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Abstract. We propose an efficient technique for the detection of errors in cryp-
tographic circuits introduced by strong adversaries. Previously a number of linear
and nonlinear error detection schemes were proposed. Linear codes provide pro-
tection only against primitive adversaries which no longer represents practice. On
the other hand nonlinear codes provide protection against strong adversaries, but
at the price of high area overhead (200–300%). Here we propose a novel error
detection technique, based on the random selection of linear arithmetic codes.
Under mild assumptions the proposed construction achieves near nonlinear code
error detection performance at a lower cost (about 50% area overhead) due to the
fact that no nonlinear operations are needed for the encoder and decoder.

1 Introduction

Cryptographic devices are vulnerable to side-channel attacks such as timing analysis
attacks [1], power analysis attacks [2] and fault injection attacks [3],[4]. Due to their
active and adaptive nature, fault based attacks are one of the most powerful types of
side-channel attacks. Since a fault attack was demonstrated by Boneh et al. in [5] in
1996, numerous papers have been published proposing a variety of fault attacks on both
public-key and private-key cryptographic devices. One of the most efficient fault injec-
tion attacks on AES-128, for example, requires only two faulty ciphertexts to retrieve
all 128 bits of the secret key [6]. Without proper protection architecture against fault
injection attacks, the security of cryptographic devices can never be guaranteed.

Error detecting codes are often used in cryptographic devices to detect errors caused
by injected faults and prevent the leakage of useful information to attackers. Most of
the proposed error detecting codes are linear codes like parity codes, Hamming codes
and AN codes [7]. Protection architectures based on linear codes concentrate their error
detecting abilities on errors with small multiplicities or errors of particular types, e.g.
errors with odd multiplicities or byte errors. However, in the presence of unanticipated
types of errors linear codes can provide little protection. Linear parity codes, for ex-
ample, can detect no errors with even multiplicities. By carefully selecting faults and
injection methods an attacker can with high probability bypass the protection archi-
tectures based on linear codes and still be able to break the security of cryptographic
devices in a reasonably short time.



In [8], robust algebraic codes were proposed as an alternative to classical linear
codes to protect cryptographic devices implementing AES against fault injection at-
tacks. In [9], robust arithmetic residue codes were proposed which can be used to de-
sign fault tolerant cryptographic devices performing arithmetic operations. Instead of
concentrating the error detecting abilities on particular types of errors, robust codes
provide nearly equal protection against all error patterns. Hence robust codes eliminate
the weakness of linear codes which can be exploited by attackers to mount successful
fault attacks. Variants of both algebraic and arithmetic robust codes – partially robust
and minimum distance robust codes – were proposed in [10]. These architectures allow
various tradeoffs in terms of robustness and hardware overhead.

Robust codes are based on nonlinear functions [11] and the robustness of the code is
highly related to the nonlinearity of the function. Systematic robust codes, for example,
can be constructed by appending a signature generated by a nonlinear function f to the
information part of the code. The worst case error masking probability of any nonzero
error is bounded by Pf , which gives a measure of the degree of the nonlinearity of f .

The main disadvantage of robust codes is the large hardware overhead when im-
plementing nonlinear operations for the encoding and decoding circuits. In this paper,
we propose a different method to achieve similar levels of protection. Instead of using
nonlinear functions to generate the signature of the code, we randomly select a code
from multiple linear codes at each clock cycle. The resulting codes are called multilin-
ear codes. The proposed method can have as small number of undetectable errors as
classical robust codes while requiring much less hardware overhead due to the fact that
no nonlinear operations are needed for the encoder and decoder.

Multipliers are widely used as sub-blocks in public key cryptosystems. In this pa-
per we present constructions of multilinear arithmetic codes and their use to design
reliable multipliers. We compare the proposed protection architecture for multipliers
with that based on single linear arithmetic code. We assume that countermeasures are
implemented in the cryptographic device preventing the attackers from tampering with
the clock signals. We further assume that a low-rate true random number generator
(e.g. [12]) is available. In fact, most cryptographic devices incorporate a true random
number generator by default for key initialization, random pad computation, challenge
generation etc. The error detection capabilities of different architectures are simulated
in MATLAB and the advantage of the proposed technique is demonstrated.

