some point placing an event below the child of its sibling, whereas the transformations in 

figure 2.36 always place an event below one of its siblings.  The latter transformation is 

precisely like expansion rule 2 from “Backgroundness Partial Orderings for Phrase-

Structure Trees,” the prolongation-at-a-distance expansion, except that in the transformed 

prolongation tree we don’t distinguish between the original (type-(1)) relations and the 

new (type-(2)) relations.  We also need a transitivity rule like expansion rule 1.  Let’s 

then call these transformation rules 1 and 2: 
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FIGURE 2.36: THE TRANSFORMATION OF THE INCOMPLETE PROLONGATIONAL TREE  
INTO THE COMPLETE TREE OF FIGURE 2.31 

 

 
 

FIGURES 2.37 AND 2.38: SERIES OF TRANSFORMATIONS RESULTING IN THE  
COMPLETE TREES OF FIGURE 2.32 AND FIGURE 2.33 
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Transformation Rule 1 (Transitivity of Prolongations): Let X, Y, Z be events in a 
prolongation tree such that X > Y and Y > Z.  Then let X > Z. 

Transformation Rule 2 (Prolongation at a distance) [strong version]: Let X and Y 
be proximate events in the crossing-free prolongation tree, T, that share the 
same parent, Z, such that Y is chronologically between X and Z and no other 
child of Z is chronologically between Y and Z.  Then transform T by making 
X > Y and apply transformation rule 1 to the result. 

An incomplete crossing-free prolongation tree always has at least two events that 

are siblings that both precede or both follow their parent chronologically.65  Therefore, it 

is possible to transform any incomplete crossing-free tree into a complete tree by 

successive applications of transformation rule 2.  Furthermore, this procedure always 

results in the same complete tree given some incomplete tree, no matter how it is carried 

out.66  This therefore gives a mapping from phrase-structure trees to MOPs, which I’ll 

discuss in more detail below. 

While the application of this strong version of transformation rule 2 gives only 

one possible transformation of an incomplete tree into a complete tree, there’s a weaker 

                                                
65 To prove this, let T be a crossing-free prolongation tree such that no event in T has two 
siblings on the same side of their parent.  Then a vertex can only have two children in T, 
and if it has two they are on opposite sides of the parent chronologically.  Assume, then, 
that X and Y are two incomparable events in T.  Let Z be the nearest common ancestor of 
X and Y and let X’ and Y’ be the children of Z which are ancestors of X and Y 
respectively.  X’ and Y’ must be on opposite sides of Z chronologically, so the same must 
be true of X and Y by the crossing-free property (otherwise an edge on the path from X to 
X’ or Y to Y’ would cross Z).  Therefore X and Y cannot be proximate, and T must be 
complete. 
66 The strong version of transformation rule 2 is stated so that its application never makes 
two siblings into non-siblings unless they are chronologically on different sides of the 
parent or are non-proximate (because they have some other sibling chronologically 
between them).  (Note that the only event that gets a new parent through the rule is Y).  
Thus, the application of the rule to one pair of siblings never prevents its application to 
another pair.  The rule does, however, make events into siblings that were not before; 
more precisely, if X has any children, they become siblings with Y.  By the crossing-free 
property, if Y is left of X, it is proximate with X’s leftmost child in the resulting tree, and 
if it is right of X it becomes proximate with X’s rightmost child.  Therefore, no 
applications of the rule to any other pairs of vertices can change the vertex to which Y 
becomes a proximate sibling, because no applications of the rule can change the parent of 
an event that is further right or left from its parent than any of its siblings. 
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version that allows for more than one possible complete tree, in general, given some 

incomplete tree: 

Transformation Rule 2 (Prolongation at a distance) [weak version]: Let X and Y be 
incomparable proximate events in the crossing-free prolongation tree, T, such 
that X prolongs the parent of Y, Z, and Y is chronologically between X and Z.  
Then you can transform T by letting X > Y and applying transformation rule 1 
to the result. 

For instance, if T is the incomplete tree of figures 2.23-38, then 2A and 2G are 

incomparable proximate events both prolonging 1G, the parent of 2A, and 2A is 

chronologically between 1G and 2G.  Therefore it is possible to transform T by the weak 

version of transformation rule 2 by adding the relation 2G > 2A, and 3F > 2A by 

transitivity, as in figures 2.37 and 2.38.  While the strong version of this rule acts like 

expansion rule 2, the weak version doesn’t necessarily because of cases like this one. 

A closer look at the examples reveals that the applications of strong version of the 

rule (figure 2.36) can be divided into stages.  The first stage compares all proximate 

siblings of the original tree: in figure 2.36, first 3F > 2A, then 5E > 3F, then 4D > 4G.  

These applications of the rule turn some proximate non-siblings of the original tree into 

siblings.  The second stage then compares these: 3F > 4D and 2A > 2G.  Finally, the 

addition of 4D > 3E to the po-set in the third stage completes the tree. 

The three additions of the first stage are necessary comparisons in any completed 

version of the tree (i. e. any completion of the tree with the weak version of rule 2).  Note 

that in figures 2.37 and 2.38, the relation 3F > 2A is added indirectly by transitivity from 

2G > 2A, and in figure 2.38 the relation 5E > 3F is added by transitivity from 3F > 4D.  As 

a result, these relations are second-generation in the resulting complete tree, and indirect 

in the associated MOP.  In place of them, there are edges of the MOP representing 

indirect relationships of the original prolongation: in figure 2.32, 1G > 2G and 5E > 3E, 

and in figure 2.33, 1G > 2G and 1G > 4D.  The construction of figure 2.38 also relates 

through transitivity two events that are incomparable in the original tree: 4D and 3E. 

I pointed out above that the analyses implied by the reduction-lists of figures 2.37 

and 2.38 seem to correspond better to different prolongation trees.  In fact, it is possible 

to construct an incomplete prolongation tree that maps to the same complete tree and  
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FIGURE 2.39: A PROLONGATION TREE THAT YIELDS THE COMPLETE TREE OF FIGURE 2.32 
THROUGH THE APPLICATION OF THE STRONG VERSION OF TRANSFORMATION RULE 2 

 

 
 

FIGURE 2.40: A PROLONGATION TREE THAT YIELDS THE COMPLETE TREE OF FIGURE 2.33 
THROUGH THE APPLICATION OF THE STRONG VERSION OF TRANSFORMATION RULE 2 
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MOP under the strong version of transformation rule 2.  Figures 2.39 and 2.40 show these 

prolongation trees and the application of the transformation rule to them.  The number of 

steps in the transformation is larger in these cases than in figures 2.35 and 2.36, so that 

more of the edges in the resulting MOP represent relations added to the prolongation tree 

directly by rule 2.  Also, the number of stages in figures 2.37 and 2.38 is fewer than in 

figure 2.36, which had three stages.  In figure 2.39 there’s a second stage represented by a 

single transformation, 3F > 3E, and in figure 2.40 there’s only one stage. 

The weak version of transformation rule 2 allows the construction of any MOP 

that includes all the edges of the original prolongation tree.  However, when we add 

comparisons between non-siblings, the resulting consecutivity relations are not as 

obvious as with applications of the strong version of the rule.  For instance, if we add a 

comparison X > Y, where X is a second-generation descendant of Z, the parent of Y, we 

must add a consecutivity relation between Z and X as well as X and Y, and also between 

X and any events prolonging Y that are proximate to X.  For instance, in step 2 of figure 

2.38, let X = 4D and Y = 3F, then Z = 1G and Y has a child, 3E, proximate to 4D.  

Therefore in addition to 4D-3F, this step adds consecutivity relations 1G-4D and 4D-3E. 

In applications of the strong version of rule 2, the only added consecutivity 

relations are those explicitly added between siblings in the tree.  Therefore, the semantics 

of the strong version of the rule are relatively clear and have already been discussed 

above in reference to type-(2) relations of phrase-structure trees.  That is, in the first stage 

strong rule 2 adds a consecutivity where two events directly prolong the same third event 

and the time-span of one of these prolongations includes the other.  Thus, if strong rule 2 

adds a relation X > Y, weak rule 2 must either add X > Y or X’ > Y where X’ is some 

descendent of X proximate to Y.  If weak rule 2 adds X’ > Y rather than X > Y,  

X and Y do not become a consecutivity.  Instead, in order to raise the structural status of 

X’, in effect, weak rule 2 adds a consecutivity between X’ and Z, the nearest common 

ancestor of X’ and Y.  In this case, the time span of X’ prolonging Z does include the 

time span of Y prolonging Z, but X’ prolongs Z indirectly.   

Therefore, the strong rule 2 always adds the more obvious consecutivity relations 

(among all the possible ones).  This explains why the reduction-lists associated with the 
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strong transformational rule provide an analysis that hews closer to the sense of the 

original prolongation tree.  It also makes the strong rule the obvious choice for a mapping 

between phrase-structure trees and MOPs, which by definition requires a single target 

given a single input (whereas the weak rule can transform an incomplete prolongation 

tree, in general, into many possible MOPs). 

Semantics of the Mapping from Phrase-Structure Trees to MOPs 

I’ve spent a great deal of space erecting a formal structure to relate phrase-

structure trees and MOPs through backgroundness po-sets and reduction-lists to get to the 

point where we could construct a meaningful mapping between phrase-structure trees and 

MOPs.  Now it’s necessary to unravel this construction to get some kind of grasp on the 

semantics of the mapping. 

Here is an outline of the phrase-structure tree to MOP mapping: let P be a phrase-

structure tree.  (1) Extract a prolongation tree, T, from P.  This prolongation tree must be 

crossing-free, but it may be incomplete.  (2) Apply the strong version of transformation 

rule 2 to the prolongation tree until it is a complete prolongation tree, Tc.  (3) Let 1G be 

the MOP corresponding to Tc. 

The first step in this mapping removes a certain amount of information from the 

phrase-structure tree.  In particular, it removes all type-(2) and type-(3) backgroundness 

relationships from the tree.  All of the type-(2) relationships are reintroduced into the tree 

in step 2 except for those between distant events, but, unlike the expansion procedure for 

prolongation trees in the earlier section, this step doesn’t distinguish the new 

relationships from the old ones.  If P is stratified, then all type-(3) relationships 

(necessarily between distant vertices) are removed. 

Due to the combinatorial situation, which we briefly examined above, it is 

impossible to map phrase-structure trees to MOPs without removing a great deal of 

information that might distinguish one phrase-structure tree from another.  That is, many 

different phrase-structure trees must map to the same MOP.  It makes sense that any 

differences between phrase-structure trees that serve to draw level comparisons between 
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distant events should be removed by the mapping, since the MOP model doesn’t 

constrain the relative backgroundness of distant events, as we have already discussed. 

However, this is a symptom of a more general semantic difference between MOPs 

and phrase-structure trees.  When I derived a prolongation tree for MOPs in the previous 

section, I imposed the dynamic usage of the word “prolongation” onto MOPs, where 

prolongation is a relationship between two events, one prolonging the other.  It’s correct 

to think of an edge in a phrase-structure tree or a prolongation tree as representing a 

particular prolongation.  But the same isn’t true of MOPs; prolongation in a MOP can be 

described as a relationship between edges (as above, in the section “The MOP Model of 

Prolongation as a Binary Phrase-Structure Model”), and it can be described as a 

relationship between a vertex and an edge (where the event represented by the vertex 

prolongs the interval represented by the edge, as I explain the model in part one).  

However, it violates the dynamic prolongation conceptual basis of the MOP model to 

describe prolongation as a relationship purely between two events, or to interpret an edge 

in a MOP as representing a prolongation, as we do for phrase-structure trees.  Thus, 

although in a formal sense the prolongation tree corresponding to a MOP faithfully 

reproduces the “information” of the MOP (because of the bijective correspondence), it 

suggests a false semantic interpretation of that information. 

Can the edges of a MOP then be said to represent anything at all by themselves?  

In fact, the idea of consecutivity that the last section developed is a good description of 

what an edge in a MOP represents.  That is, an edge between two events in a MOP means 

that we can hear them as being consecutive.  For events far apart in the music, it is 

helpful to think of them being “consecutive in some potential reduction consistent with 

my hearing.”  Thus, the “prolongation tree of a MOP” might be better called a 

“consecutivity tree,”  except that “consecutivity” is not a directed relationship, as it must 

be to form a po-set.  (“Consecutivity” obviously implies the existence of a directed 

relationship in time, although it deliberately avoids specifying it.  But this is beside the 

point, because the directed relationship we need here is a “vertical” rather than a 

“horizontal” one).  Nor is consecutivity a transitive relationship. 
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The prolongation po-set for a MOP could perhaps represent the relationship, 

where X > Y, of “Y prolongs a span bounded by X,” but this is too indirect of a locution 

to make for a straightforward interpretation of the prolongation tree.  More simply, “X is 

more background than Y” comes to mind.  But “more background than” really means 

“originates at a deeper reductional level than.”  That is, it implies a fixed list of 

reductions, which is not characteristic of a MOP.  (Note that consecutivity relationships 

distinguish between possible and impossible reduction-lists, but don’t fix a particular 

reduction-list as “the one true”).  We could patch up “is more background than” to read 

“cannot be less background than”; this would be perfectly accurate, but again not 

especially lucid. 

It would be better, then, to sidestep the prolongation tree of a MOP and rephrase 

part (3) of the phrase-structure-to-MOP mapping outline to read: (3) Let 1G be a graph 

including all edges of T (the prolongation tree of the phrase-structure analysis), all edges 

added to T directly by transformation rule 2, and those edges added by transitivity 

between proximate events.  This derives the MOP graph directly without assuming a 

complete prolongational tree to represent it.  We can assume, then, that these edges are 

meant to represent consecutivity. 

The entire mapping process, thus, is a process of discovering consecutivity 

relationships from a phrase-structure tree.  The first step is then unproblematic: distant 

events cannot be consecutive, so level comparisons between them don’t figure into a 

MOP analysis.  The type-(2) relations eliminated from the phrase-structure analysis by 

this step are reinstated in step 2 if and only if they are between non-distant events.  

However, the immediate type-(1) relationships must correspond to consecutivities.67  

Therefore the edges of the prolongation tree of the phrase-structure analysis are retained 

and will become part of the edge set of the MOP that results from the mapping. 

                                                
67 I refer the reader here back to the idea of conformity of a reduction-list to a 
prolongation tree in the previous section.  The weaker property of consistency of a 
reduction-list would allow direct prolongations to not correspond to consecutivities in 
certain circumstances.  However, given the dependency of prolongation on consecutivity 
in a MOP, for a mapping of a prolongation tree to a MOP the property of conformity is 
the relevant one. 
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The second step of the mapping adds relations to the prolongation tree until it 

becomes a complete tree.  We have already discussed the possible ways this can be done 

in the previous section, and shown how the strong version of rule 2 adds relations in the 

most direct way.  Recall that we’re actually not interested in the comparisons added by 

the transformation rules so much as the consecutivities they add, since these undirected 

consecutivities are sufficient to characterize the resulting MOP.  The strong version of 

transformation rule 2 adds a consecutivity between any two proximate events that are 

both consecutive with some third event. 

The mapping from a phrase-structure analysis to a MOP illustrates the similarities 

and differences between the two approaches.  There is no way to compare them directly 

in terms of prolongation because prolongation is conceived as a different kind of relation 

in the two models.  However, they can be compared through the idea of consecutivity.  In 

the MOP model, consecutivity is closely tied to prolongation: if an event prolongs an 

interval, then the event must be consecutive with each member of the interval (and the 

interval itself must also represent a consecutivity).  Furthermore, every consecutivity 

represented in the MOP, except the root edge, must result from a prolongation. 

In the phrase-structure model, consecutivity is also tied to prolongation, but more 

weakly.  In a binary phrase-structure analysis, immediate prolongational relationships 

between events must correspond to consecutivities, but in the more general model this 

may be violated in isolated instances (though in such a way that the selective insertion 

additional reductions adds the missing consecutivities).  Furthermore, the type-(2) 

relationships, characteristic especially of the binary model, also tend to represent 

potential consecutivities. 

Prolongation Models and Musical Intuition 

To conclude this comparison of prolongation models, it would be well to briefly 

discuss their fidelity to certain common musical intuitions.  One of the problems with the 

phrase-structure model is its representation of certain common melodic paradigms of 

prolongation: the passing tone and the neighbor note.  Phrase-structure models force the 

analyst to represent a passing tone as a prolongation of either the note it passes from or 
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the note it passes to.  In such an analysis, then, a descending passing tone (for instance) 

becomes, somewhat counterintuitively, an incomplete lower neighbor to the previous 

note, or an incomplete upper neighbor to the following note.  For instance, in the fugue 

subject we have used as a test case, the overall motion is passing from 1G to 5E.  The 

MOP model represents the 3F as prolonging the motion from 1G to 5E, which is 

essentially what we mean when we say “3F is a passing tone between 1G and 5E.”  All of 

the phrase-structure analyses, on the other hand, represent 3F as an incomplete lower 

neighbor to 1G, leaving it only indirectly related to 5E.  The same is true of a neighbor 

note figure: the analyst must choose whether it’s a neighbor to the preceding or the 

following note. 

All of the authors I have mentioned have their own way of dealing with this.  

Lerdahl and Jackendoff simply ignore it, because they are more concerned with defining 

a procedure that produces an analysis than the semantics of the analysis it produces.  

When pressed on the matter, Lerdahl (1997), in a response to a paper by Steve Larson 

critical of Lerdahl’s theory, falls back on “theoretical parsimony.”  Lerdahl is correct that 

it’s difficult to make a coherent model that asserts prolongation as a relationship between 

events and also can accurately portray the sense of “being a passing tone.”  The question 

then is whether to discard this usage of the term prolongation or to discard the common-

sense notion of a passing tone. 

I have already discussed Smoliar’s model of passing and neighbor motion in “The 

General Phrase-Structure Model of Prolongation” above.  Smoliar makes a valiant effort 

to represent passing and neighbor motion accurately in a phrase-structure system, but as 

we saw in the discussion above his model falls short because the circumstances under 

which a passing tone or neighbor note can occur are too narrow to be of general use. 

In Rahn’s model, a passing tone is technically represented as an incomplete 

neighbor to the preceding or following note.  However, Rahn’s arp operation mitigates 

this to some extent because it allows the preceding and following notes to become a 

simultaneity at a next-background level.  A passing tone, thus, could be distinguished 

from an incomplete neighbor by observing whether the “note being passed from” and 

“the note being passed to” become a simultaneity at some more background level.  The 
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same could be said of neighbor notes, except that the “simultaneity” is a unison rather 

than a third in that case. 

All of this could be turned around on the MOP model: if phrase-structure models 

fail to represent passing tones and neighbor notes, by the same token the MOP model 

fails to represent such phenomena as escape tones and appoggiaturas—in other words, 

those types of prolongation that I characterize as “incomplete progressions” in “Some 

Conceptual Problems in Theories of Prolongation” and “Refinements of the MOP 

Model” in part one.  In those discussions, I gave an account of incomplete progressions 

that adheres to the dynamic usage of “prolongation” and the mathematical structure of the 

MOP analysis.  This account offers a potentially enlightening musical interpretation of 

incomplete progressions, an account that follows the Schenkerian model of explaining 

these prolongations as transformed versions of more basic types, with the passing tone of 

species counterpoint as the ultimately most fundamental type.  The phrase-structure 

model of passing tones, however, doesn’t offer such an explanation of the passing tone or 

neighbor note.  The passing tone as an incomplete neighbor is more of a marginally 

acceptable compromise than a musical insight. 
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PART 3: FORMAL MODELS OF CONTRAPUNTAL ANALYSIS 

Criteria for a Contrapuntal Model 

No formal model of prolongation would be adequate if it failed to deal with 

prolongation in a contrapuntal context.  So far, I have strained to avoid the topic to 

maintain a degree of simplicity to the presentation of the basic principles of modeling 

prolongation.  In this part, I will consider a few different approaches to the analysis of 

counterpoint in formal models of prolongation.  First, I will compare the ways in which 

the theories of Smoliar and Rahn, which I presented in a simplified form in the previous 

part, deal with contrapuntal considerations.  Then I will derive a method for representing 

a multi-voice analysis from the MOP model of prolongation. 

Before getting to the contrapuntal models, let’s consider briefly the models of 

Keiler and Lerdahl and Jackendoff, which I consider non-contrapuntal models even 

though their authors apply them to contrapuntal music.  With these models, the 

characterization I gave in the previous section is wholly adequate: all they require 

formally is a phrase-structure grouping of a sequence of events.   

Keiler deals with contrapuntal music by first giving a harmonic (roman-numeral) 

analysis of it and then adopting these roman numerals as a sequence of events.  This 

approach simply avoids the problems of a contrapuntal analysis by hiding them under the 

bed in a harmonic-analysis procedure that is not itself formalized.  Therefore Keiler’s 

model is not contrapuntal simply because what it analyzes is not the counterpoint itself, 

but a string of roman numerals that the analyst asserts as somehow representing the 

(contrapuntal) music. 

Lerdahl and Jackendoff deal with counterpoint by taking simultaneities as events.  

That is to say, they ignore the problems of counterpoint by treating a piece of 

contrapuntal music as if it were a sequence of events that may include any number of 

simultaneous pitches, rather than a collection of distinct event sequences (different 

voices) whose purposes may agree at some points but not necessarily at all.  As it turns 

out, while their model nominally works this way—and it seems at least a reasonable 
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proposition when a chorale is the object of analysis—in practice, their solution is more 

like Keiler’s.  In most of Lerdahl and Jackendoff’s analyses, the object of analysis is not 

the music itself, but a sequence of chords derived from the music.  When they analyze the 

C major prelude of WTC I, the process of deriving a sequence of chords from the musical 

surface is relatively unproblematic.  But for more contrapuntal textures, the process is not 

at all trivial, as Lerdahl’s discussion in Tonal Pitch Space, pages 35-40, makes 

abundantly clear.  Like Keiler, Lerdahl and Jackendoff sweep the problems of 

counterpoint into a corner where the formal model doesn’t reach. 

In fairness to Lerdahl and Jackendoff, the reason that they try to circumnavigate 

counterpoint in their formal models is not because they don’t recognize the necessity of 

understanding a piece’s counterpoint to fully appreciating the music, nor is it because 

they underestimate the complexity of the task of including counterpoint in the analytical 

model.  In fact, it is precisely because of the potential complexity of a contrapuntal model 

that they hesitate to construct one.  Lerdahl and Jackendoff set themselves the daunting 

goal of giving a highly, if not completely, deterministic formal model of prolongational 

analysis.  That is, given a piece of music the model should give exactly one analysis, or at 

least a small number of analyses.  To do this requires formalizing the process of 

prolongational analysis as well as the analysis itself.  Like Schachter, whom I quoted in 

the introduction, I am dubious about the wisdom of such an endeavor, although not so 

much, like Schachter, because I believe that the process through which an analyst arrives 

at “the correct” prolongational analysis is too complex and unpredictable to represent 

formally, but because according to my own understanding of the concept of prolongation 

the idea of a “correct” prolongational analysis of a particular piece of music or passage of 

music is simply not well-defined.  A formalization of prolongation along the lines of 

Lerdahl and Jackendoff could produce a well-defined notion of correctness for 

prolongational analyses, but unless we find a deterministic model of prolongation that 

relies upon some especially important or interesting insights about tonal music beyond 

those of a non-deterministic model, the concept of prolongation should remain non-

deterministic. 
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As we saw in part one (in “The Concept(s) of Prolongation”), for Schenker, 

prolongation was a way of linking the voice-leading in free composition to the law-

abiding world of species counterpoint.  This is essentially what we mean when we ask for 

a contrapuntal representation of music: a description of the music that models it as 

something like a species counterpoint example.  Therefore, as criteria of a contrapuntal 

representation, I’ll look for these two basic characteristics of species counterpoint: 

(1) The representation separates musical events into multiple independent voices.  
These are independent in the sense that an event cannot participate in more than 
one voice (i. e., the voices partition the events), events are well-ordered within a 
voice, and each voice can be described as having its own prolongational 
structure (potentially different than that of other voices). 

(2) The model relates events between voices in terms of simultaneity, consonance, 
and dissonance.  That is, it can be said for two events in different voices whether 
or not they’re simultaneous, and if they are simultaneous, whether they’re 
consonant or dissonant.  The consonance/dissonance distinction should also be 
non-trivial, so that, e. g., at least some types of event-pairs should be 
characterizable as dissonant simultaneities. 

Keiler’s and Lerdahl and Jackendoff’s procedures, for instance, don’t allow for 

multiple independent voices.  Even if multiple voices could be defined by breaking up the 

simultaneity-events, each voice will have exactly the same prolongational structure as 

each other voice (and hence they aren’t truly independent).  Lerdahl and Jackendoff 

recognize this problem and assign it’s resolution to “future research.” (116)  They suggest 

a model in which different voices may receive contrasting structural descriptions (273-7), 

but don’t tackle the problem of how to coordinate these contrasting descriptions into a 

single analysis. 

The road-block that such a “refinement” of Lerdahl and Jackendoff’s procedure to 

a contrapuntal one inevitably runs into is in their too-literal view of simultaneity.  

Prolongation doesn’t work this way in Schenkerian analyses (as Lerdahl and Jackendoff 

observe about Schenker’s own analyses, prompting their comment, “we feel that 

Schenker sometimes ascribes too great an independence to the outer voices,” 276): 

melodic events that do not literally coincide in the music may coincide at some level of 
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the analysis, and, more problematically, events that do coincide in the music may not 

actually be related. 

The recognition of agreement and disagreement between prolongational structures 

operating simultaneously in multiple voices, it seems to me, provides the best starting 

point for advancing a concept of consonance and dissonance for Schenkerian analysis.  

Consonance is, accordingly, the coordination of the varying structural descriptions of 

each voice.  More precisely, there’s some way of reducing the individual prolongational 

analyses of each voice so that all of them are equivalent and corresponding events in all 

of the voices can be described as consonant simultaneities.  This is analogous to taking a 

fifth-species counterpoint in multiple voices and simplifying each voice to present an 

underlying first species counterpoint.  This first species counterpoint is the model of 

consonance, whereas the divergent elaborations that distinguish the prolongational 

structures of the voices are the model of dissonance. 

