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A B S T R A C T   

This study describes a computational algorithm to determine vascular permeability constants from time-lapse 
imaging data without concurrent knowledge of the arterial input function. The algorithm is based on “blind” 
deconvolution of imaging data, which were generated with analytical and finite-element models of bidirectional 
solute transport between a capillary and its surrounding tissue. Compared to the commonly used Patlak analysis, 
the blind algorithm is substantially more accurate in the presence of solute delay and dispersion. We also 
compared the performance of the blind algorithm with that of a simpler one that assumed unidirectional 
transport from capillary to tissue [as described in Truslow et al., Microvasc. Res. 90, 117–120 (2013)]. The al-
gorithm based on bidirectional transport was more accurate than the one based on unidirectional transport for 
more permeable vessels and smaller extravascular distribution volumes, and less accurate for less permeable 
vessels and larger extravascular distribution volumes. Our results indicate that blind deconvolution is superior to 
Patlak analysis for permeability mapping under clinically relevant conditions, and can thus potentially improve 
the detection of tissue regions with a compromised vascular barrier.   

1. Introduction 

Quantitative measurement of vascular permeability is a cornerstone 
of microvascular physiology, both for basic studies of the microcircu-
lation and for clinical assessment of conditions that involve breakdown 
of the vascular barrier. These measurements have relied almost exclu-
sively on injecting a labeled solute or contrast agent into a blood vessel 
that feeds the tissue to be analyzed, and then fitting time-lapse imaging 
data to a two-compartment model of solute uptake (Fig. 1A) (Patlak 
et al., 1983): 

dI
dt

=
dI
dt

+ α0Iv (1) 

Here, I(t) is the spatially integrated signal in the tissue region-of- 
interest (ROI), which includes signals from vessels within the tissue; 
Iv(t) is the spatially integrated signal that originates from the vessels 
within the ROI; and α0 is the permeability product PS/Vp, where P is the 
solute permeability coefficient, S is the vascular surface area, and Vp is 
the intravascular distribution volume for the solute in the ROI. The 

parameter α0 is analogous to a rate constant and has units of 1/time. It is 
assumed that the imaging data are suitably transformed so that they are 
proportional to solute concentrations. 

Although measurement of the tissue signal I is routinely performed, 
intravascular solute cannot be distinguished from extravascular solute at 
the level of microvessels with current clinical imaging techniques, which 
have typical spatial resolutions of ≥0.5 mm (Lin and Alessio, 2009). 
Thus, Iv is generally unknown, and Eq. (1) cannot be solved for the 
permeability α0. In the experimental setting, this problem can be avoi-
ded by rapid and sustained microinjection of labeled solute at a defined 
time immediately upstream of the ROI (Huxley et al., 1987). In the 
clinical setting, however, solute injection takes place at an artery that is 
distant from the ROI (Calamante et al., 2000; Meyer, 1989). As a result, 
clinical permeability imaging requires the separate measurement of an 
arterial input function AIF(t), i.e., the solute signal from a proximal ar-
tery, which is assumed to equal Iv(t)/Vp. With this assumption, the 
transport equation becomes: 

Abbreviations: AIF, arterial input function; ATH, adiabatic tissue homogeneity; CT, computed tomography; MRI, magnetic resonance imaging; PET, positron 
emission tomography; ROI, region-of-interest; SNR, signal-to-noise ratio; 2CXM, two-compartment exchange model. 
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dI
dt

= VP
d(AIF)

dt
+α0VpAIF (2) 

Standard Patlak analysis estimates the permeability constant α0 (and 
the vascular volume Vp) at each image pixel by integrating Eq. (2) over 
time and using a linear fit of I(t)/AIF(t) versus 

∫
0
t AIF(t)dt/AIF(t) (Peters, 

1994). This approach assumes that the intravascular solute transit time 
is negligible, and that only uptake of solute is possible. Its mathematical 
simplicity has made Patlak analysis one of the most widely applied 
methods for clinical assessment of vascular permeability, including in 
perfusion CT for management of ischemic stroke and whole-body PET 
for detection of tumors (Hom et al., 2011; Karakatsanis et al., 2013). 
Modified plots that take solute return into account have been developed, 
but they are more sensitive to noise and are not considered here (Kar-
akatsanis et al., 2015; Logan et al., 1990; Patlak and Blasberg, 1985). 

It is important to recognize that the AIF is not exactly proportional to 
the intravascular signal Iv. Typical transit times from the site at which 
AIF is measured to the ROI are on the order of seconds. As a result, Iv is a 

time-delayed and broadened version of the AIF. If not corrected for, 
solute delay and dispersion can lead to large errors in estimated per-
meabilities when a standard Patlak analysis is applied (Schneider et al., 
2011). Other sources of error, such as partial volume effects, further 
limit the ability of the AIF to represent Iv accurately (Chen et al., 2004). 
Several studies have attempted to correct for these phenomena, largely 
by assuming particular expressions for intravascular solute transport 
between the site of AIF measurement and the ROI (Dankbaar et al., 
2008a; Dankbaar et al., 2008b; Hom et al., 2009; Schneider et al., 2011). 

