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ABSTRACT
The rapidly growing popularity and scale of data-parallel workloads
demand a corresponding increase in raw computational power
of Graphics Processing Units (GPUs). As single-GPU platforms
struggle to satisfy these performance demands, multi-GPU plat-
forms have started to dominate the high-performance computing
world. The advent of such systems raises a number of design chal-
lenges, including the GPU microarchitecture, multi-GPU intercon-
nect fabric, runtime libraries, and associated programming models.
The research community currently lacks a publicly available and
comprehensive multi-GPU simulation framework to evaluate next-
generation multi-GPU system designs.

In this work, we present MGPUSim, a cycle-accurate, extensively
validated, multi-GPU simulator, based on AMD’s Graphics Core
Next 3 (GCN3) instruction set architecture. MGPUSim comes with
in-built support for multi-threaded execution to enable fast, paral-
lelized, and accurate simulation. In terms of performance accuracy,
MGPUSim di�ers by only 5.5% on average from the actual GPU
hardware. We also achieve a 3.5⇥ and a 2.5⇥ average speedup
running functional emulation and detailed timing simulation, re-
spectively, on a 4-core CPU, while delivering the same accuracy as
serial simulation.

We illustrate the �exibility and capability of the simulator through
two concrete design studies. In the �rst, we propose the Locality
API, an API extension that allows the GPU programmer to both
avoid the complexity of multi-GPU programming, while precisely
controlling data placement in the multi-GPUmemory. In the second
design study, we propose Progressive Page Splitting Migration (PASI),
a customized multi-GPUmemory management system enabling the
hardware to progressively improve data placement. For a discrete
4-GPU system, we observe that the Locality API can speed up the
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system by 1.6⇥ (geometric mean), and PASI can improve the sys-
tem performance by 2.6⇥ (geometric mean) across all benchmarks,
compared to a uni�ed 4-GPU platform.

CCS CONCEPTS
•Computingmethodologies→ Simulation tools; •Computer
systems organization→ Single instruction, multiple data.

KEYWORDS
multi-GPU systems, simulation, memory management
ACM Reference Format:
Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong,
Shane Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent
Zhao, Harrison Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael
Ubal, José L. Abellán, John Kim, Ajay Joshi, andDavid Kaeli. 2019. MGPUSim:
Enabling Multi-GPU Performance Modeling and Optimization. In The 46th
Annual International Symposium on Computer Architecture (ISCA ’19), June
22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3307650.3322230

1 INTRODUCTION
Today’s single GPU systems can support a compute throughput of
⇡12.4 TFlops [39] to ⇡14.7 TFlops [6], and have been redesigned to
e�ciently accelerate big data analysis [12, 53], machine learning [26,
41], and large-scale physics simulation workloads [21, 42]. However,
due to CMOS technology scaling challenges and manufacturing
costs, it is becoming increasingly impractical to add more compute
resources to a single GPU system to improve its throughput [7]. As
a result, these single GPU systems cannot support the processing
needs of future data-centric and scienti�c applications [16, 22, 54,
56].

One attractive path to sustain historic GPU performance scaling,
which is currently being pursued by industry, is the integration of
multiple GPUs into a single platform. NVIDIA has recently started
o�ering multi-GPU DGX platforms [18, 38], focusing on accel-
erating Deep Neural Network (DNN) training. However, recent
studies suggest that the performance of multi-GPU systems can
be heavily constrained by CPU-to-GPU and GPU-to-GPU synchro-
nization, and limited by multi-GPU memory management over-
head [31, 35, 58]. Design of an e�ective memory management sys-
tem and cross-GPU communication fabric remain open problems
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that need to be addressed to unlock the full potential of future multi-
GPU platforms. To support design exploration of next-generation
multi-GPU platforms, we need fast and accurate simulation tools
and frameworks.

Existing publicly available GPU simulators, such as GPGPU-
Sim [10] and Multi2Sim [50], were originally developed for single-
GPU platforms and do not provide support for simulating state-
of-the-art multi-GPU platforms. This is at least in part because:
1) Existing GPU simulators simulate out-dated GPU architectures.
Newer GPUs add special features such as system-level atomics and
GPUDirect [37] to facilitate collaborative execution across multiple
GPUs; 2) Existing simulators lack modularity, which makes mod-
eling and con�guring a multi-GPU platform a tedious task; and 3)
Existing simulators are not very e�cient in terms of simulation
speed. A few seconds of execution on real GPUs may take a few
days to simulate. This issue is further exacerbated when simulat-
ing a multi-GPU platform due to the increased number of compo-
nents in the modeled platform. As a result, computer architects
are handicapped when studying multi-GPU platforms. Although
the recent AMD GEM5 APU simulator [19] solves the �rst prob-
lem, a solution that delivers both high modularity in a simulator
and high-performance simulations is still desired. In addition, as
AMD GEM5 APU simulator focuses on APU devices, the simulator
cannot easily simulate large-scale high-performance computing
environment where discrete GPUs are commonly used.

We therefore present MGPUSim, a GPU simulator designed
for multi-GPU platform simulation. MGPUSim faithfully simu-
lates the AMD GCN3 ISA[2], a state-of-art and widely adopted
GPU ISA. Central to MGPUSim are features including high �ex-
ibility/con�gurability, ease of extensibility, and multi-threading
capability. High con�gurability enables users to easily model plat-
forms with di�erent instruction scheduling algorithms, memory
hierarchy designs, and number of GPUs in the system. High ex-
tensibility allows researchers to add new features to the simulator
without signi�cantly modifying the simulator itself. For example, as
we will show in Section 7, we extend the simulator by considering a
new approach for handling remote memory accesses without modi-
fying the existing code. Exploiting multi-threading in our simulator
enables both e�cient functional emulation and detailed timing sim-
ulation that can leverage the multiple hardware threads, thereby
improving simulation speeds by 3.5⇥ and 2.5⇥ in functional emu-
lation and detailed timing simulation, respectively. Our simulator
has also been designed to produce high �delity simulation results,
di�ering by only 5.5% on average when compared to execution on
the real AMD R9 Nano hardware.

We illustrate some of the key bene�ts of MGPUSim using two
concrete design studies: designing a new Locality API, and design-
ing a highly customized multi-GPU memory management system
we call Progressive Page Splitting Migration (PASI). The goal of the
design studies are two-fold. First, we demonstrate the capabilities
of MGPUSim and how straightforward it is to model new multi-
GPU platforms. Extending GPGPU-Sim or Multi2Sim to support
multi-GPU simulation would be di�cult and would require a ma-
jor rewrite of the code base. Second, we propose and validate our
software-based and hardware-based solutions to improve the scal-
ability of multi-GPU platforms through these design studies. We
observe that compared to a uni�ed 4-GPU platform the Locality

API can speed up a discrete 4-GPU platform by 1.6⇥, on average,
and PASI can also improve the performance of the discrete 4-GPU
by 2.6⇥, on average.

The contributions of this paper include:

• MGPUSim, a new parallel multi-GPU architectural simu-
lator that delivers high �delity, high �exibility, and high
performance;

• Locality API, an API extension that allows explicit data and
compute placement control in a multi-GPU platform without
kernel modi�cation;

• Progressive Page Splitting Migration, a hardware-based ap-
proach that allows the multiple GPUs to gradually improve
the data placement at runtime.