The constructions of multilinear algebraic codes and the analysis of fault detection
capabilities of architectures based on multilinear algebraic codes were discussed in [13].

The paper is organized as follows. Section 2 describes the error and attacker models
we use throughout the paper. In section 3 we formalize the design and propose sev-
eral constructions based on randomly selecting multiple linear codes. In Section 4 we
compare different protection architectures for a fixed precision multiplier. We finish the
paper by drawing the conclusions in Section 5.

2 Error and Attacker Model
In this paper we concentrate on the analysis of the error detection abilities for systematic
arithmetic codes and the reliability of multipliers based on these codes. Different from
the widely used nonsystematic AN codes [7], the codewords of systematic arithmetic



codes contain two parts: the information part and the redundancy part. Any codeword
c can be written in the format of (x, y), x ∈ Z2k , y ∈ Z2r , where k is the number
of information bits, r is the number of redundant bits and Z2k is the additive group
of integers {0, 1, · · · , 2k − 1}. We denote by e = (ex, ey) the error vector and c̃ =
(|x + ex|2k , |y + ey|2r ) the distorted codeword in which ex ∈ Z2k , ey ∈ Z2r , + is the
arithmetic addition and ||p is the modulo p operation.

Let C be an arithmetic code. An error e = (ex, ey) is masked by a codeword c =
(x, y) ∈ C if c̃ = (|x + ex|2k , |y + ey|2r ) also belongs to C. Given an error e, the error
masking probability Q(e) is calculated as follows:

Q(e) =
{c|c ∈ C, c̃ ∈ C}

|C|
. (1)

If an error is masked by all codewords of the code, Q(e) = 1 and the error is called
undetectable. If 0 < Q(e) < 1, the error is called conditionally detectable. Differ-
ent from algebraic codes, arithmetic codes usually do not have undetectable errors. To
illustrate the advantage of the proposed codes, we compare the number of bad errors,
which are errors e with Q(e) ≥ 0.5, for linear arithmetic codes and the proposed mul-
tilinear arithmetic codes. Since bad errors are the most difficult to detect, we will show
that the transition from linear to multilinear arithmetic codes results in a drastic reduc-
tion of the number of bad errors and an improvement of the error detection ability of
the code.

Throughout the paper we assume a strong attacker model in which an attacker
knows everything about the hardware architecture of the device including the code used
to detect errors. The attacker can utilize any fault injection methodologies and is able
to inject faults with high spatial resolution to generate a specific error vector (ex, ey) at
the output of the devices. The only limitation on the attacker is that he cannot change
the error at each clock cycle. Once faults are injected and an error is generated, the
faults stay for several clock cycles and the error tends to repeat. This is the case for sev-
eral well known fault injection methodologies such as introducing power glitches into
the power supply, using laser guns, etc [4]. We call this kind of channels where errors
have high probabilities to repeat themselves for several consecutive clock cycles lazy
channels or channels with memory.

The advantages of multilinear arithmetic codes in terms of error detection capa-
bilities are two-fold. First, they are better than linear arithmetic codes in a sense that
it has much smaller number of bad errors. Second, multilinear arithmetic codes have
much higher error detection abilities than linear codes in lazy channels hence they will
effectively prevent the attacker from implementing a successful fault induction attack
under the aforementioned attacker model. To facilitate the analysis and comparison of
the error protection architectures based on different codes in lazy channels, we assume
that errors last for at least t consecutive clock cycles, t ≥ 1.

The experimental results for the error detection properties of multipliers protected
by different codes are presented in Section 4, which shows that as t increases the error
detection probabilities are much higher for architectures based on multilinear arithmetic
codes than that based on single linear arithmetic code.



3 Constructions

We first analyze the error detection properties of linear arithmetic codes.

