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ABSTRACT
Programming on a GPU has been made considerably easier with the
introduction of Virtual Memory features, which support common
pointer-based semantics between the CPU and the GPU. However,
supporting virtual memory on a GPU comes with some additional
costs and overhead, with the largest being from the support for
address translation. The fact that a massive number of threads run
concurrently on a GPU means that the translation lookaside bu�ers
(TLBs) are oversubscribed most of the time. Our investigation into
a diverse set of GPU workloads shows that TLB misses can be
extremely high (up to 99%), which inevitably leads to signi�cant
performance degradation due to long-latency page-table walks. Our
pro�ling of TLB-sensitive workloads reveals a high degree of page
sharing across the di�erent cores of a GPU. In many applications,
a page can be accessed in temporal proximity by multiple cores,
following similar memory access patterns. To support the inher-
ent sharing present in GPU workloads, we propose Valkyrie, an
integrated cooperative TLB prefetching mechanism and an inter
L1-TLB probing scheme that can e�ciently reduce TLB bottlenecks
in GPUs. Our evaluation using a diverse set of GPU workloads
reveals that Valkyrie is able to achieve an average speedup of 1.95⇥,
while adding modest hardware overhead.
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• Computing methodologies ! Graphics processors; • Soft-
ware and its engineering! Virtual memory.
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Figure 1: Distribution of page sharing behavior across di�er-
ent L1-TLBs, in an example GPU with 64 L1-TLBs. X-Y TLBs
means a range between X to Y L1 TLBs share pages.
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1 INTRODUCTION
Modern-day large scale applications, including deep learning [23],
molecular dynamics [20], genome sequencing [30] and cryptocur-
rency mining [47], have a high degree of data-level parallelism.
GPUs have become the preferred choice to accelerate these applica-
tions. This widespread adoption of GPUs has been enabled by the
GPU hardware vendors, such as AMD and NVIDIA, by lowering the
barrier to entry. Today’s GPU platforms are equipped with optimiz-
ing compilers, e�cient runtimes and advanced driver support. One
key feature that has been recently introduced by GPU vendors is
Uni�ed Memory (UM) [34] in CUDA terminology or Shared Virtual
Memory (SVM) [5] in OpenCL terminology. UM and SVM lower the
e�ort required by programmmers to program a single GPU, fused
CPU-GPU systems (e.g., APUs [3]), as well as multi-GPU systems.
They eliminate the need to perform explicit memory copies, as the
GPU driver and the runtime handle all page transfers to/from the
GPU. They lower programmer burden by managing CPU-to-GPU
and GPU-to-GPU data transfers [1, 11] and support oversubscrip-
tion of memory [29, 34]. To support all these capabilities, GPU
vendors have added virtual memory support, providing the re-
quired hardware and software. On the hardware side, this support
includes e�cient input-output memory management units (IOM-
MUs), multi-threaded hardware page table walkers (PTWs), and
multi-level translation lookaside bu�ers (TLBs). In terms of soft-
ware support, the features include Uni�ed Memory (UM) API calls,
which are directly under the control of the programmer, as well
as support from the GPU driver and runtime for handling tasks



such as page migration, TLB shootdowns, and page swapping [34].
The set of virtual memory features that have been predominantly
available on CPUs have been extended to support GPUs [37, 38].

Unfortunately, enabling Virtual Memory support on GPUs intro-
duces signi�cant performance overhead. Features such as demand
paging and page eviction create performance bottlenecks [11, 18,
29]. Address translation on GPUs is a major bottleneck, given the
limited size of the private L1-TLBs, which in turn, generates severe
pressure on the shared L2-TLB. For example, cryptocurrencyminers
have reported that they su�er signi�cant performance degradation
due to TLB misses on GPUs [13]. To solve this problem, improving
address translation e�ciency has been a focus of recent work [9, 52].

To understand the impact of these problems, we conducted a set
of experiments that capture the L1-TLBmiss rates of a range of GPU
applications. In our experiments (details in Section 4), we observe
that GPU applications that possess poor temporal locality in terms
of page accesses can have L1-TLB miss rates that are as high as 99%
and L2 TLBmiss rates that are as high as 93%. The limited bandwidth
of the shared L2-TLB [52] also renders it ine�ective, because GPU
applications can have thousands of memory transactions in �ight
and if those requests miss in the L1-TLB, they would eventually
have to be serviced by the L2-TLB. A naive way of combating this
problem is to simply increase the size and port count of the L1
and L2 TLBs. However, such solutions increase the size and port
count of SRAM-based arrays, inevitably introducing area and power
overhead [44]. Prior work on GPU TLB design enhancements have
mostly focused on the shared L2-TLB [9] or on page-coalescing
mechanisms [8]. Baseline designs for L1-TLBs on a GPU have been
established in prior work [37, 38]. However, there has not been
much work on designing and architecting the L1-TLBs to leverage
the unique characteristics of GPU applications, which in turn has
the potential to increase application performance. In this work,
we make the following three key observations about the L1-TLB
behavior of GPU applications, motivating our e�orts to improve
the L1-TLB design:

1.) The �rst observation (as shown in Figure 1) is that there is a
high degree of page sharing across the cores in a GPU. The sharing
behavior can range from applications where pages are being shared
by only a few GPU cores, to applications where pages are shared
by all the cores on the GPU.

2.) The second key observation is that the TLB translation of
many di�erent pages across cores follow similar patterns. This
means if we can track which cores share similar page table entries,
we can potentially prefetch these entries ahead of time to increase
the L1-TLB hit rate, in turn improving overall system performance.
As shown in Figure 2, if we can identify that the same set of TLBs
shares pages A, B, C and D, we can use this information to prefetch
entries into the sharing TLBs, after one of the sharers accesses
pages E, F, and G.

3) Finally, we observe (as shown in Figure 3) that in many in-
stances, whenever there is an L1-TLB miss, the same page table
entry can also be found in another L1-TLB on the GPU (about 60%
of the time). On average, about 33% of these misses can also be
found in the same Shader Engine (the Shader Engine is described
in Section 2). If we can design a low-cost network for inter-TLB
communication and develop an e�cient mechanism to leverage a
portion of this inter-L1-TLB locality, we can potentially retrieve a

49150 49200 49250 49300 49350 49400 49450 49500
KLlo-CyFles

63

47
35
25
12

7L
B

 In
Ge

x

3Dges A B C D E F G

Figure 2: Accesses to multiple pages by the same set of
cores (represented by TLB index on the y-axis) during the
execution of KMeans benchmark. A, B, C, D, etc. represent
di�erent unique pages.
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Figure 3: Percentage of time an L1-TLBmiss entrywas found
in another L1-TLB.

translation from a neighboring L1-TLB without having to go the
L2-TLB or to the MMU. In Section 2 we demonstrate how we can
reduce signi�cantly the number of these misses by accessing these
translations in neighboring TLBs.

Based on these observations, we propose Valkyrie, an integrated
solution consisting of two mechanisms. Our �rst mechanism is the
design of a hardware prefetcher which takes advantage of inter-core
locality and prefetches TLB entries based on runtime detection of
dynamic page table entry sharing behavior. Our second mechanism
performs L1-TLB probing, taking further advantage of this locality
behavior by enabling neighboring L1-TLBs to communicate with
each other for TLB miss resolution. The ultimate goal of Valkyrie is
to improve the performance of GPU applications that are highly
sensitive to TLB misses.