2 BACKGROUND
In this section, we discuss background on the four key aspects of
our proposed simulator: 1) the GPU execution model that needs
to be faithfully modeled by the simulator; 2) the properties of the
current state-of-the-art in multi-GPU platforms that need to be
supported by a multi-GPU simulator; 3) the design requirements
that one should adopt when designing an architecture simulator;
and 4) the mechanisms that one can use to parallelize and accelerate
simulations.

2.1 GPU Execution Model
A typical GPU system is made up of one or more CPUs, and one
or more GPUs (current state-of-the-art multi-GPU platforms can
have up to 8 GPUs per node [18, 38]). Traditionally, the GPUs are
managed by CPU. More speci�cally, the host program that runs
on the CPU copies the data to the GPUs’ memories and launches
GPU programs (kernels) on GPUs. After that, the CPU copies back
the computed results from GPUs’ memories to system memory. A
vendor-speci�c GPU driver, running at the operating system level
on the CPU receives API calls from the host program and transfers
data from/to the GPUs and launches kernels on the GPUs.

Newer GPU features give GPU more autonomy. With kernel-
side enqueueing, the GPU can launch kernels to itself without the
help of a CPU. Uni�ed memory and demand paging empower the
GPU to read and write system memory directly without explicit
data movement between the CPU and the GPU device. In addition,
GPUDirect allows the GPU to read and write the memory that is
located on another GPU. Recent studies have explored enabling
the GPU to request service from the CPU [47], performing system
calls [51], initiating network communication [27], and enqueuing
tasks on remote devices [28]. Each new feature that was not present
on an earlier GPU generation requires new support from both the
ISA and the microarchitecture. GPUs have continually evolved or
changed the ISA at a rapid pace.

A kernel can launch a 1-, 2-, or 3-dimensional grid of work-items
running on a GPU. One work-item is comparable to a thread on
a CPU and has its own register state. A grid can be divided into
work-groups and wavefronts. On an AMD GCN3 GPU, a wave-
front consists of 64 work-items that execute the same instruction
in lockstep. A work-group contains 1-8 wavefronts that can be
synchronized using barriers.
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Figure 1: Multi-GPU Con�gurations.

Current GPU design supports a very high throughput of up
to ⇡12.4 TFlops [39] to ⇡14.7 TFlops [6]. For example, the AMD
Radeon Instinct MI60 [6] GPU leverages 64 Compute Units (CU) to
execute instructions in parallel. A single CU incorporates 4 Single-
Instruction Multiple-Data (SIMD) units. Each SIMD unit has 16
lanes, with each lane providing a single-precision �oating point
unit. Hence, a single SIMD unit can execute 16 instructions in
parallel in a single clock cycle. Equipped with 64 CUs, the R9 Nano
GPU can execute up to 64 ⇥ 4 ⇥ 16 ⇥ 2 = 8, 192 operations (fused
multiply-add instructions are considered as two operations) per
cycle. As the MI60 GPU runs at a 1.8GHz clock rate, it can support
a peak throughput of 8,192 ⇥ 1.8G = 14.7 TFLOPs.

2.2 Multi-GPU Platforms
While today’s GPUs are quite powerful, for many emerging appli-
cations such as computer vision analysis on videos and large-scale
neural network training, a single GPU cannot meet the required
processing demands due to: (1) limited compute capabilities, and
(2) limited memory space. For example, VGGNet [43], a popular
deep neural network framework, requires ⇡ 40 Giga operations
(GOps) to process a single image through a DNN model [11]. If an
application requires a throughput of 1000 images per second (i.e., 40
TFlops), we need, in theory, at least 3 (40/14.7) MI60 GPUs to ful�ll
this requirement. On the other hand, training a DNN may require
a multi-terabyte dataset [15], dwar�ng the memory capacity of a
single GPU. If we can increase the storage in GPU-based systems,
we have the potential of allowing one kernel launch to process
more data and can potentially accelerate the training process.

Multi-GPU platforms can provide both more compute resources
and more memory storage. The industry has already started to
explore the true potential of multi-GPU platforms [18, 24, 38]. The
most commonly used GPU programming frameworks, including
OpenCL [45] and CUDA [36], support multi-GPU programming
following the discrete multi-GPU model shown in Figure 1a. Both
programming frameworks expose all of the GPUs to users, enabling
them to select where data is stored and how kernels are mapped to
devices. For example, in OpenCL, a command queue is associated
with a GPU and all the commands (e.g., memory copy, kernel launch)
in the queue run on the associated GPU. In CUDA, a developer
can select the GPU with the cudaSetDevice API. Exposing all
GPUs to the user delivers the maximum �exibility. However, it can
be di�cult to adapt single-GPU applications to use a multi-GPU
platform [7, 25].

The computer architecture community commonly adopts a uni-
�ed multi-GPU model by hiding multiple GPUs behind a single

GPU interface [7, 25, 34, 58], as shown in Figure 1b. A single kernel
launch can map to all the GPUs. Therefore, the uni�ed multi-GPU
model provides better programmability, as the programmer does not
need to modify the GPU program for multi-GPU platforms. How-
ever, the uni�ed multi-GPU model may su�er from high-latency
inter-GPU communication and non-scalable performance [7, 34].
With the development of new GPU features such as uni�ed memory,
demand paging, and system-level atomics, e�cient programming of
a multi-GPU platform, as if it were a single large GPU, is becoming
a reality.

To provide a �exible multi-GPU simulation framework, MGPU-
Sim supports both (uni�ed and discrete) multi-GPU models, letting
the user select which model to use. To the best of our knowledge,
there is no prior microarchitectural research that focused on a dis-
crete multi-GPU model due to the lack of simulator support. Even
with a uni�ed multi-GPU model, other simulators cannot achieve
the same level of �exibility. We discuss this in Sections 6 and 7.

2.3 Simulator Design Requirements
An architectural simulator is a necessary tool that enables explo-
ration of various microarchitecture design tradeo�s, performance
optimizations, and design space exploration. We summarize the
key simulator design choices made by past simulator designers and
discuss how we satisfy these requirements in 3.1.

DR-1: Extension without modi�cation. Users of computer
architecture simulators usually need to extend the simulator to
model new structures. Implementing extensions to a simulator
should be simple and should not involve “heavy lifting”, as major
modi�cations not only impede the progress of researchers but also
impact reproducibility.

DR-2: No magic. Simulators should avoid using “magic” that
allows one component to directly access the data (i.e., class �eld
access, getter/setter function call, or any other function call) of
another component as much as possible. Using “magic” introduces
inaccuracy in the overall system modeling since it ignores the com-
munication overhead between the two components. It also com-
promises modularity, as the two component are coupled together,
making it di�cult to replace one of them (similar in nature to the
reason why encapsulation is so powerful in software development).

DR-3: Tracking data with timing. Simulators should utilize
real data values in the simulator, rather than allowing the emulator
to “magically” access the data. Separating data �ow and time calcu-
lations hides errors in system design and making value-dependent
modeling di�cult.

DR-4: Simulate parallel hardware in parallel. Digital cir-
cuits work in parallel. For example, a DRAM controller and a com-
pute unit update their states simultaneously and independently.
Therefore, a computer architecture simulator should also be able
to update the component status with multi-threaded simulation,
without introducing inaccuracy.