Theorem 1. (Linear Arithmetic Codes) Let C be a linear arithmetic code defined by

C = {(x, y)|x ∈ Z2k , y = f(x) ∈ Z2r}, (2)

where p is a prime number larger than 2 and f(x) = |x|p where ||p represents the
modulo p reduction operation. Denote by e = (ex, ey) an additive error, ex ∈ Z2k , ey ∈
Z2r , r = dlog2 pe, c+ e = (|x+ ex|2k , |y + ey|2r ), c ∈ C. When p << 2k, the number
of bad errors is upper bounded by

2 · (2k + p− 2k(Hp−1 −Hb p
2 c)−

2k−1

p
). (3)

In the equation Hn represents the n-th harmonic number. For large p the difference
Hp−1 − Hb p

2 c converges to ln 2. Thus, for large p, the number of bad errors is upper
bounded by 2p− 2k+1(ln 2− 1)− 2k/p.

If no errors occur to the redundant part of the code, the number of bad errors oc-
curring only to the information part of the code is upper bounded by

2 · d2
k−1

p
e. (4)

When p is large and p << 2k, the estimated probability of bad errors is 0.3 · 2−r+1.
The estimated probability of bad errors occurring to the information part is 2−2r.

Proof. To simplify the analysis, we divide the errors into two classes according to the
value of x + ex.

1. x + ex < 2k, we have |x + ex|2k = x + ex, f(x + ex) = |x + ex|p.
(a) |x|p + ey < p, then ||x|p + ey|2r = |x|p + ey . An error (ex, ey) is masked if

and only if |x + ex|p = |x|p + ey . Or equivalently |ex|p = ey . For a codeword
x to mask a given error (ex, ey), the following conditions must be satisfied:

x + ex < 2k, (5)
|x|p + ey < p, (6)
|ex|p = ey. (7)

From (6) and (7) we have |x|p < p − |ex|p. For a certain value of |x|p <

p − |ex|p, the number of x satisfying (5) is bounded by d 2
k−ex

p e. Thereby for
a given error (ex, ey), the total number of codewords that mask the error is
d 2

k−ex

p e · (p− |ex|p). For bad errors the error masking probability is larger or
equal to 0.5. Thus

2−k · d2
k − ex

p
e · (p− |ex|p) ≥ 0.5. (8)



When p << 2k, it is reasonable to rewrite (8) as follows:

2−k · 2
k − ex

p
· (p− |ex|p) ≥ 0.5. (9)

Thereby,

ex ≤
2k−1(p− 2 · |ex|p)

p− |ex|p
. (10)

We know that ex ≥ 0, so
0 ≤ |ex|p ≤ b

p

2
c. (11)

The total number of ex satisfying (10) and (11) is upper bounded by (For sim-
plicity, let i = |ex|p.)

b p
2 c∑

i=0

(
1
p
· 2

k−1(p− 2i)
p− i

+ 1). (12)

So the number of bad errors in this class is bounded by (12), which can be
simplified to be

2k + p

p
(bp

2
c+ 1)− 2k−1 ·

b p
2 c∑

i=0

(
1

p− i
). (13)

(b) p ≤ |x|p + ey < 2r, errors in this class will never be masked because the
redundant part is a value that cannot occur.

(c) |x|p +ey ≥ 2r, then ||x|p +ey|2r = |x|p +ey−2r. An error (ex, ey) is masked
if and only if |x + ex|p = |x|p + ey − 2r. Or equivalently |ex|p = |ey − 2r|p.
It is easy to show that ey − 2r ∈ [−p + 1, 0], so |ey − 2r|p = p + ey − 2r. For
a codeword x to mask a given error (ex, ey), the following conditions must be
satisfied:

x + ex < 2k, (14)
|x|p + ey ≥ 2r, (15)
|ex|p = ey + p− 2r. (16)

From (15) and (16) we have |x|p ≥ p − |ex|p. For a certain value of |x|p ≥
p − |ex|p, the number of x satisfying (14) is bounded by d 2

k−ex

p e. Thereby
for a given error (ex, ey), the total number of codewords that mask the error is
d 2

k−ex

p e · |ex|p. For bad errors the error masking probability is larger or equal
to 0.5. Thus

2−k · d2
k − ex

p
e · |ex|p ≥ 0.5. (17)