This is a normative definition of consonance and dissonance: the terms are 

defined only in the context of an analysis.  Conflating this normative sense of the terms 

consonance and dissonance with other senses of the terms, where they are properties of 

abstract intervals rather than particular events in a particular piece of music, causes a 

great deal of confusion.  To be certain, the reason why we use the same terms in both 

cases is that there is some relation between normative consonance and certain definitions 

of consonance as a property of abstract intervals.  But this relationship is complex, and 

it’s not my business here to untangle it. 

The Representation of Counterpoint in Smoliar’s Model 

Smoliar’s model introduces counterpoint through the label SIM in the phrase-

structure tree.  This indicates that all the children of the SIM vertex occur simultaneously, 

ordered left-to-right from lowest to highest pitched event.  Smoliar uses this SIM label to 

separate the music into distinct voices.  This is illustrated in Smoliar’s complete 

middleground analysis of Mozart K. 283, 1, mm. 1-10, shown in Schenkerian notation in 

figure 3.1 and in Smoliar’s tree-form in figure 3.2.  The unlabeled vertices in figure 3.2 

are SEQs, and there are ten SIM vertices.  The SIM on the root vertex shows that the 
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analysis consists of essentially two voices, a lower and an upper voice.  The other SIMs 

break the upper part and the lower part into parallel thirds in certain places. 

However, these other SIM vertices actually serve a different function than the one 

on the root vertex.  The SIM on the root vertex has two SEQs as children.  This SIM 

separates the events below it into two subtrees corresponding to a lower and an upper 

voice.  Yet beyond this it is impossible to compare the events in either subtree, either in 

terms of consonance or in terms of literal coincidence.  (Though the comparison in terms 

of consonance is more important, since one can determine literal simultaneity of events if 

the labels on the leaves of the tree are made to correspond to particular events in the 

music). 

 

 
 

FIGURE 3.1: SMOLIAR’S MIDDLEGROUND ANALYSIS OF MOZART’S K. 283, 1, M. 1-10 
 
 

 
 

FIGURE 3.2: SMOLIAR’S ANALYSIS OF MOZART K. 283 IN TREE FORM 
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Consider, on the other hand, the SIMs on the left-hand side of the tree, which have 

SEQs as parents and pitches as children.  These SIMs, unlike the SIM on the root vertex, do 

in fact show the simultaneity of pitches.  In principle SIMs like these could show 

something like contrapuntal consonance if they were used at deeper levels of the tree.  

But then they give up their primary function of separating the events into voices. 

To see how this works in a simpler case, consider Smoliar’s G major Ursatz tree 

shown in figure 3.3.  In this tree there is one SIM that separates the events into two voices 

(and corresponds to the SIM on the root of figure 3.2).  This type of analysis does not 

meet our simultaneity/consonance/dissonance criterion for a contrapuntal analysis from 

“Criteria for a Contrapuntal Model,” because it is impossible to tell from the tree that 

there is a consonant relationship between the second G-1 and G0, or the first G-1 and D1,  

 
 

 
 

FIGURE 3.3: SMOLIAR’S 5-LINE URSATZ 
 
 

 
FIGURE 3.4: THE CONSTRUCTION OF SMOLIAR’S 5-LINE URSATZ 
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FIGURE 3.5: NON-TERMINAL VERTEX LABELS FOR SMOLIAR’S URSATZ TREE 

 
 

or D0 and A0, or G-1 and B0, or a dissonant relationship between G-1 and C1.  Figure 3.4 

shows the derivation of the Ursatz tree (not given by Smoliar, but inferable from the form 

of the tree), and figure 3.5 shows the resulting labels on non-terminal vertices.  (I discuss 

this process in part two, “The General Phrase-Structure Model of Prolongation”). 

Now consider the alternative five-line Ursatz tree constructed in figure 3.6 that 

tries to represent the consonant relationships missing in Smoliar’s tree.  In this tree, we 

construct the prolongational relationships between the consonantly supported notes of the 

upper voice before splitting off the lower voice.  Then we add the lower voice notes as 

simultaneities with the upper voice notes they consonantly support.  Finally, we add the 

dissonant note C1.  Figure 3.7 shows the resulting event labeled tree.  This analysis has 

the flaw of fracturing the lower voice, which should be a continuous line.  The linear  

 
 

 
 

FIGURE 3.6: CONSTRUCTION OF AN ALTERNATE 5-LINE URSATZ 
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FIGURE 3.7: NON-TERMINAL VERTEX LABELS FOR THE URSATZ TREE OF FIGURE 3.6 

 
 

relationship of G-1-D0-G-1 cannot be shown at the same time as the linear relationships of 

the upper voice and vertical relationships between the two.  Furthermore, the status of B0 

in relation to the lower voice is unclear.  Therefore the analysis of figure 6 is also not an 

entirely satisfactory representation of the prolongational relationships of voices in 

counterpoint. 

Thus, in general, Smoliar’s model is not an adequate contrapuntal model of 

prolongation by the criterion I have proposed, since it is not possible to represent 

consonant relationships between events without sacrificing the separation of events into 

voices.  (See also Rahn 1989b on this topic). 

The Representation of Counterpoint in Rahn’s Model 

In part two (“The General Phrase-Structure Model of Prolongation”) I showed 

that the analytical system formalized by Rahn in “Logic, Set Theory, Music Theory” 

could be modified to fit the general phrase-structure model.  An important component of 

this modification was to eliminate the arp operation and replace it with a triadic version 

of the neighbor operation.  In this section I’d like to explore whether Rahn’s definitions 

give us the tools to turn this phrase-structure version of Rahn’s theory into a contrapuntal 

phrase-structure model along the lines proposed above in “Criteria for a Contrapuntal 

Model.” 
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We’ll be interested, then, in finding a way to partition a set of events into separate 

voices, and in relating events in different voices in terms of consonance.  I will propose 

an interpretation that uses time-points to identify consonant relationships, and consider 

how the arp operation may fit in with this contrapuntal phrase-structure model.  We’ll 

find under this framework that there are three potential solutions to contrapuntal 

representation of an analysis in Rahn’s model, one that bends Rahn’s model—employing 

a more circumscribed version of it—and two that bend the concept of a contrapuntal 

voice to fit the more general version of the model. 

In Rahn’s model, each pitch event includes a time-point of initiation and release.  

Thus the model is potentially not only a model of tonal relationships in the music but also 

of rhythmic articulation.  Although we aren’t interested in the potential of Rahn’s system 

to model aspects of theories of rhythm, the time-point information is important both for 

the derivation of a phrase-structure analysis from and the definition of contrapuntal 

relationships for an analysis in this system.  In part two I used these time-points to 

associate pitch-events in the analysis with literal events in the score.  They also function 

as a differentiation of events in terms of abstractness.  That is, an event whose time-span 

encompasses the time span of some other event is in general more abstract and occurs at a 

higher level in the phrase-structure tree for the analysis. 

In terms of contrapuntal consonance, time-points provide a concept of 

contrapuntal consonance that can potentially satisfy the second criterion in “Criteria for a 

Contrapuntal Model.”  According to the time-points of two events at the same level, they 

can be described as simultaneous (i. e. their durations overlap) or non-simultaneous.  

Simultaneous events (at some level) that remain so at the next level could be defined as 

consonant, while if one or both of the events is eliminated by the neighbor operation then 

they are dissonant.  (More precisely, if events X and Y are simultaneous at level k and at 

level k + 1 there is an event Y’ with the pitch of Y present throughout the time-span of Y, 

then X is consonant with Y if there is an event with the pitch of X simultaneous with Y’ 

at level k + 1, and otherwise is dissonant with Y). 

For instance, consider Rahn’s analysis of the theme from Mozart’s K. 333 Piano 

Sonata, shown in figure 3.8.  The analysis takes the form of a series of reductional levels. 
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FIGURE 3.8: RAHN’S ANALYSIS OF MOZART K. 333, MM. 1-8 
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From each level to the next, the events are either identical, or there is a way to derive the 

more background from the more foreground events by the neighbor operation or the arp 

operation. 

To pick out a few examples of dissonance from figure 3.8 somewhat arbitrarily: 

the sixteenth-note E1 in measure 4 of reduction 1 is dissonant with the bass D-1.  In 

contrast, the interval F#-1-E0 in measure 3 is consonant up through level five and becomes 

dissonant at level six (where F#-1 is defined as the dissonant note).  At level 2 in measure 

1, the passing tones B-1 and D1 aren’t technically dissonant with one another (because 

neither is present at level three), but they’re each dissonant with the inner voice E. 

Given these notions of consonance and dissonance the next task is to find a way 

to partition events into voices to meet the other criterion proposed above.  A first 

condition on the partition of events into voices is that it makes the phrase-structure 

analysis of each voice possible, as described in part two (“The General Phrase-Structure 

Model of Prolongation”).  One significant characteristic of the phrase-structure tree is 

that an event occurring at some relatively background level always has a corresponding 

event with the same pitch at each more foreground level.  We can capture this in Rahn’s 

system by assigning events to voices according to the following rule: 

Voice-Assignment Rule 1: if events at two consecutive levels have the same pitch, 
and the duration of the more background event includes the duration of the more 
foreground event, then assign them to the same voice. 

This first rule takes care of events that are “the same” from one level to the next 

of the phrase-structure tree.  We also need a way to assign newly originating events at 

some level to a voice.  In Rahn’s system, the number of events increases at more 

foreground levels primarily through the neighbor operation, the operation that generated 

phrase-structure trees in the discussion of Rahn’s model in part two.  Thus, for our 

partition of events into voices, we need a second rule: 
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Voice-Assignment Rule 2: if two events are related by the neighbor operation, then 
put them in the same voice.68 

The only other way in which the number of events may increase from a more 

background to a more foreground level in Rahn’s system is when the arp operation acts 

on repeated pitches.  This results from some of the details of Rahn’s logical construction 

of the model: his definition I provides no way to distinguish pitch events other than by 

pitch and time-point of initiation and release.  Therefore definition VII for arp-

prolongation doesn’t require that the prolonging and prolonged sets have the same 

cardinality, just the same set of pitches.  In part two, because it was important for the sake 

of comparison with the MOP model to use an event-label system for phrase structure 

analyses, I suggested replacing the arp operation on repeated notes with a special 

operation that could allow the analyst to distinguish which of the repeated notes was the 

more background-originating event.  However, the event-label system isn’t necessary for 
                                                
68 A slight complication here is that it is possible for there to be ambiguity in an analysis 
in Rahn’s system as to whether two notes are in fact related by the neighbor operation.  
This is apparent from the wording of Rahn’s definition VIII, which requires only “at least 
one one-to-one correspondence” between partitions of two next-background levels.  For 
an example of how this could leave the definition of neighbors ambiguous, consider a 
hypothetical analysis in which at some level a close position BDFG in whole notes moves 
to a close position CEG in whole notes, and at the next-background level, these are 
replaced by BDFG in breves.  C and E could each be defined as diatonic neighbors to one 
of two notes of the dominant seventh, and could also be a circle-of-fifths neighbor to at 
least one note of the dominant seventh.  For instance, one might imagine that C is a 
neighbor to D, E a neighbor to F, and G and D are arp-prolonged, but it’s equally possible 
that C is a circle-or-fifths neighbor to F, E is a neighbor to D, and B and G are arp-
prolonged; the analysis doesn’t technically need to distinguish between these 
interpretations, not to mention the other possible ones. 

While one might potentially want to avail oneself of such ambiguities to a limited 
degree, in general they’re undesirable (as the hypothetical example shows) because the 
way you get from one level to the next is important for the meaning of the analysis.  Of 
course, such ambiguities are not especially common given a few assumptions; for 
instance, there are no ambiguities in the analysis of figure 3.8 given the assumption that 
the neighbor operation is only used with the A major scale or circle-of-fifths as reference 
collections, and the circle-of-fifths neighbors are confined to the bass.  Where such 
ambiguities do occur, however, we can assume that the analysis specifies partitions for 
each pair of next-background levels and a one-to-one correspondence between them that 
satisfies the definitions, preserving the simple and straightforward form of voice-
assignment rule 2. 
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a phrase-structure analysis, as both Rahn’s and Smoliar’s work demonstrates: it’s 

possible also to view the pitches themselves as being prolonged, rather than particular 

events that may be characterized by their pitch.  Discarding the event-label system for the 

moment, voice-assignment rule 1 above takes care of repeated notes (related by the arp 

operation) by assigning them to the same voice. 

These two voice-assignment rules apply only to pitched events, but Rahn also 

defines silent events, or rests. There is only one rest in the analysis of figure 3.8, which 

can be seen in reduction 5.  This rest also must exist at levels 1-4, but Rahn shows it only 

at level 5 because it is needed here to extend the E through the fourth measure. 

Rahn’s inclusion of rests as events is an interesting but problematic aspect of his 

formal model.  They obviously have a certain utility, as the rest in Rahn’s Mozart 

analysis demonstrates.  But what does it mean to assert that there is a silent event 

simultaneous with pitched events?  The term “rest” implies that it is intended to show that 

some particular voice is silent for that duration, though Rahn doesn’t discuss voices 

explicitly.  For instance, the rest that shows up in reduction 5 of the Mozart analysis 

seems to indicate that an inner voice that has been repeating the note E0 is momentarily 

silent. 

This suggests that rests should be assigned to particular voices along with pitched 

events.  Yet silent events don’t quite work this way because in general it isn’t possible to 

tell from the event itself which voice is silent for that time span.  For instance, it’s 

impossible to have two rests in the same reduction with the same initiation and release, so 

if multiple voices are silent for the same span of time one silent event must represent the 

absence of all of these voices.  This means that rests cannot always be assigned to a 

specific voice, and it is better to let the partition of events into voices apply only to 

pitched events. 

The result of our two voice-assignment rules on Rahn’s analysis of the Mozart 

theme is shown in figure 3.9 (showing foreground events only).  Note that figure 3.9 

always assigns events related by the arp operation in the analysis to different voices, 

except where they share the same pitch (that is, when a pitch is repeated).  The resulting  
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FIGURE 3.9: THE PARTITION OF EVENTS INTO VOICES GIVEN BY THE APPLICATION OF  
VOICE-ASSIGNMENT RULES 1-2 TO THE ANALYSIS OF FIGURE 3.8 

 
 

partition into voices is somewhat implausible: it fractures this simple four-measure 

passage, written by Mozart as a counterpoint of three voices, into a hocket of seven 

separate voices. 

This is the first possible solution to the problem of a contrapuntal representation 

of analyses in Rahn’s system that I posed at the beginning of this section.  This solution 

stretches the common sense notion of a “voice” by forcing all notes to be stepwise related 

to adjacent notes in their voice—except in the bass, assuming that circle-of-fifths 

neighbors are restricted to the bass—, thereby breaking ordinary voices into numerous 

parts with narrow tessituras.  Of course, one could imagine someone with a particular 

theoretical orientation liking such an analytical system, someone that had a very abstract 

notion of “voice” and perhaps viewed most music as an imperfect attempt to express an 

elaborate hocket with a limited number of instruments, but I think it’s worth exploring 
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whether there is a way to derive a more common-sense assignment of events to voices 

from Rahn’s analysis. 

One solution to the problem is to restore a common-sense notion of voice by 

tinkering with the analytical system Rahn sets up.  In part two I pointed out that the arp 

operation could be replaced by expanding the definition of neighbor to include neighbors 

within some chord.  In fact, Rahn suggests such an expansion in “Logic, Set Theory, 

Music Theory,” and in “Theories for some Ars Antiqua Motets” he employs a system that 

replaces the arp operation entirely with a neighbor operation defined for thirds.  As a 

result, the two voice-assignment rules above recover the original three voices from 

Rahn’s ars antiqua motet analysis.  Similarly, figure 3.10 shows how it is possible, by 

replacing the arp operation with a triadic neighbor operation, to revise Rahn’s analysis of 

the Mozart theme so that voice-assignment rules 1 and 2 produce the three voices shown 

in the original score.  This analysis differs from Rahn’s (figure 3.8) in particular in 

getting from level 3 to 4 and from 6 to 7 (comparable to Rahn’s levels 8 and 9), where 

figure 3.10 uses the neighbor operation on arpeggiations rather than the arp-operation that 

figure 3.8 uses. 

Figure 3.10 also shows how the analysis implies a phrase-structure to the upper 

and lower voices.  (The inner voice is not especially interesting.)  The exclusive use of 

the neighbor operation in an analysis guarantees that the reductions of each voice take the 

form of a phrase-structure tree in this way.  (Given the use of the arp operation for the 

reduction of repeated notes, violations of phrase-structure are technically possible, but 

very unlikely in practice.) 

Another way that the analysis of figure 3.10 differs from that of figure 3.8 is in 

how it deals with the suspension evident in reduction 5.  There’s an operation implied by 

the series of reductions in figure 3.8 that Rahn doesn’t define in the paper: in the process 

of getting from reduction 5 to reduction 6, the notes on the upper staff tied from measure 

3 to measure 4 must be separated into those in measure 3 and those in the first two 

eighths of measure 4, so that measure 4 can be reduced without swallowing measure 3 

along with it. That is, there needs to be a level “5½” where E-A-C# on the upper staff are 

separate events in measure 3 from the first two eighths of measure 4. 
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FIGURE 3.10: AN ANALYSIS THAT REPLACES THE ARP RELATIONS OF FIGURE 3.8  
WITH TRIADIC NEIGHBOR RELATIONS 

 
 

This “splitting rule” is problematic for the interpretation of Rahn’s analysis as a 

phrase-structure analysis.  A phrase-structure analysis by definition takes the form of a 

tree so that in moving from foreground to background multiple events combine into 

single events, but single events do not split into multiple events, as they do in moving 

from level 5 to level “5½” of Rahn’s analysis.  This rule is important semantically (in 
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interpreting the phrase-structure tree to represent prolongational relationships) because it 

prevents the odd situation where one thing prolongs two things. 

Fortunately, since we are at present interested in Rahn’s system as a model of 

prolongation and not of rhythmic articulation, we can ignore the splitting rule and the 

complications in the derivation of a phrase-structure tree that follow from it.  Note, 

however, that the representation of a suspension, as in figure 3.10, is somewhat different 

without the rule: it is no longer a contrapuntal dissonance, as in figure 3.8, but instead 

shows up as a metrical displacement of the upper voices against the bass. 

This analysis in figure 3.10 demonstrates the second solution to the problem of 

contrapuntal representation of analyses in Rahn’s system I posed at the beginning of the 

section.  This solution preserves the common sense notion of a voice by altering the 

analytical system itself.  The result is nice in that the resulting phrase-structure analyses 

of each voice give a good overall representation of the analysis.  However, I think the 

analysis in figure 3.10 is unconvincing as an analysis.  This is in part because some of the 

quirks of Rahn’s original analysis lose their raison d’être when important features of the 

analytical system—the splitting rule that interprets the C#1 on the first beat of measure 4 

as a contrapuntal dissonance, and the fuller simultaneities in the background produced by 

the arp operation—are pulled out from under them.  It would be possible to produce a 

better analysis by discarding Rahn’s analysis and starting from scratch in the retooled 

system.  But let’s rather give one more try at a contrapuntal representation that remains 

true to the original analysis in figure 3.8. 

The fact that the analysis of figure 3.10 results in a simpler set of voices under 

voice-assignment rules 1 and 2 makes the problem with the these rules in interpreting the 

analysis of figure 3.8 evident: events in the same reduction are assigned to the same voice 

primarily through the second rule, which recognizes only neighbor relationships between 

events.  Yet two simultaneous events cannot be defined as neighbors.  So arp reductions, 

which generally increase the number of simultaneous events while maintaining the total 

number of events (except in the case of repeated notes), reduce the number of possible 

neighbor relationships at more background levels, and hence increase the number of 

voices under the interpretation provided by voice-assignment rules 1 and 2. 
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The obvious solution then is to introduce another voice-assignment rule to put 

arp-related notes in the same voice.  This is problematic, however, because the arp 

operation can relate any number of notes from different registers at once.  For instance, in 

reductions 3-4 of figure 3.8, we might like to say that in measure 1, C# and E in the right 

hand are related by the arp operation and therefore should be put in the same voice, and 

the same of A and C# in the left hand.  However, there are other ways that the arp 

relations might be defined in this analysis.  All of the notes, A-1, C#0, C#1, and E1, might 

be arp-related as a group, or A-1-E1 could be one arpeggiation and C#1-C#0 another. 

For another example, consider reductions 7-8 of figure 3.8.  It is possible that the 

second chord of reduction 7 should include some rests to extend E1 and C#0 into 

measures 3-4 in reduction 8.  However, since Rahn doesn’t show these rests, we must 

assume that E1 and C#0 are extended by being included in the arp relation of the repeated 

E0’s.  This shouldn’t imply, however, that all of these notes are in the same voice. 

Figure 3.11 shows a set of three voices for the analysis of figure 3.8 obtained by 

selectively assigning arp-related notes to the same voice and the resulting phrase-

structure “almost-trees” for the upper and bass voices (—these aren’t quite phrase-

structure trees because of Rahn’s use of the splitting rule).  One could formulate many 

possible voice-assignment rules for arp-related notes of various degrees of complexity, 

but here is a relatively simple one that will produce the partition of figure 3.11: 

Voice-Assignment Rule 3: If two pitched events, a and b, at some level can be arp-
related, have pitches that are at most a fourth apart, and the release of a is equal 
to the initiation of b, then assign them to the same voice. 

The phrase-structure (almost-) trees of figure 3.11 demonstrate some of the unusual 

features of the contrapuntal model produced by applying voice-assignment rules 1-3 to an 

analysis such as Rahn’s analysis of the Mozart theme, especially in comparison to the 

analysis of figure 3.10.  One striking feature is the status of simultaneity in the model. 

Common sense would lead us to expect some sort of orthogonality between simultaneity 

and participation in a voice.  That is, no two pitches should be both simultaneous and in 

the same voice, but each pair of different voices should have at least some simultaneous 
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FIGURE 3.11: PHRASE-STRUCTURE TREES FOR THE OUTER VOICES  
OF THE ANALYSIS OF FIGURE 3.8 

 
 

pitches between them.  The first solution to the contrapuntal representation of Rahn’s 

system as shown by the partition into voices of figure 3.9 violates the second aspect of 

orthogonality of simultaneity and voice-membership: many pairs of “different” voices 

share no simultaneous pitches at the foreground (although they do at some sufficiently 
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background level).  In contrast, the analysis of figure 3.11 violates the first aspect of 

orthogonality: simultaneous notes may occur in the same voice, even notes that are 

simultaneous at the foreground. 

This sense of orthogonality with simultaneity, it seems to me, is essential to what we 

mean when we talk about “voices” in music.  After all, the reason given above in 

“Criteria for a Contrpuntal Model” for using the “independent voices” criterion as a 

measure of whether an analytical system is contrapuntal is that voices are essential to 

species counterpoint.  In species counterpoint the orthogonality of voice and simultaneity 

is a critical aspect of separation into voices and is strictly maintained.  Consequently the 

“voices” of figure 3.9 and 3.11 should perhaps be called “registral groupings” or 

something of the like rather than voices.  For this reason none of the three possible 

contrapuntal interpretations of Rahn’s system I have offered are wholly satisfactory.  

While the third interpretation yields a good representation of Rahn’s analysis in terms of 

(almost-) phrase structures, the lack of orthogonality between the registral groupings and 

simultaneities makes it inadequate as a contrapuntal representation, at least the 

understanding of “contrapuntal” I’ve advanced here. 

This doesn’t mean, however, that in adopting Rahn’s analytical system (complete 

with arp relationships) one must disavow any discussion of voices altogether.  It’s 

possible, for instance, to assert that the set of voices is different at each level.  According 

to this perspective we could derive phrase structures such as those of figure 3.11 for the 

analysis, yet these phrase structures aren’t analyses of a particular voice but of registrally-

associated (or however-associated) collections of different voices.  Or, in fact, one could 

assert that the membership of notes in voices is completely independent of their 

relationships in the analysis.  Under such interpretations, the contrapuntal representation 

is to some extent separate from the analysis of prolongation, so that prolongation and 

counterpoint can be seen to interact in various ways, but a contrapuntal representation is 

ultimately inessential to the understanding of prolongational relationships. 

In this sense Rahn’s system is not a contrapuntal system of prolongational 

analysis, although it’s non-contrapuntal in a radically different way than Lerdahl and 

Jackendoff’s.  Lerdahl and Jackendoff’s model is non-contrapuntal because it “chunks” 
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events vertically before relating them horizontally, whereas Rahn’s model, which always 

maintains the independence of events vertically, may be considered non-contrapuntal 

because of its resistance to the horizontal “chunking” of events into voices. 

The Extension of the MOP Model of Prolongation to Contrapuntal Analysis 

My extension of the MOP model of part one to contrapuntal analysis will follow 

the suggestions made in “Criteria for a Contrapuntal Model.”  I’ll give a general outline 

of the system before proceeding to a more detailed treatment of some of its parts. 

First, the events of the music are separated into voices ordered from lowest to 

highest (although there are no constraints concerning ranges or voice crossing). 

Second, the event sequence of each voice has a MOP prolongational analysis as 

described in part two. 

Third, there is a harmonic prolongational analysis of outer voice consonances, 

also in the form of a MOP.  This is the sort of analysis presented in “Refinements of the 

MOP Model” in part one to show unfolding transformations, and represents the 

“underlying first-species counterpoint” described in the analogy of “Criteria for a 

Contrapuntal Model” above.  This MOP doesn’t necessarily include all events in either 

voice, but includes all those events that participate in a consonance with an event in the 

other voice.  Actually, the latter part of this statement is tautological, since “consonance” 

here is normatively defined.  That is, a consonant pair of events is by definition one that 

occurs in the harmonic prolongational analysis.  The choice of which event pairs make up 

the consonances, then, is primarily an analytic decision that isn’t prescribed by the formal 

model.  In particular, a consonant pair of events need not necessarily sound 

simultaneously on the musical surface. 

Fourth, there is a harmonic prolongational analysis that extends the MOP of 

consonances by adding the dissonant events of each voice.  This includes all events not 

represented in the MOP of consonances, producing a complete prolongational analysis of 

the outer voice counterpoint.  However, as a graph this prolongational analysis is not 

necessarily a MOP, but a member of a more general class of graphs called “2-trees.” 
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Finally, each additional voice can be combined with the complete harmonic 

prolongational analysis in a similar fashion, by first identifying consonant relationships 

between this voice and the elements of the outer-voice contrapuntal analysis, and then 

adding the remaining dissonances.  In principle, the process can begin with any two 

voices, not just the outer two.  In fact, it is not actually necessary to break the process 

down voice-by-voice in this way; I have chosen to do so only to facilitate the presentation 

of the system. 