The main contributions of this work include:
• We perform an in-depth characterization of the inter-L1-TLB
page sharing behavior across a diverse set of GPU applications.
Our analysis reveals new insights (discussed earlier) into the TLB
sharing behavior of GPU applications.

• We propose and design Valkyrie, a programmer-transparent hard-
ware solution to leverage inter-L1-TLB locality and improve the
performance of TLB-sensitive applications bymeans of twomech-
anisms Prefetching and Probing. To support prefetching, we
use a Locality Detection Table and a runtime feedbackmechanism
to determine the L1-TLBs to which we prefetch the translation in-
formation. To implement Probing, we co-design the interconnect
within a set of neighboring L1-TLBs using a bidirectional ring
NoC, leveraging inter-core locality. This allows L1-TLB misses
to resolved by neighboring L1-TLBs.

• We implement and evaluate Valkyrie in MGPUSim [45]. Our eval-
uation shows that Valkyrie can improve the overall GPU system
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Figure 4: The address translation process on a GPU.

performance by up to 1.95⇥ on an average when compared to a
system without TLB prefetching and inter-TLB probing mecha-
nism, with modest hardware overhead.

2 BACKGROUND & MOTIVATION
In this section we review the general mechanics of address trans-
lation on a GPU, describe the performance bottlenecks associated
with GPU address translation, and discuss how we can exploit
application-level characteristics to alleviate these bottlenecks.

2.1 GPU Architecture
We will be using AMD GPU terminology in the following descrip-
tion of GPU architecture. A GPU uses multiple cores (i.e., Compute
Units or CUs) to process data. A CU can execute a large number of
GPU threads (i.e., work-items) in parallel. In a CU, a wavefront of 64
work-items always executes the same instruction. CUs are grouped
according to the hardware resources they share. In a GCN-based
GPU such as the Radeon VII [6], a set of four CUs form a Shader
Array (SA). Four SAs form a Shader Engine (SE), with 16 CUs shar-
ing the graphics-related components such as the Geometry Engine.
Every CU is connected to its own private L1-vector cache. Each
SA has one L1-scalar cache (a read-only cache that is mainly de-
signed for caching addresses and constants) and one L1-instruction
cache. The multi-banked L2 cache is shared by all the CUs in a
GPU and is multi-ported to achieve high throughput. The L2 caches
are connected to the main memory controllers, which typically
use high bandwidth solutions (e.g., HBM, GDDR) to best meet the
demands of memory-hungry GPU applications. A group of SEs,
when combined, form the whole GPU. NVIDIA-based GPUs, such
as the Turing architecture [35], follow a similar hierarchical design
where groups of Streaming Multiprocessors (SMs) are connected to
form Texture Processing Clusters (TPC), and six of such TPCs are
combined to form a Graphics Processing Cluster (GPC).

2.2 Virtual address translation in GPUs
Modern GPUs use virtual addresses in their CUs. Virtual addressing
abstracts away the physical location of the data, enabling many
useful features. For example, virtual addressing enables Uni�ed
Memory (UM), which relieves the programmer’s burden of per-
forming explicit memory management. The GPU hardware and
driver can e�ectively move data from device to device by changing
the virtual to physical address mapping. Virtual addressing also

enables address-space isolation for running concurrent applications
on the GPU [9].

Virtual addresses need to be translated to physical addresses
before accessing data in the GPU L1-cache. Modern GPUs provide
dedicated hardware for address translation, which includes multi-
level TLBs, multi-threaded page table walkers (PTWs), and memory-
management unit caches [37, 38]. This support avoids the overhead
of depending on the CPU to perform address translation, which
can signi�cantly impact performance [38].

Similar to the cache hierarchy, the TLB hierarchy on a GPU con-
sists of multiple levels [41]. Each GPU core or compute unit (CU) is
equipped with a private L1-TLB that is typically fully associative to
eliminate con�ict misses [9, 41]. The L1-TLBs are typically backed
by a larger L2-TLB, which is shared between all the available CUs
in the GPU and is usually multi-ported to allow for concurrent
lookups [9]. The TLBs typically include Miss Status Holding Regis-
ters (MSHRs), so that an L1-TLB can handle other requests while
fetching translations from the L2-TLB [37]. Multi-level TLBs also
tend to be organized in amostly-inclusive hierarchy where the trans-
lation may or may not be necessarily present in both the L1-TLB
and L2-TLB. Mostly-inclusive TLBs are both easier to implement
and do not su�er from the overheads of back invalidations when
the L1 to L2-TLB bandwidth becomes a bottleneck [14, 51].

A miss in both the L1 and L2-TLBs triggers a page table walk,
which is handled by the hardware page table walkers [38]. Page
table walkers traverse entries in the entire page table to search for
the virtual address, incurring high latency. To deal with the high
number of concurrent requests over a short time window, these
page table walkers are typically multi-threaded [37, 38].

Combining these elements, the address translation process of
a GPU is shown in Figure 4 and follows a set of steps. The pro-
cess starts with the execution of a memory instruction by a CU,
triggering a memory request to an L1 cache. 1 : On a translation
request from the CU, that misses in both the L1-TLB and L2-TLB,
the request is forwarded to the page walk bu�er on the IOMMU
which is located on the CPU die [41, 50]. Once a hardware page
table walker is available, this request is picked up by the walker to
perform a page table walk. 2 : Once the page table walk completes
and a valid translation is found, the request is returned to the L2-
TLB and the L1-TLB. Both levels store the translation. 3 : Finally,
the L1-TLB returns the virtual-to-physical translation response to
the L1 cache. Then, the L1 cache can issue the memory access with
the physical address to its local storage and, if there is a cache miss,
to the rest of the memory hierarchy.

GPU applications can have thousands of in-�ight threads (e.g.,
163,840maximum concurrent threads in anAMDRadeonVII GPU [6])
running concurrently. A large number of threads generate a large
number of concurrent memory requests, causing severe pressure
on the caches and the TLBs. From Figure 5, we observe that many
workloads experience extremely high TLB miss rates in the private
L1-TLBs (as high as 99%) and the shared L2-TLB (as high as 93%).
Even though GPUs are more latency tolerant as compared to CPUs,
having such a high TLB miss rate, which arises both in part due
to the massive amount of threads running on the GPU as well as
the streaming behavior of the workloads, inevitably, leads to per-
formance degradation as a signi�cant number of wavefronts can
stall on serving TLB misses [9]. To avoid the performance penalty
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Figure 5: L1-TLB and L2-TLB miss rates across GPU applica-
tions.

associated with TLB misses that trigger long-latency page walks,
we must reduce the TLB miss rate in GPUs. While the actual latency
of servicing a miss from the L2-TLB is only about 10 cycles [9], the
queuing latency which arises due to the large number of threads
stalled waiting on L1-TLB misses to be serviced from the L2-TLB
means that the actual latency can be much longer.

Another challenge with current GPU TLB designs is that the
L2-TLBs experience high pressure due to the large number of con-
current threads running on the GPU, but have limited bandwidth.
Unlike caches, banking the GPU’s TLBs does not o�er much ben-
e�t [52]. Adding more ports to the shared L2-TLB also leads to
signi�cant area and power costs.