DR-5: No busy ticking. Simulators tend to visit each modeled
component to update the state, even if such updates are not re-
quired. We should avoid unnecessary state updates to maximize
performance.
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Figure 2: Thenumber of events that can be parallelized,with-
out interrupting the chronological order. An event is a state
update of a component.

2.4 Parallel GPU Simulation
Architectural simulation is generally much slower than real hard-
ware. For example, execution of applications on a GPU system
modeled using Multi2Sim [50] is reported to be 44, 000⇥ slower
than native execution, which translates to more than a day to sim-
ulate 2 seconds of native execution. Malhotra et al. [32] report that
GPGPU-Sim is 480, 000⇥ slower than a real system – this translates
to GPGPU-Sim needing 11 days to simulate 2 seconds of native
execution. This limited simulation speed makes it impossible to
simulate large-scale systems and workloads in existing simulators.
To successfully simulate multi-GPUs with large-scale workloads,
we need a new simulation philosophy.

Prior research has explored using multi-threading to accelerate
architectural simulation. Two common approaches to parallelizing
simulation are 1) conservative simulation; and 2) optimistic simula-
tion [17]. Using a conservative approach, the chronological order
of the events is not interrupted, which requires global synchroniza-
tion after each cycle. An optimistic approach supports reordering
events to avoid frequent synchronizations, reducing simulation
time, though at the cost of �delity of the simulation.

We elect to adopt a conservative parallel simulation approach in
MGPUSim because we do not want to compromise simulation accu-
racy in exchange for faster simulation. Figure 2 shows the number
of events scheduled at the same time during simulation of the AES
benchmark using MGPUSim. The value for the minimum number
of concurrent events observed is 64. This number is due to the fact
that we have 64 compute units in the system. The number of events
does not constantly go higher than 64 because we avoid updating
the state in every cycle for the component in the cache system,
interconnects, and the memory controllers to improve performance.
Overall, this number of events varies between 60 and 100 for most
of the time, providing su�cient parallelism to keep a 4- to 8-core
system busy.

3 MGPUSIM
MGPUSim is a highly-con�gurable GPU simulator that is open-
source 1 under the terms of theMIT license [40]. We have developed
the simulator using the Go programming language [48].We selected
Go because Go provides both reasonable performance [55] and ease
of programmability. It also provides native language-level support
for multi-threaded programming, allowing us to spawn a large
number of Goroutines (i.e., light-weight threads) [48] to process
events with very low overhead.

1The source code and the issue tracker are available at: https://gitlab.com/akita/gcn3

3.1 Simulator Framework
Central to our design is the simulator framework. We embrace a
domain-agnostic design approach so that the framework can be
used tomodel any component such as a di�erent GPUmodel, a CPU,
or an accelerator device. Our framework consists of the following
four parts:

1. The Event-Driven Simulation Engine:We de�ne an event
as a state update of a component. Our event-driven simulation
engine maintains a queue of events for the whole simulation and
triggers events in chronological order.

2. Components: Every entity of a multi-GPU platform that
MGPUSim simulates is a component. In our case, a GPU, a CU, and
a cache module are examples of components.

3. Connections: Two components can only communicate with
each other through connections using requests. Connections are
also used to model the intra-chip interconnect network and inter-
chip interconnect network.

4. Hooks: Hooks are small pieces of software that can be at-
tached to the simulator to either read the simulator state or update
the simulator state. The event-driven simulation engine, all the
components, and the connections are hookable. Hooks can perform
non-critical tasks such as collecting execution traces, dumping de-
bugging information, calculating performance metrics, recording
reasons for stalls, and injecting faults (for reliability studies).

The MGPUSim event engine supports parallel simulation, ful�ll-
ing DR-4. Leveraging the fact that the events that are scheduled at
the same time do not depend on each other, the event-driven sim-
ulation engine harnesses multiple CPU threads to process events.
We embrace a conservative parallel event-driven scheme (see Sec-
tion 2.4), so that we guarantee the simulation results will match a
serial simulation.

The component system and the request-connection system en-
force strict encapsulation of components. We restrict a component
from scheduling events for other components, and at the same time,
we do not allow a component to access another component’s state
(by reading/writing �eld values, using getter/setter functions or
function calls). All communication must use the request-connection
system. This design choice forces the developer to explicitly de-
clare protocols between components. The bene�ts of this design are
three-fold. First, a developer can implement a component, consider-
ing only the communication protocol. Second, we gain �exibility
since we can replace a component with any other component fol-
lowing the same protocol. As we will see in Section 7, extending the
simulator just involves adding a new component that implements
the same protocol and wiring the new component with other com-
ponents. By adopting this model, we ful�ll the requirement of DR-1.
Third, we can improve simulation accuracy as no information can
“magically” �ow from one component to another, without being
explicitly transferred through the interconnect. Therefore, we can
satisfy both DR-2 and DR-3 with our design approach.

The event-driven simulation and the connection system can help
avoid busy ticking (DR-5). For example, a DRAM controller may
be able to calculate that a request takes 300 cycles to complete
when the request arrives, and nothing needs to be modeled in detail
during the 300 cycles. So the DRAM controller can schedule an
event in the event-driven simulation engine after 300 cycles and skip
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state updates until then. In addition, another type of busy ticking
in GPU architectures is caused by components that repeatedly try
to send data. Since a component has no information about when
a connected connection becomes available, the component has to
retry each cycle. To avoid this type of busy ticking, we allow the
connections to explicitly notify connected components when the
connection is available. Therefore, a component can avoid updating
the state if all of the out-going connections are busy, and update
its state after a connection is available.

3.2 GPU Modeling
MGPUSim’s GPU model, as shown in Figure 3, faithfully supports
the Graphics Core Next 3 (GCN3) ISA. We con�gure the model of
the GPU according to the publicly available AMD documentations
and through microbenchmarking. While the latest ISA on AMD
Vega GPU’s runs GCN5 [4], GCN5 only extends the memory access
instructions. The compute instructions in GCN5 are the same as
for GCN3. Simulating GCN5 can be achieved in MGPUSim by just
adding support for the new memory access instructions. We do not
need to change the remaining core components of MGPUSim.

The GPU architecture is composed of a Command Processor (CP),
Asynchronous Compute Engines (ACEs), Compute Units (CUs),
caches, and memory controllers. The CP is responsible for commu-
nicating with the GPU driver and starting kernels with the help of
ACEs. The ACEs dispatch wavefronts of kernels to run on the CUs.

In our model, a CU (as shown in Figure 4) incorporates a sched-
uler, a set of decoders, a set of execution units, and a set of storage

units. The CU includes a scalar register �le (SGPRs), vector register
�les (VGPRs), and a local data share (LDS) storage. A fetch arbiter
and an issue arbiter decide which wavefront can fetch instructions
and issue instructions, respectively. Decoders require 1 cycle to
decode each instruction, before sending the instruction to the exe-
cution unit (e.g., SIMD unit). Each execution unit has a pipelined
design that includes read, execute, and write stages.