To obtain permeability values without knowledge of the vascular 
input, we and others have attempted “blind” deconvolution of solute 
imaging data (Fluckiger et al., 2009; Grüner and Taxt, 2006; Riabkov 
and Di Bella, 2002; Schabel et al., 2010; Taxt et al., 2012; Truslow and 
Tien, 2013). Most blind approaches are “multichannel” ones, i.e., they 
compare imaging data from two or more ROIs to deduce the AIF, which 
is assumed to be the same among all ROIs (Feng et al., 1997; Riabkov 
and Di Bella, 2002; Yang et al., 2004; Yankeelov et al., 2005). “Single- 
channel” methods, which rely on imaging data from a single ROI, take 
advantage of known properties of a desired signal (e.g., non-negativity) 
and choose the most likely signal that displays these properties (Taxt 
et al., 2012; Taxt et al., 2015; Truslow and Tien, 2013). By not requiring 
an AIF, these blind deconvolution methods can potentially avoid errors 
associated with solute delay and dispersion, and thus may improve the 
accuracy of image-guided treatment. 

It is important to recognize that whether imaging data are processed 
with blind deconvolution or with methods that require an AIF, the 
model of vascular permeability described by Eq. (1) makes several as-
sumptions. First, the extravascular concentration of solute is taken to be 
much smaller than the intravascular concentration. Second, the intra- 
and extravascular compartments are assumed to be separately well- 
mixed. Third, the solute transport is treated as unidirectional from 
vessel to tissue; reabsorption of solute into the bloodstream is not 
considered. In general, these assumptions hold for short times after 
vascular injection of solute and for vessels that do not have a compro-
mised barrier. They are less valid during imaging of tissues that contain 
highly permeable vessels, such as those that arise during injury, 
inflammation, or cancer. 

The objectives of the present study are thus two-fold. First, this study 
extends our previous blind deconvolution algorithm to a bidirectional 
model of vascular permeability that allows for tissue-to-vessel transport. 
Second, it compares the ability of the three different algorithms—those 
based on Patlak analysis (Peters, 1994), the previous blind approach 
using the unidirectional transport model (Truslow and Tien, 2013), and 
the new blind approach using the bidirectional transport model—to 
correctly predict vascular permeability. Our data demonstrate that both 
implementations of blind deconvolution are more accurate than Patlak 
analysis is when the AIF is delayed and dispersed, as would be the case in 
clinical imaging. Analysis of imaging data with the bidirectional trans-
port model was more accurate than with the simpler unidirectional one 
for the combination of high vascular permeability and high vascular 
volume. 

2. Numerical methods 

2.1. Bidirectional compartmental model of solute transport 

The bidirectional transport model [also known as the “extended 
Tofts” model (Sourbron and Buckley, 2013)] includes the possibility of 
solute backflow (Fig. 1B): 

dI
dt

=
dIv

dt
+ α0Iv − k0(I − Iv) (3) 

The last term in Eq. (3) accounts for reabsorption of solute into the 
vessel lumen, with a rate constant k0. Here, k0 equals PS/Ve, where Ve is 
the extravascular distribution volume for the solute in the ROI, and P 
and S are as defined earlier; as the rate constant for solute return, it has 

Fig. 1. Block diagrams of the transport models used in this study. (A) Unidi-
rectional model that neglects return of solute from the tissue to the vascular 
space. This model was used in the blind algorithm developed in a previous 
study (Truslow and Tien, 2013). (B) Bidirectional model that allows for solute 
uptake and return. In both cases, the vascular and tissue compartments are 
assumed to be separately well-mixed. PS represents the solute clearance across 
the vessel wall. Vascular flow (denoted by thick arrows) is assumed to be much 
larger than PS. Dotted lines denote the regions that are used to obtain the 
spatially integrated intensities I and Iv; for clarity, only one integration region is 
shown per diagram. 
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units of 1/time. The permeability products α0 and k0 are related by the 
ratio of solute distribution volumes: 

k0 =
Vp

Ve
α0 (4) 

Eq. (3) can be solved to give: 

Iv(t) = I(t) − α0e− (α0+k0)t
∫t

0

e(α0+k0)tI(t)dt (5) 

We assume that the vascular solute concentration is initially zero at 
time t = 0, rises to a maximum, then decreases smoothly back to zero at 
time t = T. That is, T refers to the time period between the first and last 
time-points used in the algorithm; if all imaging data are to be consid-
ered, as in the current study, then T also equals the end of the imaging 
time. 

For a given or measured intensity function I(t) and guesses of α and k, 
we can calculate a predicted vascular signal: 

Ĩv(t; α, k) = I(t) − αe− (α+k)t
∫t

0

e(α+k)t I(t)dt (6) 

Our method of determining permeability constants consists of 
searching for the values of α and k that yield a vascular signal ̃Iv(t;α, k)
that simultaneously displays a value and slope of zero at the end of the 
time series. As shown in the Appendix, this search—assuming it con-
verges—will yield the correct α0 and k0. Because I(t) is measured clini-
cally only at a finite set of times ti, i = 1, …, N, Eq. (6) must be discretized 
first: 

Ĩv(ti;α, k) = I(ti) − αe− (α+k)ti
∑N

j=1

[
cje(α+k)tj I

(
tj
) ]

(7)  

where the cj are coefficients chosen to implement an extended form of 
Simpson’s Rule (Yang et al., 2004). The search algorithm starts at α = k 
= 0, which leads to ̃Iv(ti) = I(ti). We first increase α until the predicted 
long-term vascular signal Ĩv(T) is zero. We then increase k by a small 
increment, and repeat the procedure to map the values of α and k where 
Ĩv(T;α, k) = 0. In principle, this “staircase” search strategy should 
eventually yield the values of α and k where ̃Iv(T; α, k) and dĨv(T; α, k)/dt 
are simultaneously zero; these values represent the best estimates of the 
permeability products α0 and k0. 