There are three important constraints on the definition of a set of consonant event-

pairs between two voices.  First, the consonant event-pairs must make a well-ordered 

sequence that agrees with the ordering of the events within their individual voices.  More 

precisely, if (w, y) and (x, z) are consonant event-pairs such that (w, y) precedes (x, z) (in 

the ordering of consonant event-pairs), then either w = x or w precedes x in the lower 

voice and y = z or y precedes z in the upper voice.  (Note that the set of consonant pairs is 

defined as a set of two-element lists where the first element is an event in the lower voice 

and the second is an event in the upper voice.  As a result, it is impossible for both x = w 

and y = z, since that would imply (w, y) = (x, z).) 

The rationale for this constraint is fairly obvious: the condition for interpretation 

of a MOP prolongational analysis is that the events make up a time-ordered sequence in 

the music, reflected by the Hamiltonian cycle of the MOP.  Yet the ordering of the 

sequence of consonances would not make musical sense if it contradicted the ordering of 

any of the individual voices. 

Second, the initiation events in each voice make a consonant pair, as do the 

termination events.  This indicates that the event sequences of the two voices occur 

within the same general time-span. 

Third, the prolongational analyses of the events making up the consonant pairs 

must also agree.  That is, for any two consonant pairs, (w, y) and (x, z), (w, y)(x, z) is an 

edge of the harmonic MOP if and only if either w = x or wx is an edge of the lower-voice 

MOP and either y = z or yz is an edge of the upper-voice MOP.  If every event of some 

voice participates in no more than one consonant pair, then this constraint says that the 

mapping of an event in this voice to the event-pair it participates in gives an isomorphism 
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from a subgraph of the individual voice’s MOP to the consonant harmonic MOP.  Also, 

note that the edges of the harmonic MOP are completely determined by the set of 

consonant event pairs and the analysis of each voice. 

Perhaps it is clear why this last condition is necessary, but it may be worthwhile at 

this point to clarify the semantics of a harmonic prolongational analysis.  The 

construction of a prolongational analysis of consonances makes the implicit claim that at 

some sufficiently background level, the events in each individual voice combine 

“vertically” into harmonic events, and that these harmonic events can be said to relate to 

one another prolongationally.  In order to construct such an analysis, then, at least the 

most background events in each voice (the initiation and termination events) must 

participate in harmonic events.  And, in addition, the voices making up these harmonic 

events necessarily inherit their prolongational relationships, leading us to posit the third 

condition. 

Let me further clarify these points in the context of an example.  Figure 3.12 

shows an episode of the fugue whose subject I analyzed in part 1, and William Renwick’s 

reduction and analysis of the episode in Analyzing Fugue. (157)  Figure 3.13 shows the 

consonant harmonic MOP for the outer voices (with event names that include both 

measure numbers and register numbers).  At the bottom of Renwick’s analysis he 

provides the basic harmonic progression of the passage: I-IV-V-VI.  This progression is 

represented in the background of the consonant MOP: (13E-1, 13G1)-(14F-1, 14A1)- 

(16G-1, 16B1)-(18A-1, 18C2).  At this level, the two melodies move exclusively in parallel 

tenths.  However, the inner voice motion, 13C1-16D1-18E1, not yet included in the analysis, 

reveals the V as a dividing dominant, making the basic motion (13E-1, 13G1)-(16G-1, 16B1)-

(18A-1, 18C2) with passing motion through (14F-1, 14A1). 

In measures 15 and 17 there are subordinate applied dominant harmonic events.  

These are represented in the MOP by the vertices (15D-1, 15A1) and (17E-1, 17B1).  Notice 

that these pairs of events do not occur simultaneously in the music, but comprise the 

“real” (most background) outer voices for the harmonic activity of each of these two 

measures. 
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FIGURE 3.12: A FUGUE EPISODE AND RENWICK’S ANALYSIS 

 
 

 
 

FIGURE 3.13: THE CONSONANT HARMONIC MOP FOR THE  
OUTER VOICES OF THE FUGUE EPISODE 

 
 

The F#’s in both voices in measure 15 also participate in this applied dominant 

harmony of this measure, although at a slightly more foreground level.  Therefore, they 

can also be included as consonant events, 15F#1 in consonance with the lower voice 15D-1 

and 15F#-1 in consonance with the upper voice 15A1.  In addition, the leap to 15D1 in the 

upper voice is consonantly supported by 15F#-1 (not 15D-1, because it is a relatively 

foreground event, as the isolation of 15D1 from 15D-1 in the MOP of figure 3.13 shows).  

Measure 17 is analyzed similarly to measure 15. 
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Finally, the pairs of passing tones (14E-1, 14G1) and (16F-1, 16A1) are shown in the 

MOP as consonances, since they move together in parallel tenths in Renwick’s analysis 

(although they do not ultimately participate in distinct harmonies, properly speaking, as 

we will see below). 

Thus the outer voices in Renwick’s reduction are entirely consonant with one 

another.  That is, every event participates in the consonant prolongational analysis, 

making it equivalent to the complete prolongational analysis.  (Of course, this is due to 

the way Renwick reduces the passage: there are many dissonances in the outer voices of 

the actual music).  The only complication in the consonant MOP is the duplication of the 

notes 15D-1 and 15A1 (and the corresponding duplication in measure 17).  This is necessary 

to show that not only do 15D-1 and 15A1 bear consonant relationships to 15F#1 and 15F#-1 

respectively, but also, at a more background level, to one another. 

Figure 3.14 shows the MOPs analyzing each of the outer voices individually for 

comparison with the consonant harmonic MOP of figure 3.13.  This example 

demonstrates the need for the conditions on the consonant harmonic MOP described 

above.  The voices must inherit the prolongational relationships of the harmonic events 

 
 

 
 

FIGURE 3.14: MOP ANALYSES OF THE OUTER VOICES OF THE FUGUE EPISODE 
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they constitute.  For instance, if the consonant MOP shows a motion from a subdominant 

event, (14F-1, 14A1), to a dominant event, (16G-1, 16B1), being prolonged by an applied 

dominant event (15D-1, 15A1), then the bass motion from the subdominant to the dominant, 

14F-1 to 16G-1, must also be prolonged by the bass of the applied dominant, 15D-1.  

However, in certain cases an event in one voice may relate consonantly to more than one 

event in another voice.  For instance, 15F#-1 is consonant both with 15A1 and 15D1 in the 

upper voice.  In this case the fact that some motion from (15F#-1, 15A1) is prolonged by 

(15F#-1, 15D1) doesn’t itself say anything about relationships between events of the lower 

voice (since it involves only one such event), just the upper voice. 

The next step in the analysis is to add the inner voice.  For the sake of comparison 

with the relatively consonant outer voice counterpoint, I will first combine the inner voice 

with the upper voice alone as a slightly more complex example of two-voice counter-

point.  This will illustrate the difference, in general, between a consonant harmonic 

prolongational analysis and a complete harmonic prolongational analysis. 

Figure 3.15 gives the consonant MOP for the upper voices of the fugue episode.  

This includes the background tonic, subdominant, dominant, and submediant events 

((13C1, 13G1), (14C1, 14A1), (16D1, 16B1), and (18E1, 18C1)), as well as the applied dominant 

events ((15D1, 15A1), (17E1, 17B1)).  Furthermore, 15F#1 and 17G#1 in the soprano also 

participate consonantly in the applied dominants.  However, there are many events in the 

soprano and alto of Renwick’s reduction not included in the consonant MOP of figure 

3.15.  These can be seen in the MOPs for each of these individual voices in figure 3.16: 

in the alto, 15C1, 16B0, 17D1, and 18C1, and in the soprano, 14G1, 15D1, 16A1, and 17E1.  The 

harmonic prolongational analysis must include these events as dissonances. 

These dissonant events are incorporated into the harmonic analysis as 

prolongations of consonant events.  The complete harmonic prolongational analysis of 

figure 3.17 illustrates this process.  Most such dissonant events prolong the motion 

between two consonant events directly.  In this case, the edge between the prolonged 

events in the individual voice’s MOP reflects an edge of the consonant harmonic MOP, 

so the dissonant event is joined to this edge.  For example, the passing tone 14G1 in the  
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FIGURE 3.15: THE CONSONANT HARMONIC MOP FOR THE  
UPPER VOICES OF THE FUGUE EPISODE 

 
 

 
 

FIGURE 3.16: MOP ANALYSES OF THE ALTO AND SOPRANO OF THE FUGUE EPISODE 
 
 

soprano prolongs the interval from 14A1 to 15F#1.  The consonant harmonic MOP 

represents the motion from 14A1 to 15F#1 with the edge (14C1, 14A1)(15D1, 15F#1). 

Therefore, there is a vertex in the complete harmonic analysis labeled (–, 14G1), where the 

dash asserts that 14G1 is dissonant with the alto voice, and there are edges from (14C1, 

14A1) and (15D1, 15F#1) to this vertex. 



 

 

 

182 

 
 

FIGURE 3.17: THE COMPLETE HARMONIC ANALYSIS OF THE  
UPPER VOICES OF THE FUGUE EPISODE 

 
 

Occasionally a dissonant event in some voice prolongs the motion to or from 

another event that is also dissonant in that voice.  An example in figure 3.17 is 15C1 in the 

alto, which prolongs the motion to 16B0.  The event 16B0 is dissonant with the soprano 

because the proper voicing of the dominant chord to support the soprano 16B1 is with the 

D1 that follows 16B0 in the alto.  This is not a problem for the construction of the 

complete harmonic analysis, since 16B0 itself directly prolongs the motion between two 

consonant events, so that (15C1, –) can be added with an edge to (16B0, –) after (16B0, –) 

itself is added.  Since the initial and final events must be in the consonant MOP, any 

chain of dissonances prolonging dissonances must eventually terminate in a dissonance 

that prolongs the motion between two consonant events. 

Note that the graph in figure 3.17 is not itself a MOP, because the dissonances  

(–, 15D1) and (–, 17E1) are not on the outer perimeter in the drawing.  (It would be possible 

to draw the graph differently to put them on the outer perimeter, but this would take the 

alto dissonances off the perimeter).  It is, rather, a member of the more general class of 2-

trees, which will be defined formally in part 4.  In general, a 2-tree violates MOP-hood 

wherever multiple events directly prolong the same interval, as (–, 15D1) and (16B0, –) 

both prolong (15D1, 15A1)(16D1, 16B1) in figure 3.17.  This is allowed to happen in 

harmonic analyses when the prolonging events are dissonances in distinct voices.  Recall 
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from part one that MOPs can be defined as Hamiltonian crossing-free chordal graphs.  2-

trees are crossing-free chordal graphs, like MOPs, but unlike MOPs are not necessarily 

Hamiltonian (rather they are “2-connected,” a weaker property; see “H2-Intrasymmetry” 

in part four).  This reflects the fact that there may not be a completely well ordered 

sequence of events when those events can occur in different voices. 

Note also how the complete harmonic prolongational analysis of figure 3.17, 

because it includes at least one vertex corresponding to each event of each individual 

voice, completely determines the MOP analyses of each voice included in it.  You can 

see this by comparing the analyses of the alto and soprano voices in figure 3.16 with the 

complete two-voice harmonic analysis of figure 3.17.  I will formalize this process below 

as a direct way of defining the complete harmonic prolongational analysis for any 

number of voices. 

But before I do so, let’s consider how these analyses combine into a complete 

three-voice analysis.  Figure 3.18 reproduces the analysis of the bass voice from figure 

3.14 and the harmonic analysis of the upper voices from figure 3.17.  The complete three-

voice harmonic analysis the passage can be thought of as a combination of these two 

analyses, treating the two-voice harmonic analysis as if its events were those of a single 

voice.  Figure 3.19 shows a “consonant analysis” for the combination, including all three-

voice consonances and all places where the bass gives consonant support to an event in 

an upper voice that is dissonant with the other upper voice.  The only events missing are 

the passing tones of the alto, 15C1 and 17D1, which are dissonant against the bass.  These 

are added as dissonances in the complete harmonic analysis of figure 3.20. 

The complete analysis of figure 3.20 includes a foundational background structure 

of harmony in which all three voices participate, consisting of the overall motion from I 

to VI being prolonged by the progression from IV to V and the applied dominants 

prolonging the motion from IV to V and V to VI.  There are also arpeggiations in the 

outer voices within these applied dominants that make up the most foreground part of the 

consonant structure of the analysis. 

The remaining events appearing in the analysis are somehow dissonant.  

However, some are purely dissonant, while others are dissonant only with one of the two 
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FIGURE 3.18: THE MOP ANALYSIS FOR THE BASS VOICE AND COMPLETE HARMONIC ANALYSIS  
FOR THE UPPER VOICES OF THE FUGUE EPISODE 

 
 

 
 

FIGURE 3.19: THE “CONSONANT ANALYSIS” OF BASS AND UPPER VOICES  
FOR THE FUGUE EPISODE 

 
 

other voices.  Consider just the events in the prolongation of IV-V (the event prolonging 

V-VI are analyzed equivalently): the passing tones 14E-1 and 14G1 in the outer voices 

move together in consonant parallel tenths, but they don’t participate in the main 
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FIGURE 3.20: THE COMPLETE HARMONIC ANALYSIS OF THE FUGUE EPISODE 
 
 

harmonic event of the measure (the IV), and thus are dissonant with the inner voice.  The 

note 16B0 in the alto voice, as I noted above, isn’t the correct inner voice support of 16B1 

in the soprano, so, although both of these note are consonantly supported by the V in the 

bass, the alto note 16B0 is dissonant with the soprano.  Finally, the note 15D1 in the 

soprano is a consonant arpeggiation within the applied dominant, but is too local of an 

event to be supported by the 15D1 of the alto.  The only pure dissonances are the passing 

tones 15C1 and 17D1 in the alto. 

We can also read a multivoice harmonic analysis like that of figure 3.20 

holistically.  For instance, the graph indicates a motion from an applied dominant, (15D-1, 

15D1, 15A1), to a V, (16G-1, 16D1, 16B1).  This is prolonged first by a consonant arpeggiation 

of the bass to F#.  Then, the motion from (15F#-1, 15D1, 15A1) to (16G-1, 16D1, 16B1) is 

prolonged in two (independent) ways: by a consonant leap in the soprano to 15D1 and a 

resolution of the alto voice to 16B0 of the V filled in by a passing tone 15C1. 

Notice that something unusual occurs here that is impossible in a two-voice 

analysis: the upper voices have two dissonant prolongations (15D1 in the soprano and 16B0 

in the alto) of the motion between two consonant groups, one of which is supported by 

the preceding bass note, 15F#-1, and one supported by the following bass note, 16G-1. 
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A Formal Definition of the Complete Harmonic Prolongational Analysis 

I have suggested up to this point defining harmonic analyses for more than two 

voices by a process of construction that involves adding each voice successively, 

although I have not rigorously formalized the process.  Although this is possible, it’s 

actually a rather clumsy way of going about it.  It’s easier—and more enlightening—to 

give a more direct characterization of a harmonic analysis for any number of voices. 

The formal definition of a harmonic analysis I will give below is based on the fact 

that the analysis of each voice can be derived directly from the harmonic analysis.  For 

instance, let’s derive a MOP analysis of the inner voice of the fugue episode from the 

three-voice analysis of figure 3.20.  First, we delete any vertices dissonant with the inner 

voice (that have a “–” in the second place).  These vertices are (14E-1, –, 14G1),  

(15F#-1, –, 15D1), (16F-1, –, 16A1), and (17G#-1, –, 17B1).  (Note that each of these is incident 

on only two edges of the graph).  To delete a vertex means to remove it and any edges it 

participates in from the graph; figure 3.21 shows the result. 

Next, we need to combine all the vertices that involve the same alto event.  These 

are all the vertices with 15D1 and 17E1 in the second place.  We combine them with a 

process called contraction.  To contract two adjacent vertices means to replace them with 

a single vertex and add an edge between the new vertex and every vertex adjacent to one 

of the old vertices.  (Recall that two vertices being adjacent means they share an edge in 

the graph).  Figure 3.22 shows the result of this process applied to the graph of figure 

3.21, with the new vertices labeled by the alto voice event they represent.  Now we have 

a graph in the form of a MOP and has one vertex for each alto voice event.  Therefore we 

only need to switch the labels of the vertices and we have the MOP analysis for the alto 

voice, as shown in figure 3.23. 

This process serves as a basis for a relatively straightforward definition of a 

complete harmonic analysis.  Besides deletion and contraction, which I just explained, we 

also need the idea of a neighborhood in this definition.  The neighborhood of a vertex v is 

the set of all vertices adjacent to v (but not equal to v).  The idea of an overlap of  
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FIGURE 3.21: THE COMPLETE HARMONIC ANALYSIS WITH EVENTS  
DISSONANT WITH THE ALTO REMOVED 

 
 

 
 

FIGURE 3.22: THE GRAPH OF FIGURE 3.21 WITH EVENTS DUPLICATING THE ALTO CONTRACTED 
 
 

 
 

FIGURE 3.23: THE MOP ANALYSIS OF THE ALTO VOICE OF THE FUGUE EPISODE 
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neighborhoods for two adjacent vertices will be useful for the definition below (where 

“overlap” just means the intersection of sets). 

To see the usefulness of a concept of overlap of neighborhoods, examine any 

MOP or harmonic analysis I have discussed thus far and consider the following: the 

overlap of the neighborhoods of any two adjacent vertices (that is, the set of vertices that 

the two neighborhoods share in common) is just the set of events that bear some direct 

prolongational relationship to the interval defined by the two vertices.  Let x and y be the 

two vertices and S the set of vertices in the overlap of their neighborhoods.  If xy is 

theroot edge, then S includes exactly one vertex, which is the event that directly prolongs 

the span of the passage.  If xy is not the root edge, then S includes at least one vertex z, 

where either x prolongs yz or y prolongs xz.  Any additional vertices in S are events that 

directly prolong xy.  (In a MOP there can be only one such event, but in a harmonic 

analysis there can be up to one such event for each voice). 

A complete harmonic analysis on a set of voices with complete MOP analyses V1, 

V2, V3, . . . , Vn can then be defined as a graph G with the following characteristics:  

(1) Each vertex of G is an ordered list of n events, where the ith event is either an 
event in Vi, or is the null event (indicated by a dash).  Also, G has an oriented 
root edge. 

(2) For each voice Vi, there’s a subgraph Gi of G such that: 

(a) Gi is isomorphic to Vi such that each vertex, v, in Vi corresponds to a vertex in 
Gi with v in its ith place, and Gi has an oriented root edge inherited from G that 
corresponds to the oriented root edge of Vi via the isomorphism. 

(b) Gi can be obtained from G by successively eliminating vertices as follows: 

First, delete any vertex that is null in the ith position, is adjacent to exactly two 
other vertices, and is not on the root edge. 

Second, contract every pair of adjacent vertices that have the same event in the 
ith place, have neighborhoods overlapping in exactly one vertex, and aren’t on 
the root edge.  Label the contracted vertex with the event of either contracting 
vertex. 

Furthermore, every vertex in G is in some Gi. 
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A complete MOP analysis of a voice is one that includes all the events of that 

voice and, of course, has no duplications of any events.  Therefore the process of (2)(b) 

must delete all vertices that are dissonant with Vi and contract all vertices that duplicate 

some event in Vi.  This definition restricts the form of the harmonic analysis, then, in that 

in order to qualify as a harmonic analysis, the process of (2)(b) must eliminate these 

dissonances and duplicates for each voice.  For instance, motion to or from a dissonance 

cannot be prolonged by a consonance; otherwise the dissonance will never be adjacent to 

as few as two vertices in the deletion process.  Also, when two harmonic events include a 

duplicate in some voice, the interval between these two harmonic events can only be 

prolonged by an event dissonant with the voice in which the duplicate occurs.  Otherwise, 

the two events will have neighborhoods overlapping in more than one vertex, and the 

process in (2)(b) won’t contract them. 

The identification of the root edges of the Gi’s with that of G in (2)(a) forces the 

initial and final events in each voice to correspond to initial and final events in the 

harmonic analysis.  (In particular, if two voices are not completely dissonant with one 

another, then they’re consonant in some initial and final event).  However, by rewording 

this and allowing for the deletion of background vertices in (2)(b) one can allow for 

voices that do not participate in the entire prolongational span: 

(2) [background-deletion version] For each voice Vi, there’s a subgraph Gi of G such 
that: 

(a) Gi is isomorphic to Vi such that each vertex, v, in Vi corresponds to a vertex in 
Gi with v in its ith place, and Gi has an oriented root edge that corresponds to the 
oriented root edge of Vi via the isomorphism. 

 (b) Gi can be obtained from G by successively eliminating vertices as follows: 

First, delete any vertex that is null in the ith position and is adjacent to exactly 
two other vertices.  If this vertex, x, is on the root edge, xy, then let z be the 
vertex in the overlap of the neighborhoods of a and y, and let zy be the new 
root edge, oriented in the same way with respect to y as the previous root 
edge. 

Second, contract every pair of adjacent vertices that have the same event in the 
ith place, have neighborhoods overlapping in exactly one vertex, and do not 
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make up the root edge.  Label the contracted vertex with the event of either 
contracting vertex. 

Furthermore, every vertex in G is in some Gi. 

This redefines the root edge so that it retains its orientation, and eliminates the 

possibility of reordering the events of some voice by rotation or retrogression (which 

could produce some very queer analyses indeed!). 

Broadening the definition of the Gi’s in this way makes the definition of harmonic 

analyses somewhat more general by allowing voices to enter and leave off in the middle 

of the phrase rather than requiring all initial and final events to coincide.  In other words, 

some voices may participate only in certain more local prolongational spans and not 

throughout the entire phrase.  Note, however, that such an analysis requires two divergent 

semantic interpretations of the null event in a voice: it can indicate either some 

foreground activity dissonant with the voice or some background level at which the voice 

is absent. 

This may be particularly useful in the case of unfolding transformations, where 

one might often want an inner voice to enter only fleetingly.  For example, in 

“Maximality and Chordality” in part one, I pointed out some possible unfoldings in the 

upper voice of the slow movement of Haydn’s Symphony #99 (according to the analysis 

of Schachter given in “A Comparison of Analyses Using the MOP Model”).  These might 

be best introduced in an inner voice that enters only briefly.  Figure 3.24 shows a possible 

set of voices for the “folded” analysis of the upper voice and they’re combination in a 

harmonic analysis.  (I omit the dashes that indicate null events here, since there’s no 

danger of confusion).  In deriving the inner voice from the harmonic analysis according 

to the process described above, it’s necessary to delete the initiation and termination 

vertices of the harmonic analysis in turn.  The vertices 7B and 12B then take on the 

function of initiation and termination events respectively for the inner voice.  In other 

words, this inner voice, a simple third progression, is heard in the immediate context of 

the principal voice’s retention of B from measure 7 to 12 of the piece.  Finally, the 

unfolding transformation is shown in the derivation of the last MOP of figure 3.24 from 

the “folded” analysis (again, not a process that I’ve explicitly formalized in this paper). 
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FIGURE 3.24: UNFOLDING TRANSFORMATIONS IN SCHACHTER’S HAYDN ANALYSIS 
 
 

This is just one simple way in which a mathematical model, once it is formulated, 

suggests new possibilities and asks us to provide a semantic interpretation of them.  Some 

of these will yield a useful broadening of the model while others will not. 

Analytical Decision-Making in the Contrapuntal Model 

In part one I illustrated how the MOP model of prolongation could formalize 

aspects of the decision making process of analysis using the discussion of a passage in 

Haydn’s Symphony 99 from Carl Schachter’s article “Either/or.”  Now we can see how 
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giving a more complete contrapuntal representation of the analyses Schachter discusses 

influences the picture. 

First, consider the analysis I presented in the first section as the one Schachter 

rejects.  Schachter doesn’t give a full realization of this analysis, so when I formulated 

this analysis in part one, I tried to retain as many details of the analysis that Schachter 

does present.  However, rather than using 10D1 as the principal melodic tone of the tonic 

that is supposed to complete the tonic prolongation, I used 10B1, even though Schachter 

puts more importance on 10D1 to establish the linear connection from 9E1 to 11C1.  The 

primary reasons for choosing 10B1 invoke harmonic and contrapuntal aspects of the 

passage.  In order for the II chord of measure 9 to prolong the tonic convincingly, there 

must be a dominant preceding the end of the tonic prolongation.  If 10D1 is chosen to 

represent the tonic of measure 10, then there is no melodic note between E and D to serve 

as the upper tone of a dominant. 

This is resolved by identifying 10B0 as the actual melodic tone of the tonic in 

measure 10, and identifying 10D1 rather as the delayed resolution of the suspension 10E1, 

enabling 10D1 to serve as the upper note of the dominant.  Figure 3.25 shows this as a 

four-voice harmonic analysis.  (For the sake of convenience, I will call these voices 

soprano, alto, tenor, and bass).  Each voice is shown in musical notation on a separate 

staff and roughly aligned with the graph below to show which events the pitch names on 

the graph refer to while avoiding a profusion of superscripts and subscripts.  The musical 

notation uses Schenkerian symbols somewhat loosely, solely for the purpose of 

representing the prolongational information in the MOP analyses as accurately as 

possible without being too difficult to read, and not to introduce any more refined 

Schenkerian concepts into the analysis. 

I also extend the notational distinctions of edges to contrapuntal analysis here, as 

suggested in “Refinements of the MOP Model” of part one.  The (intentionally somewhat 

loose) rules for this extension are as follows: an ordinary line can be used to represent a 

stepwise progression in any voice, following the Schenker’s principle of “ensnaring the 

leap,” according to which a leaping motion in a voice that occurs in conjunction with a 

passing motion in another voice can be heard as a “leaping passing tone” due to the 
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greater strength of the passing motion.  (See “Prolongations as Passing Events” in part 

one).  Thick lines can then generally be read as the motion of voices within a retained 

harmony, although they can sometimes be used for motion that is primarily arpeggiating 

but also involves a change to a closely related harmony, as in the progression from 

7(GDGB) to 8(B–DG#) in figure 3.25.  If a harmony is retained and includes only 

relatively insignificant arpeggiations, then the double-slashed line should be used, as in 

the large retention from 7(GDGB) to 12(GGGB) in the Haydn analysis.  Figure 3.25 

includes no broken lines other than the formal ones.  However, these do occur in 

Schachter’s preferred analysis of the passage below. 