MGPUSim includes a set of cache controllers, including a write-
through cache, a write-around cache, a write-back cache, and a
memory controller. By default, the L1 caches and the L2 caches
use a write-through and write-back policy, respectively. The cache
controllers do not enforce coherence as the GPU memory model
is fully relaxed. The compute units send virtual addresses for read
and write requests to the L1 cache. Virtual addresses are translated
to physical addresses at L1 cache with the help of two levels of
TLBs. We show the default con�guration in Figure 3. However,
both the number of layers of caching and the number of layers
of TLB are fully con�gurable. Finally, we equip each GPU with
a Remote Direct Memory Access (RDMA) engine to manage the
inter-GPU communication.

3.3 Simulator APIs
MGPUSim can run in two di�erent modes, native mode and Go
mode. In native mode, we provide a customized implementation
of the OpenCL runtime library in the C programming language.
Users can link the MGPUSim-provided OpenCL library with the
workload executables so that the customized OpenCL library can
redirect the API calls to MGPUSim and run the GPU kernels on
the simulated GPUs. In Go mode, we allow user to write a main
program in Go to de�ne memory layout and launch kernels.

MGPUSim’s GPU driver provides a set of OpenCL-like APIs to
allow workloads to control the simulated GPUs in Go mode. Each
user workload should start by calling an Init function to create
an execution context for the following API calls. Then, the work-
load can invoke device discovery functions and use the SelectGPU
function to specify the GPU to use. Finally, the main body of the
workload can be implemented by usingmemory allocation, memory
copy and kernel launch APIs. Since the APIs are similar to OpenCL,
an experienced OpenCL programmer should feel very comfortable
when using the MGPUSim APIs. In addition, we let each workload,
the driver, and the simulation each are run in individual threads,
allowing multiple workloads to run in parallel in the simulator.

4 METHODOLOGY
In this section, we describe the simulation con�gurations, the full
set of microbenchmarks and full benchmarks that we utilize for
validation and evaluation of the design studies. For validation of
MGPUSim, we compare the execution of microbenchmarks and
full benchmarks against a multi-GPU hardware platform that has
2 AMD R9 Nano GPUs (Section 5). We also use these workloads
to evaluate the bene�ts of new multi-GPU features in two case
studies (discussed in Sections 6 and 7), demonstrating the utility
and potential of MGPUSim for multi-GPU research.
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Parameter Property # per GPU

CU 1.0 GHz 64
L1 Vector Cache 16KB 4-way 64
L1 Inst Cache 32KB 4-way 16
L1 Scalar Cache 16KB 4-way 16
L2 Cache 256KB 16-way 8
DRAM 512MB 8
L1 TLB 1 set, 32-way 96
L2 TLB 32 sets, 32-way 8
IOMMU shared by all GPUs -
Intra-GPU Network Single-stage XBar 1
Inter-GPU Network PCIe-v3 16GB/s -

Table 1: Speci�cations of the Modeled R9 Nano GPU.

4.1 Simulation Con�guration
We validate MGPUSim against a multi-GPU platform with 2 Intel
Xeon E2560 v4 CPUs and 2 AMD R9 Nano GPUs (details provided
in Table 1) using execution time as the validation metric. The CPUs
and the GPUs are connected via a 16GB/s PCIe 3.0 interconnect.
The system runs the Radeon Open Compute Platform (ROCm)
1.7 software stack on a Linux Ubuntu 16.04.4 operating system.
We lock the GPUs to run at the maximum frequency to avoid the
impact of Dynamic Voltage and Frequency Scaling (DVFS). All the
kernels are compiled with o�cial ROCm compiler. All the timing
results are collected using the Radeon Compute Pro�ler [5]. All the
experiments in this paper are performed in the Go mode.

We evaluate the simulator speed and multi-threaded scalability
using a host platform with a 4-core Intel Core i7-4770 CPU. We use
the environment variable GOMAXPROCS to set the number of CPU
cores that the simulator can use.

4.2 Microbenchmarks
To �ne-tune the GPU model in MGPUSim, we develop a set of 57
microbenchmarks that cover a wide range of instruction types and
memory access patterns. Each microbenchmark is composed of
a manually written or script-generated GCN3 assembly kernel, a
C++ host program used in native execution, and an additional host
program written in Go for simulation. For the sake of brevity, out
of the 57 microbenchmarks used in this paper, below we discuss
four microbenchmarks that serve as a good representative of the
complete set:

ALU-focused microbenchmark: This Python-generated mi-
crobenchmark generates kernels with a varying number of ALU
operations (v_add_f32 v3, v2, v1) followed by an s_endpgm

instruction to terminate the kernel. Using the ALU microbench-
mark, we validate instruction scheduling, instruction pipeline, and
instruction caches.

L1 Access-focused microbenchmark: This microbenchmark
generates a varying number of memory reads to the same address.
All accesses, except for the �rst one are L1 cache hits, which allows
us to measure the cache latency.

DRAM Access-focused microbenchmark: This microbench-
mark repeatedly accesses the GPU DRAM using a 64-byte stride.
Since all cache levels use 64-byte blocks, all accesses are expected

to incur both L1 and L2 cache misses, and ultimately read from
the DRAM. We use this microbenchmark to measure the DRAM
latency.

L2 Access-focused microbenchmark: This microbenchmark
�rst reads each cache line in a 1MB block of memory, loading the
whole 1MB into the L2 cache. The L1 cache is expected to retain
the last 16KB, which is equal in size to its total capacity. After this,
a second scan sweeps the same 1MB of data from the beginning,
causing L1 misses and L2 hits. We use this strategy to �nd the L2
cache latency.

4.3 Full benchmarks
Out of the wide variety of full benchmarks available in the AMD
APP SDK [3] and the Hetero-Mark [46] suite, we select a set of
representative benchmarks (listed in Table 2) for both simulator
validation and our 2 case studies. We select these benchmarks to
ensure a wide coverage on the inter-GPU memory access patterns.
We modify the benchmarks to run on multi-GPU platforms. For
validation experiments, we duplicate the workload to run on two
GPUs, while for the design studies, the workloads remain the same,
and we dispatch portions of the workload to each individual GPU.
We use a di�erent approach during the design studies versus the
validation experiments, because we want to focus primarily on
multi-GPU collaboration in the design studies. Therefore, we let
the multiple GPUs work on a single set of data.

5 SIMULATOR VALIDATION
In this section, we discuss the results of validating MGPUSim
against real hardware. For emulation results, by running MGPUSim
in either functional emulation mode or timing simulation mode, we
are able to compare the simulation results with the results on AMD
GPU hardware at bit-level granularity. This comparison enables
us to build con�dence in the correctness of instruction emulation
and memory consistency in our simulator. For timing simulation
accuracy, we show the results of running microbenchmarks and
full-benchmarks in the following subsections.

Microbenchmark Validation: Figure 5 shows a comparison
of the execution time of the di�erent microbenchmarks discussed
in Section 4 when runing on an R9 Nano GPU and in MGPUSim.
MGPUSim achieves very high accuracy when running these mi-
crobenchmarks. For the L1 Vector Cache, L2 Cache and DRAM
microbenchmarks, the two curves overlap indicating the high accu-
racy of our simulator. In the ALU benchmark, there is an o�set of
several microseconds between the two lines, which is introduced
by random DRAM refreshes. We also validate our simulator with
microbenchmarks that test other important components such as the
ACEs, the L1 constant cache, and the TLBs. Since these experiments
all produce similar results, as the simulator estimated execution
time curves fully overlap or track closely with the real-GPU exe-
cution time curve, they are not included here. In light of all our
simulation results using the microbenchmarks, we can con�rm that
MGPUSim can model the key GPU components with high �delity.