2.2. Application to solute intensity data from analytical two-compartment 
models 

To optimize the blind algorithm for prediction of vascular perme-
abilities, we first selected a vascular signal Iv(t) that contained a single 
bolus or additional terms to represent solute recirculation and a slowly 
decaying residual signal [Eqs. (11) and (12) in the Appendix]. We then 
solved Eq. (3) to obtain the theoretical I(t) for the particular Iv and true 
permeability values α0 and k0. Discrete sampling of I(t) provided an 
intensity signal that served as the input dataset for the algorithm. 
Gaussian noise with a signal-to-noise ratio (SNR) of at least 20 was 
added to I, and the blind algorithm was executed to yield the predicted 
permeability values α and k; this process was performed for at least three 
hundred noisy simulations. We chose Gaussian noise for computational 
convenience, although other types of noise that are specific to a 
particular imaging modality (e.g., Poisson in PET imaging) could be 
applied instead (Gravel et al., 2004). The long-term value and slope of 
the predicted vascular signal Ĩv(t; α, k) were calculated from an aver-
aging window that extended from t = T-∆T to t = T. Median, 5th 
percentile, and 95th percentile values of α and k were obtained for each 
model. We also noted the frequency at which the algorithm did not 
converge or at which it incorrectly predicted k to equal zero. 

2.3. Application to solute intensity data from finite-element models of 
capillary and tissue transport 

We then applied the optimized blind algorithm to solute intensity 
profiles that were obtained from finite-element models of solute trans-
port in a capillary-containing tissue cylinder, effectively performing an 
“in silico” imaging experiment. The diameters of the capillary and tissue 
cylinder were 5 μm and 15–45 μm, respectively, and the lengths of the 
capillary and tissue cylinder were both 1 mm; the capillary and tissue 
were co-axial. The finite-element models accounted for the convection 
of solute (intravascular and extravascular diffusion coefficients of 250 
and 100 μm2/s, respectively; maximum capillary flow speed of 600 μm/ 
s). The input to the capillary included terms to simulate solute recircu-
lation and residual vascular signal, and was time-shifted to represent a 
delay of 5 or 10 s [Eq. (13) in the Appendix]. The solute concentration 
was spatially integrated over the entire volume (including the capillary 
space) to yield I(t) at discrete times up to t = 75 or 80 s for delays of 5 or 
10 s, respectively. Gaussian noise was then added to I, and the resulting 
intensity signal was used as the input to the permeability algorithm. For 
each finite-element model, at least three hundred noisy simulations were 
performed. All finite-element models were solved with COMSOL Mul-
tiphysics ver. 5.4 (Comsol, Inc.), and models were meshed iteratively 
until two sequential meshes yielded I(t) curves that differed by <0.5% 
before noise was added. 

For comparison, blind analysis was performed on the same data, but 
with the permeability value k artificially constrained to zero; this 
analysis replicated the previous blind algorithm based on unidirectional 
solute transport (Truslow and Tien, 2013). Patlak analysis was also 
performed on the same intensity data (Peters, 1994). Here, the arterial 
input function AIF(t) was assumed to be a less-dispersed form of Iv and 
was shifted earlier in time relative to Iv [Eq. (14) in the Appendix]. A 
linear fit of I(t)/AIF(t) versus 

∫
0
t AIF(t)dt/AIF(t) yielded α. Because Patlak 

analysis is based on a unidirectional solute transport model, it also as-
sumes k is zero. 

3. Results 

3.1. Application of blind permeability algorithm to noise-free data 

Fig. 2 illustrates the basic ideas that underlie the permeability al-
gorithm, for a simple bolus vascular signal Iv(t) of finite width with true 
permeability constants α0 = 0.05/s and k0 = 0.0025/s. The bolus was 
modeled without delay or recirculation (Fig. 2A). This vascular signal 
resulted in a tissue intensity I(t) that rose simultaneously with Iv, but did 
not decrease back to zero by the end of the sampling period (Fig. 2B). 
Sampling I(t) once per second over a total time of T = 60 s yielded a 
noise-free time series (Fig. 2C) that we used to test the accuracy of the 
algorithm without the confounding effects of noise. Using Eq. (7) with α 
= α0 and k = k0 yielded a predicted vascular signal ̃Iv(t; α, k) that nearly 
matched the theoretical Iv (Fig. 2D, center). Deviating from these ideal 
values led to characteristic changes in the shape of the predicted ̃Iv. An 
iterative search with a resolution of 5 × 10− 5/s yielded α = 0.05/s and k 
= 0.0025/s as the values for which the long-term vascular signal and 
slope were exactly zero; thus, the error that resulted from discretization 
at the sampling frequency of 1 Hz was negligible for this case. 

3.2. Optimization of the blind permeability algorithm in presence of noise 

To determine the optimal imaging conditions that yield the most 
accurate permeability predictions in the presence of noise, we varied the 
time period T between the first and last time-points used in the algo-
rithm, the size of the averaging time window ΔT, and the signal-to-noise 
ratio SNR. These simulations were performed with the same bolus 
vascular signal and theoretical permeability values described above. In 
preliminary work, we found that more frequent time sampling always 
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led to more accurate permeabilities; thus, we selected the highest sam-
pling frequency (1 Hz) that was consistent with typical clinical imaging. 
For the other parameters, we first varied T, then ∆T, and finally SNR to 
determine the main factors that control the accuracy of the permeability 
algorithm for this particular vascular signal. 