2.3 L1-TLB Sharing Behavior
The parallel nature of some GPU applications causes threads run-
ning on di�erent cores to access the same page or even the same
cache block [21]. Sharing in applications is common due to threads
running on di�erent GPU cores accessing the same common data
structure, such as matrices and arrays. Three interesting facts can
be distilled from this observation of the L1-TLB sharing behavior:

First, as we can observe from Figure 1, the amount of page shar-
ing can vary from application to application. For example in the
Matrix Transpose benchmark (MT), 100% of the pages are shared
by 2-16 L1-TLBs. For Page Rank (PR), on the other hand, 78% of the
pages are accessed by 16-32 L1-TLBs. Thus the number of sharer
L1-TLBs can vary from application to application.

Second, the shared pages are accessed in temporal proximity
to each other. Figure 2 shows the accesses to multiple pages (A,
B, C, D, etc.) from the same set of TLBs (12, 25, 35, 47 and 63) at
di�erent points in time for the KMeans benchmark. If we look
at these accesses to the di�erent pages, we can see the pattern
that the same set of TLBs are making access to di�erent pages
throughout the execution of the application. Taking the example
of this scenario, originally translations for pages A, B and C were
brought into the shared L2-TLB on an L1-TLB miss from TLB 63.
When TLBs 47, 25, 35, and 12 attempts to load this translation, they
have a probability of getting the translation information from the
shared L2-TLB (assuming it has not been evicted yet). However,
since the L2-TLB is shared by all the L1-TLB’s in the GPU, the
limited bandwidth of the L2-TLB can still impact the speed of the
L1-TLB to L2-TLB accesses. If we know beforehand that TLBs 63,
47, 25, 35, and 12 share a large number of pages, then on an L1-TLB
miss from TLB 63, the translation can be potentially prefetched into
L1-TLBs 47, 25, 35 and 12 ahead of time. The accesses to shared
pages can then easily turn into L1-TLB hits for TLBs 47, 25, 35,
and 12, reducing translation latency and potentially improving
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Figure 6: The mechanism of Prefetching. 1 Translation ar-
rives at L2-TLB. 2 Translation misses in L2-TLB requires
a page table walk at the IOMMU. 3 Translation response
returned to the requester. 4 Concurrently with 3 , the L2-
TLB updates the Locality Detection Table and fetches the list
of L1-TLBs that may also potentially need this page. 5 , The
page entry is then sent to the L1-TLBs.

overall performance. The key challenge is to track the TLB entry-
sharing behavior across the entire GPU and then issue prefetches
accordingly to maximize performance.

Third, based on our observation that GPU cores access a similar
set of pages, some of the L1-TLB misses on a core can potentially be
serviced by another core’s L1-TLB (see Figure 3). Using the KMeans
benchmark from Figure 3 as an example, 52% of the misses can be
potentially served by another L1-TLB on the same GPU if there was
amechanism to communicate between L1-TLBs. If this form of inter-
TLB communication was restricted to TLBs on a single SE, it will
still allow 47% of such misses to be resolved. The mostly-inclusive
hierarchical design formulti-level TLBs that are commonly used [14,
51] due to their simplicity leads to another interesting observation.
On average across the workloads we studied, 26% of the L1-TLB
misses that could potentially to be resolved by another L1-TLB were
not even found in the shared L2-TLB. This means that enabling
some form of inter L1-TLB communication will help to resolve
bottlenecks arising due to both the limited bandwidth and limited
capacity of the L2-TLB.

3 VALKYRIE SYSTEM DESIGN
Valkyrie provides a hardware solution to improve the performance
of TLB-sensitive GPU applications. Valkyrie uses two mechanisms:
Prefetching: Here, we introduce a Locality Detection Table (LDT)
that tracks runtime inter-TLB locality information. A prefetcher
that resides in the L2-TLB then uses this information from the LDT
to alleviate TLB bottlenecks by prefetching pages to the L1-TLBs.
Probing:With L1-TLB Probing, we integrate a lightweight intra-SE
on-chip ring that interconnects the L1-TLBs, enabling neighboring
L1-TLBs on the ring to service L1-TLB misses from each other.

3.1 Prefetching Mechanism
We design Valkyrie’s prefetching mechanism to exploit commonly
observed behavior in GPU applications, where multiple L1-TLBs ac-
cess the same page-table entries in temporal proximity (as observed



in Figure 2). The �rst challenge in designing the prefetching mech-
anism is to dynamically determine if there are any other L1-TLBs
that are likely to share a particular page-table entry. This calls for a
table that can keep a record of such page-sharing behavior. To that
end, we introduce the Locality Detection Table (LDT). The LDT is
placed alongside the L2-TLB to keep track of the L1-TLBs that tend
to share the same page table entries. The LDT is a �nite-sized (100
entries in our implementation), fully associative table, as shown
in Figure 6.1.

For a 64-bit virtual address using 4KB pages, the virtual page
number (VPN) has 52 bits. For every memory access, in case of
an L1-TLB miss, we send a request to the L2-TLB. The L2-TLB
processes the request as usual and the translation information is
sent to the requesting L1-TLB. In parallel to the regular address
translation process, we hash the 52-bit VPN to generate an 18-bit
tag. The tag bits are then compared with the tags of each row in
the fully-associative LDT to determine if there is a match. In the
case of a tag match, we read the corresponding entry in the LDT.
Each entry in the LDT is a 64-bit mask (1 bit each for the 64 L1-
TLBs in our evaluated system). We set the bit corresponding to the
L1-TLB that currently has a miss to 1. A value of 1 in any other bit
position indicates that the corresponding page has been accessed
by one or more other L1-TLBs. In the case of an LDT miss, a new
entry corresponding to the current memory access is added to the
LDT. If the LDT is full, the oldest entry is evicted and the new one
inserted (i.e., FIFO replacement). Evicting old tags encourages the
prefetcher to forget old page access patterns and learn new ones.

We chose 18 as the number of tag bits for the LDT. This value is
large enough to minimize collisions over a short execution duration.
Although the total number of possible hashed values is high (an
18-bit hash can have up to 218 entries), we only keep 100 entries
in the LDT to limit the area and power overhead of the LDT. The
insertions and fetches from the LDT are not on the critical path
and so we do not take a performance hit. Using a fully-associative
structure allows us to make updates and retrieve elements from the
table in a single cycle.

Next, the L2-TLB needs to use the information from the LDT
to decide if we should prefetch translation information into any
of the L1-TLBs. Ideally, the L2-TLB should send the page entry to
all the L1-TLBs marked in the LDT which have been identi�ed to
have used that page before. However, sending too many prefetched
TLB entries can evict useful TLB entries and waste energy. While
the applications we evaluated have some degree of L1-TLB page
sharing behavior (see Figure 1), not all of them will bene�t from
prefetching since some of these applications do not su�er from
high L1-TLB miss rates (see Figure 5). Therefore, it is important to
use some form of feedback mechanism at runtime to throttle the
number of L1-TLBs to whom the prefetched translation is sent to
at runtime. Thus, we design a simple hysteresis-style mechanism
to throttle and tune the number of “partner” L1-TLBs (NPT) at
runtime. When the number of sharing L1-TLBs suggested by the
LDT is greater than the NPT value, we randomly select a total of
NPT L1-TLBs and prefetch the translation entries only to them.

1Typical L1-TLBs are 32-128 fully associative structures. So, our dedicated LDT struc-
ture for the entire GPU with 100 entries and with fewer bits per entry can be easily
realizable.