Full-benchmark validation: Next, we validate our simulator
with full benchmarks running on 2 R9 Nano GPUs. Figure 6 shows a
comparison of the simulator estimated execution time and the real
hardware execution time. The di�erence between the two values
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Abbr. Workload Multi-GPU Memory Access Pattern

AES AES-256 Encryption Partition: Each GPU works on its own batch of data. No inter-GPU communication is needed.
BS Bitonic Sort Random: Any GPU can read/write from/to any other GPU. Memory access patterns are di�erent from

kernel to kernel.
FIR FIR Filter Adjacent Access: The input array is equally divided into batches for each GPU. The �lter data, which

is small, is duplicated to each GPU. The calculation on each GPU needs to access a small portion of
data close to the batch division from another GPU.

KM KMeans Clustering Partition: KMeans contains two kernels, one matrix transpose and one calculates the distance from
each input point to the cluster centroids. In the second kernel, each GPU works on its own batch of
data. We have frequent CPU-GPU communication in this benchmark.

MT Matrix Transpose Local-Read Remote-Write: Each GPU reads data from their local DRAM, but writes data to remote
GPUs’ DRAM.

MM Matrix Multiplication Remote-Read Local-Write: Each GPU reads data from local and remote GPUs, but only writes data
to local DRAMs.

SC Simple Convolution Adjacent Access: The input image is divided into sub-images and copied to each GPU. Each GPU
needs to access some of the pixels that are copied to another GPU.

Table 2: Full Benchmarks and their multi-GPU memory access patterns.
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Figure 5: Simulator Validation with Microbenchmarks.

across all benchmarks has an average value of 5.5% (peak value of
⇡20% in FIR and SC benchmarks). After a comprehensive study,
we can con�rm the di�erences are mainly due to undocumented
GPU hardware details. Although we try to model every individual
GPU component, we are not able to capture all the hardware imple-
mentation details, such as subtle pipeline structures in the cache
modules and sizes of the network bu�ers.

Parallel Simulation Performance: To compare MGPUSim
with Multi2Sim 5.0 and GPGPU-Sim, we run all three simulators
con�gured with a single-GPU running the MT benchmark on an

Figure 6: Execution time comparison between R9 Nano and
MGPUSim for the benchmarks listed in Table 2.

Figure 7: Speedup of Functional Emulation (Emu-), and De-
tailed Timing Simulation (Sim-) using 2 and 4 CPU Threads.

Intel Core i7-4770 CPU. Our experiment reveals that our simula-
tor can reach ⇡ 27 Kilo-instruction per second (KIPS) with 4 CPU
threads. For Multi2Sim 5.0 and GPGPU-Sim, we obtain a simulation
throughput of ⇡ 1.6 KIPS and ⇡ 0.8 KIPS, respectively. MGPUSim
is 16.5⇥ and 33.8⇥ faster than Multi2Sim 5.0 and GPGPU-Sim, re-
spectively.

To support e�cient design-space exploration in the context of
multi-GPU platforms, unlike contemporary GPU simulators, we
designed MGPUSim with built-in multi-threaded execution to fur-
ther accelerate the speed of simulations. Our simulations can take
advantage of the multi-threaded/multi-core capabilities of contem-
porary CPU platforms. As shown in Figure 7, MGPUSim achieves
good scalability when using multiple threads to run simulations.
In particular, when 4 cores are used in the Intel Core i7-4770 CPU
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platform, MGPUSim can achieve 3.5⇥ and 2.5⇥ speedups in func-
tional emulation and architectural simulation, respectively, while
preserving the same level of accuracy as in single-threaded simula-
tion. In addition, our parallelization approach is domain-agnostic,
allowing the parallelization approach to remain valid as we extend
the features of the simulator.

6 DESIGN STUDY 1: LOCALITY API
Next, we use two design studies to illustrate the use of MGPUSim.
Modeling any of the designs with existing open-source GPU simu-
lators can be very di�cult due to the lack of multi-GPU support.

As discussed in Section 2.2, the uni�ed multi-GPU model and
the discrete multi-GPU model each have unique advantages and
disadvantages. The uni�ed multi-GPU model has a simpler pro-
gramming model, while the discrete multi-GPU model allows for
precise control of data and compute placement. The Locality API
�nds the middle ground of the two approaches by adding a run-
time extension to the uni�ed multi-GPU model. Using the Locality
API, a programmer can either treat multiple GPUs as a single large
GPU (i.e., a UGPU) or as individual GPUs (i.e., an IGPU). In addi-
tion, as the Locality API is a runtime API extension, a similar set
of API extensions can be implemented in any GPU programming
frameworks, such as OpenCL, CUDA, or HSA [20].

6.1 API Design
The Locality API is based on the observation that a large portion
of regular GPU workloads has a regular and predictable memory
access pattern. It is common that GPU programmers know exactly
what data is accessed by each work-item. In this case, the pro-
grammer can utilize algorithm-speci�c knowledge to ensure most
memory accesses reference the local GPU and avoid costly inter-
GPU communication. Since this knowledge is algorithm speci�c, it
is very di�cult for a pure hardware-based solution to achieve the
same level of optimization.

Our Locality API includes a group of three APIs: 1) an extended
GPU Discovery API, 2) a Memory Placement API, and 3) a Compute
Placement API.

The extended GPU Discovery API allows the host program
to discover both the UGPU and each IGPU. We assume that there
is a memory region associated with each IGPU, so accessing the
associated memory is much faster than accessing a remote memory
that belongs to another IGPU.

Memory Placement API allows the programmer to explicitly
map a range of memory to an IGPU. Since the OS, the Memory
Management Unit (MMU), and Input Output Memory Management
Unit (IOMMU) manage the Page Table to keep track of both the
virtual and physical addresses of pages (a page is usually a contigu-
ous 4KB memory space), we use the GPU driver to modify the page
table to map the speci�ed range of virtual addresses to physical
addresses on the target IGPU. For example, assuming that we have
four IGPUs and each has a 1GB memory space, the physical address
space is banked into ranges 0 — 1GB, 1 — 2GB, etc, such that a
16KB vector that has a virtual address of 0 — 16KB can map to a
physical address of 0 — 0+4KB, 1GB — 1GB+4KB, etc. If we have a
vector-add application, we can simply launch the work-groups that
work on the �rst 4KB to GPU 0 and the wavefronts that work on
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Figure 8: Modeling Di�erent Multi-GPU Con�gurations.

the second 4KB to GPU 1, and a similar pattern for GPU2 and GPU3,
completely avoiding inter-GPU communication. On a typical 4KB-
page virtual memory system, we require that a full (versus partial)
page is mapped to a speci�c GPU to guarantee the correctness of
address translation.

The Compute Placement API extends the existing kernel-
launching API by allowing programmers to specify the IGPU ID
to launch the kernel and the list of work-groups to execute on the
submodule. Rather than launching a kernel with a single API call,
programmers may need a loop to launch the sub-kernels on each
IGPU.