Schachter’s rejected analysis is relatively chord-heavy in its representation of 

measures 7-12: its basic structure is a progression in four-voice harmony, I-II-V6-I-II6-

V7-I.  Most of the dissonance in the passage occurs in getting from the II to the V6, which 

of all these chords are the most fragmented at the musical surface.  The prolongation of 

the motion from II to V6 occurs independently in the alto and in the lower two voices.  

The alto has a motion from A0 to C1 and back, filled in by passing tones.  What’s 

remarkable about this is that at the surface the alto’s second B0 here appears to be an 

accompaniment in parallel thirds to the soprano, but according to this analysis the B0 is a 

dissonant passing tone in the dominant harmony while the D1 is consonant in this 

harmony.  Yet, like the D1 in the soprano, the resolution of this passing tone is delayed, 

so that, although the A0 to which it resolves is consonant in the dominant harmony, by the 

time it actually sounds the bass has moved on the tonic. 

For comparison, figure 3.26 displays a four-voice version of Schachter’s preferred 

analysis.  This analysis obviously is less chord-heavy—or, more precisely, it locates 

functional harmonic activity at a more global level.  Its basic structure for measures 7-12 

is a I-II6-V7-I progression.  Most of the other consonant activity consists of arpeggiations 

within the II6 harmony, which take up most of the passage.  Schachter’s “apparent tonic” 

appears as a direct prolongation of the two main voicings of the II6 harmony.  The 

analysis shows this as passing motion in the upper voices harmonized by a prolongation 

of the bass C by the “leaping passing tone,” 10G-1, mimicking a dividing-dominant type of 

progression.  This harmony isn’t a “real” tonic in this analysis is because it isn’t directly 
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FIGURE 3.25: A VERSION OF SCHACHTER’S REJECTED ANALYSIS OF THE HAYDN ADAGIO 
 
 

related as a retention or arpeggiation to the tonic harmony that structurally frames the 

passage, as the graph shows.  Rather, it acts as a kind of dominant to the II6 harmony.  In 

the analysis of figure 3.25, on the other hand, the corresponding chord appears as a 

retention of the initial tonic, making it a genuine tonic chord. 

Schachter’s preferred analysis also identifies 11C1 as the primary melodic tone 

over both the II6 and V7 chords of measure 11.  To preserve the continuity of stepwise 

motion from 9E1 to 10B0 in the soprano, the voicing of II6 in measure 11 with 11A0 in the 

soprano is demoted to a prolongation of the motion from the apparent tonic to the II6 of 

measure 11.  The analysis of figure 3.25, on the other hand, retains the 11A0 at a relatively 

background level as part of a double neighbor motion around B0 in the soprano. 
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FIGURE 3.26: SCHACHTER’S PREFERRED ANALYSIS OF THE HAYDN ADAGIO 
 
 

Unlike figure 3.25, the analysis of figure 3.26 asserts two incomplete 

progressions.  These both correspond to incomplete progressions in the upper voice as 

discussed in “A Comparison of Analyses Using the MOP Model” in part one. 

These are some of the more interesting differences between the analyses of 

figures 3.25 and 3.26.  I could discuss them in more detail, but instead I invite the reader 

to inspect the graph-theoretic presentation of them and find the prolongations they assert 

in the music.  I think they both ultimately represent plausible and interesting hearings 

although Schachter’s gives a more global analysis.69 

                                                
69 An indicator of a more global analysis in the graph is the depth at which events occur 
in the analysis, where the depth of a vertex v is the length of a minimum path from either 
of the root vertices to v.  For instance, both of the analyses find a pair of dissonant 
passing tones in parallel thirds in the upper voices of measure 10 indicated by the vertex  
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Ambiguity and Fomalization: A Summary 

As the MOP versions of Schachter’s Haydn analyses in the previous section 

illustrate, with the development of the contrapuntal version of prolongational analysis by 

MOP we’ve arrived at a model sophisticated enough to express interesting musical 

insights.  The long road of careful considerations that brought us to this point 

demonstrates the high degree of ambiguity in the concept of prolongation that I pointed 

out in the introduction. 

The brief historical survey of part 1 showed the instability of the concept of 

prolongation and showed two broad and incompatible senses in which the word may be 

used: the static and the dynamic.  The MOP model developed in part 1 to formalize the 

dynamic sense allowed us to break down the concept into its constituent parts, 

represented by the graph theoretic properties of Hamiltonicity, outerplanarity, and 

chordality.  The next part will describe other equivalent ways to circumscribe the concept 

of dynamic prolongation and thus provide a deeper and fuller understanding of the formal 

properties of the MOP model of prolongation. 

Part 2 further illustrated the ambiguity of the concept of prolongation by showing 

myriad ways in which one may interpret the idea of static prolongation.  A comparison of 

these with the MOP model revealed the stable core of the concept of prolongation in the 

ideas of relative backgroundness and levels of reduction.  Factoring out this common 

starting point provided one perspective on the fundamental difference between static and 

dynamic prolongation: the focus on structural dominance relations between events in 

different reductions versus consecutivity relations within reductions. 

                                                                                                                                            

– –AC.  Considering just the passage from measures 7-12, indicated by the 
prolongational span from 7GDGB to 12GGGB, the event – –AC in figure 23 directly 
prolongs two events adjacent to 7GDGB, making it a depth-two event.  In Schachter’s 
analysis, on the other hand, this passing dissonance relates directly to events that are at 
least one step removed from 7GDGB and 12GGGB, making it a depth-three event.  
Schachter’s analysis has four depth-three events, seven depth-two events, and six depth-
one events in this passage while the alternate analysis has no depth-three events, ten 
depth-two events and eight depth-one events. 
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The consideration of contrapuntal models at the beginning of this part shows that 

at the level where prolongational analysis becomes truly musical, the number of ways of 

pinning down the concept of contrapuntal prolongations becomes virtually limitless.  

However, a consideration of the essential components of the idea of counterpoint makes 

it possible to outline some basic principles of representing the contrapuntal nature of 

music in analysis.  I’ve pursued one application of these principles using the dynamic 

sense of prolongation to construct a formal system that can satisfactorily represent the 

basic prolongational structures of a Schenkerian analysis. 

As I pointed out in “A Formal Definition of the Complete Harmonic Analysis,” 

once a model is built it immediately suggests extensions.  One such extension, which I’ve 

only begun to develop here, is a formalization of the concept of unfolding through 

transformations on MOP analyses.  Another is the classification of types of elemental 

prolongation, suggested in “Refinements of the MOP Model” in part one. 

Although I’ve portrayed ambiguity in places as a flaw of a theory, it’s not the 

ambiguities themselves but the refusal to address them that constitutes a flaw.  In fact 

ambiguities are important and essential component of theory.  These are what suggest 

new developments, generating new perspectives and concepts.  These new concepts in 

their turn will require their own developments, further deepening our engagement with 

the process of hearing and understanding music. 



 

 

 

198 

PART 4: MATHEMATICAL CHARACTERIZATIONS OF MOPS 

Properties of MOPs 

In this part I’ll describe twelve mathematical ways of defining the graph class of 

MOPs.  I’ve touched on parts of the graph properties that make up these characterizations 

in the previous three parts of the paper, and in this and the following part, I’ll provide 

more precise definitions of these and show the mathematical relationships between them 

and between other properties of the class of MOPs that have semantically interesting 

consequences. 

In particular, I described MOPs in two ways in part one: viewing them as 

maximal outerplanar graphs suggests a way of drawing them and makes it easy to 

recognize them, but doesn’t tell us why they make a good model of prolongation.  

Viewing them as crosschord-free Hamiltonian chordal graphs, on the other hand, isolates 

three distinct properties of the graphs, each of which corresponds to some property that 

the MOP model ascribes to prolongation.  This mathematical transformation was 

invaluable in the exposition of part one for a number of reasons: it revealed precisely the 

claims that the MOP model makes about prolongation in restricting the analyses to this 

specific graph class.  It showed us ways of interpreting the graphs, such as reading the 

cycles of the graph as independent phrases and chords as analyses of those phrases.  It 

also allowed us to isolate the property of chordality for scrutiny in the section 

“Maximality and Chordality.” 

Other properties explicated in this part of the paper have figured in less explicit 

ways in discussions in the earlier parts.  For instance, in the first constructions of the 

analysis in “Maximal Outerplanar Graphs” in part one, I roughly followed the recursive 

procedure that defines 2-trees (See “(1) Unary 2-trees” below).  I also described complete 

harmonic analyses as 2-connected 2-trees in part three (“The Extension of the MOP 

Model of Prolongation to Contrapuntal Analysis”). (See “(10) H2-Intrasymmetry”)  Also, 

in “A Comparison of Analyses Using the MOP Model” and “Maximality and Chordality” 

in part one, I linked outerplanarity to the temporal nature of prolongation.  More 
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specifically, the outerplanarity of the graph makes it possible to consistently assign 

temporal orientations to each prolongational span described by the graph.  This fact can 

be properly understood by reference to the property of confluence defined below (“(8) 

Confluence”).  Finally, in part two (“The MOP Model of Prolongation as a Binary 

Phrase-Structure Model”) I showed that a MOP can be transformed into a binary plane 

tree, giving another perspective on it as a description of musical structure (; see “(2) 

Maximal Cliques, 2-Overlap Clique Graphs, and Clique Trees”). 

All of these different characterizations of the graph class of MOPs thus deepen 

our understanding of them as a model of prolongation.  In this part I’ll precisely define all 

the properties described thus far and add a few other ways of defining the graph class of 

MOPs that give somewhat different perspectives on the semantics of MOPs as 

representations of prolongational structure. 

Basic Terms and Definitions  

The definitions of preexisting mathematical terms here follow the model of 

Brandstädt, Le, and Spinrad (1999) although most of the terms and definitions I use are 

quite standard. 

I have already discussed in part one the semantics of graphs in the MOP model, 

where the vertices correspond to musical events and the edges show relationships 

between those events.  In this section, we will need only the concept of a simple 

undirected graph, 

Definitions  A graph, G, is a set of vertices, V, and a set of edges, E, where V is any set 
of objects and E is a set of two-element subsets of V.  I’ll indicate this by saying “G is a 
graph on vertex set V (with edge set E).” 

Sometimes I will say, e. g., “G’ is a graph on the vertex set V(G) + v,” meaning that the 
vertices of G’ are those of G plus one more, v. 

A subgraph of a graph, G, is a graph, G’, whose vertex set is a subset of V(G) and whose 
edge set is a subset of E(G). 
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Notation  An edge is indicated by concatenating the names of its incident vertices.  For 
instance, if u and v are vertices, then uv is an edge connecting u and v. 

Let G be a graph.  Then V(G) is the set of vertices of G, E(G) is the set of edges of G.  
The sizes of these set are V(G) and E(G), respectively.  

If uv ∈ E(G), then I will say that the vertices u and v are adjacent in G, and the vertices u 
and v are incident upon the edge uv. 

One semantically important aspects of a graph is its paths.  Paths are ways of 

getting from one vertex to another, and thus represent possible indirect relationships 

between events. 

Definition  Let G be a graph, let n be an integer, n ≥ 2, and let v1 and vn be vertices of G.  
A path from v1 to vn, v1Pvn is a sequence of distinct vertices v1v2v3 . . . vn such that each 
vi – 1vi is an edge of G.  The edges v1v2, v2v3, . . . , vn – 1vn are the edges of P.  The vertices 
v1 and vn are the endpoints of P.  The inverse of P is a path vnP–1v1 = vnvn – 1 . . . v2v1. 

Notation  I will represent the path defined by the sequence of vertices (v1, v2, v3, . . . , vn) 
by simply concatenating the sequence of vertex names.  For instance, if a, b, c, and d are 
edges of a graph G and ab, bc, and cd are edges, then abcd is a path of G.  For 
indeterminate paths between two vertices I will concatenate the endpoints of the path 
with a capital roman letter as a variable representing the intermediary vertices.  For 
instance, aPd and aP’d might represent two different paths from a to d. 

The notation for edges and paths, as well as the following notation for cycles, is 

my own invention.  I have found it useful because it avoids the need to use variable 

names for edges, and allows for a relatively brief indication of a path or cycle that fully 

determines it and also immediately shows both the sequence of vertices and sequence of 

edges involved in the path or cycle. 

One aspect of paths that is worthy of note is that the inverse of a path is a distinct 

path even though it includes precisely the same vertices and edges (and, in fact, is the 

only such path).  The term “path” is also sometimes used for a kind of graph.  To avoid 

ambiguity I will use the term “path-graph.” 

Definitions  A path-graph, P, is a graph whose entire edge set and vertex set are included 
in a single path. 
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A path-subgraph of a graph G is a subgraph of G that is a path-graph. 

The idea of a path-subgraph will be useful because it doesn’t distinguish between 

a path and its inverse. 

The cycles of a graph are especially important in the music-analytic 

interpretations of MOPs.  As discussed in part one, a cycle of a MOP represents a 

sequence of events that make up a complete prolongational span. 

Definitions  A cycle of a graph G is a sequence of at least 3 vertices, (v1, v2, . . . , vn) such 
that v1v2, v2v3, . . . , vn–1vn, and vnv1 are edges of G.  An n-cycle is a cycle of n vertices.  
A trivial cycle is a 3-cycle. 

Two vertices are adjacent on a cycle iff they make up one of the edges of the cycle. 

Notation  I will write a cycle C = (v1, v2, . . . , vn) by concatenating the vertices in order 
and appending a right bracket: v1v2v3 . . . vn].  The bracket serves to distinguish the cycle 
from the path v1v2v3 . . . vn by indicating the edge from the last vertex to the first. 

According to this definition of a cycle, the sequence of vertices is a characteristic 

of the cycle, so that if a, b, c, d are vertices of a graph and abcd] is a cycle, then bcda] is a 

distinct cycle, as is dcba].  Thus, as with paths, we will separately define cycle-graph and 

cycle-subgraph: 

Definitions  A cycle-graph is a graph whose edges and vertices are all included in a 
single cycle. 

A cycle-subgraph of a graph, G, is a subgraph of G that is a cycle-graph. 

As with path-subgraphs, the cycle-subgraph is a useful concept because it collects 

together the many possible rotations and inversions of a cycle. 

One special type of graph that is of special interest is a tree.  In part two, we 

discussed trees extensively, but these trees were always rooted directed trees and often 

planar trees.  In this part, we will deal only with simple undirected graphs, so we will 

define trees as undirected graphs without a root vertex. 

Definitions  A graph is acyclic if it has no cycles. 
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A graph G is connected iff for any two vertices u, v ∈ V(G) there is a path with u and v 
as endpoints. 

A tree is a connected acyclic graph. 

Statement of Theorem 1 (Characterizations of MOPs) 

As I indicated above, a MOPs can be seen to represent an analysis in a number of 

different ways depending on exactly how the graph is interpreted.  For instance, we can 

look a graph as showing a set of prolongational relationships, as showing the possible 

melodic reductions consistent with the analysis, or representing the melodic hierarchy 

implied by the analysis. The following theorem, which gives twelve equivalent 

characterizations of MOPs, will organize the discussion of these different perspectives: 

Theorem 1  (Characterizations of MOPs)  Let G be a graph on 4 or more vertices.  The 
following are equivalent: 

(1) G is a unary 2-tree. 

(2) All of the maximal cliques of G are triangles and the 2-overlap clique graph of G 
is a tree. 

(3) G is maximal outerplanar.  

(4) G is MOP(2) 

(5) G is chordal and HOP(2). 

(6) G is minimal Hamiltonian-chordal. 

(7) G is cycle-connected. 

(8) G is maximal Hamiltonian-confluent 

(9) G is Hamiltonian, chordal, and confluent 

(10) G is H2-intrasymmetric. 

(11) G is HOP-intrasymmetric. 

(12) G is HC-intrasymmetric. 
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I will motivate each of these characterizations in turn, showing how each leads 

one to a different perspective on how the graph represents the analysis, then give the 

precise mathematical definition for each.  Finally, I will prove the theorem in part five.  

Note that an appendix includes many propositions, all of which play some role in the 

proof of part five and some of which will be useful in the sections below.  Each of these 

sections is numbered according to the part of theorem 1 to which it is relevant. 

(1) Unary 2-Trees 

The first characterization of MOP invokes the top-down construction of a MOP 

used in part one, in the section “Maximal Outerplanar Graphs.” 

More specifically, in part one we described the MOP model as a formalization of 

the idea of dynamic prolongation.  The dynamic usage of the term prolongation describes 

an event occurring as prolonging a motion from a preceding event to a following event.  

If an event, Y, prolongs the motion from X to Z, then there must be a motion from X to Y 

and Y to Z also.  Therefore, dynamic prolongation suggests a recursive construction: 

beginning with one most background motion, we can add prolonging events one after 

another, where each new prolonging event creates two new motions that themselves can 

become the object of a subsequent prolongation. 

In part one I recommended that this most background prolongation always be 

given to a pair of formal vertices called the “initiation” and “termination” events, i and 

t (denoted by circles in the drawing of the graph).  This is useful because it makes it 

possible to extend the analysis in the background as well as the foreground direction, by 

viewing the formal vertices as substitutes for a pair real events that constitute a motion in 

a wider musical context.  Thus the formal vertices allow us to assert that a series of 

prolongations constitutes a unified motion without requiring us to specify exactly what 

that motion prolongs. 

For demonstration, consider the construction of the MOP for the fugue subject of 

part one.  Let G2 be a graph whose vertex set consists of the initiation and termination 

events and an edge between them.  The first step is to the event that most directly 
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prolongs the “motion” indicated G2—i. e. the most background event of the passage (the 

one that can represent the entire passage in a wider context by itself).  Let G3 be the graph 

that adds this event to the vertex set of G2 and includes edges between the new vertex and 

each vertex of G2.  In our example G3 adds the vertex 1G and the edges i-1G and 1G-t.  

This is shown in figure 4.1.  

The graph on four vertices, G4, is then defined by adding a vertex for an event that 

prolongs one of the motions indicated by an edge in G3.  Since, in our example, G3 

includes the “formal” vertices, the new vertex must be one that makes up the most 

background motion either from 1G or to 1G.  Since there are no event preceding 1G, the 

new vertex must be 5E prolonging 1G-t.  Therefore G4 has edges 1G-5E and 5E-t. 

This process continues, defining G5, G6, and so on.  At each step a single event is 

added to the analysis along with edges between that vertex and the two vertices making 

up the edge it prolongs.  There are generally multiple ways of defining the process to 

arrive at the same graph.  For instance graph G5 of figure 4.1 has edges 1G-3F and 3F-5E, 

which in the G7 are prolonged by 2A and 4D respectively.  The order in which we add 

these events makes no difference to the resulting form of G7 or any graph following it in 

the sequence. 

The entire process of construction is shown in figure 4.1, concluding with a graph 

on 11 vertices, G11, the same graph shown in figure 1.13.  This demonstrates a recursive  

 
 

 
 

FIGURE 4.1: THE CONSTRUCTION OF A MOP AS A 2-TREE 
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process that could continue for any number of steps, depending on the size of the 

analysis.  Graph-theoretically, this recursive process defines the type of graph known as a 

2-tree.  To understand why this is called a 2-tree, first we need to define the terms clique 

and complete graph: 

Definitions  Let G be a graph.  A clique of G is a set of vertices of G such that every two 
distinct vertices are adjacent in G.  A clique with only one vertex is a 1-clique (which is 
trivial; any single vertex makes a 1-clique), a clique of two vertices (i.e. a pair of adjacent 
vertices) is a 2-clique, a clique of three vertices (also called a triangle) is a 3-clique, and 
so on. 

A maximal clique of a graph G is a clique that is not a proper subset of any clique of G.  

A graph, G, on n vertices is a complete graph (denoted Kn) iff every pair of vertices in G 
are adjacent.  K1 is a graph with one vertex and no edges, K2 is graph with two vertices 
and one edge between them, K3 is a graph of three vertices and three edges, K4 is a graph 
on four vertices with six edges, and so on.70 

A complete graph could also be defined as a graph with one maximal clique.  

Using the idea of cliques, let us redefine a tree recursively as a 1-tree. 

Definition  A 1-tree is either a graph isomorphic to K1, or is a graph Gi constructed from 
a 1-tree Gi – 1 as follows: let Qi  be any 1-clique of Gi – 1 and vi any vertex not in Gi.  Let 
Gi be a graph with the vertex set V(Gi – 1) + vi and the edge set consisting of all the edges 
of Gi – 1 plus an edge from vi to every vertex of Qi . 

Of course, the clique in this definition is trivial, since it consists of only a single 

vertex.  However, the phrasing of the definition allows us to generalize it to an n-tree by 

simply replacing “1-clique” with “n-clique.”  So a 2-tree is defined in the following way: 

Definition  A 2-tree is either a graph isomorphic to K2, or is a graph Gi constructed from 
a 2-tree Gi – 1 as follows: let Qi  be any 2-clique of Gi – 1 and vi any vertex not in Gi.  Let 
Gi be a graph with the vertex set V(Gi – 1) + vi and the edge set consisting of all the edges 
of Gi – 1 plus an edge from vi to every vertex of Qi . 

                                                
70 This way of speaking, though standard in graph theory literature, is actually somewhat 
confusing.  Kn is not actually a graph but an isomorphism class of graphs, because its 
vertex set isn’t defined as a particular set of objects. 
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Furthermore, the notation I have used in the definitions allows us to characterize a 

2-tree in terms of its history: Let Gn be any 2-tree on n vertices, n ≥ 4.  Note that the only 

2-trees on 3 vertices are isomorphic to K3.  By the definition, there is some way to 

construct Gn beginning with a graph G3 ≈ K3.  Furthermore for each Gi, 4 ≤ i ≤ n, there is 

a Qi, which I will call the ith supporting clique, and a vi, the ith vertex (arbitrarily 

assigning 1 and 2 to the vertices of G2).  Then the 2-tree Gn can be characterized by two 

sequences, VG = v1, v2, v3, . . . , vn and QG = Q4, Q5, . . . , Qn. 

The process of construction of a 2-tree represents the analytical process described 

above of adding notes to a melody in turn as they prolong the interval of the notes before 

and after them.  However, for MOPs we need to add one more constraint: an interval 

cannot be prolonged independently by two different notes of the melody, so a MOP is a 

special kind of 2-tree which we will call a unary 2-tree, where only one vertex is joined 

to any clique in the process of construction: 

Definition  A unary 2-tree is either a graph isomorphic to K2, or is a graph Gi constructed 
from a 2-tree Gi – 1 with supporting clique set QG = Q4, Q5, . . . , Qi – 1 as follows: let Qi  be 
a 2-clique of Gi – 1 distinct from Q4, Q5, . . . , Qi – 1, and vi any vertex not in Gi.  Let Gi be 
a graph with the vertex set V(Gi – 1) + vi and the edge set consisting of all the edges of  
Gi – 1 plus an edge from vi to every vertex of Qi. 

The reader will recall from part three that while a simple melodic analysis always 

takes the form of a unary 2-tree (a MOP), it is possible to have “multiple branchings” in a 

contrapuntal analysis; see “The Extension of the MOP Model of Prolongation to 

Contrapuntal Analysis.”  It’s possible to define “binary 2-trees,” “tertiary 2-trees,” and so 

on by allowing a clique to appear in the supporting clique set twice, three times, et c.  

Then one could say that a two-voice analysis must take the form of a binary 2-tree, while 

a three-voice analysis takes the form of a tertiary 2-tree, and so forth. 

(2) Maximal Cliques, 2-Overlap Clique Graphs, and Clique Trees. 

As Figure 4.1 makes clear, a unary 2-tree is made up of triangles that share 

common edges.  Each of these triangles represents an “elemental” prolongation of three 

events, as described in “Maximality and Chordality” in part one.  This observation 
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suggests a way to represent a unary 2-tree as a kind of tree, a tree of elemental 

prolongations.  More specifically: for any unary 2-tree there is a tree with a vertex for 

each triangle (representing an elemental prolongational), and an edge between each 

triangle sharing two vertices (showing where two prolongations share an interval, which 

is a prolonging interval in one case and a prolonged interval in the other). This is called a 

2-overlap clique graph.  For example, figure 4.2 shows the MOP for the fugue subject 

and the corresponding tree of prolongations. 

If we instead were to take each vertex of this tree to represent the prolonged 

interval, and add new leaves to represent the trivial prolongational spans (foreground 

intervals), then we would have the phrase-structure tree of intervals corresponding to the 

MOP as discussed in “The MOP Model of Prolongation as a Binary Phrase Structure 

Model” in part two.  In the tree of elemental prolongations of figure 4.2, for instance, 

there’s an edge {1G, 3F, 5E}{1G, 2A, 3F}, which means “the prolonged motion in  

{1G, 2A, 3F} is a prolonging motion in {1G, 3F, 5E}.”  In the phrase-structure tree of 

intervals, there is a corresponding edge (1G-5E)(1G-3F) that says essentially the same 

thing: the motion 1G-3F is in the elemental prolongation of 1G-5E.  The only difference is 

that trivial prolongations are included in the phrase-structure tree (as leaves) but not as 

prolonged motions in the tree of elemental prolongations (since they aren’t prolonged). 

Before defining a 2-overlap clique graph, we will need a few basic terms: 

Definition  A maximal clique, Q, of G is a clique of G such that no other clique of G 
contains Q. 

Notation  For any graph G, K(G) is the set of maximal cliques of G. 

 
 

 
 

FIGURE 4.2: THE TREE OF ELEMENTAL PROLONGATIONS FOR A MOP 
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Definitions  A clique graph of a graph G is a graph with a vertex corresponding to each 
maximal clique of G such that if two vertices are adjacent then their corresponding 
maximal cliques share vertices in common. 

The 2-overlap clique graph of a graph G is a graph with a vertex for each member of 
K(G) and an edge between the vertices corresponding to maximal cliques that share at 
least 2 vertices. 

To make clear distinctions between the vertices of a clique graph and the cliques 

they represent, I will use the following notation: 

Notation  Let T be a clique graph of a graph G.  Then for any K ∈ K(G), kT is the vertex 
of T corresponding to K. 

This notation will be important in the proof of parts 2 and 3 of the theorem below. 