To determine themaximumnumber of L1-TLBs that can receive a
prefetched page entry (as represented by NPT), we use a con�dence-
based parameter tuning mechanism. Every 100K cycles (i.e., an
epoch), the parameter tuner either increments or decrements the
NPT value by 4. Before making the decision, the parameter tuner
collects the total number of L1-TLB accesses and the number of
L1-TLB hits from all the L1-TLBs. This process reuses the L1-TLB
to L2-TLB network and splits the address bus bits for both total
access counts and hit counts. If the L1-TLB hit rate is increasing,
we increase the con�dence level (from 0 to 3, saturating at level 3)
and repeat the action taken in the previous epoch. If the L1-TLB
hit rate is decreasing, the con�dence level is reduced. If the L1-TLB
hit rate continues to decrease when the con�dence level is 0, the
parameter tuner will start to adjust the NPT value in the opposite
direction. Adopting this throttling mechanism, the NPT value can
dynamically adapt to the characteristics of the running application.

3.2 Probing Mechanism
As we discussed in Section 2 and demonstrated in Figure 1, there
is signi�cant opportunity to fetch translations from neighboring
L1-TLBs. To leverage inter-L1-TLB locality, we design a mechanism
for inter-L1-TLB communication called Probing that operates over
a lightweight intra-SE on-chip ring network that interconnects the
16 L1-TLBs that are part of the SE.

Address Translation Information Search Scope: First, we
need to decide how many other L1-TLBs should be probed on an
L1-TLB miss. Figure 3 shows the percentage of time a CU found
the address translation information in another L1-TLB in the same
SE. On average, ⇠35% of the L1-TLB misses can be served from
another L1-TLB within the same SE. Hence, we restrict the scope
of searching for address translation information to L1-TLBs located
within the same SE. The Compute Units (CUs) in an SE are physi-
cally placed close to each other, so we can probe the L1-TLBs within
an SE with a low-overhead interconnect solution. Probing L1-TLBs
from other SEs requires long wires and complex switches, which is
expensive in terms of both area and the energy. Moreover, searching
in each L1-TLB on the entire GPU may generate a lot of redundant
L1-TLB look-ups.

Interconnect Network Between L1-TLBs: To connect the L1-
TLBs within the same SE, we propose using a bidirectional ring
network, as shown in Figure 7. A bidirectional ring is well-suited
for this purpose as it allows for e�cient communication across
neighboring L1-TLBs without high complexity. Another motivation
for choosing a ring is that the number of CUs in an SE is typically
low. The two most recently introduced GPUs on the HPC market
(i.e., the NVIDIA TU102 GPU [35] and the Radeon VII [6]) have a
total of 12 streaming multiprocessors (SMs) and 16 CUs in each SE,
respectively. It is unlikely that the number of SMs or CUs per SE
will increase dramatically in the future. The ring is 64-bits wide in
each direction and it is wide enough to accommodate communica-
tions that only require single-�it packets. Since the interconnected
L1-TLBs can receive requests from each other, a 16-entry bu�er
is su�cient. The bu�ers are placed at each L1-TLB to store the
incoming requests from neighboring L1-TLBs.

Search Mechanism: Given that we do not have apriori knowl-
edge of which L1-TLBs in an SE can provide the translation, it is
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Figure 7: Block diagram of the intra-SE on-chip network (bi-
directional ring topology) that interconnects the L1 TLBs to-
gether. An example of handling a miss in CU-1’s L1-TLB is
shown by the blue arrows. The translation request misses in
L1-TLB1 which results in requests being forward in both di-
rections of the ringwith di�erent Time To Live (TTL) values.
On the counterclockwise ring, the L1-TLB1 probes at most
4 TLBs (TTL=4), while for the clockwise ring, the L1-TLB1
probes at most 15 TLBs (TTL=15).

critical to have smart mechanisms to avoid the penalty of search-
ing every L1-TLB in the SE. Mechanisms that detect frequently
shared data between GPU L1-data caches have been proposed in
the past [21]. Such mechanisms are useful when predicting cache-
line sharing behavior since a typical cache line is smaller than a
page and therefore the percentage of shared cache-lines between
a pair of L1-caches will typically be lower than the percentage of
shared pages between a pair of L1-TLBs. In our observations, the
percentage of shared pages for the application can be as high as 99%,
which means that a predictor is not helpful. Predicting whether a
page is shared or private for applications that have such a high de-
gree of page sharing does not provide any bene�ts. Also, prediction
mechanisms have di�culty predicting whether the shared page is
present at a particular instant in time on another L1-TLB. Therefore,
to reduce the complexity and the chances of mispredictions that
occur with a prediction-based scheme, we follow a di�erent probing
mechanism as outlined below.

In Valkyrie, in case of an L1-TLB miss, the L1-TLB sends out
two requests concurrently in each of the rings (both clockwise
and counterclockwise) with di�erent Time To Live (TTL) values,
added to the packet header. The �rst request, de�ned as the primary
request, is sent with a TTL value of 15 for a 16-node ring. The scope
of this request is to search the full ring (all 15 L1-TLBs) until there is
either a hit or the TTL reaches 0 (the TTL value is decremented by
1 at each hop). The second request is sent in the opposite direction
with a TTL value of 4 and is called the secondary request. We select
a value of 4 because our experiments show that, on average, about
50% of the requests will hit in a neighboring L1-TLB that is less
than 4 hops away in the ring. The secondary request can perform
lookups in a maximum of 4 L1-TLBs.

If both the primary and secondary requests hit in any L1-TLB, a
reply is sent through the ring network with the translation infor-
mation. The request which returns the translation �rst is used and
the one arriving later is simply discarded. If the secondary request
which is sent with the TTL value of 4 encounters a miss after 4 hops,

the request returns with a negative acknowledgment, and the trans-
lation request is forwarded to the L2-TLB. If the primary request
cannot �nd a valid translation, the request is simply squashed since
a translation miss has already been forwarded to the L2-TLB when
the secondary request returned with a negative acknowledgment.
One challenge with a ring network is the higher network hop count.
However, by using this two-pronged communication mechanism,
we minimize the wait time before sending a request to the L2-TLB.

Frequency of Inter-L1-TLB Communication: Another im-
portant design question is how to arbitrate between sending a
request to the L2-TLB and sending a request to the other L1-TLBs.
If all misses are forwarded to the other L1-TLBs, this can lead to
poor utilization of the L2-TLB bandwidth and overload the inter-
TLB communication network. We need a runtime mechanism to
decide if the request should be sent to the L2-TLB or to the other
L1-TLBs via the ring. Broadly speaking, we do not send out re-
quests to neighboring L1-TLBs if the L2-TLB is highly e�ective in
serving translation misses. There are two ways to measure this
behavior. One mechanism is to measure the e�ectiveness at each
L1-TLB controller by maintaining a running average of the latency
of translation requests that have been sent to the L2-TLB and com-
paring it to a preset threshold. Another mechanism is to look at the
bu�er/link utilization of all the L1-to-L2 TLB links and infer this
information. This second mechanism requires the L2-TLB to collect
the bu�er/link utilization information repeatedly, and broadcast
it to the L1-TLBs since the L1-TLBs cannot infer the utilization of
the other L1-to-L2 TLB links directly. This will, in turn, introduce
additional network tra�c. Therefore, we choose the �rst approach,
as the running average latency can be calculated by each L1-TLB
controller locally without having to rely on repeated communica-
tion with the L2-TLB. With the former method, we experimentally
chose to use a threshold value of 150 cycles, since an L2-TLB hit
will be serviced in less than 150 cycles (a page table walk takes
at least 150 cycles in our con�guration). If the L1-TLB controller
detects that the latency is higher than a preset threshold, it will
start using the ring to send out translation requests to neighboring
L1-TLBs.