When p << 2k, we rewrite (17) as follows:

2−k · 2
k − ex

p
· |ex|p ≥ 0.5. (18)



So
ex ≤

1
|ex|p

· 2k−1 · (2|ex|p − p). (19)

Because ex ≥ 0,
|ex|p ≥ d

p

2
e. (20)

The total number of ex satisfying (19) and (20) is upper bounded by(For sim-
plicity, let i = |ex|p.)

num <

p−1∑
d p

2 e

(
1
p
· 2

k−1(2i− p)
i

+ 1). (21)

So the number of bad errors in this class is bounded by (21), which can be
simplified to be

2k + p

p
· (p− dp

2
e)− 2k−1 ·

p−1∑
d p

2 e

1
i
. (22)

From (13) and (22), the total number of bad errors for the case when x + ex < 2k

is bounded by 2k + p− 2k
∑p−1

i=d p
2 e

1
i −

2k−1

p .
2. x + ex ≥ 2k, we have |x + ex|2k = x + ex − 2k, f(x + ex) = |x + ex − 2k|p.

Following the same analysis, we can show that the number of bad errors in this
class is also bounded by 2k + p− 2k

∑p−1
i=d p

2 e
1
i −

2k−1

p .

Thereby for linear arithmetic codes, an upperbound of the number of bad errors is

2 · (2k + p− 2k

p−1∑
i=d p

2 e

1
i
− 2k−1

p
)

= 2 · (2k + p− 2k(Hp−1 −Hb p
2 c)−

2k−1

p
).

If no errors occur to the redundant part of the code, ey = 0. For the case when x+ex <
2k, a codeword x mask an error e = (ex, ey = 0) if and only if |ex|p = ey = 0. It is easy
to prove that the number of errors in this class is upper bounded by d 2

k−1

p e. Similarly,
when x + ex ≥ 2k, the number of bad errors in the format of (ex, 0) is also upper
bounded by d 2

k−1

p e. So the total number of bad errors occurring to the information part

of the code is no more than 2 · d 2
k−1

p e.
When p is large and p << 2k, the estimated probability of bad errors and bad errors

occurring to the information part of the code can be derived directly from (3) and (4).
�

The number of bad errors occurring to the information part of the code decreases
as p increases according to (4). When p > 2k−1, there are nearly no bad errors in the
format of (ex, ey = 0). However, the total number of bad errors is still very large for
linear arithmetic codes.



In general, the hardware overhead for the encoder of the code is mostly affected by
the number of redundant bits r = dlog2(p)e. Many different p can be selected when r
is fixed and some of them are better in terms of the total number of bad errors. Table 1
shows the best p and the corresponding fraction of bad errors for different k and r. The
numbers outside the parentheses are the prime numbers which will result in the smallest
number of bad errors for the given k and r. The numbers inside the parentheses are the
corresponding fractions of bad errors.

When 2r << 2k, we should select p to be the largest possible prime number for the
purpose of minimizing the number of bad errors, e.g. when r = 4, the best p for the
three k values are all 13, which is the largest prime number less than 24. However, if r
is comparable to k, smaller p can achieve the same error detection capability as larger
p.

The smallest fraction of bad errors for linear arithmetic code is of the order of 2−r.
The only way to reduce the fraction is to increase the number of redundant bits, which
is costly in terms of the hardware overhead.

We next propose a construction of multilinear arithmetic codes that have smaller
total number of bad errors than linear codes with the same number of redundant bits r.

k = 16 k = 32 k = 64
r = 4 13 (2−4.6) 13 (2−4.6) 13 (2−4.6)
r = 8 131 (2−8.6) 251 (2−8.6) 251 (2−8.6)
r = 12 2053 (2−12.5) 2053 (2−12.5) 4093 (2−12.5)
r = 16 − 32771 (2−16.7) 65521 (2−16.7)
r = 20 − 524309 (2−20.7) 1048549 (2−20.7)

Table 1: Best p and the corresponding fractions of bad errors (in parentheses) for dif-
ferent k and r for linear arithmetic codes

