A Spatial Perspective on Long-Range Voice Leading and Beethoven's *Heiliger Dankgesang*

Jason Yust, Boston University

Presentation to the University of Connecticut Music History/Theory Colloquium March 6, 2015

A copy of this talk is available at people.bu.edu/jyust/

Outline

I. Schenker, Brahms, and Keys: The Problem

- 1. Schenker's syllogism
- 2. Examples: Beethoven *Bagatelle* op. 119 no. 7
 - Brahms Cello Sonata op. 99, subordinate theme
- 3. An alternative: DFT phase space and tonal regions
- 4. Beethoven and Brahms examples in DFT phase space

II. DFT and Triadic Orbits

Jason Yust

DFT components as sinusoidal approximations
 Triadic orbits

III. Beethoven's Heiliger Dankgesang

Scalar context and triadic orbits
 The D–C motive
 Strength and weakness

Restoring the Structural Status of Keys

 Schenker's syllogism
 Examples: Beethoven *Bagatelle* op. 119 no. 7 Brahms *Cello Sonata* op. 99, subordinate theme
 An alternative: DFT phase space and tonal regions
 Beethoven and Brahms examples in DFT phase space

C major: V of F major *not* I of C major

Jason Yust

UNIVERSI

Frank Samarotto (*A Theory of Temporal Placticity for Tonal Music*, PhD Diss., 1999):

Samarotto's analysis reflects only the structural **chords**, not their tonal contexts. This analysis mistakenly represents the bagatelle as **tonally closed**.

Jason Yust

Restoring the Structural Status of Keys

Frank Samarotto (A Theory of Temporal Placticity for Tonal Music, PhD Diss., 1999):

However, the higher-level progression of tonal contexts shows that the bagatelle is actually **tonally open**, in accord with its function as prelude to no. 8.

See Nicholas Marston, "Trifles or Multi-Trifle: Beethoven's Bagatelles Op. 119, Nos 7–11." *Music Analysis* 5/2–3 (1986)

Tonal contexts: C major - - - - - - - - - → F major

Chords: C major - - - - - - - - → C major

Samarotto's analysis reflects only the structural **chords**, not their tonal contexts. This analysis mistakenly represents the bagatelle as **tonally closed**.

Jason Yust

BOSTON university **Restoring the Structural Status of Keys**

Alternative: A spatial concept of tonality . . .

DFT phase space

Amiot, Emmanuel. (2013). "The Torii of Phases," *Mathematics and Computation in Music, MCM 2013* (ed. Yust, Wild, & Burgoyne) 1–18.

Yust, "Schubert's Harmonic Language and Fourier Phase Space." *Journal of Music Theory* 59/1 (forthcoming). Available at http://people.bu.edu/jyust/SchubertDFT.pdf

Db

Bh

Restoring the Structural Status of Keys

EB

AbEb

G#b

Abmin

Emin

Properties of DFT Phase Space

AE

- Objects are pcsets, multisets, or statistical pc distributions
- Toroidal geometry

Db

BbDc

F#C#

F#maj

F#A

Dmaj

- Vertical axis indicates circle-of-fifths position
- Horizontal axis captures triadic voice-leading properties

DbAb

Dbmin

Jason Yust

Restoring the Structural Status of Keys

UConn 3/6/2015

Bmin

BD

D#F#

Bmaj

EB

Emin

Abmin

G#b

Properties of DFT Phase Space

AE

F#A

Dmai

F#maj

F#C#

- Many kinds of harmonic objects exist in the space: single pcs, harmonies, scales, etc.
- Space is *continuous*—paths connect points via a potential infinite series of intermediate states (pc distributions)
- Nearness in the space (its *topology*) is based on *common pc content*.

DbAb

Dbmin

Db

Jason Yust

Restoring the Structural Status of Keys

UConn 3/6/2015

Bmin

Gmin

BD

D#F#

Bmai

Properties of DFT Phase Space

A *path* can represent a motion from *A* to *B*, but it can also represent "*B* in the context of *A*."

Combination of pcsets is highly tractable: the position of A + B is easily predictable from the path $A \rightarrow B$.

Averaging over *more objects* (pcs, triads) restricts the range of activity.