Request Arbitration: When using the probing mechanism, an
L1-TLB receives requests from neighboring L1-TLBs and the local
CU. We use a round-robin arbitration scheme in the L1-TLB to
choose between serving requests from the local CU and requests
from neighboring L1-TLBs (requests from either ring direction are
treated equally). Round-robin arbitration is used to provide local
fairness between the requests. Requests from neighboring L1-TLBs
queue up in a bu�er that can hold a maximum of 16 entries in
our implementation. If the queue is full, and a request arrives, it is
simply ignored and passed on to the next L1-TLB in the ring.

3.3 Combining Prefetching and Probing
While using either Locality-Based TLB Prefetching or L1-TLB Prob-
ing alone is bene�cial to performance, combining these two mecha-
nisms provide the maximum bene�ts. However, using both mecha-
nisms at the same time can lead to destructive interference. Prefetch-
ing directly into the L1-TLBs has a negative impact on the proba-
bility of an L1-TLB miss of a neighbor being resolved by L1-TLBs.
Essentially, although the entry evicted from an L1-TLB on a prefetch
does not harm that L1-TLB itself, the evicted entry could be useful



Component Con�guration Quantity

CU 1.0 GHz 64
L1 Vector Cache 16KB 4-way, 5-cycle latency, LRU 64
L1 Inst Cache 32KB 4-way, 5-cycle latency, LRU 1 per SA
L1 Scalar Cache 16KB 4-way, 5-cycle latency, LRU 1 per SA
L2 Cache 256KB 16-way, 8-cycle latency 8
DRAM 512MB HBM, 100-cycle latency 8
L1 TLB 1 set, 128-way, 1-cycle latency, LRU 64
L2 TLB 32 sets, 16-way, 10-cycle latency, 2

ports, LRU
1

IOMMU 8 Page Table Walkers, 150-cycle la-
tency

-

Intra-GPU Network Single-stage XBar 1
Table 1: GPU system con�guration.

for another neighbor L1-TLB. As our analysis suggests (see Fig-
ure 9), the potential hit rate in neighboring L1-TLBs degrades to
8% (the baseline has a neighbor potential hit rate of 52%), if we
prefetch directly into the L1-TLBs.

One way to avoid this problem is to add extra victim bu�ers [49]
and/or prefetch bu�ers [2, 15, 25], which will add to the area and
power overheads of the GPU core. For a 128-entry L1-TLB, a size
that is highly e�ective for GPUs [37], the most practical option is
to simply reorganize the 128-entry L1-TLB, allocating 104 entries
of the L1-TLB for handling translations and reserving 24 entries
to serve as a separate prefetch bu�er. We build on prefetch bu�er
design from the prior cache and TLB designs [15, 25], inserting the
prefetched TLB entries into the prefetch bu�er. The prefetch bu�er
also uses LRU-based replacement. When a prefetched TLB entry
arrives, the bu�er is updated using LRU. Upon an L1-TLB lookup,
the L1-TLB and the prefetch bu�er will be checked in parallel. If
the translation information is found in the prefetch bu�er, then
the corresponding entry is moved from the prefetch bu�er into the
L1-TLB. An LRU replacement policy is used to decide which entry
from the L1-TLB should be replaced. Splitting the entries of the
L1-TLB between demand fetched translations and prefetches, we
can increase the neighbor hit rate potential to 37% (see Figure 9)
on an average, reclaiming much of the lost inter L1-TLB locality.

4 EVALUATION METHODOLOGY
We implement Valkyrie using the MGPUSim [45] simulator, which
faithfully models the AMD GCN3 ISA and has been validated
against GCN3 hardware.

Simulator:We have extended MGPUSim to model Valkyrie. We
integrated the prefetcher into the TLB hierarchy and added the Lo-
cality Detection Table (LDT). For inter-L1-TLB probing mechanism,
we modeled the ring-network that connects the di�erent L1-TLBs.
For the prefetching, searching the LDT entry takes 1 cycle. Each
hop from one TLB to another takes 1 cycle [12]. Other execution
latencies (e.g., the network delay incurred during inter-L1-TLB com-
munication, prefetching from the L2-TLB level to the L1-TLB and
the queuing latency) are fully accounted in our simulation model.

GPU System: We model and evaluate an AMD R9 Nano GPU
(the parameters are listed in Table 1). In Section 5, this will be our

Abbv. Application Benchmark
Suite

TLB
Sensitive

Memory
Footprint

KM KMeans Hetero-Mark X 66 MB
MT Matrix Transpose AMDAPPSDK X 72 MB
PR PageRank Hetero-Mark X 55 MB
MM Matrix Multiplica-

tion
AMDAPPSDK X 32 MB

ST Stencil 2D SHOC X 42 MB
FLW Floyd-Warshall AMDAPPSDK X 72 MB
SPMV Sparse Matrix Vec-

tor Multiply
SHOC X 50 MB

SC Simple Convolu-
tion

AMDAPPSDK ⇥ 40 MB

FIR Finite Impulse Re-
sponse Filter

Hetero-Mark ⇥ 61 MB

BS Bitonic Sort AMDAPPSDK ⇥ 30 MB
Table 2: Workloads used to evaluate Valkyrie.

baseline system. The GPU consists of 4 Shader Engines (SE), where
each SE has 16 Compute Units (CUs), resulting in a total of 64 CUs in
the GPU. On AMD GPUs, threads belonging to the same wavefront
(64 threads) execute in a lockstep fashion. Each CU has 4 SIMD units
and each SIMDunit can have up to 10wavefronts, resulting in a total
of 40 wavefronts (maximum) that can be run on a CU. Therefore, at
any given point in time, the maximum number of threads in-�ight
on a CU is 2560 threads. The actual number of threads that can run
at a given time depends on adequate resources being available, such
as registers and shared memory. Execution latency in the SIMD
pipeline is 6 cycles and throughput is 1 wavefront every 4 cycles.

The architecture features a multi-level cache hierarchy. The L1
caches are private to each CU, whereas the L2 cache is shared
among the CUs of the GPU. The L2 cache is 8-way banked and
interleaved at a cache-line level. We model a virtual address space
with full support for address translation hardware that includes a
set of private fully-associative L1-TLBs, a set-associative L2-TLB
that is shared by all the CUs, and an IOMMU. The L2-TLB is not
banked since prior work [52] reveals that banking of the L2-TLBs
does not o�er bene�ts. Any address translation request that misses
in the local GPU hierarchy is forwarded to the IOMMU, which
is physically located on the CPU side. The IOMMU has a multi-
threaded page table walker which can perform 8 searches in the
page table in parallel. All of our experiments are run with a 4KB
page size, which is the common page size used in prior studies on
address translation hardware design on GPUs [9, 41, 42]. While
larger pages (e.g., 2MB) have the potential of reducing L1-TLB
misses, they have large page migration latencies [8, 11, 19] and
can also increase the average number of stalled wavefronts on TLB
misses to 100% [8, 9] and hence are not always optimal to use.