Varying the time T revealed that at least 35–40 s were needed to 
avoid large permeability overestimates (Fig. 3A). Surprisingly, for noisy 
imaging data with SNR = 40, the algorithm often did not converge or 
yielded k = 0 when the time period was greater than 45–50 s. This result 
suggests that the increased variability when predicting permeabilities 
from long, noisy imaging data originated from the effects of noise on the 
determination of the long-term value and slope of the vascular signal. 

One potential strategy for mitigating the effects of noise is to change 
the length of the averaging time window that is used to obtain the long- 
term vascular signal and slope. As expected, short time windows led to 
large errors in predicted permeabilities and greater chances of algorithm 
errors (Fig. 3B). In contrast, long averaging windows eliminated algo-
rithm errors, but a systematic overestimation of both α and k emerged. 

Finally, we determined how the accuracy of the algorithm depended 

on signal-to-noise ratio SNR (Fig. 3C). As expected, higher SNR led to 
more accurate predictions. At a clinically achievable value of SNR = 40, 
the blind algorithm predicted α to within 12%. 

3.3. Accuracy of the optimized blind permeability algorithm 

The above results suggest that the blind algorithm performs best with 
long imaging times and averaging windows of roughly half the time 
period. We selected optimized imaging conditions of T = 60 s and 
averaging window of thirty time-points (i.e., ΔT = 29 s); the imaging 
frequency and signal-to-noise ratio were kept at 1 Hz and 40, respec-
tively. These choices are consistent with current clinical imaging prac-
tice in perfusion CT (Dankbaar et al., 2008b); application of the 
algorithm to the longer (several minutes) time periods that are more 
common in perfusion MRI is considered in the Discussion. With these 
conditions, we performed a parametric sweep to determine the accuracy 
of the permeability algorithm across a wide range of true permeability 
values α0 (Fig. 4A) and k0 (Fig. 4B). In general, the errors in α tended to 
be substantially smaller than those in k. Across the ranges of values 

Fig. 2. Representative example of the permeability algorithm. (A) Vascular signal Iv(t) for a bolus injection, generated from Eq. (11) in the Appendix with τ = 10 s. 
(B) Corresponding tissue signal I(t) for true permeability constants α0 = 0.05/s and k0 = 0.0025/s, found from solving Eq. (3). (C) Discretely sampled I(ti) with a 
sampling frequency of 1 Hz. (D) Predicted vascular signal ̃Iv(ti;α, k), for various values of α and k. The predicted ̃Iv has a long-term value and slope of zero when α =
0.05/s and k = 0.0025/s. Calculation of the long-term value and slope used the last two time-points (i.e., ∆T = 1 s). 
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examined, α was predicted to within ~10% error, while the error in k 
depended on the true permeability values. For small α0 or k0, the algo-
rithm predicted k poorly, with errors on the order of 100% for the 
smallest α0 and k0 examined. 

We also determined the accuracy of the algorithm when the vascular 
signal did not decay to zero by the end of the imaging time (Fig. 4C). 
These simulations were intended to model the presence of solute recir-
culation, which is often present with clinical imaging protocols. Resid-
ual vascular signal (i.e., the ratio of the vascular intensity at the last 
time-point to the peak vascular intensity) of ~2% resulted in a 
20–40% overestimate in α for a true α0 of 0.05/s. 

3.4. Application to spatially and temporally resolved solute transport data 

The above analysis treats microvascular solute transport with a two- 
compartment model, which assumes that the compartments (i.e., the 
intra- and extravascular spaces) are separately well-mixed. When the 
vascular flow speed is limiting and/or when the inter-vessel spacing is 
large, solute concentration gradients may be substantial. Thus, we per-
formed a more stringent test of the blind algorithm by using computed 
imaging data that were extracted from finite-element models of solute 
transport. These models did not assume the existence of well-mixed 
compartments and served as “in silico” imaging experiments. 

In these simulations, we modeled the transport of solute within a 
capillary-containing tissue cylinder. The vascular input to the capillary 
consisted of a delayed and dispersed signal that decayed to a residual of 

~1% [Eq. (13) in the Appendix]. The solute concentration within the 
tissue cylinder, including that in the capillary space, was spatially in-
tegrated to yield the amount of solute as a function of time. This volume- 
integrated signal was analogous to an intensity signal in a single pixel 
from clinical imaging, and was used as the input to the permeability 
algorithm. 

Following the optimized parameters, we set the total time period to 
be 75 or 80 s (with sampling frequency 1 Hz) and used the last thirty 
time-points as the averaging window; we also applied a signal-to-noise 
ratio of 40. We varied the solute permeability coefficient P, the tissue 
cylinder radius rt, and the solute input delay times. The true perme-
ability constants were calculated as α0 = 2P/r0 and k0 = 2Pr0/(rt

2 − r0
2), 

where r0 = 2.5 μm is the capillary radius. For comparison, we analyzed 
the same simulated data with a blind algorithm based on unidirectional 
transport (Truslow and Tien, 2013) and with Patlak analysis (Peters, 
1994), both of which assume fast vascular mixing but neglect extra-
vascular accumulation of solute. 