Theorem 2. ([|x|p, |2x|p] Multilinear Code) Let C1, C2 be two arithmetic systematic
codes defined by

Ci = {(x, y)|x ∈ Z2k , y = fi(x) ∈ Z2r}, i ∈ {1, 2},

where f1(x) = |x|p , f2(x) = |2x|p , p is a prime number larger than 2 and ||p is
the modulo operation. Denote by e = (ex, ey) the arithmetic errors and c̃ = c + e =
(|x+ex|2k , |y+ey|2r ) the distorted codeword, where ex ∈ Z2k , ey ∈ Z2r , r = dlog2 pe
is the number of redundant bits. If we randomly select C1 and C2 to encode the original
messages with equal probability, the total number of bad errors is upper bounded by

2 · d2
k−1

p
e. (23)

When p << 2k, the estimated probability of bad errors for [|x|p, |2x|p] multilinear
codes is 2−2r.

Proof. For each linear code, there are four cases resulting in four sets of bad errors
(refer to the proof for Theorem 1), which are shown in Table 2. When we randomly
select C1 and C2 with equal probability, an error e = (ex, ey) is bad if and only if the
total number of codewords in C1 and C2 that mask e is larger or equal to 2k.



Case1 Case2 Case3 Case4
x + ex < 2k x + ex < 2k x + ex ≥ 2k x + ex ≥ 2k

fi(x) + ey < p fi(x) + ey ≥ 2r fi(x) + ey < p fi(x) + ey ≥ 2r

fi(ex) = ey fi(ex) = ey + p− 2r fi(ex − 2k) = ey fi(ex − 2k) = ey + p− 2r

Table 2: Classification of bad errors for linear arithmetic codes

1. For a given error e, when C1 is in Case1 (i.e. x+ex < 2k, f1(x)+ey < p, f1(ex) =
ey) or Case2 and C2 is in Case3 or Case4, the total number of codewords masking
the error e is less than 2k. So there are no bad errors in this class. Similarly, when
C1 is in Case3 or Case4 and C2 is in Case1 or Case2, there are no bad errors.

2. C1 is in Case1 and C2 is in Case2. For C1, |x|p + ey < p, the possible number of
|x|p is p− ey . For C2, |2x|p + ey ≥ 2r, the possible number of |x|p is p− 2r + ey .
For each possible value of |x|p, the number of x is d 2

k−ex

p e. It is easy to prove that
the total number of x masking the error is less than 2k. So there are no bad errors
in this class. Similarly we can prove that for the following three cases there are also
no bad errors.
(a) C1 is in Case2, C2 is in Case1;
(b) C1 is in Case3, C2 is in Case4;
(c) C1 is in Case4, C2 is in Case3.

3. When C1 and C2 both belong to Case2, x+ex < 2k, we have |x+ex|2k = x+ex,
|x|p + ey ≥ 2r and |2x|p + ey ≥ 2r. In this case ||x|p + ey|2r = |x|p + ey − 2r,
||2x|p + ey|2r = |2x|p + ey − 2r. For C1, an error (ex, ey) is missed if and only if

|x + ex|p = |x|p + ey − 2r. (24)

Equivalently,
|ex|p = |ey − 2r|p. (25)

For C2, an error (ex, ey) is missed if and only if

|2 · (x + ex)|p = |2x|p + ey − 2r. (26)

Thus
|2ex|p = |ey − 2r|p. (27)

From (25) and (27) we have |ex|p = |ey − 2r|p = ey + p− 2r = 0. For an error to
be masked by both of the codes, the following conditions must be satisfied:

x + ex < 2k, (28)
|x|p + ey ≥ 2r, (29)
|2x|p + ey ≥ 2r, (30)
|ex|p = ey + p− 2r = 0. (31)

From (31), ey = 2r − p. So |x|p + ey < 2r, |2x|p + ey < 2r. Thereby no errors in
this case will be masked by both of the codes. Errors in this class are all non-bad
errors. Similarly, when C1 and C2 both belong to Case4, there are no bad errors.