Workloads: For our evaluation, we selected a diverse set of
workloads that includes both TLB sensitive and TLB insensitive
applications. Our workloads are selected from three di�erent bench-
mark suites that include Hetero-Mark [46] and SHOC [16] and
AMDAPPSDK [4]. The memory footprints of our applications are
listed in Table 2. The memory footprints are su�ciently large to



FLW .0 00 0T 35 630V 6T 0EA1 B6 FI5 6C
BenFKParN

1.0

1.2

1.4

6
Se

ed
uS

1.6 2.45 3.55 TLB InVenVLWLve

BaVelLne 3reIeWFK wLWKRuW BuIIer 3reIeWFK wLWK BuIIer

Figure 8: Performance speedup over the baseline (no
prefetching) when prefetching directly into the TLB and
when prefetching into the 24-entry prefetch bu�er that is
split from the L1-TLB.
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Figure 9: Comparison of the change in neighbor hit ratio po-
tential when splitting a part of the L1-TLB into a 24-entry
prefetch bu�er. It is observed that without the prefetch
bu�er, the neighbor hit rate of the prefetching mechanism
is signi�cantly lower than the baseline(no prefetching).

stress the memory subsystem, including both the caches and the
TLBs.

5 EVALUATION RESULTS
In this section, we present our evaluation ofValkyrie using the di�er-
ent workloads mentioned in Section 4. As shown in Figure 5, seven
of our ten workloads (Matrix Transpose, Matrix-Multiplication,
KMeans, Stencil2D, Page Rank, Sparse-Matrix Vector Multiplica-
tion and Floyd Warshall) show high TLB miss ratios (both at the
L1-TLB level and L2-TLB level), and so they can bene�t from our
proposed scheme. We also include three other workloads that have
low L1-TLB miss ratios (Finite Impulse Response, Bitonic Sort and
Simple Convolution) to show that our scheme does not degrade the
performance of such applications.

Splitting the L1-TLB into a smaller L1-TLB and a prefetch
bu�er: Figure 8 shows the speed up that can be achieved through
prefetching without splitting the L1-TLB and through prefetch-
ing when splitting the L1-TLB into a smaller L1-TLB and prefetch
bu�er2. Even without splitting the L1-TLB, just prefetching pro-
vides an average3 speedup of 1.34⇥. However, if translation entries
are prefetched directly into the L1-TLB, the potential for �nding
page-translation entries in the neighboring L1-TLBs reduces to 8%
on an average (see Figure 9). This happens because, although the
actions of the prefetcher do not hurt the L1-TLB hit rate of the local
TLB, it evicts entries that could have potentially been referenced
by a neighboring L1-TLB in the future. By splitting the 128-entry
L1-TLB into a 24-entry prefetch bu�er and 104-entry L1-TLB, we

2As explained in Section 3.3, we reserve 24 L1-TLB entries from each L1-TLB as a
prefetch bu�er.
3All average values are calculated as geometric means.
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Figure 10: Performance speedup over the baseline for the
di�erent mechanisms of Valkyrie.
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Figure 11: Improvements in L1-TLB hit ratio over the base-
line for the di�erent mechanisms of Valkyrie.

can improve our chances of �nding page-translation entries in the
neighboring L1-TLB to 37% on average (see Figure 9), while also
achieving a small performance gain of 1.08⇥ on average, when com-
pared to prefetching directly into the L1-TLB. Therefore, from here
onwards, we use the L1-TLB which has been split into a 104-entry
L1-TLB and 24-entry prefetch bu�er for the rest of this section4,
as this con�guration provides both performance gains, as well as
improves the neighbor-hit ratio potential. We present results for
alternate L1-TLB split con�gurations later in this section.

Prefetching and Probing: Figure 10 shows the performance
gained when using both prefetching and probing mechanisms
of Valkyrie as compared to the baseline. The proposed prefetch-
ing mechanism can provide an average speedup of 1.45⇥ over the
baseline, whereas our proposed L1-TLB probing mechanism can
provide an average speedup of 1.65⇥. When both mechanisms are
used, Valkyrie can provide an average speedup of 1.95⇥. Note that
the total speedupwhen the twomechanisms are combined is smaller
than the sum of the speedups achieved in isolation. The reason is
that the prefetching and the probing mechanisms are working to
resolve a similar type of problem (i.e., L1-TLBmisses with inter-core
locality). Valkyrie achieves a speedup of 1.55⇥ (not shown in the
�gure) if we do not reorganize the L1-TLB using a 104/24 split. This
is due to reduced probing hits, which in turn reduces the bene�ts
of the probing mechanism. When compared with a large and heav-
ily multiported ideal MMU design, Valkyrie achieves a speedup of
0.54⇥ as compared to the baseline which only achieves a speedup
of 0.28⇥ over the ideal MMU design. Interestingly, the performance
impact of the two mechanisms on the di�erent workloads varies.
From Figure 10 we can observe that the Floyd Warshall (FLW)
workload bene�ts more from probing (1.63⇥) than from prefetch-
ing (1.17⇥). The reason is that FLW has the possibility of resolving
86% (see Figure 3) of its L1-TLB misses from L1-TLBs within the

4The baseline L1-TLB still has 128-entries since it does not use the prefetch bu�er



same Shader Engine (SE) and therefore probing is immensely help-
ful. On the other hand, other benchmarks such as the Sparse Matrix
Vector Multiplication workload (SPMV) gain more from prefetch-
ing than probing (3.55⇥ and 1.8⇥, respectively). This is because,
for SPMV, translations are accessed by di�erent cores in extremely
close temporal proximity, making it more probable that the required
translation information is already prefetched in the prefetch bu�er.
Moreover, if prefetching is done correctly, it has the potential to
provide the best performance (since the data is already there when
the access arrives) and therefore SPMV achieves huge performance
gains from prefetching. The only application which su�ers some
performance degradation when both mechanisms are combined is
the KMeans (a small drop from 2.6⇥ achieved by probing to 2.4⇥
when combined). We traced back the source of this problem and
found that when the two mechanisms are combined, the L2-TLB
hit rate decreases by 5%, as opposed to when only probing is used.
We believe this is because, at runtime, the prefetcher can end up
prefetching into certain CUs more than it does into others. This im-
proves the L1-TLB hit rate of a subset of CUs. However, a side e�ect
of this is that the L2-TLB entries can end up getting evicted (recall
that we are using a mostly-inclusive TLB hierarchy) due to a lower
number of references from the L1-TLBs where the hit-rates are
higher. Due to this behavior, when another L1-TLB encounters a
miss on a particular page-entry, it can no longer �nd that entry
in the L2-TLB as the LRU replacement policy replaced it due to
fewer references arriving at the L2-TLB. This, in turn, decreases
the L2-TLB hit rate, which causes slight performance degradation.

Improvement in L1-TLB Hit Ratios: From Figure 11 we can
observe that, when compared to the baseline, our proposed prefetch-
ing and probingmechanisms can improve the L1-TLB hit ratio on an
average by 4⇥ and 3.624⇥ respectively. When combined in Valkyrie,
the average L1-TLB hit ratio further improves by 4.60⇥, which is a
signi�cant improvement and is highly correlated with performance
improvement.