Another kind of clique graph is a clique tree, following Blair and Peyton (1993): 

Definition  A clique tree, T, of a graph G is a tree that is a clique graph for G such that 
for any two cliques K, K’ ∈ K(G), every clique along the path connecting kT and k’T in T 
contains K ∩ K’. 

Thus, the second characterization of MOPs says that G should have a clique tree 

(equivalent to its 2-overlap clique graph) representing the linking of elemental 

prolongations in the analysis.  The fact that the 2-overlap clique graph is a tree means that 

this linking can be defined as a strict hierarchy on prolongations.  By replacing the 3-

cliques of this clique graph with chordless cycles, we could give a similar definition for 

the “holey” HOP analyses described in “Maximality and Chordality” in part one. 

(3) Maximal Outerplanar Graphs, First Definition 

The definition of maximal outerplanar is not itself particularly useful in the 

present application of MOPs to analysis, except that it gives a way of representing the 

graphs in a two-dimensional plane.  I include the definition primarily because it is the 

way in which this specific class of graphs is discussed in the literature of graph theory.  

Characterization (4) is an alternate definition of maximal outerplanarity that will be more 

useful.  I discuss both of these definitions in part one, “Maximal Outerplanar Graphs,” 
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but will define them more precisely here.  A drawing of a graph is defined as an 

embedding of the graph in a plane. 

Definitions  An embedding, E, of a graph G, is a drawing on a two dimensional plane 
with the following properties: 

(1)  E has a unique point corresponding to each vertex of G. 

(2)  For each edge, uv, of G, E has a continuous curve (not necessarily a line) with 
endpoints at u and v. 

(3)  No point of E corresponding to a vertex falls on a curve of E except as an 
endpoint. 

An embedding is planar if it satisfies one further property: 

(4)  No two curves of E cross in the plane. 

A planar embedding, E, has an outer face, which can be defined as follows: let R be the 
union of regions of the plane completely encircled by any number of curves of E.  The 
outer face of E consists of the edges and vertices of the graph that are outside of R or on 
its outer perimeter.  A planar embedding is outerplanar iff 

(5)  All of the points of E corresponding to vertices of G are on the outer face. 

Finally, a graph G is planar or outerplanar iff it has, respectively, a planar or outerplanar 
embedding. 

A number of the characterizations of theorem 1 use the terms “maximal” and 

“minimal.”  Note that there is an important distinction between these terms and the terms 

“maximum” and “minimum.”  When saying a graph G is maximal with some property, I 

will always mean that it is impossible to add an edge to G and retain the property.  If I 

were to use the term “maximum” instead I would mean that no graph on V(G) vertices 

with the property has more edges than G. 

To deal with maximality and minimality we will need the following notation for 

adding or removing edges from a graph: 

Notation  Let G be a graph.  If uv ∈ E(G) then G – uv is a graph on the same vertex set 
as G that includes all edges of G except uv.  That is, V(G – uv) = V(G) and  
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E(G – uv) = (E(G) – uv).  Similarly, if u, v ∈ V(G) and uv ∉ E(G), then G + uv is a graph 
on the same vertex set as G which adds uv to the edge set of G. 

We can use a similar notation to indicate vertex deletion.  Vertex deletion is 

defined in part three (“A Formal Definition of the Complete Harmonic Prolongational 

Analysis”), but I will define it again here for reference. 

Definition  Let G be a graph, and v be a vertex of G.  The graph obtained by deleting v 
from G, denoted G – v, is a graph on the vertex set (V(G) – v) and includes all edges of G 
not incident on v.  That is, E(G – v) = {∀xy ∈ E(G): x, y ≠ v} 

Characterization (3) thus says that G is outerplanar and for any non-adjacent 

vertices of G, u and v, G + uv is not outerplanar. 

As I pointed out above, characterization 4 gives a definition of maximal 

outerplanarity that avoids reference to embeddings.  Another such characterization of 

maximal outerplanarity is given by proposition 7 which says that a graph is MOP(1) if it 

contains no subgraph which is a subdivision of K4 or K2, 3.  This type of characterization 

is important in the proof to theorem 1, so it is worth defining its terms right away.  Recall 

that K4 is the complete graph on 4 vertices.  K2, 3 is the complete (2, 3)-bipartite graph: 

Definition  For integers m and n, the complete (m, n)-bipartite graph, Km, n, is a graph on 
the vertex set u1, u2, . . . , um, v1, v2, . . . , vn, such that no two vertices in the set U = {u1, 
u2, . . . um} are adjacent, no two vertices in the set V = {v1, v2, . . . , vn} are adjacent, and 
all vertices in U are adjacent to vertices in V. 

The graphs K4 and K2, 3 are shown in figure 4.3.71 

Definition  Let G be a graph with edge uv.  A graph, G’, obtained from G by subdividing 
uv is a graph with the vertex set V(G) + x (where x is any vertex not in V(G)) and the 
edge set E(G) – uv + ux + xv.  In other words, subdividing the edge uv is replacing it 
with a path uxv (with a vertex x not in G). 

A subdivision of a graph G is a graph in a sequence G0, G1, G2, . . . , Gn where G0 = G 
and for all i, 1 ≤ i ≤ n, Gi is obtained from Gi – 1 by subdividing some edge of Gi – 1. 
                                                
71 The language here is actually somewhat imprecise, because K4 and K2, 3 are actually 
isomorphism classes of graphs.  That is, giving the vertices of K4 different names makes 
it a different graph, even though it’s still a complete graph on four vertices.  I will avoid 
this imprecise way of speaking where it might potentially cause confusion. 
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Figure 4.3 illustrates a series of possible subdivisions for each of K4 and K2, 3. 

 
 

 
FIGURE 4.3: K4, K2,3, AND SUBDIVISIONS OF THEM. 

 

(4) Maximal Outerplanar Graphs, Second Definition 

A fact about maximal outerplanar graphs that is important in many of the 

interpretations below is the fact that they have a unique Hamiltonian cycle (proved as 

proposition 9 in the appendix). 

Definitions  A Hamiltonian cycle of a graph G is a cycle that includes all of the vertices 
of G. 

A graph is Hamiltonian iff it has a Hamiltonian cycle. 

When a graph has a unique Hamiltonian cycle-subgraph, this specifies an ordering 

on the vertices (up to rotation and inversion) that we can use to reflect the actual order of 

events in the melody being analyzed.  The Hamiltonian cycle includes an edge for each 

pair of adjacent events, and one edge for the entire span of the sequence of events. 

Assume, then that C is any such cycle.  An edge in C indicates that the two events 

involved can be heard as consecutive, invoking Schenker’s notion of retention of the 

initial tone of a prolongation span (; see the discussion in “Maximal Outerplanar Graphs” 
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in part one).  The cycle itself then claims that there is a sequence of three or more events 

that can be heard as a sequence of consecutive events, and also constitutes a single 

unified motion from the first event to the last (which are themselves consecutive). 

If any two events on the cycle are not adjacent on the cycle itself, but are 

nonetheless heard as consecutive (i. e. they are adjacent in a graph containing the cycle), 

then these two events constitute a chord: 

Definition  Let C be a cycle of a graph G.  A chord of G is an edge uv where u and v are 
non-adjacent on C. 

Such a chord, call it uv, splits the cycle C into two smaller cycles, an outer and an 

inner part.  The inner part consists of u and v and all of the events occurring between 

them on C.  The outer part consists of u, v, and all of the events occurring before u and 

after v on C.  Each of these makes up its own cycle, meaning it constitutes a single 

unified motion (prolonging either uv itself or the same motion that C prolongs) and is a 

sequence of consecutive events.  In the case of the outer part, this sequence includes uv, 

meaning that the events between u and v have been reduced-out by virtue of the fact that 

u and v can be heard as consecutive.  The inner part of uv is a prolongation of the motion 

from u to v. 

Now assume that xy is another such chord on the same cycle, C.  Furthermore, 

assume that one of these vertices, x, is on uv’s inner cycle, while the other, y, is after v on 

the cycle C.  This would mean that there’s an event, x, that’s part of a prolongation of a 

motion from u to v, but itself initiates a motion that isn’t contained in that prolongation—

that is, the motion is completed by an event y that occurs after the motion from u to v is 

itself completed.  Or, to put it differently, there’s an event v that completes a motion 

initiated by an event u in the sequence of events described by C, but there is also a 

reduction of the sequence of events on C that includes the initiation of the motion, u, but 

not its resolution v.  This situation is defined as crossing chords or crosschords on the 

cycle C: 

Definition  Let C be a cycle of a graph G.  Let uv and xy be chords of C such that u 
precedes v, x precedes y, and u precedes x on C.  Then uv and xy are crosschords of C iff 
u, v, x, and y are ordered u . . . x . . . v . . . y on C.  Two chords of a cycle cross if they are 
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crosschords.  (Note that I use the word “cross” in a different but related way when talking 
about curves in an embedding). 

This way of describing prolongation in terms of sequences of events defining 

complete motions makes it nonsensical to allow the motions to cross in this way.  If u and 

v define a motion, and u is itself part of another motion from x to y, then the progression 

from x to y ought to also contain v, because the x-to-y motion can’t itself be complete if 

it includes an initiation of a progression, u, without completing it (by including v).  Thus, 

one way of defining such an idea of prolongation is to say that its graph is Hamiltonian 

(all of the events together make up a single complete motion) and crosschord-free, that is, 

Definition  A graph G is crosschord-free iff for any cycle C of G, no two chords of C 
cross. 

This non-geometric definition of crossing, gives an alternate characterization of a 

Hamiltonian outerplanar graph, or HOP, 

Definition  A graph G is a HOP(2) iff it is Hamiltonian and crosschord-free. 

Using this definition we can give a non-geometric definition of MOPs: 

Definition  A graph G is a MOP(2) iff it is a maximal HOP(2). 

Thus, characterization (4) thus says that a prolongational analysis is one with a 

Hamiltonian cycle ordering all events and in which all non-consecutive pairs of events 

cross some some prolongational span (that is, if an edge were added to the graph it would 

cross some other edge). 

When necessary to distinguish the two definitions of Hamiltonian outerplanar or 

maximal outerplanar, I will call them HOP(1) and HOP(2) or MOP(1) and MOP(2).  

Otherwise I will simply call them HOP or MOP.  The equivalence of HOP(1) and 

HOP(2) is proved as proposition 10, and the equivalence of MOP(1) and MOP(2) follows 

easily. 
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(5) Chordality 

It is also possible to replace the maximality condition in (4) with chordality: 

Definition  A graph G is chordal iff every non-trivial cycle of G has at least one chord. 

A cycle of four or more vertices with no chords is called a chordless cycle or hole. 

In other words, instead of saying “as many events as possible are heard as 

consecutive,” we can say “every complete progression of four or more events can be 

broken up into two smaller complete progressions (by hearing another pair of events in 

that progression as consecutive),” according to the semantic interpretation of chords and 

cycles proposed in the previous section. 

(6) Minimality 

Furthermore, we can replace the outerplanar (or crosschord-free) condition of 

characterizations (4)-(5) with minimality.  Characterization (6) then says: (again, 

according to the interpretation of chords and cycles described in the previous two 

sections) a prolongational analysis is one in which all events constitute a single complete 

motion (Hamiltonicity) every complete progression of four or more events can be broken 

up into two more basic motions, and this is done in such a way every consecutivity 

relationship included is necessary (minimality)—that is, any consecutivity proposed by 

the analysis is either part of the overall (Hamiltonian) progression, or leaves a hole (a 

chordless cycle) when it’s removed. 

Looking at it from a different perspective, the equivalence of this condition means 

that if an analysis is Hamiltonian and chordal and has crossing chords, then its possible to 

remove a “consecutivity” from the analysis (remove an edge from the graph) without 

destroying the “completeness” (the Hamiltonicity and chordality) of the analysis.  Thus 

given such an analysis one can remove consecutivities from it one at a time and 

eventually arrive at a MOP. 
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This seemingly simple variation on the other MOP characterizations is in fact the 

most difficult to demonstrate as equivalent (as the second and third parts of the proof in 

part five should make clear). 

(7) Cycle-Connectedness 

I pointed out in the “Basic Terms and Definitions” section above that paths are, 

semantically, ways of indirectly relating two vertices.  Thus, if edges are seen as showing 

“directly related” events, then an obvious condition for a musical analysis might be that it 

is possible to relate any two events at least indirectly by finding a path between them.  

This would be equivalent to saying that all analytical graphs must be connected.  

However, if finding paths were a primary way of relating events, we might also want any 

pair of vertices to be related in a specific way.  That is, there should be exactly one path 

connecting any two vertices.  This is equivalent to saying that there’s a bijection between 

paths of the graph and pairs of vertices.  We could call such graphs path-connected, but 

in fact the path-connected graphs are just the trees. 

Yet, a MOP is intended as a description of dynamic prolongation.  Such a 

prolongational analysis should therefore describe the structural status of an event not so 

much by showing which other events it’s “directly related” to, but rather by showing the 

structural motions that initiates and completes and otherwise participates in.  In other 

words, following the semantic interpretation of graphs in terms of dynamic prolongation 

that I’ve pursued thus far in this part of the paper, it’s not so much the edges of the graph 

themselves that are meaningful but the cycles that they make up.  While I’ve described an 

edge of a MOP as indicating that two events are “heard as consecutive” or “constitute a 

motion,” this doesn’t tell us much about the prolongational analysis unless we can answer 

the questions “consecutive in what progression?” or “a motion prolonged by what?” 

Therefore, one should be able to more meaningfully relate sets of vertices in a 

MOP by finding cycles that include them together—that is, by finding complete 

progressions in which they all participate.  In the case of cycles, however, we cannot have 
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as clean of a bijection as in the case of paths, but we can define something similar that I’ll 

call cycle-connectedness. 

First, there must be a cycle corresponding to each pair of non-adjacent vertices.  It 

is obviously too restrictive to say that every pair of non-adjacent vertices must participate 

in only one cycle-subgraph, so instead we will say that for every pair of non-adjacent 

vertices, u and v, every cycle-subgraph containing u and v will contain all the vertices of 

some minimal cycle-subgraph.  That is (for sets of vertices of any size), 

Definition  Let Ω be a set of vertices of a graph G.  A minimal cycle-subgraph for Ω, C, 
is a cycle-subgraph of G such that Ω ⊂ V(C) and for any other cycle-subgraph C’ such 
that Ω ⊂ V(C’), V(C) ⊂ V(C’). 

If a graph has a minimal cycle-subgraph for each pair of non-adjacent vertices, 

then we can interpret the graph as relating each pair of non-consecutive melodic notes by 

the smallest melodic reduction that contains them both.  Then we might define a graph 

class in which there is a bijection between pairs of non-adjacent vertices and their 

minimal cycle-subgraphs.  This will actually produce a subclass of MOPs, so we will call 

it strong cycle-connectedness. 

Consider the situation in the MOP analysis of figure 4.2: this MOP has a cycle 

1G-3F-3E-4D-4G-5E], shown in figure 4.4.  Each of the non-adjacent pairs {1G, 3E}, 

{1G, 4G}, and {3E, 4G} on this cycle has a smaller minimal cycle: 1G-3F-3E-4D-5E],  

1G-3F-4D-4G-5E], and 3F-3E-4D-4G-5E].  Therefore there is a cycle-subgraph of this graph 

that isn’t minimal for any pair of vertices, so it isn’t strongly cycle-connected.  However, 

this cycle-subgraph is minimal for the larger set {1G, 3E, 4G}, and can be interpreted as 

representing a progression corresponding to that set.  A set such as this, in which no pair 

of vertices is adjacent, is called an independent set: 

Definition  An independent set, Ω, is a set of vertices of a graph G such that no two 
vertices of Ω are adjacent. 
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FIGURE 4.4: MINIMAL CYCLES FOR {1G, 3E, 2G}, {1G, 3E}, {1G, 4G}, AND {3E, 4G}  
 
 

In order to allow cycles to be minimal for sets of any size, let us weaken the 

bijection of strong cycle-connectedness in the following way: the mapping from 

independent pairs to their minimal cycle-subgraphs should still be injective, but only the 

mapping from independent sets to their minimal cycles should be surjective.  This is 

stated in parts (2) and (3) of the following definition: 

Definitions  A graph G is cycle-connected iff there is a mapping, σ, from sets of 
independent vertices of G to cycle-subgraphs of G which satisfies the following three 
properties: 

 (1) For each independent set of vertices of G, Ω, σ(Ω) is a minimal cycle-subgraph 
for Ω. 

(2) For any two distinct 2-member independent sets of G, Ω and Ω’, σ(Ω) ≠ σ(Ω’). 

(3) For any cycle-subgraph of G on at least 4 vertices, C, there is some non-trivial 
independent set of G, Ω, such that C = σ(Ω). 

Therefore, translating from cycles to prolongations, cycle-connectedness says that 

a MOP analysis in one in which (1) every set of events can be described by the minimal 

prolongation that all the events in the set participate in (that is, every prolongation they 

participate in shares some essential sequence of events that itself constitutes a complete 

prolongation), (2) no two non-consecutive events are thus described by the same 
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prolongation, and (3) every complete prolongation identified by the analysis is minimal 

for some set of at least two events (containing no consecutive events). 

(8) Confluence. 

Another way to characterize MOPs in terms of their potential to model 

prolongational spans through their cycle content is through the confluence condition.  It is 

obviously crucial that once the Hamiltonian cycle establishes the order of pitches in the 

melody, the ordering of vertices in smaller cycles representing complete progressions of 

events follow the ordering of the Hamiltonian cycle.  Otherwise we would have the 

absurd consequence of melodic reductions with notes in a different order than they 

actually occur in the melody. 

The property of confluence (from Duffin (1965)) ensures that the order of pitches 

is consistent between any two cycles of the graph.  Confluence is defined first for pairs of 

edges, then for graphs: 

Definitions  Let uv and xy be edges of the graph G.  The edges uv and xy are confluent 
iff every cycle-subgraph including uv and xy orients them in the same way with respect 
to one another.  In other words, uv and xy are confluent iff for every cycle including both 
uv and xy and beginning with uv, x either always precedes y or always follows y in the 
cycle. 

A graph G is confluent iff every pair of edges of G is confluent. 

Consider the edges 3F-3E and 4D-4G in the MOP of figure 4.2.  Figure 4.5 shows 

the Hamiltonian cycle of this graph, and assigns orientations to 3F-3E and 4D-4G that 

point in the same direction around the cycle.  These orientation represents melodic 

precedence.  Next to the Hamiltonian cycle in figure 4.5 are two other cycles that also  

 
 

 
 

FIGURE 4.5: AN ILLUSTRATION OF CONFLUENCE FOR 3F-3E AND 4D-4G 
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contain the edges 3F-3E and 4D-4G.  The orientations also point in the same direction 

around these cycles, reflecting the fact that 3F-3E and 4D-4G are confluent edges.  This is 

true of all intervals in the Hamiltonian cycle other than the root edge. 

The reader will no doubt have noticed, however, that there is one interval in every 

cycle that doesn’t represent a melodic interval but the interval from the first note of the 

melody to the last.  When an orientation is assigned to this edge to match the orientation 

of any other edge in the cycle, it points in the direction opposite the temporal precedence 

in the melody being analyzed.  This may come into play with confluence when 

comparing an edge representing a prolongational span to an edge representing an interval 

prolonging that span.  For instance, in the MOP of figure 4.2 the interval 3F-3E prolongs 

the interval 1G-5E (though indirectly).  These two intervals occur together in a number of 

cycles: 1G-2A-2G-3F-3E-4D-4G-4F-5E], 1G-2A-2G-3F-3E-4D-4G-5E], 

1G-2A-2G-3F-3E-4D-5E], 1G-2A-3F-3E-4D-4G-4F-5E], 1G-2A-3F-3E-4D-4G-5E], 

1G-2A-3F-3E-4D-5E], 1G-3F-3E-4D-4G-4F-5E], 1G-3F-3E-4D-4F-5E], and 1G-3F-3E-4D-5E].  

In all of these cycles, 3F-3E is oriented towards 3E (following melodic precedence) and 

1G-5E is a spanning interval so is oriented towards 1G (against melodic precedence).72  

Therefore such edges are always confluent. 

The reader might worry that this is a problem for confluence, since an edge might 

in one cycle represent a melodic interval (in which case it is oriented temporally 

forwards) and in a different cycle represent a prolongational span (in which case it is 

oriented temporally backwards).  For instance, figure 4.6 demonstrates how the interval  

 
 

 
 

FIGURE 4.6: DIFFERENT ORIENTATIONS FOR THE EDGE 4D-5E 

                                                
72 It would be possible, of course, to orient all edges in the opposite way, but this is 
immaterial as far as confluence is concerned. 
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4D-5E is melodic in the cycle 1G-2A-3F-4D-5E] (which represents a relatively background 

melodic reduction) and is a prolongational span in the cycle 4D-4G-4F-5E] (which 

represents a relatively foreground phrase).  But since, in the confluence definition, edges 

are evaluated pairwise, such contradictions of confluence are prevented by the fact that 

no one interval can be more foreground than 4D-5E in one context (in one cycle) and 

more background in another context (in a different cycle). 

In other words, a Hamiltonian confluent analysis is one in which a single large 

prolongation defines a well-ordering on events, with the initial and final events making 

up the prolonged motion, the order of events in all other prolongations agree with the 

general ordering, and furthermore any two consecutivities identified by the analysis can 

be described as either one following the other or one containing (i. e. being prolonged by) 

the other (where motion xy follows motion uv iff uv always comes before xy in any 

prolongation including them both, and motion xy contains uv iff every prolongation 

including them both is a prolongation of xy). 

Characterization (8) thus describes a MOP analysis as one that is maximal with 

respect to this property.  That is, it’s a Hamiltonian confluent analysis in which any two 

non-consecutive events cannot be described as following (or being followed by) or 

containing (or being contained by) some pair of consecutive events. 

Note that by proposition 6, taken from Duffin (1965), confluence is equivalent to 

having no subgraph that is a subdivision of K4.  I will use this fact extensively in the 

proof to circumnavigate any use of the definition of confluence itself, since the exclusion 

of K4 subdivisions is a more direct property that is easier to work with and is closely 

related to outerplanarity.  See the section “(3) Maximal Outerplanar Graphs, First 

Definition” above for definitions of K4 and subdivisions. 

(9) Chordality and Confluence 

As with the outerplanar characterizations, the maximality condition on 

Hamiltonian-confluence can be replaced with chordality.  According to characterization  

(9) a MOP analysis is one where all prolongations can be broken down into elemental 

prolongations of 3 members and agree with one another in the temporal orientation of 
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their edges, and if two prolongational spans overlap in time, one is a prolongation of the 

other and not vice versa. 

 (10) H2-Intrasymmetry  

The last three characterizations, (10), (11), and (12), define MOPs with a different 

approach in an attempt to capture the hierarchic nature of prolongational analysis. 

There are two possible ways to construe the “hierarchical nature” of a 

Schenkerian analysis.  The simpler construal is that each direct relationship between 

events is one of subordination of one event to another.  In other words, the hierarchy is a 

hierarchy of events.  This is an obvious characteristic of the phrase-structure trees and 

prolongation trees discussed throughout part two.  There’s another way to think of 

hierarchy in prolongational analysis, however, which is in terms of a hierarchy of 

possible analyses.  That is, an analysis contains within itself a number of smaller analyses 

of various sizes.  These analyses are related hierarchically, some being more background 

and others more foreground.  But regardless of how foreground or background two 

analyses are, they share something in common which makes them qualify as well-formed 

analyses. 

In other words, a prolongational analysis is saturated with smaller possible 

analyses of every size, and regardless of the way in which one reduces the overall 

analysis to get one containing, say, five notes, the general principles of how these five 

notes are analyzed remains the same. 

One can envision this in terms of the voice-leading graphs that make up 

Schenker’s stimmfuhrungsprolongation analyses.  A single large voice-leading graph can 

be broken down into several smaller ones.  In fact, every note in the analysis could be 

said to participate in many possible voice-leading graphs of every size implied by the 

analysis.  These voice-leading graphs, regardless of their size, share essential properties. 

More generally, the principles of analysis are the same between the entire analysis 

and parts of the analysis of various sizes.  This obviously cannot be a strict identity, since 
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a part of an analysis necessarily includes fewer events than the whole.  However, this is 

still a kind of self-resemblance or symmetry, which I will call intrasymmetry. 

Let’s translate this into graphical terms: 

 

(1) We first need to formalize what I have called the “principles of analysis,” 

which will give us some set of basic conditions on what constitutes an analysis.  This 

depends of course on how we interpret elements of a graph musically.  These conditions 

will partly determine a class of graphs, C, which are analytically useful according to our 

way of interpreting graphs. 

 (2) The graph should be “saturated”  with graphs of every size that can be 

interpreted as analyses.   We formalize this by saying every vertex should take part in a 

series of subgraphs of every size that also qualify as analyses.  These subgraphs should be 

determined by the vertex sets alone, so we specify that they must be induced subgraphs: 

Definition  An induced subgraph, H, of a graph G is a subgraph of G that contains every 
edge of G between vertices in V(H). 

 (3) Finally, we need some way of distinguishing which induced subgraphs should 

be interpretable as analyses.  In other words, any vertex set satisfying certain conditions 

should have an induced subgraph in C. 

One way we might flesh out these conditions is to use connectedness.  I defined 

connectedness in the “Basic Terms and Definitions” section above but didn’t generalize 

the notion to k-connectedness. 

Definition  A graph G is k-connected (for some integer k) if it has at least k vertices and 
there is no set S of k – 1 or fewer vertices such that G – S is an unconnected graph. 

In other words, if a graph is k-connected then one must remove at least k vertices 

(and their incident edges, of course) from the graph to eliminate every path between any 

two vertices of the graph.  A 1-connected graph is just a connected graph. 

We will be mainly interested in 2-connectedness when discussing MOPs, which 

can also be defined in terms of cut-vertices. 
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Definition  A cut-vertex of a connected graph G is a vertex, v, whose deletion 
disconnects the graph.  That is, v is a cut-vertex iff G – v is unconnected. 

(Vertex deletion is defined in “(3) Maximal Outerplanar Graphs, First Definition” 

above).  A 2-connected graph can be defined as a connected graph with no cut-vertices. 