Restoring the Structural Status of Keys

CFb'

UConn 3/6/2015

Bmin

Gmin

BD

GB

Epmai

Jason Yust

FA

Bb mir

Brahms Cello Sonata Op. 99, first movement

Schenker: *Der Freie Satz* Fig. 110d(2)

Jason Yust

Restoring the Structural Status of Keys

Structure is based on *large-scale voice leadings*, which must occur between **distinct musical objects (***chords***)**. This leads to a *reductive* approach.

Brahms Cello Sonata op. 99

Brahms Cello Sonata op. 99 F# F#min F# (EG#) Emaj C#E Amai min F#A \mathbf{E}^7 min DF# Emin DF# Dmaj AE BD. Gmai Amii DA maj.Am D Dmin Ð Emaj C maj. Fma Gmin "DF‡ (BbD) Bbmaj Cmin BbD **Progression of chords** FC 🗖 Fmin Ebmaj (EbG) BbF CEb, Bb Bb Bbmin (AbC) Abmaj FAb. EbBb thin H DhF Dhmai Fhmin BOSTON Jason Yust

Restoring the Structural Status of Keys

UNIVERSIT

Brahms Cello Sonata op. 99

2. DFT and Triadic Orbits

1. DFT components as sinusoidal approximations

2. Triadic orbits

Discrete Fourier Transform on Pcsets

Lewin, David (1959). "Re: Intervallic Relations between Two Collections of Notes," *JMT* 3/2.

——— (2001). "Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1.

Quinn, Ian (2006–2007). "General Equal-Tempered Harmony," *Perspectives of New Music* 44/2–45/1.

Amiot, Emmanuel (2013). "The Torii of Phases." Proceedings of the International Conference for Mathematics and Computation in Music, Montreal, 2013 (Springer).

Jason Yust

Restoring the Structural Status of Keys

The triadic orbits go from trough to trough, and group pcs that may be considered displacements of those in the triad

Restoring the Structural Status of Keys

G

E

С

UConn 3/6/2015

Jason Yust

Triadic Orbits

Triadic orbits as a **voice leading** property:

- Clockwise and counter-clockwise movement of triadic orbits corresponds to ascending or descending efficient voice leading between triads.
- The spatial relationship of one harmonic object to its context indicates its voice-leading stability and whether it resolves with upward or downward voice leading in the context.
- The triadic voice-leading properties of the 3rd DFT component apply to sets of *any cardinality*, not just trichords, on the basis of common pc content with consonant triads.

Restoring the Structural Status of Keys

3. Heiliger Dankgesang

- Scalar contexts and triadic orbits
 The D–C motive
 - 3. Strength and weakness

Chorale phrase 4:

Ending high in the orbit gives the effect of suspension

Jason Yust

BOSTON UNIVERSITY Restoring the Structural Status of Keys

Final form of the intonation:

Restoring the Structural Status of Keys

End of Neue Kraft section

Weakness and Strength

In an F major context, the step C–D is a weak neighbor motion

Within orbit

In a C major context, it is a strong completion of passing motion

Between orbits

Weakness and Strength

Heiliger Dankgesang: Final Chorale End of chorale

Chorale tune

Conclusions

- DFT phase space effectively reflects tonal process at multiple **levels of structure**.
- It does so through processes of **combination** rather than **reduction**.
- Relating levels through combination better reflects the **traditional notion of keys**.
- Motions in DFT phase space can be construed as a kind of **voice leading** through the idea of **triadic orbits**.
- Triadic orbits also have hermeneutic value in showing the **gravitational forces** that color tones and distinguishing **strong** and **weak** melodic motions.

Bibliography

- Amiot, Emmanuel. 2013. "The Torii of Phases." *Proceedings of the International Conference for Mathematics and Computation in Music, Montreal, 2013,* ed. J. Yust, J. Wild, and J.A. Burgoyne (Heidelberg: Springer).
- Amiot, Emmanuel, and William Sethares. 2011. "An Algebra for Periodic Rhythms and Scales." *Journal of Mathematics and Music* 5/3, 149–69.
- Brandenburg, Sieghard. 1982. "The Historical Background of the 'Heiliger Dankgesang' in Beethoven's A Minor Quartet Op. 132." *Beethoven Studies*, ed. A. Tyson (Cambridge: Cambridge University Press), 161–91.
- Callender, Clifton. 2007. "Continuous Harmonic Spaces." *Journal of Music Theory* 51/2: 277–332.
- Callender, Clifton, Ian Quinn, and Dmitri Tymoczko. 2008. "Generalized Voice-Leading Spaces." *Science* 320: 346–8.
- Cone, Edward. 1977. "Beethoven's Experiments in Composition: The Late Bagatelles." *Beethoven Studies 2*, ed. A. Tyson (New York: Oxford University Press), 84–105.