Sensitivity of Valkyrie to L1-TLB size: While 128-entry L1-
TLBs have been shown to provide the best performance [37], 64-
entry L1-TLBs for GPUs are also quite common [9, 41, 42]. In a
spirit similar to how we propose to split the L1-TLB area into a
smaller L1-TLB and a prefetch bu�er, we evaluated a design with 52-
entry L1-TLB and a 12-entry prefetch bu�er (we scaled down both
the L1-TLB size and prefetch bu�er size). From Figure 12, we can
observe that we improve performance by 1.43⇥ with prefetching.
This gain is comparable to when using a 128-entry L1-TLB (1.45⇥).
The performance bene�ts of probing are slightly lower (1.38⇥ as
opposed to 1.65⇥ when using a 128-entry L1-TLB). This is expected
because a smaller L1-TLB will reduce the chances of �nding a valid
translation in the neighboring L1-TLBs. When the prefetching and
probing schemes are combined for the 64-entry L1-TLB, Valkyrie
still outperforms the baseline by 1.71⇥, which is slightly lower than
the 1.95⇥ bene�t when using a 128-entry L1-TLB. This is due to the
decrease in the bene�ts of probing when using a smaller L1-TLB.

Sensitivity of Valkyrie to L2-TLB size: A larger L2-TLB has
the potential to improve performance, as it reduces the L2-TLB
misses and can avoid long-latency page-table walks. Therefore, we
did a sensitivity study (see Figure 13) by comparing the perfor-
mance when using a larger L2-TLB of 1024, 2048, 4096 and 8192
entries. While varying the size, we keep the associativity of the
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Figure 12: Performance speedup over the baseline for the
di�erent mechanisms of Valkyrie when using a smaller L1-
TLB of 64 entries.

TLB the same and only vary the number of sets. We observed that
Valkyrie still outperforms the baseline when scaling to larger L2-
TLB sizes. We obtain a geometric mean speedup of 1.82⇥, 1.27⇥,
1.18⇥ and 1.06⇥, respectively. The gains become less pronounced
when increasing the L2-TLB size, due to the ability of a larger L2-
TLB to reduce the number of misses. Overall, we can observe that
around 8192 L2-TLB entries, the performance of the baseline when
compared to Valkyrie is close (6% di�erence). Since Valkyrie still
outperforms the baseline for the evaluated con�gurations, it shows
that our solution is future-proof, even if the L2-TLB size keeps
scaling in the future.

Sensitivity split of L1-TLB: We study alternate organizations
of the L1-TLB, which is split into an L1-TLB and prefetch bu�er.
The con�gurations evaluated have a 32-entry L1TLB + 96-entry
prefetch bu�er, 64-entry L1TLB + 64-entry prefetch bu�er, 96-entry
L1TLB+ 32-entry prefetch bu�er, which we term as SplitA, SplitB
and SplitC, respectively. The default con�guration of Valkyrie as-
sumes the L1-TLB is split into a 104-entry L1-TLB and a 24-entry
prefetch bu�er. We observe that, as compared to the default split,
the other splits have a geometric mean speedup of 0.74⇥, 0.84⇥
and 0.92⇥, respectively over the default split. SplitA has the lowest
performance because allocating more space for the prefetch bu�er
reduces the chances of the probing mechanism to �nd TLB entries
from neighboring TLBs, which impacts the performance.

Sensitivity to larger page sizes: We also evaluated Valkyrie
with page sizes of 8KB, 16KB, 64KB and 2MB. We observed a geo-
metric mean speedup of 1.92⇥, 1.89⇥ and 1.61⇥ and 1⇥, respectively.
The bene�ts of Valkyrie are less pronounced when scaling up to
larger page sizes as using a large page will inevitably reduce the
TLB miss rate. However, since large pages come with their own
set of problems such as false-sharing in NUMA systems [19, 53],
having solutions to reduce TLB miss rates for base page sizes is still
important.

Area and Power Overhead of Valkyrie: We evaluated the
hardware costs required to implement the two prefetching and
probing mechanisms in Valkyrie. To support the prefetching mecha-
nisms, there are two 32-bit registers for storing the average L1-TLB
hit rates for the past and present phases, and one 32-bit register
for storing the last action that was taken. The con�dence counter
requires a 2-bit register. A set of comparators is required to compare
the average TLB hit rates across an epoch, as well as to identify
the last action that was taken. There is a single Locality Detection
Table (LDT) for the entire GPU that resides alongside the L2-TLB.
The LDT is designed with 100 entries. Each entry holds a 64-bit
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Figure 13: Performance speedup of Valkyrie over the base-
line when using a larger L2-TLB size of 1024, 2048, 4096 and
8192 entries, respectively

.

mask to identify the L1-TLB-ID that has accessed a particular page.
Besides, since the LDT is also fully-associative, it requires a com-
parator for each entry. However, the comparator in the LDT only
needs to compare 18 bits, resulting in much smaller comparators in
the LDT than in the L1-TLB, where we need to compare a 16-bit
process ID and a 52-bit virtual page number. Therefore, the overall
hardware cost of the LDT is smaller than a single L1-TLB in terms
of both the storage space, as well as the number of comparators
required. Splitting the L1-TLB into a smaller L1-TLB and a prefetch
bu�er has negligible overhead.

To support our probing mechanism, we need one intra-SE ring
per SE in the GPU. The ring topology does not require any complex
switches, saving both area and energy. The only area overhead
comes from the bi-directional channels connecting the L1-TLBs. As
the 16 L1-TLBs per SE are placed physically close to each other, the
length of these channels can be kept short to reduce energy and
area overhead. Each L1-TLB has a 16-entry queue, which stores
the requests for arbitration. Each request is 64-bit wide, resulting
in a total area of 128 bytes for the queue in each L1-TLB. In terms
of power consumption, which we calculate using CACTI [33] and
parameters obtained for circuit-level simulations [24], Valkyrie
introduces an additional 0.06 watts of power over the baseline. This
constitutes a total of 0.37% of the 175W-TDP [48] of the R9 Nano
chip, which is the GPU simulated in our work.

6 RELATEDWORK
There have been a number of studies aimed at improving virtual
memory management on CPUs and GPUs.

GPU Address Translation: With the introduction of Uni�ed
Memory, a large body of research has focused on the design of
the GPU’s TLB architecture. Power et al. [38] and Pichai et al. [37]
were the �rst to explore the design space for GPU address transla-
tion hardware and motivated the need for TLB-aware architectural
enhancements for GPUs. Jaleel et al. [22] proposed a mechanism
to store TLB entries in the last-level cache and DRAM. Vesely et
al. [50] studied the overhead associated with address translation on
GPUs and found that the TLB miss latency can take up to 25⇥ to
resolve, as compared to a CPU, due to the high bandwidth demands
of GPU applications.

Yoon et al. [52] proposed a mechanism to reduce the impact of
TLB misses by using virtually-indexed virtually-tagged (VIVT) L1
caches. While using a VIVT L1 cache can be an e�ective solution
to �lter translations on a GPU, they come with their own sets

of problems (e.g., managing co-located kernels from two di�erent
processes, managing shared physical memory regions, etc.). Besides,
using physically tagged caches makes it easier and more feasible
to maintain compatibility issues with CPU caches [37] and also
eases cache-coherencymechanisms between the CPU and GPU [43].
Hence, we opted for physically tagged caches in our work.