Consider the following interpretation of a graph: if the vertices corresponding to 

two different events are adjacent, then they are “directly related.”  If two vertices, x and 

y, are not adjacent, then we relate them by finding a path from one to the other, so that 

they are related by a series of intermediary notes which are directly related one to the 

next.   Then we can interpret a graph by finding vertices that are on all x-y paths, telling 

us which events mediate the relationship between a particular two events.  Then for a 

graph to represent the relationship between two events represented by vertices x and y, all 

events in the graph should be connected to x and y, and there should be some event which 

is on all paths from x to y.  In other words, a graph G ∈ C must be connected and have a 

cut-vertex, or equivalently, G must be 1-connected but not 2-connected.  Let’s call any 

class of graphs C which satisfy the following properties 1-intrasymmetric: 

Definition  Let C be a class of graphs.  C is 1-intrasymmetric iff 

(1) Any graph G ∈ C is connected but not 2-connected. 

(2) For any vertex, v, of a graph G ∈ C, and any integer n, 2 ≤ n ≤ V(G), there is 
an induced subgraph of G, H, on n vertices such that H ∈ C. 

(3) For any induced subgraph H of any G ∈ C, if H is connected, H ∈ C. 

The 1-intrasymmetric graphs, then, are the graphs in any such class: 

Definition  A graph G is 1-intrasymmetric iff there exists some 1-intrasymmetric class of 
graphs C such that G ∈ C. 

Obviously the class of 1-intrasymmetric graphs itself is 1-intrasymmetric.   

Combining (1) and (3), we can see that 1-intrasymmetric graphs must be connected and 

have no cycles; that is, 1-intrasymmetric graphs are trees.  Furthermore, the class of trees 

satisfies (2), so the 1-intrasymmetric graphs are just the trees.  Note that the premises of 

this derivation are similar to the premises in the derivation of path-connectedness as a 
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property in the section “(7) Cycle-Connectedness” above, and that we also arrived at a 

graph class equivalent to trees there.  We make roughly the same analogy here from 1-

intrasymmetric to 2-intrasymmetric graphs as we did from path-connectedness to cycle-

connectedness in the earlier discussion. 

Generalizing the idea of 1-intrasymmetry we can define the notion of a 2-

intrasymmetric class of graphs: 

Definition  A class of graphs C is 2-intrasymmetric iff 

(1)  Any graph G ∈ C is 2-connected but not 3-connected. 

(2)  For any vertex, v, of a graph G ∈ C, and any integer n, 3 ≤ n ≤ V(G), there is 
an induced subgraph of G, H, on n vertices such that v ∈ V(H) and H ∈ C. 

(3)  For any induced subgraph H of any G ∈ C, if H is 2-connected, H ∈ C. 

By analogy, the 2-intrasymmetric graphs are the graphs in any 2-intrasymmetric 

class and themselves form a 2-intrasymmetric class. 

Definition  A graph G is 2-intrasymmetric iff there exists some 2-intrasymmetric class of 
graphs C such that G ∈ C. 

The semantics of 1-intrasymmetry say that in order for a graph to function as an 

analysis, every pair of events must be relatable by finding a path between them 

(connectedness), and at least one pair of vertices, x, y, must have a vertex, v, that occurs 

on all paths between them (non-2-connectedness) so that one could interpret the graph as 

stating that the relationship between x and y is mediated by v.  Analogously, the 

semantics of 2-intrasymmetry is that every pair of vertices must participate in at least one 

cycle (2-connectedness), and for at least one pair of vertices, x and y, there must be some 

other vertex, v, that occurs on every cycle including x and y (non-3-connectedness).   

The class of graphs in MOP characterization (10) is class of the Hamiltonian 2-

intrasymmetric graphs.  This definition is stronger, saying that in order for a graph to 

qualify as an analysis, all events must participate in a Hamiltonian cycle: 

Definition  A class of graphs C is H2-intrasymmetric iff 
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(1) Any graph G ∈ C is Hamiltonian but not 3-connected. 

(2) For any vertex, v, of a graph G ∈ C, and any integer n, 3 ≤ n ≤ V(G), there is 
an induced subgraph of G, H, on n vertices such that v ∈ V(H) and H ∈ C. 

(3) For any induced subgraph H of any G ∈ C, if H is 2-connected, H ∈ C. 

(11) HOP-Intrasymmetry 

The first condition of the definition of H2-intrasymmetric classes is intended to 

give a possible basic condition on what kind of graph is interpretable as an analysis given 

a particular set of semantic assumptions.  Of course, there are many other conditions one 

could put here, and some of them will delineate the same class of graphs. 

One other approach is to replace “not 3-connected” in part (1) of the definition 

with “crosschord-free.”  The definition of HOP-intrasymmetric thus says a graph is 

interpretable as an analysis if it has a Hamiltonian cycle and no crossing relationships. 

Definitions  A class of graphs C is HOP-intrasymmetric iff 

(1) Any graph G ∈ C is HOP(2). 

(2) For any vertex, v, of a graph G ∈ C, and any integer n, 3 ≤ n ≤ V(G), there is 
an induced subgraph of G, H, on n vertices such that v ∈ V(H) and H ∈ C. 

(3) For any induced subgraph H of any G ∈ C, if H is 2-connected, H ∈ C. 

A graph G is HOP-intrasymmetric iff there exists some HOP-intrasymmetric class of 
graphs C such that G ∈ C. 

(12) HC-Intrasymmetry. 

Finally, we can replace “crosschord-free” or “not 3-connected” in the 

intrasymmetry definition to a requirement that G be confluent.  

Definitions  A class of graphs C is HC-intrasymmetric iff 

(1)  Any graph G ∈ C is Hamiltonian and confluent. 
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(2)  For any vertex, v, of a graph G ∈ C, and any integer n, 3 ≤ n ≤ V(G), there is 
an induced subgraph of G, H, on n vertices such that v ∈ V(H) and H ∈ C. 

(3)  For any induced subgraph H of any G ∈ C, if H is 2-connected, H ∈ C. 

A graph G is Hamiltonian-confluent-intrasymmetric iff there exists some Hamiltonian-
confluent-intrasymmetric class of graphs C such that G ∈ C. 

An Overview of the Characterizations of Theorem 1 

The reader has no doubt noticed certain similarities between many of the 

characterizations of theorem 1.  Many properties of MOPs recur in two or three or more 

characterizations.  To help put some order to this observation and to improve our 

understanding of theorem 1 before proving it, I propose that most of the characterizations 

can be divided roughly into three properties: Hamiltonicity, maximality, and minimality.  

This division into three properties is also discussed in “Maximality and Chordality” in 

part one of the paper.  The Hamiltonicity property is readily separable from every 

characterization with the exception of the first definition of maximal outerplanarity.  The 

maximality and minimality conditions, on the other hand, are not always equivalent from 

one characterization to the next, but serve similar roles.  Characterizations (1) and (2) 

both fix the number of edges of the graph given the number of vertices (at twice the 

number of vertices minus three), and so cannot be well described in terms of separate 

maximality and minimality conditions. 

 

(1) Hamiltonicity.  This is explicit in characterizations (4) – (6) and (8) – (12).  In 

(1) the qualifier “unary” ensures Hamiltonicity (see proposition 12).  In (2), 

Hamiltonicity is implied by requiring that the 2-overlap clique graph be a tree, rather than 

having a subgraph of the 2-overlap clique graph on the same vertex set be a clique tree.  

Finally, the definition of cycle-connected requires Hamiltonicity by asking for a minimal 

cycle for all independent sets rather than simply non-adjacent pairs of vertices. 

The complete harmonic prolongational analyses of part three relax the 

Hamiltonicity of MOPs.  In that part I described them as 2-trees.  They could also be 

thought of as chordal crossing-free graphs, maximal confluent graphs, and so on. 
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(2) Maximality.  Most of the characterizations have some condition akin to 

maximality; that is, a condition that is only breached by removing edges from the graph.  

In characterizations (3), (4), and (8) this is explicit.  In (5), (6), and (9) the property of 

chordality prevents us from removing the chords of a cycle (but doesn’t prevent adding 

new chords).  In characterizations (10) – (12) the maximality condition is in part (2) of 

the intrasymmetry definition that requires a saturation of Hamiltonian induced subgraphs.  

Removing an edge from an intrasymmetric graph destroys the 2-connectedness of some 

subgraph necessary to satisfy (2).  In the case of cycle connectedness, part (2) of the 

definition (injectivity) is a maximality-type condition because it requires that the graph 

has at least as many unique cycles as independent pairs, and it cannot be violated by 

adding edges (which reduces the number of independent pairs and can only increase the 

number of cycles). 

As I pointed out in “Maximality and Chordality” the relaxation of this condition 

can allow for holes (chordless cycles) as prolongational building blocks. 

 

(3) Minimality.  All the characterizations with some sort of maximality condition 

also have a condition limiting the number of edges of the graph; one that is violated only 

by adding and never by removing edges.  This is explicit in characterization (6).  Other 

minimality conditions are outerplanarity or being crosschord-free for (3), (4), (5) and 

(11), and confluence for (8), (9), and (12).  These conditions are equivalent for 

Hamiltonian graphs.  In the case of H2-intrasymmetry, having a large set of subgraphs 

that cannot be 3-connected ensures minimality.  Finally, the surjective part (part (3)) of 

the cycle connectedness definition is a minimality condition, because removing edges 

reduces the number of cycles and increases the number of independent sets and so cannot 

violate this part of the definition. 
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PART 5: PROOF OF THEOREM 1, CHARACTERIZATIONS OF MOPS 

Outline of the Proof 

Theorem 1 (Characterizations of MOPs) Let G be a graph on 4 or more vertices.  The 
following are equivalent: 

(1) G is a unary 2-tree. 

(2) All of the maximal cliques of G are triangles and the 2-overlap clique graph of G 
is a clique tree. 

(3) G is maximal outerplanar.  

(4) G is MOP(2) 

(5) G is chordal and HOP(2). 

(6) G is minimal Hamiltonian-chordal. 

(7) G is cycle-connected. 

(8) G is maximal Hamiltonian-confluent 

(9) G is Hamiltonian, chordal, and confluent 

(10) G is H2-intrasymmetric. 

(11) G is HOP-intrasymmetric. 

(12) G is HC-intrasymmetric. 

 

The proof is organized in twelve parts as follows: 

 

Part: 1         2        3        4        5        6        7        8        9        10        11        12       

(1) ⇒  (6) ⇒  (2) ⇒  (7) ⇒  (8) ⇒  (9) ⇒  (3) ⇒  (4) ⇒  (5) ⇒  (11) ⇒  (12) ⇒  (10) ⇒  (1) 

 

I present the proof of each part below in order.  Some of the proofs require 

propositions or lemmas; if so the statements of the propositions and lemmas precede the 
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proof.  The proofs of lemmas follow the larger proofs that incorporate them, and the 

proofs of propositions are in the appendix. 

Part 1 

(1) ⇒  (6)  G is a unary 2-tree  ⇒  G is minimal Hamiltonian-chordal. 

Proposition 12  Let G be a 2-tree.  Then G is a unary 2-tree iff G is Hamiltonian.  
Furthermore there’s a unique Hamiltonian cycle-subgraph of G that consists of all 
edges that aren’t in the clique sequence defining G as a unary 2-tree. 

Proof of Theorem 1, Part 1 

Let G = Gn be a unary 2-tree on n vertices, with ordered vertex set VG = v1, v2, . . . 

, vn and ordered clique set QG = Q4, Q5, . . . , Qn.  If n = 3 then G is a triangle and is 

minimal Hamiltonian-chordal.  Assume inductively that every unary 2-tree on n – 1 

vertices is minimal Hamiltonian-chordal.  According to this assumption, the unary 2-tree 

Gn – 1 = G – vn is minimal Hamiltonian-chordal.  Let Qn = {x, y}. 

By proposition 12, G is Hamiltonian with a unique Hamiltonian cycle-subgraph, 

Cham. 

Let C be any non-trivial cycle of G.  If C is also a cycle of Gn – 1, then it has a 

chord by the assumption that Gn – 1  is chordal.  Otherwise C must include xvn and vny.  In 

this case it has the chord xy.  Thus G is chordal. 

Let ab be any edge of G.  I will prove that G – ab is either not chordal or not 

Hamiltonian. 

Because vn is degree 2, xvn and vny must be part of Cham.  So if ab is xvn or vny 

then G – ab is not Hamiltonian.  Otherwise ab is an edge which G shares with Gn – 1.  

Since Gn – 1 is minimal Hamiltonian-chordal, Gn – 1 – ab is either not chordal or lacks a 

Hamiltonian cycle.  If Gn – 1 – ab is not chordal then G – ab is also not chordal (because 

any cycle of Gn – 1 – ab is also a cycle of G – ab and has no chords in G – ab which it does 

not have in Gn – 1 – ab). 

On the other hand, assume that Gn – 1 – ab lacks a Hamiltonian cycle and G – ab 

has a Hamiltonian cycle (= Cham).  Since xvn and vny must be in Cham, if Gn – 1 – ab 
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includes xy then it has a Hamiltonian cycle the same as Cham but substituting xvn and vny 

with xy.  Therefore ab = xy. 

We need only show, then, that G – xy is not chordal.  Assume without loss of 

generality that x precedes y in VG and let y = vi for some integer i.  Additionally, let Qi = 

{x, z}.  Then G has a triangle {x, y, z}, and a 4-cycle xvnyz] with chord xy.  The vertex 

vn is not adjacent to z, so xvnyz] has no chord in G – xy.  Therefore G – xy is not chordal. 

This proves that G – uv non-Hamiltonian-chordal for any edge uv, and G is 

minimal Hamiltonian-chordal.   ♦  

Part 2 

(6) ⇒  (2)  G is minimal Hamiltonian-chordal ⇒ All of the maximal cliques of G are 
triangles and the 2-overlap clique graph of G is a clique tree. 

Definitions  A simplicial edge of a graph G is an edge whose endpoints share only one 
maximal clique of G in common.  

A leaf of a tree is a degree-one vertex.  (Note that any tree must have at least two leaves). 

Definition  A clique graph of a graph G is a graph with a vertex corresponding to each 
maximal clique of G such that if two vertices are adjacent then their corresponding 
maximal cliques share vertices in common. 

Notation  Let T be a clique graph of a chordal graph G.  Then for any K ∈ K(G), kT is the 
vertex of T corresponding to K. 

Definition  The 2-overlap clique graph of a graph G is a graph with a vertex for each 
member of K(G) and an edge between the vertices corresponding to maximal cliques 
which share at least 2 vertices. 

Definition  A clique tree, T, of a graph G is a tree that is a clique graph for G such that 
for any two cliques K, K’ ∈ K(G), every clique along the path connecting kT and k’T 
in T contains K ∩ K’. 

Lemma 2.1  Let G be a minimal Hamiltonian chordal graph.  Every vertex of G is 
incident upon at least 2 simplicial edges of G. 

Lemma 2.2  Let G be a chordal graph.  Then (G – uv) is also chordal if uv is simplicial. 
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Proposition 3  (Blair and Peyton (1993)) A graph is chordal iff it has at least one clique 
tree. 

Proposition 5  Let T be a clique tree of a chordal graph G, and let kT be a leaf of any 
subtree S of T.  Then K contains a vertex not contained in any other clique 
corresponding to a vertex of S. 

Proof of Theorem 1 Part 2 

Let G be a minimal Hamiltonian-chordal graph.  By lemma 2.2 and the 

minimality of G, every simplicial edge of G must be part of all Hamiltonian cycles of G.  

Hence no vertex of G may be incident on more than two simplicial edges.  However, by 

lemma 2.1, all the vertices of G are incident upon at least two simplicial edges.  

Therefore all vertices of G are incident upon exactly two simplicial edges. 

Let n = V(G).  We will define a series of subgraphs of G, G = G0, G1, . . . ,  

Gn – 3, and show that they have clique trees T = T0, T1, . . . , Tn – 3. 

By proposition 3, G0 has a clique tree T0.  Let l0T0 be a leaf of T0.  By proposition 

5 L0 has vertex x0 not contained in any other clique of G0.  Since x0 must be incident 

upon exactly two simplicial edges, L0 must be a 3-clique, {w0, x0, y0}.  Because G0 is 

Hamiltonian, w0x0 and x0y0 must be part of a Hamiltonian cycle.  By replacing w0x0y0 

with w0y0 in this cycle, we get a Hamiltonian cycle for G1 = (G0 – x0).   

Clearly w0 and y0 are in at least one clique of G0 other than L0, since they connect 

to other vertices on the Hamiltonian cycle.  Hence K(G1) = K(G0) – L0, and the vertex set 

of T1 = (T0 – l 0T0) corresponds to the set of maximal cliques of G1.  Furthermore, if k0
T0 

is the vertex adjacent to l 0T0 in T0, then K0 must include w0 and y0 by the definition of a 

clique tree.  This means that the edge between k0
T0 and l 0T0 represents an overlap of two 

vertices in G0. 

Finally, since l 0T0 is a leaf of T0, T1 is a tree and inherits the clique-tree property 

from T0.  Therefore T1 is a clique tree for G1, and G1 must be chordal by proposition 3. 

Assume inductively that Gi is a Hamiltonian-chordal subgraph of G with clique 

tree Ti.  By the same argument as above (assuming V(Gi) ≥ 4), any clique Li for which 

l iTi is a leaf of Ti must be a 3-clique with a single vertex, xi, shared by no other maximal 
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clique of Gi, and an overlap of 2 vertices of Gi with the adjacent vertex of Ti.  Then we 

can define yet another Hamiltonian chordal graph Gi + 1 = (Gi – xi) with clique tree Ti + 1 = 

(Ti – l iTi). 

By induction, then, (note that Gn – 3 must be a complete graph on 3 vertices), every 

clique in G must be a 3-clique.  Furthermore, each edge of T represents an overlap of 2 

vertices between the 3-cliques corresponding to its incident edges.  Thus T is the same as 

the 2-overlap clique graph of G.   ♦ 

 

Lemma 2.1  Let G be a minimal Hamiltonian chordal graph.  Every vertex of G is 

incident upon at least 2 simplicial edges of G. 

Proposition 2  Let G be a Hamiltonian chordal graph.  Then G has no maximal 2-cliques. 

Proposition 3  (Blair and Peyton (1993)) A graph is chordal iff it has at least one clique 
tree. 

Proposition 4  (Blair and Peyton (1993)) Let v be any vertex of a graph G with clique 
tree T, and let K(v) be the set of maximal cliques of G containing v.  Then the 
vertices of T corresponding to K(v) induce a subtree of T, Tv.   

Proposition 5  Let T be a clique tree of a chordal graph G, and let kT be a leaf of any 
subtree S of T.  Then K contains a vertex not contained in any other clique 
corresponding to a vertex of S. 

Proof of Lemma 2.1  

Let G be a minimal Hamiltonian chordal graph and let v be any vertex of G.  Let 

K(v) be the set of maximal cliques containing v. 

Case 1:  K(v) = 1.  Then all the edges incident on v are simplicial.  By 

proposition 2 the clique containing v must be at least a 3-clique, so v has degree at least 

two. 

Case 2:  K(v) ≥ 2.  By proposition 3 G has a clique tree T.   By proposition 4, 

the set of vertices of T corresponding to K(v) induces a subtree of T, Tv.  Tv is non-trivial 

by assumption.  Let kT and k’T be leaves of Tv.  By proposition 5, K and K’ contain 

vertices, x and x’, respectively, such that there are no cliques corresponding to vertices of 
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Tv that include x or x’ other than K and K’.  Therefore there are no cliques corresponding 

to vertices of T other than K and K’ that include both v and x or both v and x’.  Therefore 

vx and vx’ are simplicial edges in T.    ♦ 

 

Lemma 2.2  Let G be a chordal graph.  Then (G – uv) is also chordal if uv is 

simplicial. 

Proposition 3  (Blair and Peyton (1993)) A graph is chordal iff it has at least one clique 
tree. 

Proof of Lemma 2.2 

Let G be a chordal graph with simplicial edge uv.  Let Q be the clique containing 

u and v.  By proposition 3 G has a clique tree; call it T0.  I will prove G’ = G – uv is 

chordal by defining a clique tree T’ for G’ for each case below. 

 

Case 1: Assume that no maximal clique of G contains (Q – u) or (Q – v) other 

than Q.  Then the set of maximal cliques of (G – uv) is the same as G, but excluding Q 

and including Qv = (Q – u) and Qu = (Q – v).  Let T = T0, and let T’ be a tree on the 

vertex set of T excluding qT and including qv
T’ and qu

T’ (and changing all subscripts to 

T’).  This situation is illustrated in figure 5.1.  Define T’ such that all edges are the same 

as those of T, except that for any vertex xT connected to qT, if X contains u then xT’ is 

connected to qu
T’, and if X contains v then xT’ is connected to qv

T’.  (Note that because uv 

is simplicial in G, X cannot include both u and v).  

We show that G’ is chordal by proposition 3 by showing that T’ is a clique tree. 

Clearly the vertex set of T’ is the set of maximal cliques of (G – uv).   Furthermore, T’ is 

connected with E(T’) = V(T’) – 1, since E(T’) = E(T) + 1 and V(T’) = V(T’) 

+ 1, so it is a tree.  It remains then to show that for any two vertices jT’ and kT’, each 

clique corresponding to a vertex on the path, P’, between them contains J ∩ K. 

If J and K are also cliques of G, then there’s a unique path, jTPkT in G.  If one of J 

or K is Qu or Qv, then there’s a path qTPkT or jTPqT.  If J = Qu and K = Qv or vice versa, 

then P’ is trivial. 
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FIGURE 5.1: ILLUSTRATIONS FOR THE PROOF OF LEMMA 2.2 

 
 

There are four possible cases here, which are illustrated in figure 5.1.  In each 

case we will characterize P’ in terms of a corresponding path of G, P, in order to derive 

the adherence of P’ to the clique tree property from that of P.  Let K(P) and K(P’) be the 

sets of maximal cliques corresponding to vertices on P and P’ respectively:    

 

Case 1.1:  If P does not include qT, then K(P’) = K(P). 

Case 1.2:  If P includes qT and the cliques of adjacent members of P both contain u, 
then K(P’) = K(P) – Q + Qu. 

Case 1.3:  If P includes Q and the cliques of adjacent members of P both contain v, 
then K(P’) = K(P) – Q + Qv. 

Case 1.4:  If P includes Q and the clique of one adjacent member of P contains v 
while the other contains u, then K(P’) = K(P) – Q + Qu + Qv. 
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By the definition of a clique tree, all cliques corresponding to vertices along P 

contain J ∩ K.  All the cliques corresponding to vertices along P’ are the same as those 

along P, except that qT’ may be replaced with qu
T’ or qv

T’.  By the definition of a clique 

tree applied to the portions of P preceding and following qT, and the definitions of P’ 

above, P’ includes qv
T’ only if J ∩ K excludes u, and includes qu

T’ only if J ∩ K excludes 

v.  Therefore, T’ satisfies the definition of a clique tree, and G’ is chordal. 

 

Case 2: Assume some maximal clique, Qv, of G includes (Q – u) but none 

includes (Q – v).  Then K(G – uv) is the same as K(G) but excluding Q and including Qu 

= (Q – v).  If T0 has a vertex xT0 adjacent to qT0 and v ∈ X, then u ∉ X (because uv is 

simplicial in G).  Therefore there’s another clique tree of G, T1, with xT1 adjacent to qv
T1 

instead of qT1.  Extending this reasoning to all such vertices, let T be a clique tree of G 

such that no vertices adjacent to qT except qv
T correspond to a clique containing v. 

Let T’ be a tree isomorphic to T, but replace qT with qu
T’ (and change the vertex 

subscripts to T’).  This situation is illustrated in figure 5.2. 

Consider any two cliques in K(G – uv), J and K.  There’s a unique path, P’, from 

jT’ to kT’.  There’s a corresponding path, P, by the isomorphism.  By the definition of a 

clique tree, all cliques corresponding to vertices along the path P contain J ∩ K, and the 

cliques corresponding to vertices along P’ are the same as those on P with the possible 

substitution of Qu for Q.  Therefore to show T’ is a clique tree we only need to show that 

if P’ includes Qu
T’, v ∉ J ∩ K. 

If P includes qT and any adjacent vertex other than qv
T, then by construction of T 

and the definition of a clique tree, v ∉ J ∩ K.  If P includes qT but no adjacent vertex 

other than qv
T, then qT must be an endpoint of the path.  Then either K or K’ or both is 

Qu, so again v ∉ K ∩ K’.  Thus T’ is a clique tree for (G – uv) and (G – uv) is chordal.  

 

Case 3: Assume some maximal clique, Qu, of G includes (Q – v) but none 

includes (Q – u).  By an argument analogous to that of case 2, (G – uv) is chordal. 
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FIGURE 5.2: MORE ILLUSTRATIONS FOR THE PROOF OF LEMMA 2.2 
 
 

Case 4: Finally, let G include maximal cliques Qv and Qu, distinct from Q, which 

contain (Q – u) and (Q – v) respectively.  Then K(G – uv) = K(G) – Q.  Since no 

maximal clique connected to Q contains both u and v by assumption, it must contain 

some subset of Qv or Qu.  Thus, by an argument similar to that of case 2, there’s a clique 

tree of G, T, with qT connected to only qv
T and qu

T. 

Let T’ be the tree obtained by deleting qT from T, re-subscripting with T’, and 

adding the edge qv
T’qu

T’.  This situation is illustrated in figure 5.2. 

Since qT is adjacent to no other vertices in T, T’ is also a tree.  Let K and K’ be 

cliques in K(G – uv), and let P’ be the path connecting them.  Let P be the corresponding 

path in T, replacing qv
T’qu

T’ with qv
TqTqu

T or qu
T’qv

T’ with qu
TqTqv

T.  Evidently, the 

intersection of cliques corresponding to vertices along P is the same that of those along 

P’.  Therefore the fact that T is a clique tree implies that T’ is also a clique tree, and  

(G – uv) is chordal.    ♦ 
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Part 3 

(2) ⇒  (7)  All of the maximal cliques of G are triangles and the 2-overlap clique 
graph of G is a clique tree of G  ⇒  G is cycle-connected. 

Definition  Let Ω be a set of vertices of a graph G.  A minimal cycle-subgraph for Ω, C, 
is a cycle-subgraph of G such that Ω ∈ V(C) and for any other cycle-subgraph C’ 
such that Ω ∈ V(C’), V(C) ∈ V(C’). 