6.2 Simulator Implementation
Modeling discrete multiple GPU platforms is straightforward with
MGPUSim, and it is supported out-of-the-box by the simulator. The
BuildNR9NanoPlatforms function is provided by the framework
to build a multi-GPU platform with the desired number of GPUs.
More speci�cally, this function returns an array of GPUs and a
driver object that provides information about the GPUs. Internally,
the function instantiates multiple GPU objects and con�gures their
internal components and parameters. The function also instantiates
a PCIe bus (the PCIe can be replaced with other interconnect fabrics)
to connect the RDMA engine to each GPU that is used for GPU-
to-GPU memory communication. We present the modeled discrete
multi-GPU platform in Figure 8a. Note that instantiating multiple
GPU instances is not possible in either GPGPU-Sim or Multi2Sim,
due to the heavy coupling between classes.
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(a) Locality API Speedup.

(b) Normalized Inter-GPU Tra�c.

Figure 9: Locality API Performance.

For a uni�ed multi-GPU model, we need to rewire the GPUs
created by BuildNR9NanoPlatforms (see Figure 8b). Since we use
the ACE of GPU0 to dispatch work-groups to the compute units of
all the GPUs, we need to add an extra connection to wire the ACE
of GPU0 to all the compute units in the platform, as well as register
all the CUs in the ACE. We need to keep the connections between
the compute units and the cache modules, the connections between
cache modules and memory controllers, and inter-GPU RDMA-
RDMA connections unchanged. We accomplish this rewiring of the
multi-GPU design, using less than 10 lines of code.

Finally, to implement the Locality API in MGPUSim, we replace
the driver component to support the extra driver API functions
described in Section 6.1. The new driver component wraps the
standard driver to avoid re-implementing the existing driver APIs.
Since we de�ne a communication protocol between the driver and
the GPU, and between the driver and the MMU, replacement is easy
and straightforward.

6.3 Evaluation
To evaluate our new Locality API, we run full benchmarks on four
di�erent con�gurations. We use both single GPU and a monolithic
multi-GPU con�guration as baselines for comparison. The mono-
lithic GPU is built by integrating the resources of 4 GPUs (CUs,
cache modules, memory controllers) into one chip. Note that the
monolithic GPU is impractical to build as it requires a large die size
> 2000mm2, since each R9 Nano requires a die size of 596mm2 [1].
We also compare against a uni�ed 4-GPU con�guration, without
the Locality API enabled, as another baseline design. The Locality
API con�guration is based on the same uni�ed 4-GPU con�gura-
tion, but allows us to apply a locality-based optimization to avoid
inter-GPU communication. Using the locality API is equivalent to
custom programming for each individual GPU, and therefore, it
achieves the same performance as a discrete multi-GPU model.

The inter-GPU tra�c, as shown in Figure 9b, can be signi�cantly
reduced when the Locality API is used. We see that in benchmarks
such as AES, as the programmer can perfectly partition the data,

with inter-GPU communication can be fully eliminated. For bench-
marks that follow the Adjacent Access pattern (e.g., FIR and SC), the
inter-GPU tra�c can also be minimized. However, in benchmarks
such as MT and BS, manual optimization is not easy to apply, and
hence, the Locality API cannot reduce tra�c, and sometimes may
even introduce more inter-GPU tra�c.

In terms of the execution time (see Figure 9a), we observe that
the performance of a monolithic GPU generally scales well and can
sometimes even provide speedups of more than 4⇥. This superlinear
speedup is due to reduced bank con�icts as we add more L2 cache
modules and memory controllers. In benchmarks such as KM and
MT, due to an inherent lack of parallelization, a monolithic GPU
can only speed up execution by 2⇥.

The benchmark execution time of the Uni�ed and the Locality-
API con�guration are correlated with the inter-GPU tra�c, indi-
cating that inter-GPU communication is a major bottleneck in the
system. We see that in many cases (e.g., AES and FIR), the locality
API can nearly obtain the same level of scalability as a monolithic
GPU, while a Uni�ed con�guration is not able to run as fast as a
single-GPU design. In FIR and SC, the Locality API can even out-
perform a Monolithic GPU. This is because the monolithic GPU has
a large network connecting the L1 to L2 caches, and so it is more
likely to have congestion in the network and the input bu�ers of
the L2 caches. In most of the other benchmarks (AES, KM, and MM),
the Locality API can easily improve the uni�ed multi-GPU model.
As a special case here, the AES benchmark shows relatively good
scalability on all con�gurations due to the data-parallel compute-
intensive nature of the workload. Finally, the Locality API cannot
speed up the MT and BS benchmarks, since we cannot easily split
the data on each IGPU.

7 DESIGN STUDY 2: PASI
The Locality API allows programmers to apply their domain-speci�c
knowledge to avoid inter-GPU communication. However, in many
cases, allocation of the data properly to each GPU is a di�cult
task. Also, when a single-GPU application is directly migrated to a
multi-GPU platform, before it can be manually optimized, we need
a scalable solution.

To allow hardware to help with improving data locality, we
propose using Progressive Page Splitting Migration (PASI). The goal
of PASI is to enable the GPU hardware to automatically improve
the data placement for any workload. We explain the design of PASI
in the next 3 subsections.

7.1 Page Migration
When describing Locality API, we assumed that the RDMA engine
lies between the L1 and the L2 caches as shown in Figures 8a and
8b. In the case of an L1 miss, depending on the requested address,
the L1 cache will either send the request to a local L2 cache or to
the RDMA engine. This Direct Cache Access (DCA) design forces
all inter-GPU communication packets to have a payload that is
smaller than or equal to the cache line size (64B in typical systems),
resulting in poor utilization of the interconnect bandwidth and
spatial locality.
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To address this issue, we employ Page Migration by rearchi-
tecting the system as shown in Figure 8c. A Page Migration Con-
troller (PMC) is integrated in each memory controller. A PMC has
its internal page directory stored in the GPU DRAM directly. It
introduces a very small amount of extra storage. Assuming a 4GB
GPU DRAM and a 4KB page size, PMC comprises at most 1M en-
tries to store the tag data (0.2% overhead assuming each entry is
8B). Each entry contains the physical address tag of the page, and a
single valid bit, indicating if the page is mapped to current GPU.

In the case of an L2 miss, a memory access request arrives at the
PMC. The PMC checks its internal directory to determine whether
the page is currently in the local DRAM. If the page is not present
in the local DRAM, it communicates with the RDMA engine to send
a page migration request to the input-output memory management
unit (IOMMU), which is a hardware component located on the CPU.
The IOMMU also maintains a table that tracks which page is located
on which GPU. The IOMMU identi�es the GPU that owns the data
and forwards the migration request to the destination GPU. The
owning GPU sends the page data to the requester GPU and then
marks the page as invalid on the receiver GPU’s local PMC. The
page invalidation is also followed by a TLB shootdown (invalidating
the page in the TLBs) on the receiver to avoid a translation error.
Since the IOMMU knows both the source and destination of the
page migration request, it updates its internal directory to re�ect
the migration.