These analyses showed that the new and previous blind algorithms 
predicted the permeability constant α0 more accurately than Patlak 
analysis did, across a broad range of permeabilities and intercapillary 
spacings (Fig. 5A). The blind algorithm with a bidirectional transport 
model consistently overestimated α0 by 40–70%, with larger errors for 
smaller α0. The blind algorithm with a unidirectional transport model 
overestimated α0 by 10–20% in most cases, except for the combination 
of small intercapillary spacings (15 or 25 μm) and large permeabilities 
(α0 of 0.05 or 0.1/s) where α0 was underestimated by up to ~2-fold. The 

Fig. 3. Predicted permeability constants α and k and frequency of algorithm error, as functions of (A) imaging time period T, (B) length of averaging time window 
∆T, and (C) signal-to-noise ratio SNR. The “base case” model for these simulations had α0 = 0.05/s, k0 = 0.0025/s, T = 40 s, ∆T = 11 s, and SNR = 40. The vascular 
input Iv was identical to the one used in Fig. 2. 
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bidirectional transport model yielded more accurate estimates of α0 for 
these latter cases. The accuracy of Patlak analysis was noticeably worse 
than that for either blind algorithm in all cases, and worst for small 
intercapillary spacings. 

The predicted values of k from a bidirectional transport model were 
accurate only for small intercapillary spacings (15 or 25 μm) and large 
permeabilities (α0 of 0.05 or 0.1/s) (Fig. 5B). Large intercapillary 
spacing and/or small permeabilities result in extremely small values of 
k0 that could not be reliably predicted. By definition, the unidirection 
transport model and Patlak analysis (which assumes solute uptake only) 
do not yield values for k. 

To aid in visualization, we used the algorithm to “map” the perme-
ability in a rectangular array, in which each element of the array rep-
resents one simulation of a specific combination of permeability 

constant and capillary spacing (Figs. S1, S2). These images provide a 
different way to visualize the predictions, in a format more akin to a 
permeability map. They show that the bidirectional and unidirectional 
blind algorithms yield permeabilities that are less scattered and 
approach the theoretical values more closely than the predictions of 
Patlak analysis do. 

4. Discussion 

The algorithm that this study developed successfully predicted 
vascular permeability without knowledge of an arterial input function 
(AIF). These values consisted of the permeability-surface area product 
normalized to the vascular or extravascular volumes (i.e., α0 ≡ PS/Vp 
and k0 ≡ PS/Ve). Although the AIF can be measured in clinical imaging 

Fig. 4. Predicted permeability constants α and k, as functions of true permeability values (A) α0 and (B) k0, and (C) the residual vascular signal. Imax refers to the 
maximum value of Iv(t) over the imaging period; its ratio with Iv(T) represents the residual vascular signal at the last time-point. The “base case” model for these 
simulations had α0 = 0.05/s, k0 = 0.0025/s, T = 60 s, ∆T = 29 s, and SNR = 40; for (C), T = 70 s. The vascular inputs for (A) and (B) were identical to that used in 
Figs. 2 and 3; the input for (C) was generated from Eq. (12) of the Appendix. 
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by selectively analyzing the signal intensity within a feeding artery, the 
actual vascular input to a given tissue voxel is delayed and dispersed 
relative to the AIF and can be subject to partial volume effects in small 
arteries (Chen et al., 2004). By not requiring the measurement of an AIF, 
our blind algorithm is inherently robust against errors associated with 
vascular delay and dispersion. 

At first, it may seem implausible that enough information could be 
obtained solely from time-lapse imaging data I(t) to obtain permeability 
values. After all, I(t) is a convolution of an unknown vascular input and 
unknown vascular permeabilities α0 and k0. Nevertheless, blind decon-
volution has been performed successfully in other fields, by relying on 
prior knowledge of certain qualities of the unknown signal (Fish et al., 
1995). In the current study, these requirements consisted of: 1) Iv(t) 
decays to zero by the end of the imaging time, 2) Iv(t) reaches a slope of 
zero by the end of the imaging time, and 3) Iv(t) is non-negative. In 
practice, enforcing the first two conditions was sufficient to obtain 
unique predicted permeability constants α and k. 

4.1. Comparison of blind and Patlak analyses of vascular permeability 

Compared with Patlak analysis, the blind algorithm described here 
performed very well. Because it does not rely on an AIF, it is inherently 
unaffected by solute delay and dispersion. In contrast, Patlak analysis 
often yields erroneous values when the solute is delayed, and subjective 
interpretation of the resulting plots may be needed. The clinical impli-
cation is that permeability predictions that are based on Patlak analysis 
will prone to false negatives and/or false positives, and regions of 
abnormal vascular permeability will have less distinct boundaries, 
compared to those generated by blind deconvolution. These limitations 
become especially noticeable when our results are represented as color 
maps (Fig. S1). 

Our results also show that any advantage of choosing a bidirectional 
over a unidirectional transport model to analyze solute imaging data 
depends on the true permeability and vascular spacing. In principle, a 

model that allows for the return of solute from tissue to capillary should 
be more physiological than one that only allows for solute uptake. 
Nevertheless, we found that unidirectional models yielded more accu-
rate values of α than bidirectional models did, for most cases examined 
(Fig. 5A). The exceptions were when α0 was ≥0.05/s and the capillary 
spacing was ≤25 μm (equivalent to PS of ≥12 mL/100 mL/min and Vp of 
≥4 mL/100 mL), for which the bidirectional models were more accu-
rate. The bidirectional model yields an additional permeability measure 
k that can be used to infer the tissue solute distribution volume, but we 
have found that the predicted values of k are only accurate for large 
permeabilities. 