Ausavarungnirun et al. [9] describe how to manage a GPU’s
shared L2-TLB when running concurrent applications. Their mech-
anism focused on improving the performance of concurrent appli-
cations at the L2-TLB level by using TLB-�ll tokens and L2-TLB
bypassing. Our scheme can be integrated with this prior work
wherein their work can potentially improve the performance of the
L2-TLB and Valkyrie can improve the performance of the L1-TLB.

Shin et al. [41, 42] proposed architectural changes to the IOMMU
scheduler so that page-table walk requests are served more e�-
ciently. Valkyrie accelerates address translation at the L1-TLB level
by exploiting the TLB sharing behavior in GPU applications. Our
scheme complements the approaches proposed in [9, 22, 41, 42] and
can be integrated with theirs to further improve performance.

TLB Prefetching Mechanisms: Kandiraju et al. [26] proposed
a Distance Prefetching mechanism to prefetch TLB entries for
single-core CPUs, utilizing the strided behavior of memory ac-
cesses to reduce the TLB miss rate. Saulsbury et al. [39] proposed a
recently-used based TLB preloading scheme for CPUs. Bhattachar-
jee et al. [15] were the �rst to explore Inter-Core Cooperative TLB
Prefetching mechanisms based on the inter-core page sharing be-
havior in multi-core CPU applications. Unlike CPUs, such Inter-
Core Cooperative TLB prefetching cannot be directly applied to
GPUs because of the large number of cores involved. GPU systems
require amore centralizedmechanism for controlling and coordinat-
ing prefetches. Valkyrie’s Locality Based Prefetching and Locality
Detection Table provide a more centralized solution. Valkyrie also
exploits sharing behavior by using an L1-TLB probing mechanism, a
characteristics that has not been explored in prior TLB prefetching
studies. Margaritov et al. [31] proposed a prefetching mechanism
for CPUs where prefetches are issued directly to deeper levels of
the page table. They do not however prefetch directly into the TLB.
Integration with such mechanisms to design multi-level prefetching
mechanisms is a rich area for further exploration.

Power et al. [38] explored a simple TLB prefetcher design for
GPUs which improves performance by only 1%. Kuth et al. [27]
studied mechanisms for compiler-directed TLB prefetching on het-
erogeneous SOCs, requiringmodi�cations to the source code. Vesely
et al. [50] observed that the existing TLB prefetcher on GPUs are
ine�ective and motivated the need for a more application-aware
TLB-prefetching mechanisms, which our work clearly adopts with
Valkyrie’s locality-based prefetching scheme.

Inter-core GPU Communication Mechanisms: Ibrahim et
al. [21] proposed a mechanism to allow L1 cache misses on a GPU
to be resolved by another L1 cache on the same GPU. Their mecha-
nism relies on accurate identi�cation of the cores that share similar
cache lines to increase application performance. In contrast, we
have observed that even if Valkyrie’s LDT can provide some hints
on which L1-TLBs share similar page entries, it is impossible to
know if the page entry resides in a particular L1-TLB at the exact
time of servicing an L1-TLB miss. This renders predictive mech-
anisms ine�ective for inter L1-TLB communication. Other prior



work on inter-core GPU communication addressed cache coherency
mechanisms and how to reduce the coherence overhead [43]. In
contrast to all of the above work on inter-core communication for
data caches, we identify the requirements for improving address
translation e�ciency and design tailored solutions for TLB prefetch-
ing and inter-core TLB communication. To support communication
within a GPU, most prior work [10, 55] has focused on designing
on-chip networks for enabling communication between the GPU’s
SEs and the L2 cache (or memory partitions), opting for a 2-D mesh
network. Recently, Ibrahim et al. [21] have also explored using a
2-D mesh network for core-to-core communication. In the design
of these on-chip networks, a “�at” GPU architecture has been com-
monly assumed, where a single-level on-chip network topology
is employed. However, as described in Section 2, modern GPUs
are built hierarchically with CUs clusterized in SAs, and with SAs
clusterized in the SEs. Hence, in this work, we assume a hierarchical
organization where, apart from the regular L1 cache to L2 cache
interconnect, we integrate a ring network within each SE for com-
munication between L1 TLBs. Ring networks are commonly used
as network-on-chip solutions in a number of commercial multi-
core processors [7, 40]. A ring topology has also been proposed for
inter-L1 cache communication in GPUs [17] and heterogeneous
CPU/GPU architectures [28]. We adopt a similar ring network, but
the key di�erence is that we leverage the unique communication
characteristics of inter-TLB sharing to design a cost-e�cient ring
architecture.

GPUPageManagement:Ausavarungnirun et al. [8] and Sun et
al. [45] proposed mechanisms to dynamically decide between using
small or large pages for GPU applications. Zheng et al. [54] pro-
posed microarchitectural enhancements to hide page-fault latency
on GPUs. They also proposed prefetching pages from the CPU to the
GPU memory. Agarwal et al. [1] proposed page-prefetching mech-
anisms for CPU-to-GPU page transfers. Ganguly et al. [18] studied
the interplay between the prefetcher and page-eviction policies on
systems supporting Uni�ed Memory and proposed mechanisms to
design an eviction aware page-prefetching policy. In contrast, our
work addresses prefetching of page table entries at the L1-TLB, as
well as inter L1-TLB probing, by leveraging the TLB entry sharing
behavior found in GPU applications.

7 CONCLUSION
Given the advantages that Virtual Memory (VM) provides in terms
of programming ease, the performance of VM is going to be critical
for modern day GPU applications. However, address translation bot-
tlenecks such as high TLB miss rates and long latency page walks
can severely harm the performance of GPU applications. Mecha-
nisms to mitigate these costs are going to be extremely important
so that GPUs can enjoy the bene�ts of VM and not pay a large
performance overhead.

In this work, we have observed that certain classes of TLB-
sensitive GPU applications exhibit an inherent sharing behavior
where the same page-table entry is shared across multiple L1-TLBs
in the system. We proposed and evaluated two novel solutions to
take advantage of this inter L1-TLB locality present in GPU appli-
cations, reducing address translation bottlenecks and improving
performance.

Our proposed scheme is namedValkyrie, a programmer-transparent
hardware solution that exploits inter L1-TLB locality using prefetch-
ing and L1-TLB probing schemes. Valkyrie’s prefetching mecha-
nism dynamically identi�es inter-TLB locality and prefetches page
translations ahead of time to take advantage of inter-TLB locality.
Valkyrie’s probing scheme operates within each Shader Engine to
e�ectively allow L1-TLBs to retrieve data from neighboring L1-
TLBs without paying the high performance penalty of going to
the L2-TLB. Valkyrie’s prefetching alone can provide an average
speedup of 1.45⇥, whereas its probing mechanism can provide an
average speedup of 1.65⇥. Combining these two schemes, Valkyrie
enables the GPU hardware to take full advantage of inter L1-TLB
locality, resulting in an average speedup of 1.95⇥.

To further improve the performance of Valkyrie, we plan to
integrate it with other approaches that improve the page-walk per-
formance [41, 42]. We also plan to study e�ective communication
mechanisms and hierarchical network designs such as fat-trees [32]
to support more e�cient inter-L1 TLB communication schemes.
Another promising direction to explore further is the performance
impact of such schemes when integrated with coalesced TLBs for
GPUs [36].
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