7.2 Cache-only Memory Architecture
Page-migration can help improve utilization of the inter-GPU inter-
connect by increasing the network packet size and can also increase
spatial locality. However, due to the fact that multiple GPUs may
share the same data, a single page may ping-pong back and forth
between GPUs. This can signi�cantly impact workloads such as
matrix multiplication, as all pages containing the input data are
accessed by all of the GPUs to calculate the output.

In general-purpose GPU computing, memory access patterns
of data items can be categorized into 4 types: 1) Single Read; 2)
Multiple Read; 3) Single Write; 4) Multiple Write. Types 1) and
3) are commonly seen in streaming workloads and can be fairly
easily resolved by the Locality API and Page Migration approaches.
However, page migration does not help address issues with access
pattern types 2) and 4). Therefore, we use a Cache-only multi-GPU
memory architecture and Page Splitting to solve type 2) and 4),
respectively.

To allow the same piece of data to be shared bymultiple GPUs, we
extend the page migration approach with a memory coherency pro-
tocol to unify the multi-GPU system as a cache-only memory sys-
tem. The concept of a cache-onlymemory architecture (COMA) [49]
describes memory systems that are only composed of cache mod-
ules. In COMA, there is no “root” node in the system to always
maintain a copy of all the data. In COMA, any piece of data is stored
in at least one GPU. But the exact location depends on which GPU
uses the data. In contrast to a page-migration approach, a piece
of data is allowed to reside in multiple locations with the support
of a memory coherency protocol. When the GPU memory is full
because of page sharing, we spill the data to system memory, under
the control of the IOMMU.

E S
Request Share

 Page Write
I

Request Own

 Page Read
 Page Write

Request Own

Figure 10: The ESI memory coherency protocol for multi-
GPU cache-only memory architecture.

We introduce a light-weight ESI memory coherency protocol,
similar to the standard MSI protocol [44], to manage the multi-GPU
COMA, where E, S, and I stand for Exclusive, Shared, and Invalid
states, respectively. As M in the MSI emphasizes the dirtiness of a
cacheline, and the concept of dirtiness does not exist in a cache-only
system, we use E to emphasize the write exclusiveness of a page.

Note that this coherency protocol works at a page granularity
rather than a cacheline granularity, and only manages a subsystem
that is composed of the memory controllers. It is independent of
the cache system. The cache system can still apply cache coherency
protocols. The memory controllers of the cache-only memory sys-
tem can collectively be treated as the root node for the cache system
since any piece of data is always available in at least one memory
controller.

The ESI coherency protocol works as follows. Assuming a page
starts with an “Invalid” (I) state, when an L2 cache reads the data
from the page, the PMC requests the data to be migrated, as we
described in 7.1. The IOMMU maintains a memory coherency di-
rectory and checks which GPU owns the data. In case only one
GPU owns the data in an “Exclusive” (E) state, the IOMMU requests
the owning GPU to send the data to the requesting GPU, while
marking the state of the page on each GPU as “Shared” (S) state. On
the other hand, if multiple GPUs own the data in the “S” state, the
IOMMU will select one of the data owners to send the data to the
requesting GPU. The selection algorithm is con�gurable according
to the interconnect topology. In our case, as we use a bus to connect
multiple GPUs, we let the IOMMU to randomly select an owner to
send the data.

The processor writes take a similar approach. When a processor
requests to write to a page that is currently in states I or S, the PMC
requests page migration from the IOMMU. The IOMMU invalidates
the page from all other owners. The page will also change to the “E”
state, as it has acquired exclusively and is ready to be written into.

7.3 Page splitting
The Cache-only System can avoid useless page-migration when
multiple GPUs read from the same piece of data (i.e., the “2) Mul-
tiple Read case” described earlier). However, when the same page
needs to be written by di�erent GPUs (i.e., the “4) Multiple Write”
case), a page still needs to be migrated due to the requirement of ex-
clusiveness of writing. In general, di�erent GPUs should not write
into the same address unless a system-level atomic write is used.
Writing into di�erent parts of the same page from di�erent GPUs
(i.e., false sharing) triggers unnecessary page migration, and should
be avoided.

Decreasing the page size is a solution to avoid false sharing.
However, smaller pages reduce the coverage of the TLBs and may
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potentially increase the address translation latency, causing the
compute unit to stall. In general, there is no single page size that
�ts all applications, and even for the same application, di�erent
kernels that are part of the application can have a bias towards
a particular page size. Therefore, we need a dynamic approach,
allowing the hardware to �nd the best page size during execution.

We use a Page Splitting approach, built upon a cache-only mem-
ory system and the ESI protocol. Starting from a large page size (e.g.,
2MB), when a page needs to transit from state “E” to state “I” or “S”,
rather than migrating the whole page, we split the page in half and
only transfer the requested half of the page. We allow the page to
continue to be split down until the smallest page size (e.g., 1KB) is
reached. Since we split the page in half, each half becomes a page
that has an ESI state and an owner list. The IOMMU and the TLB
also need to keep track of the page size to guarantee translation
accuracy. In addition, whenever adjacent pages arrive at one GPU,
the IOMMU merges them into a larger page.

7.4 Simulator Implementation
With the Locality API, we demonstrate how to recon�gure the
driver and connect it to the GPUs. Evaluating PASI serves as a good
example of how to change the behavior or the memory system and
how multiple GPUs interact.

To implement page migration, we create a new component
named the Page Migration Controller (PMC). The PMC has three
ports, including the L2CachePort, DRAMPort, and the RDMAPort,
which are responsible for handling the communication between
the PMC and its connected components. We also add two types of
requests, PageMigrationReq and PageMigrationRsp, which rep-
resent both the initial request and the response from a peer. We
enable the PMC process read and write requests from the L2 cache,
the data ready and write responses from the memory controller, and
the PageMigrationReqs/PageMigrationRsps that are forwarded
by the RDMA engine and originated from a PMC of another GPU.

Rewiring is necessary to integrate the new PMCwith the existing
GPU con�guration. After instantiating the PMC, we connect the L2
cache’s DRAMPort port with the PMC’s L2CachePort, so that they
can communicate. We also connect the RDMA and the memory
controller with the PMC. Since we design an explicit protocol for
the L2 cache, the memory controller, and the RDMA, the PMC
can be inserted as long as it follows the protocols. The L2 cache,
the RDMA, and the memory controller are fully unaware of their
connection to the PMC. We implement 3 di�erent PMCs by adding
features incrementally, including a Page Migration Only PMC (PM),
an ESI PMC (ESI), and a Page Splitting PMC (PS). Given the level
of modularity that MGPUSim delivers, we can freely swap in the
desired type of PMC.

7.5 Evaluation
According to the evaluation results shown in Figure 11, Page Mi-
gration alone supports scalability on a uni�ed 4-GPU platform to
run the AES, KM, and MM benchmarks. When simulating 4 GPUs,
we can achieve a speedup of 3.3⇥, 3.1⇥, and 2.7⇥, as compared
to a single GPU execution, when running the AES, KM, and MM
benchmarks, respectively, while DCA only achieves a speedup of
2.8⇥ for AES, and a slowdown of 0.35⇥ and 0.56⇥ for KM and MM,

Figure 11: The speedup of PASI on a 4-GPU platform over
a single GPU with incrementally added features. Here, PM
= Page Migration, PS = Page Splitting, and LA indicates that
the Locality-API is used.

respectively. However, in some cases, such as BS, MT, and SC, we
see that Page Migration alone slows down the execution up to 4⇥,
as compared to single-GPU execution, mainly because of read-only
sharing and false sharing. In these cases, a page cannot reside sta-
bly on a single GPU, since ping-ponging between GPUs will occur
frequently.