Definition  An independent set, Ω, is a set of vertices of a graph G such that no two 
vertices of Ω are adjacent. 

Definition  A graph G is cycle-connected iff there is a mapping, σ, from sets of 
independent vertices of G to cycle-subgraphs of G which satisfies the following three 
properties: 

 (1) For each independent set of vertices of G, Ω, σ(Ω) is a minimal cycle-subgraph  
for Ω. 

(2) For any two distinct 2-member independent sets of G, Ω and Ω’, σ(Ω) ≠ σ(Ω’). 

(3) For any cycle-subgraph of G on at least 4 vertices, C, there is some non-trivial 
independent set of G, Ω, such that C = σ(Ω). 

Lemma 3.1  Let G be a graph such that all maximal cliques of G are triangles and the 2-
overlap clique graph of G, T, is a clique tree of G.  Then  

(1) There’s a mapping, ψ, from subtrees of T to cycle-subgraphs of G obtained by 
taking the ring sum of cycles defined by nodes of the subtree. 

(2) ψ is bijective. 

(3) Let qT be a vertex in a subtree S of T and v a vertex in the clique Q.  Then v is in 
the cycle-subgraph ψ(S). 

Proposition 4  (Blair and Peyton (1993))  Let v be any vertex of a graph G with clique 
tree T, and let K(v) be the set of maximal cliques of G containing v.  Then the 
vertices of T corresponding to K(v) induce a subtree of T, Tv. 

Proposition 5  Let T be a clique tree of a chordal graph G, and let kT be a leaf of any 
subtree S of T. Then K contains a vertex not contained in any other clique 
corresponding to a vertex of S. 
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Definition  The ring sum of cycles C and C’, is the subgraph on the edge set C ⊕ C’ = 
C + C’ – (C ∩ C’). 73 

Proof of Theorem 1 Part 3 

Let G be a graph such that all maximal cliques of G are triangles and the 2-

overlap clique graph of G, T, is a clique tree of G, and let Ω be an independent set of 

V(G).  For any two vertices in Ω, u and v, let Tu and Tv be subtrees of T induced by u and 

v according to the subtree property described in proposition 4.  Because u and v are 

independent, Tu and Tv share no vertices. 

Consider a path connecting any vertex of Tu and any vertex of Tv.  Some subpath 

of this must start on a vertex of Tu, end with a vertex of Tv, and include no other vertex of 

Tu or Tv inbetween.  Let us call this path-subgraph of T a minimal path for u and v.  I will 

prove that u and v hae a unique minimal path Suv, as illustrated in figure 5.3. 

Assume by way of contradiction that u and v have two minimal paths, say from 

lu1
T to l v1

T and l u2
T to l v2

T such that l u1
T, l u2

T ∈ V(Tu) and l v1
T, l v2

T ∈ V(Tv), and  

 
 

 
 

FIGURE 5.3: ILLUSTRATIONS FOR THE PROOF OF THEOREM 1 PART 3 

                                                
73 For a proof that the ring sum of cycles is a well defined ring sum on the set of cycle-
subgraphs and unions of edge-disjoint cycle-subgraphs of a graph, see Thulasiraman and 
Swarmy (1992).  This fact, however, is not essential to the current proof. 
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l u1
T ≠ l u2

T.  Then there would be another distinct path-subgraph from l u1
T to l v1

T as 

follows: connect l u1
T to l u2

T within Tu, take the path from l u2
T to l v2

T including no 

members of Tu or Tv, then connect l v1
T to l v2

T within Tv if l v1
T ≠ l v2

T.  Yet this is 

impossible because there cannot be two distinct paths from l u1
T to l v1

T.  Therefore all 

paths any vertex of Tu to any vertex of Tv contain some unique minimal path Suv (= Svu) 

which overlaps Tu and Tv only in its endpoints, l uv
T and l vu

T.  (From here on I will use l 

uv
T and l vu

T to denote the endpoints of Suv on V(Tu) and V(Tv) respectively.) 

Let SΩ be the union of each such minimal path for every pair in Ω.  Obviously 

every vertex of Ω occurs in some clique corresponding to a vertex of SΩ.  We must prove, 

however, that SΩ is a connected subtree of T. 

If Ω contains only two vertices, then SΩ is certainly a subtree of T. 

Otherwise, consider any triple of vertices of Ω: x, y, and z.  Assume one of the 

minimal paths corresponding to a pair of these vertices, Sxy, shares no vertices with the 

other two, Sxz and Syz.  Then there are two distinct path-subgraphs from l zy
T to l xy

T: one 

connecting l yz
T and l xy

T within Ty, and one connecting l zy
T and l xy

T to the endpoints of 

Sxz and Syz within Tx and Ty.  (See figure 5.3).  This is impossible, since T is a tree. 

Thus, for any triple of vertices in Ω, each minimal path shares a vertex with at 

least one other.  Consider any w, x, y, z ∈ Ω such that Swx and Syz share no vertices.  

From the argument above, Swx either shares a vertex with Sxy or is connected to it through 

Swy.  Furthermore, Syz either shares a vertex with Sxy or is connected to it through Sxz.  

Therefore Swx and Syz are connected through Sxy.  This holds for any two such minimal 

paths, so SΩ must be a connected subtree of T. 

Let ψ be the mapping described in lemma 3.1.  Let σ be the mapping from 

independent sets of G to cycles of G, such that if Ω is an independent set of G, σ(Ω) = 

ψ(SΩ).  I will demonstrate that G and σ satisfy each property of cycle-connectedness in 

turn. 

 (1)  For each independent set of vertices of G, Ω, σ(Ω) is a minimal cycle-subgraph. 

 

By lemma 3.1 (3), all the vertices of Ω are on σ(Ω). 
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Now consider any two vertices of Ω, u and v.  Let C be a cycle-subgraph of G and 

S the subtree of G corresponding to C under the bijection of lemma 3.1.  Clearly, u and v 

can only be in the cycle-subgraph corresponding to a subtree of T if that subtree contains 

some vertex corresponding to a clique containing u and some vertex corresponding to a 

clique containing v.  That is, S must contain at least one member of Tu and one of Tv (the 

subtrees of T induced by cliques containing u and v respectively).  Therefore S must 

contain the minimal path Suv.  Thus, in general, if C is a cycle-subgraph containing all the 

members of Ω, then ψ–1(C) must be a subtree of T which includes the minimal path for 

each pair of vertices in Ω.  In other words, SΩ is a subtree of ψ–1(C).   

By lemma 3.1 (3), again, if ψ–1(C) contains all the vertices of SΩ then C must 

contain all the vertices of σ(Ω).  Therefore σ(Ω) is a minimal cycle-subgraph for Ω. 

 

(2)  For any two distinct 2-member independent sets of G, Ω and Ω’, σ(Ω) ≠ σ(Ω’). 

 

Let Ω = (u, v) and Ω’ = (u’, v’) be two-member independent sets of G.  Assume 

σ(Ω) = σ(Ω’).  By the bijectivity of ψ (lemma 3.1 (2)) SΩ = SΩ’.  By construction, SΩ and 

SΩ’ are paths.  Furthermore, the unique vertices of the cliques corresponding to the 

endpoints of SΩ are u and v, while the unique vertices of the cliques corresponding to the 

endpoints of SΩ’ are u’ and v’.  Since T is a 2-overlap tree and all maximal cliques of G 

are triangles, each endpoint can only have one unique vertex in its clique.  Therefore  

{u, v} = {u’, v’}.  

This proves σ(Ω) = σ(Ω’)  ⇒  Ω = Ω’ and hence also the contrapositive Ω ≠ Ω’ 

⇒  σ(Ω) ≠ σ(Ω’) 

 

(3)  For any cycle-subgraph of G on at least 4 vertices, C, there is some non-trivial 

independent set of G, Ω, such that C = σ(Ω). 

 

Let C be any cycle-subgraph of G.  By lemma 3.1 there is a subtree, S, of T, such 

that C = ψ(S).  Let l 1T, l 2T, . . . , l nT be the leaves of S.  By proposition 5, there is a series 
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of vertices, v1, v2, . . . , vn, such that vi is in Li and in no other clique corresponding to a 

vertex of S.  For each l iT and l kT, the path from l iT to l kT is clearly a minimal path of T for 

vi and vk.  Therefore S is the subtree SΩ, and C = σ(Ω).   ♦ 

 

Lemma 3.1  Let G be a graph such that all maximal cliques of G are triangles and the 

2-overlap clique graph of G, T, is a clique tree of G.  Then  

(1) There’s a mapping, ψ, from subtrees of T to cycle-subgraphs of G obtained 
by taking the ring sum of cycles defined by nodes of the subtree. 

(2) ψ is bijective. 

(3) Let qT be a vertex in a subtree S of T and v a vertex in the clique Q.  Then v 
is in the cycle-subgraph ψ(S). 

Definition  The ring sum of cycles C and C’, is the subgraph on the edge set C ⊕ C’ =  
C + C’ – (C ∩ C’).  

Proposition 1   Let G be a chordal graph with cycle C.  Any edge uv on C is part of a 
triangle {u, v, w} where w is some vertex on C. 

Proposition 3  (Blair and Peyton (1993))  A graph is chordal iff it has at least one clique 
tree. 

Proposition 5  Let T be a clique tree of a chordal graph G, and let kT be a leaf of any 
subtree S of T.  Then K contains a vertex not contained in any other clique corresponding 
to a vertex of S. 

Proof of Lemma 3.1   

Let G be a graph such that all maximal cliques of G are triangles and the 2-

overlap clique graph of G, T, is a clique tree of G.  Let ψ be a map from subtrees of T to 

cycles of G defined as follows: For some subtree, S, let ψ(S) = ∑∀kT ∈ V(S) K, where the 

sum refers to the ring sum of cycles.  
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(1) ψ is a mapping 

Let S be a subtree of T.  If S is a single vertex, kT, then ψ(S) = K which is a 3-

cycle-subgraph.  Assume inductively that all subtrees of T on up to (n – 1) vertices map 

to cycle-subgraphs of G. 

Let l T be a leaf of S and kT the vertex adjacent to l T in S.  Let S’ = S – l T.  By the 

inductive premise ψ(S’) is a cycle-subgraph.  Because l T and kT are adjacent in T, L and 

K share two vertices; call them x and y.  Furthermore, no other maximal clique of G 

contains both x and y, otherwise l T and kT would both be connected to the vertex 

corresponding to this clique in T, contradicting the fact that T is a tree.  Since the edge xy 

cannot be in the intersection of any two 3-cliques of vertices in S’, it must be on the cycle 

ψ(S’).  Thus if L = {x, y, v}, then ψ(S) = ψ(S’) + xv + vy – xy which must be a cycle-

subgraph since ψ(S’) is a cycle-subgraph containing xy.  By induction, then, ψ maps 

every subtree of T to a particular cycle-subgraph in G. 

 

(2) ψ is bijective 

Let C be any cycle-subgraph of G.  If C is a 3-cycle-subgraph then C = ψ(kT) for 

some vertex, KT, of T.  Assume that C is a larger cycle-subgraph.  By proposition 3 G is 

chordal, so by proposition 1 for any edge of C, uv, there’s a triangle, {u, v, w}, where w 

is a vertex in C. 

Because C is not a 3-cycle-subgraph, either uw or vw must be a chord of C.  

Without loss of generality assume that uw is a chord.  Then there’s a cycle, C’, made up 

of uw and the part of C from u to w not including v.  By proposition 1 again, uw is part of 

a triangle {u, w, z}, where z is on C’.  See figure 5.4. 
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FIGURE 5.4: AN ILLUSTRATION FOR THE PROOF OF LEMMA 3.1 
 
 

Let C4 = uvwz], the ring sum of the 2-overlapping 3-cycles uvw] and uwz].  If C 

is a 4-cycle then C = C4.  Otherwise, either vw, wz , or zu is a chord of C.  In that case 

there’s a cycle comprised of this chord and the part of C including no vertices of C4.  By 

proposition 1 again we can find a 3-cycle (triangle) whose vertices are all in C and 2-

overlaps C4.  Let C5 be the ring sum of C4 and this 3-cycle. 

We can repeat this reasoning until we reach Cn = C.  Because each triangle 2-

overlaps the previous cycle at each step, the series of triangles induces a subtree of T, S, 

such that ψ(S) = C. 

This shows that every cycle-subgraph of G has a corresponding subtree of T 

under the mapping.  To see that the subtree is unique, assume that for some two distinct 

subtrees of T, S and S’, ψ(S) = ψ(S’).  Define S and S’ so that S is not a subtree of S’.  

Since S and S’ are distinct by assumption, there’s some leaf of S which is not in S’; call it 

l T.  By proposition 5, L has a vertex v which occurs in no other cliques corresponding to 

vertices in S.  Let L = {v, x, y}.  Because vx and vy cannot be duplicated in any cliques 

corresponding to vertices of S other than L they only occur once in the ring sum, so v is 

in the cycle-subgraph ψ(S).  According to the assumption ψ(S) = ψ(S’), then, vx and vy 

must also occur in some cliques of S’.  Since l T ∉ V(S’), there must be two distinct 

cliques, K and K’, such that vx ∈ E(K) and vy ∈ E(K’).  This implies that kT and k’T are 

adjacent to LT.  Since T is a tree, the path from kT to k’T must go through l T, and in order 

for S’ to be a tree, it must contain l T, contradicting the assumptions. 
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(3)  Let S be a subtree of T.  For any qT ∈ V(S), v ∈ Q, v is on the cycle ψ(S). 

Let KS(v) be the set of vertices of S corresponding to cliques containing v.  The 

subgraph of S induced by KS(v) cannot have any cycles, since S is a tree.  Therefore at 

least one vertex, l T, of KS(v) is adjacent to no more than one other vertex of KS(v).  L 

must have at least one edge incident on v shared by no other clique with a vertex in S.  

This edge occurs only once in the ring sum and so must be in the cycle-subgraph ψ(S).  

Therefore v must be in ψ(S).    ♦ 

Part 4 

(7) ⇒  (8)  G is cycle-connected  ⇒  G is Hamiltonian, chordal, and confluent. 

Proposition 6  A graph G is confluent iff it has no subgraph that is a subdivision of K4. 

Proposition 1  Let G be a chordal graph with cycle C.  Any edge uv on C is part of a 
triangle {u, v, w} where w is some vertex on C. 

Lemma 4.1  If G is a cycle-connected graph with two non-adjacent vertices u and v, there 
can be no more than two vertex-disjoint u-v paths. 

Lemma 4.2  If G is a cycle-connected graph, it has no subgraph which is a subdivision of 
K4. 

Definition  Let G be a graph with vertices u and v.  A set of u-v paths is vertex-disjoint 
iff no two of the paths share a vertex other than u or v. 

Proof of Theorem 1 Part 4   

Let G be a cycle-connected graph. 

 

G is chordal 

Assume that G has a chordless cycle, C, of at least four vertices.  Let a, b, c, d be 

vertices on C, in that order.  Then {a, c} and {b, d} are independent sets of G.  Also, for 

each of these sets, C is either minimal for that set, or there is a cycle C’ such that V(C’) is 

a proper subset of V(C).  However, for such a cycle to exist, two vertices non-adjacent on 
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C would need to be adjacent in G.  This contradicts the assumption that C is chordless.  

Therefore C must be minimal for both {a, c} and {b, d}.  This is impossible by part two 

of the definition of cycle-connected. 

 

G is Hamiltonian 

Let Ω0 be any independent set of G.  Let C0 be the cycle-subgraph corresponding 

to Ω0.  If C0 is not Hamiltonian, then let v be any vertex not on C0, but adjacent to some 

vertex x on C0 (such a vertex must exist since G is connected).  We will define a cycle-

subgraph, C1, which includes all the vertices of C0 and v. 

Since G is certainly 2-connected, v must be connected to C0 independently of x.  

That is, there is some vertex y ≠ x in C0, such that there is a path vPy which includes no 

vertices of C0 other than y.  Define paths xP0y and xP1y such that C0 = xP0y + xP1y and 

V(P0) ≤ V(P1), and let xP2y = xvPy.  (See figure 5.5).  I will show by contradiction 

that P0 is trivial. 

By definition, P1 and P2 are certainly non-trivial, so assume P0, P1, and P2 are all 

non-trivial.  Note that P0, P1, and P2 are vertex-disjoint, so by lemma 4.1, x and y must be 

adjacent in G.  Assume that there is a path, aP’b, from some vertex a on P0 to some vertex 

b on P1 such that P’ includes no vertices on xP0y or xP1y.  Then the subgraph of G made 

up of xy, P0, P1, and P’ is a subdivision of K4 with x, y, a, and b corresponding to the 

vertices of K4.  This is illustrated in figure 5.5: a and b connect to x and y on P0 and P1 

respectively, x and y are directly adjacent, and a and b are connected by P’.  By lemma 

 
 

 
FIGURE 5.5: AN ILLUSTRATION FOR THE PROOF OF THEOREM 1 PART 4 
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4.2 G cannot have a subgraph which is a subdivision of K4, so any path from a vertex on 

P0 to a vertex on P1 must go through x or y.  This is true also of P0 and P2 or P1 and P2 by 

the same reasoning. 

Now consider any vertices a, b, and c on P0, P1, and P2 respectively.  The set Ω = 

{a, b, c} is certainly independent, so by part 1 of the definition of cycle reducibility, there 

must be a cycle-subgraph, C, including these three vertices.  Define paths aPab, bPbc, and 

cPca such that C = aPab + bPbc + cPca.  From the reasoning above, either x or y must fall 

on each of Pa, Pb, and Pc.  However, this is impossible, since a vertex cannot repeat on the 

cycle C.  Therefore, by contradiction the path P0 must be trivial. 

Let the cycle C1 = xP1yP2
–1].  Since P0 is trivial, xP1y includes all the vertices on 

C0 while the vertex v is on P2.  Let Ω1 be the independent set corresponding to the 

subgraph of C1 by part (3) of the definition of cycle-connected.  If C1 is not a 

Hamiltonian cycle, then, repeating the same reasoning we can find a larger cycle, C2.  

Since G is a finite graph, this process must end eventually with a Hamiltonian cycle. 

 

G is confluent 

By lemma 4.2, G has no subgraph which is a subdivision of K4, so by proposition 

6 G is confluent. 

 

Lemma 4.1  If G is a cycle-connected graph with two non-adjacent vertices u and v, 

there can be no more than two vertex-disjoint u-v paths. 

Proof of Lemma 4.1 

Let uP1v, uP2v, and uP3v be three vertex-disjoint paths from u to v.  Then there 

are three cycles including u and v: uP1vP2
–1], uP1vP3

–1], and uP2vP3
–1].  Since u and v are 

non-adjacent they must have a minimal cycle-subgraph, C.  By the definition of a 

minimal cycle-subgraph, V(C) ⊂ V(uP1vP2
–1]) ∩ V(uP1vP3

–1]) ∩ V(uP2vP3
–1]) = {u, v}.  

This is impossible, proving the lemma by contradiction.   ♦ 

 



 

 

 247 

 

Lemma 4.2  If G is a cycle-connected graph, it has no subgraph which is a 

subdivision of K4. 

Proof of Lemma 4.2 

Assume that G has a subgraph, H, which is a subdivision of K4.  Then there is a 

cycle passing through the four vertices of the subdivided K4 in H, and by parts 1 and 3 of 

the definition of cycle-connected, at least one pair of these vertices must be independent 

in G.  Let u, v be these non-adjacent vertices and let x, y be the other two vertices of H 

corresponding to the vertices of K4, and let uPv be the u-v path corresponding to the u-v 

edge of K4.  Then there are 3 disjoint paths from u to v: uPv, the path through x, uPxv, 

and the path through y, uPyv.  (See figure 5.6).  This is impossible by lemma 4.1. ♦ 

 

 
 

FIGURE 5.6: AN ILLUSTRATION FOR THE PROOF OF LEMMA 4.2 

Part 5 

(8) ⇒  (9)  G is Hamiltonian, chordal, and confluent  ⇒  G is maximal Hamiltonian-

confluent. 

 

Proof of Theorem 1 Part 5   

Let u and v be non-adjacent vertices of G.  Let C0 be a Hamiltonian cycle of G. 

Take any chord of C0, x0y0.  If x0y0 crosses u and v on C0, then let x = x0, y = y0, 

and C = C0.  Otherwise, let C1 be the cycle made up of the part of C0 from x0 to y0 
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including u and v and the edge x0y0.  C1 cannot be a triangle, since uv is not an edge of G, 

so it has a chord, x1y1.  

We can continue this reasoning until we arrive at an edge xnyn which crosses u 

and v on a cycle Cn.  Then let x = xn, y = yn, and C = Cn.  Figure 5.7 gives an example of 

this as an illustration. 

Consider the graph G + uv.  There are paths from u to x, x to v, v to y, and y to u 

along the cycle C which are vertex-disjoint.  Furthermore, uv and xy are edges of G.  

Therefore C + uv + xy is a subdivision of K4.  By proposition 6, then, G + uv is not 

confluent.  Since the choice of u and v was arbitrary, G is maximal Hamiltonian-

confluent.   ♦ 

 
 

 
 

FIGURE 5.7: AN ILLUSTRATION FOR THE PROOF OF THEOREM 1 PART 5 



 

 

 249 

 

Part 6 

(9) ⇒  (3)  G is maximal Hamiltonian-confluent  ⇒  G is MOP(1). 

 

Proof of Theorem 1 Part 6 

Let G be a maximal Hamiltonian-confluent graph and assume G has a subgraph, 

H, which is a subdivion of K2,3.  Let u and v be the vertices in H corresponding to the 

independent pair of vertices of K2,3 and x, y, z be the vertices of H corresponding to the 

independent triple of vertices of K2,3.  H can be thought of as three vertex-disjoint paths 

of G connecting u and v: uPxv, uPyv, and uPzv.   

If all paths in G from x to y, y to z, and z to x include either u or v, then there can 

be no Hamiltonian cycle in G.  Therefore, without loss of generality, let x and y be 

connected by a path, xP’y, which includes neither u nor v nor any vertex on Pz.  Let a be 

the vertex on Px closest to y on P’ (if there is no other vertex on both paths then a = x).  

Similarly let b be the vertex on Py closest to a on the part of P’ from a to y.  Then there is 

a subpath of P’, P, from a to b that includes no other members of Px or Py.  Figure 5.8 

illustrates this. 

G then has a subgraph which is a subdivision of K4 with the vertices a, b, u, and v 

corresponding to the vertices of K4 as follows: u and v are connected by Pz, a and b are  

 
 

 
 

FIGURE 5.8: AN ILLUSTRATION FOR THE PROOF OF THEOREM 1 PART 6 
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connected by P, a is connected to u and v by Px, and b is connected to u and v by Py.  By 

definition all of these paths are vertex-disjoint, so the graph H’ = (H + aPb) is a 

subdivision of K4, contradicting the assumption that G is confluent, by proposition 6. 

This shows that G has no subgraph which is a subdivision of K2,3.  Since G also 

has no subgraph that is a subdivision of K4 by proposition 6, G must be outerplanar by 

proposition 7. 

Let u and v be any non-adjacent vertices in G.  By maximality, (G + uv) is either 

non-Hamiltonian or non-confluent.  But (G + uv) must be Hamiltonian since it has the 

same Hamiltonian cycle as G.  Thus (G + uv) is non-confluent, and by proposition 6 it 

has a subgraph which is a subdivision of K4.  Therefore (G + uv) is not outerplanar by 

proposition 7.  Since u and v are arbitrary vertices, G must be maximal outerplanar.♦ 

Part 7 

(3) ⇒  (4)  G is MOP(1) ⇒ G is MOP(2). 

 

Proof of Theorem 1 Part 7   

Let G be a MOP(1).  G is Hamiltonian by proposition 9.  Therefore G is HOP(1), 

and by proposition 10 G is HOP(2).   

Let u and v be non-adjacent vertices of G.  By maximality G + uv is not HOP(1), 

so by proposition 10 it is not HOP(2).  Thus G is maximal HOP(2).   ♦ 

Part 8 

(4) ⇒  (5)  G is MOP(2) ⇒ G is HOP(2) and chordal. 

 

Proof of Theorem 1 Part 8   

Let G be MOP(2).  Let C be any non-trivial cycle of G and let v be the first vertex 

of C.  The edges of C are either edges or chords of any Hamiltonian cycle of G.  

Therefore the vertices of C must be ordered in the same way as they are on some 

inversion or rotation of a Hamiltonian cycle, otherwise two edges of C will cross as 
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chords of the Hamiltonian cycle.  So we can choose a rotation and inversion of the 

Hamiltonian cycle, Cham, that begins on v and has its vertices in the same order as on C. 

Assume C is chordless and let u be a vertex of C not adjacent to v.  Consider the 

graph G + vu.  Assume by way of contradiction that Cham has a chord xy which crosses 

vu in G + vu (with x preceding y on Cham).  Then, the order of vertices on Cham is 

v…x…u…y…].  Assume x is not on C.  Then x falls between some two adjacent vertices 

of C, a and b, on Cham, where a = v or follows v on C (and Cham) and b = u or precedes u 

on C and Cham.  So the order of vertices on Cham is (v)…a…x…b…(u)…y…].  This is 

impossible because ab and xy would then be crosschords of Cham.  The same is true if y is 

not on C.  However, x and y cannot both be vertices of C since C is chordless by 

assumption.  Therefore no chord of Cham crosses vu in G + vu. 

Since all cycles of G must be ordered in the same way on any cycle as they are on 

the Hamiltonian cycle of G it is evident that crosschords of any cycle must be 

crosschords of Cham.  So G + vu is crosschord-free, contradicting the maximality of G, 

and proving by contradiction that no cycle of G is chordless, and G is chordal. ♦ 

Part 9 

(5) ⇒  (11)  G is HOP(2) and chordal ⇒ G is HOP-intrasymmetric. 

 

Definition  A class of graphs C is HOP-intrasymmetric iff 

(1) Any graph G ∈ C is HOP(2). 

(2) For any vertex, v, of a graph G ∈ C, and any integer n, 3 ≤ n ≤ V(G), there is 
an induced subgraph of G, H, on n vertices such that v ∈ V(H) and H ∈ C. 

(3) For any induced subgraph H of any G ∈ C, if H is 2-connected, H ∈ C. 