4. When C1 and C2 both belong to Case1, x+ex < 2k, we have |x+ex|2k = x+ex,
f1(x+ex) = |x+ex|p, f2(x+ex) = |2·(x+ex)|p. |x|p+ey < p and |2x|p+ey < p.
In this case ||x|p + ey|2r = |x|p + ey , ||2x|p + ey|2r = |2x|p + ey . For C1, an error
(ex, ey) is missed if and only if

|x + ex|p = |x|p + ey. (32)

Equivalently,
|ex|p = ey. (33)

For C2, an error (ex, ey) is missed if and only if

|2 · (x + ex)|p = |2x|p + ey. (34)

Equivalently,
|2ex|p = ey. (35)

From (33) and (35) we have |ex|p = ey = 0. For a codeword x to mask a given
error (ex, ey), the following conditions must be satisfied:

x + ex < 2k, (36)
|x|p + ey < p, (37)
|2x|p + ey < p, (38)
|ex|p = ey = 0. (39)

When (39) is satisfied, (37) and (38) are also satisfied. For each (ex, ey) such that
|ex|p = ey = 0, the total number of codewords in C1 and C2 that mask the error is
2 · (2k − ex). For bad errors this number should be larger or equal to 2k. Thus

2 · (2k − ex) ≥ 2k. (40)

Equivalently,
ex ≤ 2k−1. (41)

From (39) and (41), the number of bad errors is bounded by d 2
k−1+1

p e. Similarly,
when C1 and C2 both belong to Case3, the number of bad errors is bounded by
d 2

k−1

p e.

So an upperbound of the total number of bad errors is

d2
k−1 + 1

p
e+ d2

k−1

p
e ≈ 2 · d2

k−1

p
e. (42)

The estimated probability of bad errors can be derived directly from (23). �

All bad errors for [|x|p, |2x|p] multilinear codes are in the format of (ex, ey = 0).
They have the same value as bad errors occurring to the information part of the linear
arithmetic code. In another word, the proposed multilinear arithmetic code will not help
if we assume that ey is always 0. This situation, however, can be prevented by imple-
menting a merged design of the original device and the encoder of the code since in this



case faults will have high probability to affect not only the original device but also the
encoder that generates the redundant part of the code. The advantage of this construction
is that it has no other bad errors except for errors occurring to the information part of
the code. The total number of bad errors is much smaller than that of linear arithmetic
codes. Moreover, it is possible to reduce the number of bad errors to be nearly zero
using [|x|p, |2x|p] multilinear codes, which is impossible for linear arithmetic codes.

The next construction based on utilizing multiple modulus can drastically reduce
the number of bad errors in the format of (ex, ey = 0). The theorem can be proved in
a similar way to the proof for Theorem 2. Here we omit the proof due to the limit of
space.

Theorem 3. ([p,q] Multilinear Code) Let C1, C2 be two arithmetic systematic codes
defined by

Ci = {(x, y)|x ∈ Z2k , y = fi(x) ∈ Z2r}, i ∈ {1, 2},

where r = max(dlog2 pe, dlog2 qe), p and q are different prime numbers larger than 2,
f1(x) = |x|p and f2(x) = |x|q (||p is the modulo operation). Without loss of generality,
we assume that p > q. Denote by e = (ex ∈ Z2k , ey ∈ Z2r ) the arithmetic additive
errors and c̃ = c + e = (|x + ex|2k , |y + ey|2r ) the distorted codeword. If we randomly
select C1 and C2 with equal probability to encode the original messages and assume
that the error only occurs to the information part of the code, the number of bad errors
is upper bounded by

2 · (d2
k−1

pq
e+ d2

k

pq
e). (43)

When pq << 2k and q is close to p, the estimated probability of bad errors occurring
to the information part of [p, q] multilinear codes is 3 · 2−3r.

Remark 1. The precise number of bad errors for [p, q] multilinear codes is hard to ana-
lyze. However, experimental results indicate that it is comparable to that of [|x|p, |2x|p]
multilinear codes and is much smaller than that of linear arithmetic codes. The idea
of utilizing multiple residues as the redundant part of the code has already been pre-
sented in [7]. With two residues, the codeword was in the format of (x, |x|p, |x|q). We
want to emphasize that our construction is different from multiresidue codes proposed
in [7] since at each clock cycle our code has only one residue for the redundant part.
Instead of using multiple residues simultaneously, we use only one for each encoding
and decoding operation and randomly select the modulus for different operations.