The ESI bars in the Figure 11 show the speed up of an approach
that combines the ESI coherency protocol and Page Migration. As
the combination of these mechanisms can allow the read-only mem-
ory to reside in multiple GPUs, a page only needs to be migrated
once to each GPU. We observe the e�ect of ESI in the BS and MM
benchmarks, as their inputs are usually shared by multiple GPUs.
However, we also notice that ESI and Page Migration are not able
to e�ectively improve MT and SC performance.

Finally, as we integrate Page Splitting with ESI and Page Migra-
tion (the PS and PS-LA bars in Figure 11), we improve performance
by up to 4⇥ (inMT), compared to the ESI + PageMigration approach.
This is mainly because: 1) a larger initial page size improves TLB
coverage; 2) the initial migration takes more time at the beginning
of the execution, but we can avoid future small page migrations,
and thus reduce the wait time of the ALU pipelines; and 3) for appli-
cations that have false sharing, Page Splitting can migrate smaller
pages and reduce the inter-GPU tra�c. Overall, we see that PASI
can improve the performance of a uni�ed 4-GPU platform by 2.65⇥
compared to the DCA approach.

8 RELATEDWORK
GPU Simulators: Ever since GPUs were used in the domain of
high-performance general-purpose computing, researchers have de-
veloped GPU architectural simulators to support the research com-
munity to perform GPU architecture exploration. GPGPU-Sim [10]
and Multi2Sim [50] are the most popular out of a number of pub-
licly available GPU simulators that model GPUs based on NVIDIA’s
PTX ISA and AMD’s GCN1 ISA, respectively. The AMD GEM5
APU [19] is a recent GPU simulator focused on APU devices devel-
oped in parallel with MGPUSim, and is also capable of simulating
the GCN3 ISA. While MGPUSim is inspired by these predecessor
simulators, MGPUSim emphasizes strong software engineering
principles, high-performance parallel simulation, and multi-GPU
platform modeling.

Parallel GPU simulators: To accelerate GPU simulation, par-
allel GPU simulators have been proposed [14, 29, 30, 32]. Barra [14]
mainly focuses on parallel functional emulation, while MGPUSim
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performs both emulation and timing simulation. GPUTejas [32] is
a Java-based, trace-driven, parallel architectural simulator that can
achieve high performance and scalability. Instead of trace-driven,
MGPUSim is execution-driven in order to support the “no-magic”
and “track data with timing” design requirements. The parallel sim-
ulator framework proposed by Lee et at. [29, 30] modi�es GPGPU-
Sim and only synchronizes when the processor accesses the mem-
ory system. MAFIA [23] is a multithreaded simulator for running
concurrent kernels on GPGPU-Sim. However, in contrast to MGPU-
Sim, the simulation of a single kernel is not parallelized by MAFIA.
Therefore a single kernel executing in this framework will roughly
take the same amount of time as it does in GPGPU-Sim. Di�erent
from GPUTejas and Lee et al.’s frameworks, we achieve scalable
speedup without compromising simulation accuracy.

Multi-GPU Microarchitecture Research: Recently, the com-
munity has started to study how to e�ciently accelerate comput-
ing with multi-GPU platforms. Given that the inter-GPU network
and the supporting memory system inhibit scalability in current
multi-GPU platforms, research has focused on optimizing memory
organization. Kim et al. propose Scalable Kernel Execution [25],
allowing a single kernel to execute on multiple GPUs as if there
is only one GPU on the platform. Ziabari et al. [58] propose a uni-
�ed memory hierarchy (UMH) and NMOESI, using the large GPU
DRAMs as cache units for the system memory, achieving CPU and
multi-GPU memory coherency. MCM-GPU [7] considers a multi-
chip module that encapsulates multiple GPUs in the same package.
They introduced an L1.5 cache and used memory a�nity sched-
uling to reduce the cross-GPU tra�c. A NUMA-aware multi-GPU
system, proposed by Milic et al. [34],also tries to reduce tra�c on
the interconnect. Young et al. [57] proposed CARVES, which uses a
combined hardware and software approach to allow multiple GPUs
to share one piece of memory. As the multi-GPU research commu-
nity is growing larger, it is important to develop powerful tools to
further support research in related �elds, and the development of
MGPUSim �lls the gap.

Cache-like Memory Systems: Meswani et al. [33] consider
a two-layer memory system and introduce mechanisms to allow
users to control where the data is stored in the closer-to-chip mem-
ory. CAMEO [13] is another prior study that manages a two-layer
memory system with a cache-like memory system. Prior work has
been mainly focusing on applying cache-like memory system de-
sign for CPUs, while PASI is a cache-like memory management
solution tailored for multi-GPU systems.

Locality APIs: Vijaykumar et al. [52] propose using locality
descriptors to reduce memory movement in both single- and multi-
GPU environments. Our solution only tries to reduce inter-GPU
data movement, and hence, can use simpler APIs that requires
limited code modi�cations.

Virtual Address Management in GPUs: Ausavarungnirun et
al. propose MASK [9], a framework to deal with virtual memory
management for multiple applications running on a single GPU.
In contrast, we emphasize an address translation-based solution
for single applications executing on multiple GPUs. Page splitting
for GPUs has been proposed in Mosaic [8]. However, Mosaic is
also designed to work within a single GPU system. E�cient Page
Splitting on a multi-GPU platform requires new considerations in
terms of memory coherence to guarantee correct execution. PASI

serves an overall hardware solution that combines page-migration,
memory coherency, and page splitting to improve multi-GPU data
sharing e�ciency.

9 CONCLUSION
With the development of multi-GPU platforms, the research com-
munity demands new tools to explore faster and scalable multi-GPU
designs. In this paper, we have proposed a new, �exible, and high-
performance, parallel multi-GPU simulator called MGPUSim that
would facilitate the design of future multi-GPU platforms. We have
extensively validated MGPUSim with both microbenchmarks and
full workloads against a real multi-GPU platform.

We have used two concrete design studies to both showcase
the power and the �exibility of the simulator, and to provide a
new solution to improve the scalability of multi-GPU platforms.
Equipped with the Locality API introduced in the �rst design study,
a programmer can control the data and compute placement and
improve performance without modifying the kernel written for a
single GPU implementation. With PASI, the GPU hardware can
progressively improve the data placement during application exe-
cution. For a discrete 4-GPU platform we achieve a 1.6⇥ and a 2.6⇥
average speedup (geometric mean) with Locality API and PASI,
respectively, when compared with a uni�ed 4-GPU platform.

Designing a computer architecture simulator is a long-term ef-
fort. Despite the reasonable overall accuracy and �exibility we have
achieved, we will continue to support the simulator for the commu-
nity by adding new features (e.g., supporting atomic operations) and
additional workloads. We also plan to explore the multi-GPU de-
sign space more thoroughly, including di�erent inter-GPU network
architectures and fabrics, DRAM technologies (e.g. HBM, GDDR6),
and scaling the GPU count in the system.
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