A graph G is HOP-intrasymmetric iff there exists some HOP-intrasymmetric class of 
graphs C such that G ∈ C. 

Proposition 11  Let G be a chordal graph, let C be a non-trivial cycle of G, and let v be a 
vertex on C.  Then C has a chord, ab, such that for some vertex u ≠ v, au and ub are in C. 
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Lemma 9.1  Any 2-connected induced subgraph of a HOP is Hamiltonian. 

Proof of Theorem 1 Part 9   

It suffices to show that the class of chordal HOPs is a HOP-intrasymmetric class.  

Let C be the class of chordal HOPs and let G ∈ C.  G obviously satisfies condition (1) of 

the definition. 

If V(G) = 3, then (2) is trivially true.  Let V(G) = n and assume inductively 

that (2) is true for all graphs on fewer than n vertices. 

Let Cham be a Hamiltonian cycle of G and let v be any vertex of G.  By 

proposition 11 there’s a chord of Cham, ab, such that for some vertex u ≠ v, aub is part of 

Cham.  Let G’ = G – u.  G’ is clearly chordal and crosschord-free, because any cycle of G’ 

is also a cycle of G and has all the same chords.  Furthermore, G’ has a Hamiltonian 

cycle equivalent to Cham but replacing aub with ab. 

By the inductive premise, then, G’ has an induced subgraph on n vertices 

containing v which is in C.  This is also an induced subgraph of G, so (2) holds. 

Let H be a 2-connected induced subgraph of G.  By lemma 9.1 H is Hamiltonian.  

Furthermore, any subgraph of a crosschord-free graph is clearly crosschord-free.  Finally, 

any cycle, C, of H is also a cycle of G, and because H is an induced subgraph, C must 

have the same chords in H as in G.  So H is chordal.  Therefore, by the inductive premise, 

H ∈ C.    ♦ 

 

Lemma 9.1  Any 2-connected induced subgraph of a HOP is Hamiltonian. 

 

Proof of Lemma 9.1   

Let G be a HOP, let C be a Hamiltonian cycle of G, and let H be a 2-connected 

subgraph of G.  Let V(H) = v1, v2, v3, . . . , vn such that the order of vertices on C is 

v1…v2…v3… …vn…].  Assume that two successive vertices of H, vi and vi + 1, are non-

adjacent. 

Because H is 2-connected, there must be a cycle of H, C’, containing vi and vi + 1.  

C’ is also a cycle of G, so its vertices must be ordered in the same way on C’ as they are 
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on C (up to rotation or inversion), otherwise the edges of C’ which are chords of C will 

cross.  Since there are no vertices of H between vi and vi + 1 on C, vi and vi + 1 must be 

adjacent on C’.  This contradicts the premise that they are non-adjacent. 

Thus by contradiction, every pair of vertices between successive vertices of H are 

adjacent in H.  Therefore v1v2v3 . . . vnv1 is a Hamiltonian cycle of H. 

Part 10 

(11) ⇒  (12)  G is HOP-intrasymmetric ⇒ G is HC-intrasymmetric. 

 

Definition  A class of graphs C is Hamiltonian-confluent intrasymmetric iff 

(1) Any graph G ∈ C is Hamiltonian and confluent. 

(2) For any vertex, v, of a graph G ∈ C, and any integer n, 3 ≤ n ≤ V(G), there is 
an induced subgraph of G, H, on n vertices such that v ∈ V(H) and H ∈ C. 

(3) For any induced subgraph H of any G ∈ C, if H is 2-connected, H ∈ C. 

A graph G is Hamiltonian-confluent intrasymmetric iff there exists some Hamiltonian-
confluent intrasymmetric class of graphs C such that G ∈ C. 

Proposition 6  A graph G is confluent iff it has no subgraph that is a subdivision of K4. 

Proposition 7  A graph G is outerplanar iff it has no subgraph that is a subdivision of K4 
or K2,3. 

Proposition 10  A graph is HOP(2) iff it is HOP(1). 

Proof of Theorem 1 Part 10   

Again, it is sufficient to show that the HOP-intrasymmetric graphs are a HC-

intrasymmetric class.  Let C be the class of HOP-intrasymmetric graphs.  Let G be any 

graph in C. 

By propositions 6 and 7 all outerplanar graphs are confluent (and G is outerplanar 

by proposition 10), so C certainly satifisfies condition (1). 
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Let v be any vertex of G and n any integer between 3 and V(G).  By part (2) of 

the definition of a HOP-intrasymmetric class, there’s an induced subgraph of G, H, 

including v which is HOP-intrasymmetric.  Therefore H ∈ C. 

Let H be any 2-connected induced subgraph of G.  By part (3) of the definition of 

a HOP-intrasymmetric class, H is HOP-intrasymmetric, so H ∈ C.   ♦ 

Part 11 

(12) ⇒  (10)  G is HC-intrasymmetric ⇒ G is H2-intrasymmetric. 

 

Definition  A class of graphs C is H2-intrasymmetric iff 

(1) Any graph G ∈ C is Hamiltonian but not 3-connected. 

(2) For any vertex, v, of a graph G ∈ C, and any integer n, 3 ≤ n ≤ V(G), there is 
an induced subgraph of G, H, on n vertices such that v ∈ V(H) and H ∈ C. 

(3) For any induced subgraph H of any G ∈ C, if H is 2-connected, H ∈ C. 

A graph G is H2-intrasymmetric iff there exists some H2-intrasymmetric class of graphs 
C such that G ∈ C. 

Proposition 6  A graph G is confluent iff it has no subgraph that is a subdivision of K4. 

Proposition 8  If a graph is 3-connected then it has a subgraph that is a subdivision of K4. 

Proof of Theorem 1 Part 11 

Here it suffices to show that the HC-intrasymmetric graphs are an H2-

intrasymmetric class.  Let C be the class of HC-intrasymmetric graphs.  Let G be any 

graph in C. 

G is Hamiltonian by part (1) of the definition of HC-intrasymmetric. 

Assume G is 3-connected.  Then by proposition 8 it has a subgraph which is a 

subdivision of K4, and by proposition 6 it is not confluent, contradicting part (1) of the 

definition of an HC-intrasymmetric class.  Therefore G cannot be 3-connected. 
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Let v be a vertex of G and n any integer.  By part (2) of the definition of an HC-

intrasymmetric class, G has an induced subgraph on n vertices containing v in C. 

Let H be any 2-connected induced subgraph of G.  By part (3) of the definition of 

an HC-intrasymmetric class, H is in C.   ♦ 

Part 12 

(10) ⇒  (1)  G is H2-intrasymmetric ⇒ G is a unary 2-tree. 

 

Proposition 1   Let G be a chordal graph with cycle C.  Any edge uv on C is part of a 

triangle {u, v, w} where w is some vertex on C. 

Proposition 6  A graph G is confluent iff it has no subgraph that is a subdivision of K4. 

Proposition 9  If G is maximal outerplanar then it has exactly one Hamiltonian cycle-
subgraph, which consists of the edges on the outer face of any outerplanar emedding of 
G. 

Proposition 11  Let G be a chordal graph, let C be a non-trivial cycle of G, and let uv be 
an edge of C.  Then C has a chord, ab, such that for some vertex x ≠ u, v, ax and xb are in 
C. 

Proposition 12  Let G be a 2-tree.  Then G is a unary 2-tree iff G is Hamiltonian.  
Furthermore there’s a unique Hamiltonian cycle-subgraph of G that consists of all edges 
whose endpoints are not a clique in the clique sequence defining G as a unary 2-tree. 

 

Proof of Theorem 1 Part 12 

Let G be a H2-intrasymmetric graph on n vertices.  If n = 3 then G is a triangle 

and is a unary 2-tree.  Assume inductively that all H2-intrasymmetric graphs on 3 to n – 1 

vertices are unary 2-trees. 

Let v be a vertex of G such that G – v is an H2-intrasymmetric subgraph of G 

(invoking part (2) of the definition of an H2-intrasymmetric class).  Then G – v is a unary 

2-tree by the inductive premise, and by parts one through four of the theorem G is 
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chordal and confluent.  By (2) again, v must be part of some triangle in G, {v, x, y}.  I 

will prove that v is adjacent to only x and y in G for the following two possible cases. 

 

Case 1:  Let C’ be a Hamiltonian cycle of G – v and assume x and y are adjacent 

in C’.  By proposition 11, there’s a triangle {a, u, b} where au and ub are edges of C’ and 

u ≠ x, y.  If u is connected to some other vertex, c, of G – v, then the subgraph consisting 

of the vertices a, b, c, u, the edges au, ub, ab, uc, and the cycle C’, is a subdivision of K4.  

(See figure 5.9).  This is impossible, so u is a degree 2 vertex in G – v.  Since G – v is a 

unary 2-tree, G – {u, v} is also a unary 2-tree (u cannot be part of a supporting clique in 

G – v since it is degree 2, so the vertex sequence of G – v with u removed is still well-

formed). 

Let H be a subgraph including all vertices and edges of G – u except any edges 

that may be incident on v other than xv and vy.  Since G – {u, v} is a 2-tree, H is clearly 

a 2-tree whose vertex sequence is that of G – {u, v} followed by v.  Let H’ be the induced 

subgraph of G on the vertex set of H.  Since a 2-tree always has exactly 2V – 3 edges 

by construction and H is a subgraph of H’, H’ can only be a 2-tree if H’ = H.  But H’ is 

certainly 2-connected, so by part (3) of the definition of an H2-intrasymmetric class and 

the inductive premise, H’ must be a unary 2-tree and equal to H.  Therefore v cannot be 

adjacent to any vertex other than x and y. 

 
 

 
 

FIGURE 5.9: AN ILLUSTRATION FOR THE PROOF OF THEOREM 1 PART 12 
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Case 2:  Assume x and y are not adjacent on the Hamiltonian cycle of G – v.  

Assume also by way of contradiction that v is adjacent to some vertex z ≠ x, y.  Let C’ be 

the cycle consisting of xy and the part of the Hamiltonian cycle of G – v including z.   Let 

H be the induced subgraph of G on the vertex set of C’ plus v.  H is certainly 2-

connected, so by part (3) of the definition of an H2-intrasymmetric class and the 

inductive premise, H must be a unary 2-tree.  Then by parts one through four of theorem 

1, H is chordal and confluent.  However, H has a subgraph which is a subdivision of K4 

consisting of the vertices v, x, y, z, the edges vx, xy, xy, vz, and the cycle C’.  This 

contradicts the confluence of G by proposition 6, proving that v is adjacent to no vertex 

other than x and y. 

 

This proves that v is a degree 2 vertex and part of the triangle {x, v, y}.  By 

assumption, G is Hamiltonian, so the Hamiltonian cycle of G, Cham, must include edges 

xv and vy.  Therefore G – v has a Hamiltonian cycle that is the same as Cham but replaces 

xvy with xy.  Since G – v is a unary 2-tree, the subgraph of this Hamiltonian cycle is 

unique by proposition 12.  (This means that case 2 above is actually impossible.)  Let C’ 

be a Hamiltonian cycle of G – v. 

Let Q4, Q5, . . . , Qn – 1 be a clique sequence and let v1, v2, . . . , vn – 1 be a vertex 

sequence for G – v defined as a unary 2-tree.  By proposition 12 again, Qi ≠ {x, y} for 

any integer i, since x and y are adjacent on C’.   Therefore if Qn = {x, y} and vn = v then 

Q4, Q5, . . . , Qn – 1, Qn and v1, v2, . . . , vn – 1, vn are a vertex and a clique sequence defining 

G as a unary 2-tree. ♦ 
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APPENDIX: PROOFS OF PROPOSITIONS 

Proposition 1  Let G be a chordal graph with cycle C.  Any edge uv on C is part of a 

triangle {u, v, w} where w is some vertex on C. 

Proof  If V(C) = 3, then let {u, v, w} = V(C).  Otherwise let x0y0 be a chord of C.  Then 

let C0 be a rotation of C beginning with x0 and define paths such that C0 = x0Py0P’].  

Then there are two cycles x0Py0] and y0P’x0].  Let C1 be the cycle of these which includes 

uv.  Repeat this process defining cycles C1, C2, . . . , Cn such that V(Cn) = 3.  Note that 

any Ci must be strictly smaller than Ci + 1, and must contain the vertices u,v, so the 

triangle Cn certainly exists and includes the vertices u and v.  Let {u, v, w} = Cn. ♦ 

 

Proposition 2   Let G be a Hamiltonian chordal graph.  Then G has no maximal 2-

cliques. 

Proof  Let uv be any edge of G.  If uv is part of a Hamiltonian cycle then by proposition 

1, uv is part of a triangle.  If uv is not part of a Hamiltonian cycle, then it’s part of a cycle 

by putting uv together with part of the Hamiltonian cycle from v to u.  By proposition 1, 

again, uv is part of a triangle.  Therefore, {u, v} cannot be a maximal 2-clique. ♦ 

 

Proposition 3  (Blair and Peyton (1993))  A graph is chordal iff it has at least one clique 

tree. 

Proposition 4  (Blair and Peyton (1993))  Let v be any vertex of a graph G with clique 

tree T, and let K(v) be the set of maximal cliques of G containing v.  Then the 

vertices of T corresponding to K(v) induce a subtree of T, Tv. 

Proposition 5  Let T be a clique tree of a chordal graph G, and let kT be a leaf of any 

subtree S of T.  Then K contains a vertex not contained in any other clique 

corresponding to a vertex of S. 
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Proof  Let k’T be the vertex of S adjacent to kT.  By maximality of cliques, K has at least 

one vertex, x, not in K’.  For any clique Q in G such that qT ∈ S, let kTPqT be a path in T.  

By the definition of a clique tree and the fact that kTPqT must include k’T, Q cannot 

contain x.   ♦ 

 

Proposition 6  A graph G is confluent iff it has no subgraph that is a subdivision of K4. 

(Duffin 1965) 

Proposition 7   A graph G is outerplanar iff it has no subgraph that is a subdivision of K4 

or K2,3. 

This proposition is essentially a version of Kurtowski’s theorem.  See Harary 

(1969) or Chartrand and Lesniak (2005). 

 

Proposition 8  If a graph is 3-connected then it has a subgraph that is a subdivision of K4. 

Definition  An n-wheel is a graph constructed of a cycle (the outer cycle) of n vertices, 
plus a vertex (the center) adjacent to each vertex on the cycle.  (See figure A.1) 

Proof  We will need the following lemma from Tutte (1961): 

 

Lemma (Tutte)   Let G be a 3-connected graph.  Then either G is a wheel or there is a 

sequence of graphs G0, G1, . . . , Gn where G0 is a wheel, G = Gn, and for each i (1 ≤ i 

≤ n), Gi can be obtained from Gi – 1 by one of the following operations:  

(1)  Add an edge between two non-adjacent vertices of Gi – 1. 

(2)  “Split” a vertex v: let v be a vertex of Gi – 1 of degree at least 4.  Partition the 

vertices adjacent to v into sets V1 and V2, each with at least 2 members.  Define 

new vertices v1 and v2 and let V(Gi) =  V(Gi – 1) – v + v1 + v2.  Let E(Gi) be  

E(Gi – 1 – v) plus edges between v1 and each member of V1 and between v2 and 

each member of V2. 
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FIGURE A.1: A 3-, 4-, 5-, AND 6-WHEEL 

 
 

Let W be any wheel.  Let c be the center and C the outer cycle(-subgraph) of W.  

Let x, y, and z be vertices adjacent in C.  Let H be the subgraph on V(G) including the 

edges of C, cx, cy, and cz and no others.  Then H is a subdivision of K4 with the vertices 

c, x, y, z corresponding to the vertices of K4. 

Assume inductively that all 3-connected graphs obtained by up to n – 1 operations 

on W have a subgraph that’s a subdivision of K4.  Let G be any 3-connected graph 

constructed from W and let G’ be the graph preceding G in the construction.  By 

assumption G’ has a subgraph H that is a subdivision of K4.  If G’ and G are related by 

operation (1), then H is also a subgraph of G.  So let G’ and G be related by operation (2) 

with v ∈ V(G’) split into v1 and v2 of V(G).  There are 3 possible cases: 

Case 1: If v is not in V(H), then H is also a subgraph of G. 

Case 2: Let v be a vertex of H that is not a vertex of the subdivided K4.  Then v 

must be degree 2 in H; let x and y be the vertices adjacent to v in H.  If xv1, yv1 ∈ G or 

xv2, yv2 ∈ G then G has a subgraph isomorphic to H, replacing v with v1 or v2.  

Otherwise xv1, yv2 ∈ G or xv2, yv1 ∈ G.  Assume the former without loss of generality.  

Let H’ be a subgraph of G that is equivalent to H except that v is replaced by v1 and v2, 

and the edges xv and vy are replaced by xv1, v1v2, and v2y.  Then H’ is a subdivision of 

H, and hence is isomorphic to a subdivision of K4. 

Case 3: Let v be a vertex of H that is a vertex of the subdivided K4.  Then v is 

degree 3 in H.  Let x, y, and z be adjacent to v in H.  If x, y, and z are all adjacent to v1 or 

all adjacent to v2 in G, then G has a subgraph isomorphic to H, replacing v with v1 or v2.  

Otherwise G has two of x, y, and z adjacent to v1 (or v2) and the remaining one of x, y, 

and z adjacent to v2 (or v1).  The argument is the same in all six cases, so assume x and y 
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are adjacent to v1 and z is adjacent to v2.  Then let H’ be a graph equivalent to H but 

replacing v with v1 and v2, and replacing the edges vx, vy, and vz with v1x, v1y, v1v2, and 

v2z.  Thus H’ is isomorphic to a subdivision of H (with v1 corresponding to v and v2 

being the added vertex), and is a subdivision of K4. 

Thus in all cases G has a subgraph which is a subdivision of K4.   ♦ 

 

Proposition 9  If G is maximal outerplanar then it has exactly one Hamiltonian cycle-

subgraph, which consists of the edges on the outer face of any outerplanar 

embedding of G. 

Proof  Let G be a maximal outerplanar graph. 

Definition  A circuit of a graph G is a sequence of vertices, v1v2v3 . . . vn], such that each 
vi – 1vi is an edge of G and vnv1 is an edge of G.  In other words, a circuit is a cycle which 
is allowed to have repeating vertices. 

G has a Hamiltonian cycle. 

Let G be a MOP and E be an outerplanar embedding of G.  Let W be a circuit that 

traces the perimeter of the outer face of G.  W must include all vertices of G by 

outerplanarity.  If W includes each vertex of G exactly once (i. e. exactly two edges of G 

are incident on each vertex of G) then W must be a Hamiltonian cycle. 

Assume by way of contradiction then that W includes some vertex, v, twice.  Let 

W = vx1x2 . . . xmvy1y2 . . yn].  Then X = vx1x2 . . . xm] and Y = vy1y2 . . yn] are separate 

circuits making up the outer perimeter of G such that there is no edge xiyj in G for any i, j 

(otherwise, xiyj would be on the outer perimeter). 

Now let G’ = G + xmy1.  Then G’ has an embedding 3E equivalent to E except for 

the edge xmy1 which is drawn so that it crosses no other edges in 3E (it may be drawn 

arbitrarily close to the edges xmv and vy1, which are not crossed in E). 3E is clearly 

outerplanar, since it has a circuit W’ = vx1x2 . . . xmy1y2 . . yn] which traces the outer 

perimeter of 3E and includes all vertices of G’.  Therefore G’ is outerplanar, and G is not 

maximal outerplanar.  By contradiction, W must be a Hamiltonian cycle for G. 
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W is a unique Hamiltonian cycle for G. 

Assume that G has some distinct Hamiltonian cycle-subgraph, C.  Then C must 

include some edge, uv, that is a chord of W.  Let Pw1 and Pw2 be non-trivial paths such 

that W = uPW1vPW2].  Let PC be a path such that C = uvPC].  Since W and C are 

Hamiltonian,  V(vPCu) = V(uPW1v) + V(vPW2u) = V(G).  Therefore there must be at least 

one edge in PC with one endpoint in V(PW1) and the other in V(PW2).  This edge will cross 

uv in any outerplanar embedding with W as the outer perimeter, contradicting the 

assumptions.   ♦ 

 

Proposition 10  A graph is HOP(2) iff it is HOP(1). 

HOP(2) ⇒ HOP(1): Let G be HOP(2) with Hamiltonian cycle C.  Define an 

embedding, E, of G as follows: draw an n-gon and label its vertices with the vertices of G 

in the order of C.  Draw each remaining edge of G as a straight line between its incident 

vertices.  If any of these edges cross in E, then they must be crosschords of C, which is 

impossible by assumption.  Therefore E is an outerplanar embedding and G is 

Hamiltonian outerplanar. 

HOP(1) ⇒ HOP(2): Let G be Hamiltonian outerplanar with outerplanar 

embedding E.  Let C be any cycle of G.  Since the edges of C cannot cross in E, C must 

define a region R of the plane in E.  Let uv be a chord of C.  Since E is outerplanar, the 

curve corresponding to uv in E must be within R (otherwise vertices between u and v on 

C wouldn’t be on the outer face of E).  Since the curve corresponding to uv must be 

continuous, it divides R into two regions, R1 and R2.  If there’s a chord of C that is a 

crosschord with uv, then its curve also cannot be drawn outside of R and must go from R1 

to R2, which it cannot do without crossing the curve for uv.  Therefore G cannot have 

crosschords, and it HOP(2)   ♦ 

Proposition 11  Let G be a chordal graph, let C be a non-trivial cycle of G, and let uv be 

an edge of C.  Then C has a chord, ab, such that for some vertex x ≠ u, v, ax and xb 

are in C. 
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Proof  Let G be a chordal graph, let C be a cycle of G of four or more vertices, and let v 

be a vertex on C.  Then C has a chord, a0b0.  Define paths such that a0P0b0P’0] is a 

rotation of C.  Let C1 be the smaller cycle, a0P0b0] or b0P’0a0], which does not include the 

edge uv. 

If C1 is not a 3-cycle, then let a1b1 be a chord of C1.  Define paths such that 

a1P1b1P’1] is a rotation of C1.  Let C2 be the cycle, a1P1b1] or b1P’1a1], which does not 

contain the edge a0b0. 

This process can be continued, defining C3, C4, and so on.  At each stage, the 

vertices of Ci+1 are a proper subset of those of Ci, so there must be some Cn such that Cn 

= 3.  Let a = an, b = bn, and let x be the remaining vertex of Cn. 

Note that the only edge of C1 that is not also an edge of C is b0a0.  Furthermore, 

C2 is defined so that it cannot contain a0b0, so the only edge of C2 that is not also an edge 

of C is b1a1.  This is true of each cycle defined, so edges ax and xb on Cn are also edges 

of C.  Furthermore, only one of u or v can be on C1 (and hence on Cn), and if u or v is on 

C1 it can only be on Ci if it is equal to ai or bi.  Thus if u or v is on Cn it is equal to an or bn 

and cannot be equal to x.   ♦ 

 

Proposition 12  Let G be a 2-tree.  Then G is a unary 2-tree iff G is Hamiltonian.  

Furthermore there’s a unique Hamiltonian cycle-subgraph of G that consists of all 

edges that aren’t in the clique sequence defining G as a unary 2-tree. 

Let G be a 2-tree on n vertices.  If n = 3 then the proposition certainly holds.  

Assume inductively that the proposition holds for all 2-trees on n – 1 vertices.  In 

particular,  by this assumption the proposition holds for Gn – 1 = G – vn. 

Unary ⇒ Hamiltonian: Let G be defined as a unary 2-tree with vertex sequence 

VG = v1, v2, v3, . . . , vn and clique sequence QG = Q4, Q5, . . . , Qn.  Then the graph Gn – 1 

is a unary 2-tree with vertex sequence VG – vn = v1, v2, v3, . . . , vn – 1 and clique sequence 

QG(n – 1) = Q4, Q5, . . . ,   Qn – 1, and by the inductive assumption Gn – 1 has a Hamiltonian 

cycle consisting of all the edges whose endpoints are not one of the cliques in QG(n – 1).  

Since G is a unary 2-tree, Qn is distinct from Q4, Q5, . . . , Qn – 1 and the vertices of Qn are 
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adjacent in the Hamiltonian cycle of Gn – 1.  Let C’ be this Hamiltonian cycle and let  

{x, y} = Qn. Thus G has a Hamiltonian cycle, C, the same as C’ but replacing the edge xy 

with xvn and vny. 

Hamiltonian ⇒ unary: Let G be a 2-tree with vertex sequence VG = v1, v2, v3, . . . 

, vn and clique sequence QG = Q4, Q5, . . . , Qn and a Hamiltonian cycle C.  Then Gn – 1 is 

a 2-tree with clique sequence QG(n – 1) = Q4, Q5, . . . , Qn – 1.   

Let {x, y} = Qn.  Then the vertex vn is degree 2 in G and adjacent to vertices x and 

y.  Therefore C must include xvn and vny, and Gn – 1 has a Hamiltonian cycle, C’, the 

same as C but replacing xvn and vny with xy.  By the inductive premise C’ includes all 

edges of G – vn whose endpoints are not one of the cliques in QG(n – 1), so Qn, which is on 

C’, must be distinct from Q4, Q5, . . . , Qn – 1.  Furthermore all of Q4, Q5, . . . , Qn – 1, are 

distinct by the inductive assumption that Gn – 1 is a unary 2-tree.  Therefore G is a unary 

2-tree. 

C includes all edges of G that aren’t in the clique sequence QG: By the inductive 

premise, C’ includes all edges of Gn – 1 other than those in QG(n – 1).  Only the clique Qn = 

{x, y} is an edge of C’.  Because vn is degree 2, xvn and vny are the only edges in G not 

also in Gn – 1.  Thus the only edges of G whose endpoints are not one of the cliques of QG 

are all edges of C’ excluding xy plus the edges xvn and vny.   This is precisely the edge 

set of C. 

The subgraph of C is unique: Assume G has a Hamiltonian cycle-subgraph D 

distinct from the subgraph of C.  D must also include xvn and vny, so we can define a 

Hamiltonian cycle-subgraph D’ for Gn – 1 replacing xvn and vny with xy in D.  However, 

by the inductive premise the subgraph of C’ is unique, so C’ = D’.  By the definitions of 

C’ and D’ then C must be equal to D contradicting the assumption.  Therefore the 

subgraph of C is a unique Hamiltonian cycle-subgraph for G.   ♦  
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