These results can be rationalized by considering the relevant solute 
mean transit times. The intravascular transit time is Vp/Fp, where Fp is 
the capillary flow rate; in our finite-element models, this time is 3.3 s. 
The extravascular transit time is Ve/PS, which ranges from 80 s (for the 
combination α0 = 0.1/s and 15 μm spacing) to 8000 s (for the combi-
nation of α0 = 0.01/s and 45 μm spacing). Since we held the imaging 
time period to ≤80 s, only for large permeabilities and small vascular 
spacings would one expect solute return from the extravascular space to 
contribute noticeably to transport rates. As a result, for small perme-
abilities and/or large spacings, the bidirectional model is effectively 
underdetermined or over-parameterized, and the predictions of the 
blind algorithm would be less accurate than for the unidirectional 
model. 

One might expect that Patlak analysis would also outperform the 
bidirectional model for small permeabilities and/or large spacings, since 
solute return is negligible for these cases. Our results show that Patlak 
analysis was still less accurate than the blind algorithms, even for these 
cases. The reason for this finding is that solute delay and dispersion 
make the measured AIF different from the true vascular input. Indeed, 
when we used the delayed and dispersed vascular input [Eq. (13)] as the 
AIF instead of Eq. (14), Patlak analysis yielded essentially perfect 
permeability predictions (data not shown). We note that corrections for 
solute delay and dispersion have been developed (Schneider et al., 2011; 

Fig. 5. Predicted permeability constants α and k, using im-
aging data that were generated from finite-element models 
of solute transport in a capillary-containing tissue cylinder. 
(A) Theoretical α0 (black lines) and predicted α (open symbols) 
from blind deconvolution with the bidirectional and unidi-
rectional (k = 0) transport models and from Patlak analysis. 
(B) Theoretical k0 (black lines) and predicted k (open symbols) 
from blind deconvolution with the bidirectional model. 
Median, 5th percentile, and 95th percentile values are 
plotted; in some cases, the confidence intervals are smaller 
than the symbols and are not visible. The vascular input was 
a delayed version of the one used in Fig. 4C, and was 
generated by Eq. (13) in the Appendix. For Patlak analysis, 
the AIF was generated by Eq. (14) in the Appendix.   
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Willats et al., 2006), albeit at the cost of greater computational 
complexity. The practical advantage of the blind algorithms over Patlak 
analysis will depend on the degree to which these corrections can 
compensate for delay and dispersion. 

4.2. Comparison with other models of vascular permeability and other 
blind deconvolution approaches 

The blind algorithms described in this study and in a previous one 
(Truslow and Tien, 2013) are based on the two-compartment bidirec-
tional (extended Tofts) and unidirectional models of solute transport, 
which assume that the intravascular solute transit time is negligible and 
that the vascular and extravascular compartments are separately well- 
mixed. Other transport models, with their own sets of assumptions, 
have been used in previous studies (Koh et al., 2011; Sourbron and 
Buckley, 2011; Sourbron and Buckley, 2012). The standard Tofts model 
neglects the vascular space (i.e., it sets Vp ≈ 0) and is well-suited for 
weakly vascularized tissues, such as the normal brain (Sourbron and 
Buckley, 2011). The two-compartment exchange model (2CXM) does 
not assume negligible intravascular transit time, and includes vascular 
flow as a separate parameter (Brix et al., 1999). The adiabatic tissue 
homogeneity (ATH) model further assumes that only the extravascular 
compartment is well-mixed (St. Lawrence and Lee, 1998). Distributed 
models that do not assume mixing of the extravascular compartment 
exist as well (Goresky et al., 1970). 

Whether the models that are used in the current study are sufficient 
to describe a given tissue depends on the flows, vascular volumes, and 
permeabilities of that tissue. Previous studies that fit identical imaging 
data to different models have shown that, for the best accuracy, the 
model should be matched to the imaging data (Cramer and Larsson, 
2014; Cuenod and Balvay, 2013; Oosterbroek et al., 2015; Sourbron and 
Buckley, 2011). Use of a complex model with too many fitting param-
eters for the given data can often lead to less physiological values of 
these parameters (Sourbron and Buckley, 2011). For the current study, 
the intravascular solute transit time (~3 s) is small compared to the 
imaging time periods (75–80 s) and to the time constant 1/α0 for solute 
extravasation (10–100 s). Thus, the assumption of fast flow is justified, 
and models that do not make this assumption (2CXM and ATH) would 
likely be less well-suited for analyzing the data. In actual tissues, the 
transit times can be nearly an order-of-magnitude larger, depending on 
the tissue and the size of an image pixel, and use of the more complex 
models that explicitly consider the intravascular transit time can be 
justified. For most cases that we analyzed, the intravascular solute 
transit time was also lower than the extravascular transit time PS/Ve 
(80–8000 s), which explains why the unidirectional transport model was 
sufficient in these cases. Neglecting solute return in the blind algorithm 
or with Patlak analysis both consistently predicted lower permeabilities 
than when solute return was allowed, a finding that has been reported 
by others (Cramer and Larsson, 2014; Oosterbroek et al., 2015). 

