The Starlet Sea Anemone
Nematostella vectensis
by J. R. Finnerty

Merits of *Nematostella* as a model system.

- Morphological simplicity
- Developmental flexibility
- Ease of culture
- Ease of field study
- Phylogenetic position
- Sequenced genome
- Relatively conservative genome evolution.
Relative morphological simplicity

- Diploblastic (2 layers)
- Blind gut (mouth/anus)
- Simple neuromuscular system
 - Nerve net
 - Epitheliomuscle cells
- Unsegmented
- No paired appendages
- But genuinely bilateral!

![Diagram of a primary axis column with head, column, and foot labeled.](image)
Hydra — Radial Symmetry

Nematostella — Bilaterally Symmetrical

+ pharynx
+ mesenteries
+ siphonoglyph
+ retractor m.
Developmental Flexibility

Alternate modes of reproduction.
Presumably tied to different environmental triggers.
Such flexibility is widespread and perhaps ancestral for animals.
Hi-lights the fundamental connection between environment and development.
Unlike the major developmental model systems (e.g., fruit fly, soil nematode, zebrafish), the adult *Nematostella* can arise via four different developmental trajectories.
All four developmental trajectories occur in the field and are readily observed in the lab.

- **Embryogenesis** & larval development (following sexual reproduction)
- **Regeneration** (complete & bidirectional)
- Asexual fission by “physal pinching.”
- Asexual fission by “polarity reversal.”
Nematostella Embryogenesis

- The sexes are separate.
- On a weekly basis, the female can extrude 100’s of eggs (encased in a jelly mass) from her mouth.
- Fertilization is external.
- Cleavage is “highly chaotic.”
- Early cell divisions may be asynchronous.
- As a result, the developmental fates of early blastomeres are not stereotyped or predictable.
- A hollow spherical blastula is produced.
- Gastrulation occurs approximately 24 hours after fertilization via the process of invagination.
Nematostella Gastrulation

Onset of gastrulation
(invagination occurs at the blastopore)

Nematostella Larval Development

- Day 3: gastrula elongates into planula larva.
- Heavily ciliated outer ectoderm.
- Highly motile larva (but stays close to home).
- Prominent “apical tuft” at the aboral end.
- Day 5: tentacle buds form.
- Day 7: larva settles and morphs into a polyp.
- Polyp can spawn ~50 days post fertilization.
Nematostella Larval Development

- Apical tuft cilia
- ORAL and ABORAL
- Developing mesenteries
- Ectoderm and endoderm

Nematostella Larval Development

- ORAL and ABORAL
- Developing tentacles
Physal Pinching

Polarity Reversal

Reproductive Flexibility

Experimental Advantages of Regeneration

- Establishment of Clonal Lines
 - allows genetic variation to be discriminated from environmental or stochastic variation
- Regeneration as an Eco-Developmental Assay
 - controlled laboratory studies can be used to investigate effects of genotype, environment, and genotype X environment on development

Easy to monitor in the field

- A denizen of semi-permanent salt marsh pools and tidal creeks.
- Accessible from shore.
- Repeated sampling of the same pools makes possible longitudinal studies on natural populations.
- Given the ecological importance of coastal estuaries, *Nematostella* is destined to become an important environmental sentinel species.

Adam Reitzel at Sippewissett Marsh, Cape Cod, MA
[Nematostella.org]
Phylogenetically Informative Position

- *Nematostella* is a member of the phylum Cnidaria.
- The Cnidaria is a “basal” metazoan lineage.
- Other members of the Cnidaria include corals, jellyfishes, and hydras.
- Among the basal animal phyla, the Cnidaria appears most closely related to the “Bilateria,” the clade that comprises >99% of all extant animals.

Class ANTHOZOA
- sea anemones
- corals, & relatives
Class SCYPHOZOA
true jellyfishes

Class CUBOZOA
box jellyfishes
Class HYDROZOA
hydroids, hydromedusae, & hydromedusae

BILATERIA

Kingdom METAZOA

phylum Porifera
8,000 spp

phylum Ctenophora
80 spp

phylum Cnidaria
10,000 spp

30 phyla
1,337,447 spp

BILATERIA

Medusozoa

Anthozoa

Kingdom METAZOA
Sequenced Genome

Joint Genome Institute (D. Rokhsar, PI)
- 7.8X whole genome shotgun sequencing
- 10,804 assembled scaffolds (median ~470 Kb)
- 356 MB
- 2N = 30
- polymorphism rate ~1/125 (~10X humans)
- ~18,000 “bona fide” protein coding genes

Conservative Genome Evolution

- By many measures, the *Nematostella* genome exhibits greater similarity to the human genome than do the fruit fly or soil nematode genomes.
- The cnidarian-bilaterian ancestor possessed a complex genome.
- *Nematostella*’s genome has evolved in a more conservative fashion than the “model” protostomes.
- This only increases *Nematostella*’s value for reconstructing early animal genome evolution.
Stella’s Surprising “Humanity”

Pairwise reciprocal BLASTs were used to identify putative orthologs of human genes in *Nematostella, Drosophila, Caenorhabditis, and Ciona* (a chordate).
Stella’s Surprising “Humanity”

Orthologous gene pairs shared with Human

![Image of organisms]

<table>
<thead>
<tr>
<th>Organism</th>
<th>Orthologous Gene Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Squirt</td>
<td>6,313</td>
</tr>
<tr>
<td>Fruit fly</td>
<td>5,772</td>
</tr>
<tr>
<td>Nematode</td>
<td>4,846</td>
</tr>
<tr>
<td>Anemone</td>
<td>6,989</td>
</tr>
</tbody>
</table>

Stella’s Surprising “Humanity”

“These results strongly suggest that many genes and gene families previously assumed to be chordate or vertebrate inventions are actually more ancient, and conversely that the fruitfly, soil nematode, and sea squirt lineages have experienced higher levels of divergence and gene loss than *Nematostella*....”
Abundant Genetic Structure & Polymorphism

Regional Population Genetic Structure

154 AFLP loci were used to genetically fingerprint 212 Nematostella. Animals from different estuaries appear genetically isolated.
Fine-scale Population Genetic Structure

- Within a 500 acre saltmarsh, individuals in different pools segregate into different genetic clusters.
- Animals from different pools appear genetically isolated.

Possibility for Local Adaptation

- Animals from different geographic locales grow better at different temps (e.g., only South Carolina animals grow better at 29 °C than 21°C).
Possibility for Local Adaptation

- Animals with different genotypes regenerate differently under exposure to peroxide.
- Both variants of the gene occur in Sippewissett.