To demonstrate that [p, q] multilinear codes have less bad errors in the format of
(ex, ey = 0) than linear and [|x|p, |2x|p] multilinear arithmetic codes, we compare the
number of bad errors in this class for the three constructions in Table 3. The number of
information bits of the codes in the table is 32. For [p, q] multilinear codes, q is selected
to be the largest possible prime number less than p, e.g. when p = 241, q = 239. Linear
arithmetic codes and [|x|p, |2x|p] multilinear codes have the same number of bad errors
occurring to the information part of the code. As p increases, this number for [p, q]
multilinear codes decreases much faster than the other two. When p = 2767(r = 12),



p = 5 p = 241 p = 563 p = 883 p = 1237 p = 2767
LinearArithmetic 8.6× 108 1.8× 107 7.6× 106 4.9× 106 3.5× 106 1.6× 106

[|x|p, |2x|p] codes 8.6× 108 1.8× 107 7.6× 106 4.9× 106 3.5× 106 1.6× 106

[p, q] codes 8.6× 108 2.2× 105 4.1× 104 1.7× 104 8.5× 103 1.7× 103

Table 3: Number of bad errors occurring to the information part of linear and multilin-
ear codes (k=32)

[p, q] multilinear codes has only 1.7× 103 bad errors in the format of (ex, 0) while the
other two have 1.6× 106.

To end this section, we summarize results on the probability of bad errors and the
probability of bad errors occurring to the information part of linear and multilinear
codes in Table 4. When bad errors occurring to the information part is more critical,
[p, q] multilinear codes should be used. Otherwise, [|x|p, |2x|p] multilinear codes should
be used because they are better than linear arithmetic codes in terms of the error detec-
tion abilities and require less hardware overhead to implement than [p, q] multilinear
arithmetic codes (Section 4).

Probability of Linear Arithmetic Codes [|x|p, |2x|p] codes [p, q] codes
bad errors ≈ 0.3 · 2−r+1 ≈ 2−2r ≈ 2−2r∗

bad errors in info. part ≈ 2−2r ≈ 2−2r ≈ 3 · 2−3r

∗ : Based on experimental results.
Table 4: Probability of bad errors and probability of bad errors occurring to the infor-
mation bits of linear and multilinear codes

4 Protection of Multipliers Using Multilinear Arithmetic Codes

In this section, we propose protection architectures for multipliers based on multilin-
ear arithmetic codes. The multiplier is a basic block in many public key and even in
some secret key cryptographic devices. Due to its arithmetic nature of the operations,
arithmetic error model is most often used for such devices. In this section, we assume
that additive arithmetic errors manifest themselves at the output of the multiplier and
the predictor3. The error is in the format of e = (ex, ey), ex ∈ Z2k , ey ∈ Z2r , where
k is the number of information bits and r is the number of redundant bits. We analyze
and compare the number of bad errors for architectures protected by the three codes
presented in Section 3. The advantage of architectures based on multilinear codes in
terms of the number of bad errors is demonstrated.

The general hardware architecture of multipliers protected by block codes contains
three parts: the original multiplier, the predictor that generates the redundant bits of the
code and the error detection network which detects errors at the output of the device.
The detailed architectures for the alternatives are shown in Figure 1.

The predictor for the linear arithmetic codes contains one multiplier in Zp. Except
for the r bit comparator, the only operation implemented in the error detection network
(EDN) is a modulo p operation. The hardware overhead mainly comes from the r =

3 The term predictor is used in this context to refer to the circuit that computes the checksum
of the output of the operation directly from the inputs. In our case the predictor computes the
checksum of the multiplication result.



(a) (b) (c)
Fig. 1: Hardware arthictectures for multipliers protected by (a) linear arithmetic codes,
(b) [|x|p, |2x|p] multilinear codes and (c) [p, q] multilinear codes

dlog2(p)e bit multiplier, whose complexity is of the order of O(r2), and the modulo p
operation in EDN, whose complexity is O(k). (k is the number of information bits).