Damschroder, David. 2010. "Schenker, Schubert, and the Subtonic Chord." *Gamut* 3/1, 127–166.

———. 2010. *Harmony in Schubert* (Cambridge, Eng.: Cambridge Univ. Press).

Gollin, Edward. 1998. "Some Aspects of Three-Dimensional '*Tonnetze*." *JMT* 42(2): 195–206.

Jason Yust

Restoring the Structural Status of Keys

Bibliography

- Kopp, David. 2002. *Chromatic Transformations in Nineteenth-Century Music* (Cambridge, Eng.: Cambridge Univ. Press).
- Korsyn, Kevin. 1993. "J.W.M. Sullivan and the *Heiliger Dankgesang*: Questions of MEaning in Late Beethoven." *Beethoven Forum II*, ed. L. Lockwood and J. Webster (Lincoln, Neb.: University of Nebraska Press), 133–74.
- Krumhansl, Carol. 1990. *Cognitive Foundations of Musical Pitch* (New York: Oxford Univ. Press).
- Lewin, David. 1959. "Re: Intervallic Relations between Two Collections of Notes." *Journal of Music Theory* 3: 298–301.
- Marston, Nicholas. 1986. "Trifles or a Multi-Trifle?: Beethoven's Bagatelles, Op. 119 nos. 7–11." *Music Analysis* 5/2–3, 193–206.
- Quinn, Ian. 2006. "General Equal-Tempered Harmony" (in two parts). *Perspectives of New Music* 44(2)–45(1): 114–159 and 4–63.
- Schachter, Carl. 1987. "Analysis by Key: Another Look at Modulation." *Music Analysis* 6/3: 289–318.

Schenker, Heinrich. 1979. *Free Composition: Vol. II of New Music Theories and Phantasies*, trans E. Oster. New York: Longman.

Restoring the Structural Status of Keys

Bibliography

Temperley, David. 2007. Music and Probability. Cambridge, Mass.: MIT Press.

- Temperley, David and Elizabeth Marvin. 2008. "Pitch-Class Distribution and the Identification of Key," *Music Perception* 25/3, 193–212.
- Theurer, Michiko. 2013. "Playing with Time: The *Heiliger Dankgesang* and the Evolution of Narrative Liberation in Op. 132." *Journal of Musicological Research* 32: 248–65.

Tymoczko, Dmitri. 2012. "The Generalized Tonnetz." JMT 56/1: 1–52.

- Vitercik, Greg. 1993. "Structure and Expression in Beethoven's Op. 132." *Journal of Musicological Research* 13: 233–51.
- Yust, Jason. 2013a. "Tonal Prisms: Iterated Quantization in Chromatic Tonality and Ravel's 'Ondine." *JMM* 7/2: 145–165.
- ———. 2015a. "Restoring the Structural Status of Keys through DFT Phase Space." *Proceedings of the International Congress for Music and Mathematics* (forthcoming).
- ———. 2015b. "Schubert's Harmonic Language and Fourier Phase Space." *Journal of Music Theory* 59/1, 121–181.
 - -—— 2015c. "Distorted Continuity: Chromatic Harmony, Uniform Sequences, and Quantized Voice Leadings." *MTS* 36 (forthcoming).

Jason Yust BOST

Restoring the Structural Status of Keys

A Spatial Perspective on Long-Range Voice Leading and Beethoven's *Heiliger Dankgesang*

Jason Yust, Boston University

Presentation to the University of Connecticut Music History/Theory Colloquium March 6, 2015

A copy of this talk is available at people.bu.edu/jyust/

Appendices:

A1: Derivation of tonal regions

Derivation of Tonal Regions

Boundaries between major and minor follow the circle of fifths through diatonic scales and dominant sevenths / individual pcs.

Jason Yust

UNIVERSI

Restoring the Structural Status of Keys

A characteristic hexachord is at the center of the major regions. Boundaries between fifth-related major regions are parallel to an axis that approximately passes through this hexachord.

Restoring the Structural Status of Keys

BOSTO

UNIVERSIT

Jason Yust