Previous studies of blind deconvolution have relied extensively on 
multichannel approaches using the same bidirectional model that we 
applied here (Fluckiger et al., 2009; Schabel et al., 2010; Yang et al., 
2007). In these studies, imaging data from two or more ROIs or from one 
ROI and one reference region are used to bypass the need for direct 
measurement of the AIF. Multichannel deconvolution assumes that the 
AIF to the different ROIs are the same, or differ at most by an unknown 
delay time. In contrast, our algorithms are single-channel ones, and rely 
only on the imaging data from a single ROI. Single-channel blind 
deconvolution subjects the vascular input to physiological constraints 
(e.g., non-negativity) to promote convergence of the algorithm (Grüner 
and Taxt, 2006; Taxt et al., 2012; Taxt et al., 2015). Previous work by 
Taxt and co-workers compared blind and non-blind deconvolution using 
two transport models (ATH and 2CXM) (Taxt et al., 2015). This study 
found that blind approaches fit imaging data better than non-blind ones 
did and yielded more physiological values of the perfusion parameters. 

4.3. Practical considerations 

Although the blind algorithm was essentially perfect when applied to 
noise-free data, clinical imaging data are inherently noisy, which can 
lead to errors in the predicted permeabilities. One way to compensate 
for low signal-to-noise levels would be to increase both the imaging time 
period T and the averaging window ΔT. A complementary solution to 
the issue of noisy data would be to bin the imaging signal across 
neighboring voxels (similar to a spatial averaging filter). Regardless of 
the exact strategy used, our data indicate that SNR of 40 is sufficient for 
good performance of the permeability algorithm. 

A second source of error stemmed from the assumption that the 
vascular signal decays to zero by the end of the imaging time. In prac-
tice, injected solute is never completely cleared from the bloodstream 
during imaging (Parker et al., 2006). Our results suggest that keeping 
the residual vascular signal to at most 2% of the maximum will lead to 
moderate overestimate of α. Depending on the imaging protocol, this 
level of residual solute may be achievable with long imaging times on 
the order of 10–15 min. For example, the population-averaged MRI- 
derived AIFs from Parker et al. display a residual of 6.3% after 6 min 
and, when extrapolated using the fitted parameters, < 2% after 13 min 
(Parker et al., 2006). Similarly, the CT-derived AIF from Dankbaar et al. 
shows a residual of 3.5% after 3 min (Dankbaar et al., 2008a). We 
acknowledge that for particular combinations of imaging modality, in-
jection protocol, tissue analyzed, etc., a 2% maximum residual may not 
be achievable. For these cases, it should be possible to modify the al-
gorithm to target a non-zero long-term vascular signal and slope, 
although these values would need to be obtained from prior knowledge 
of the solute’s pharmacokinetics. Other sources of error, such as that 
resulting from discrete sampling of the tissue intensity, appear to be less 
significant. 

Although our simulations only considered intensity-time data that 
spanned at most 80 s, they can be generalized to longer imaging periods 
by scaling the time. In principle, the blind algorithm should perform 
equivalently when the time period is increased by a constant factor and 
the permeability is decreased by the same factor. To test this idea, we 
applied the blind algorithm to simulated imaging data from a tissue 
cylinder with 15 μm intercapillary spacing, α0 = 0.01/s, a solute delay 
time of 5 s, and an imaging period of T = 355 s (i.e., 350 s plus the 
delay). This case represents a fivefold time-scaled analog of the one with 
α0 = 0.05/s and T = 75 s, which could be accurately analyzed with the 
blind algorithm and a bidirectional model (Fig. 5). Indeed, for the time- 
extended case, the predicted α (median 0.0122/s, 90% confidence in-
terval 0.0120/s-0.0125/s) and k (median 0.00123/s, 90% confidence 
interval 0.00119/s-0.00127/s) matched the theoretical values of 0.01/s 
and 0.00125/s well. Long imaging time periods, large permeabilities, 
and large vascular spaces benefit from the use of a bidirectional versus a 
unidirectional model. In this light, extended imaging data from tumors 
would be a natural first test for the blind algorithm developed in this 
study. 

Strictly speaking, blind algorithms with linear transport models can 
only yield ratios of transport parameters (e.g., PS/Vp rather than PS or Vp 
separately). To obtain absolute values of these parameters, one mea-
surement from the AIF (e.g., the value of the AIF at the last time-point, or 
the time-integral of the AIF) is required (Riabkov and Di Bella, 2002). 
This requirement holds for our algorithms and for those developed by 
others. 

Overall, the blind algorithm was fast, typically requiring at most a 
few seconds to complete the permeability calculations on a standard PC 
workstation with a precision of 5 × 10− 5/s. For a typical clinical image 
slice resolution of 128 × 128 pixels, it should be possible to generate a 
permeability map within several minutes with a precision of 0.001/s, 
which corresponds to a precision of ~10− 7 cm/s for the solute perme-
ability coefficient, sufficient for most applications. 
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5. Conclusions 

The algorithm described in this study enables one to map vascular 
permeabilities from time-lapse imaging data without knowledge of an 
arterial input function. Our results indicate that the errors associated 
with this blind deconvolution of imaging data can be surprisingly small 
under clinically acceptable imaging settings (signal-to-noise ratio of 40, 
total imaging time of 60–80 s, and imaging frequency of 1 Hz). Most 
importantly, this algorithm outperforms the standard Patlak analysis, 
which requires measurement of an AIF and is thus vulnerable to solute 
delay and dispersion. Bidirectional transport models did not show a 
clear advantage over simpler, unidirectional models, except for the 
combination of high permeability and low intercapillary spacing. 
Incorporation of the blind algorithm into current commercially avail-
able software for vascular imaging should be straightforward, and 
should increase the accuracy of permeability maps for the diagnosis and 

treatment of pathologies that involve breakdown of the vascular barrier. 
Supplementary data to this article can be found online at https://doi. 

org/10.1016/j.mvr.2020.104102. 
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Appendix A 

Justification of blind deconvolution algorithm 

This Appendix provides the mathematical basis for the algorithm developed in this study to obtain the true vascular permeability constants α0 and 
k0. The analysis assumes that the vascular signal Iv(t) rises from a value of zero at time t = 0, reaches a maximum, and decreases back to zero by time t 
= T (the final time point). 

The predicted vascular signal in Eq. (6) satisfies the following solute transport equation: 

dI
dt

=
dĨv

dt
+ αĨv − k

(

I − Ĩv

)

(8) 

Equating Eqs. (3) and (8) at t = T yields: 

dĨv

dt

⃒
⃒
⃒
⃒
⃒
⃒

t=T

= (k − k0)I(T) − (α+ k)̃Iv(T) (9) 

Evaluating Eq. (6) at t = T, substituting into Eq. (9), and integrating by parts yield: 

dĨv

dt

⃒
⃒
⃒
⃒
⃒
⃒

t=T

= (k − k0)I(T) − (α + k)I(T) + α(α + k)e− (α+k)T
∫T

0

e(α+k)t I(t)dt

= (k − k0)I(T) − kI(T) − αe− (α+k)T
∫T

0

e(α+k)tdI
dt

dt

= − k0I(T) − αe− (α+k)T
∫T

0

e(α+k)t
[

dIv

dt
+ α0Iv − k0(I − Iv)

]

dt

= − k0

⎡

⎣I(T) − αe− (α+k)T
∫T

0

e(α+k)t I(t)dt

⎤

⎦+ α(α − α0 + k − k0)e− (α+k)T
∫T

0

e(α+k)t Iv(t)dt

= − k0 Ĩv(T) + α(α − α0 + k − k0)e− (α+k)T
∫T

0

e(α+k)t Iv(t)dt

(10) 

Both I(T) and the integral in the last line of Eq. (10) are non-zero. Thus, Eqs. (9) and (10) show that the long-term value and slope of ̃Iv(t;α, k) can 
simultaneously equal zero only when α = α0 and k = k0. 

Eqs. (9) and (10) also indicate that, for small deviations about α = α0 and k = k0, both d̃Iv/dt
⃒
⃒
⃒
t=T 

and ̃Iv(T) will be linear functions of α-α0 and k-k0. 

This finding of linear response implies that our “staircase” search strategy will locally converge to the correct values of α0 and k0. Global convergence is 
not guaranteed, however, and must be checked numerically for each set of solute intensity data. 

Expressions for vascular input and AIF 

For the analytical two-compartment models used in Figs. 2, 3, 4A, and 4B, the vascular input consisted of a single bolus: 

Iv(t) =
(
t2/τ2)e1− t2/τ2

(11)  
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with τ = 10 s. 
For the analytical two-compartment models used in Fig. 4C, the vascular input consisted of an initial bolus, a smaller secondary peak, and a 

residual: 

Iv(t) =
(
t2/τ2)e1− t2/τ2

+ 0.2H(t − τ1)
(t − τ1

τ

)2
e1− (t− τ1)

2/τ2
+ δ

(
1 − e− t2/τ2

)
e− t/τ2 (12) 

Here, H(t) is the Heaviside step function, τ = 10 s, τ1 = 20 s, and τ2 = 40 s. The parameter δ represents the amount of residual vascular input and 
ranged up to 0.2 (equivalent to a residual signal at t = 70 s of ~2% of the maximum vascular input). The middle term represents solute recirculation 
and begins at a time τ1 relative to the initial bolus. 

For the finite-element models used in Figs. 5, S1, and S2, the vascular input consisted of an initial bolus, a smaller secondary peak, and a residual: 

Iv(t) = 0 for t ≤ τdelay

Iv(t) =
((

t − τdelay
)2
/

τ2
)

e1− (t− τdelay)
2
/

τ2
+ 0.2H

(
t − τdelay − τ1

)(t − τdelay − τ1

τ

)2
e1− (t− τdelay − τ1)

2
/

τ2

+0.06
(

1 − e− (t− τdelay)
2
/

τ2
)

e− (t− τdelay)/τ2 for t ≥ τdelay

(13)  

with τ = 10 s, τ1 = 20 s, and τ2 = 40 s. The parameter τdelay represents the time between the start of the AIF and Iv, and was either 5 or 10 s. In Patlak 
analysis of imaging data from finite-element models (Fig. 5A), the AIF consisted of narrower boluses, along with a residual: 

AIF(t) = (10 sec/τ)
[
(
t2/τ2)e1− t2/τ2

+ 0.2H(t − τ1)
(t − τ1

τ

)2
e1− (t− τ1)

2/τ2
]

+ 0.06
(

1 − e− t2/τ2
)

e− t/τ2 (14)  

with τ = 6.7 s, τ1 = 20 s, and τ2 = 40 s. Here, the boluses in the AIF were assumed to be less-dispersed versions of the ones in Iv. Because the AIF was not 
time-shifted, the peaks of the corresponding boluses in the AIF and Iv differed in time by approximately τdelay. 
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