Compared with architectures based on linear arithmetic codes, the architecture uti-
lizing [|x|p, |2x|p] multilinear codes only needs one extra r-bit multiplexer and one
extra ×2 operation in Zp for both the predictor and the EDN. ×2 operation is equal
to shifting the operands by 1 bit, which is trivial in terms of the hardware overhead.
The complexity of an r-bit multiplexer is in general of the order of O(r). Thereby this
architecture has comparable hardware overhead to linear arithmetic codes.

The protection architecture based on [p, q] multilinear codes needs one more mul-
tiplier in Zq for the predictor. When p << 2k, which is often the case in real life, q
should be selected as the largest prime number that is smaller than p if we want to min-
imize the number of bad errors. A multiplier in Zq will have about the same hardware
complexity as the multiplier in Zp and this will double the overhead for the predictor.
However, we claim that a merged design of the two multipliers for the predictor should
be implemented. First, from the security point of view, separate redundant data path
may be used by attackers to derive the secret information of the devices, e.g. the at-
tacker can inject faults into one redundant path of the device which will never influence
the other. A merged design can effectively solve the problem because most of the faults
injected into the redundant part of the device will affect the generation of redundant bits
for both codes. Second, the hardware overhead of the predictor will be reduced if we
merge the design of the two multipliers. A more aggressive approach is to design the
original multiplier and the predictor of the code together as discussed in Section 3.

Remark 2. There is a tradeoff between the error detection abilities and the hardware
overhead when we select p and q as specialized p and q can significantly reduce the
hardware complexity of the modulo operation e.g. using Mersenne primes.

In Table 5 we compare the hardware overhead, the estimated probability of bad
errors and the probability of bad errors occurring to the information part of the three
architectures for the case when k = 32, r = 7, p = 27 − 1. For [p, q] multilinear
codes q = 25 − 1. The three designs were modeled in Verilog and synthesized in
Synopsis Design Compiler. The hardware overhead for the predictor and EDN for linear
arithmetic codes is in total 32%. With 7 redundant bits, the probability of bad errors



for linear arithmetic codes is of the order of 2−7. With similar hardware overhead,
[|x|p, |2x|p] multilinear code can reduce this probability to 2−14. Experimental results
shown that [p, q] multilinear codes have nearly the same probability of bad errors as
[|x|p, |2x|p] multilinear codes, which is 2−14. Meanwhile the probability of bad errors
occurring to the information part is only about 3·2−21, which is the smallest of the three.
The disadvantage of this architecture is that it requires more overhead to implement. But
we note that 53% is still less than the overhead to implement (x, |x2|p) partially robust
codes proposed in [10].

Linear Arith. Codes [|x|p, |2x|p] ML codes [p, q] ML codes
Overhead for Predictors 32% 40% 53%
and EDN
Probability of bad errors ≈ 2−7 ≈ 2−14 ≈ 2−14∗

Probability of bad errors
in the information part ≈ 2−14 ≈ 2−14 ≈ 3 · 2−21

∗ : Based on experimental results
Table 5: Hardware overhead and the estimated probability of bad errors for architec-
tures based on linear and multilinear codes (k = 32, r = 7)

We next present experimental results of the error detection capabilities of 8-bit mul-
tipliers protected by linear, [|x|p, |2x|p], [p, q] and (x, |x2|p) arithmetic codes to demon-
strate the advantages of architectures based on the proposed multilinear codes. All the
four alternatives were simulated in MATLAB. The number of bad errors were analyzed
and compared. In this experiment, k = 16, p = 31. For [p, q] multilinear code q = 29.
Each operand of the multiplier is a 8-bit binary vector and is randomly selected from 0
to 28−1. Additive errors happen at the output of the multiplier and the predictors of the
devices. The X axis in Figure 2 is the error masking probability. The Y axis shows the
number of errors masked by a certain probability. Errors on the right half of each sub-
figure are bad errors that are masked by a probability larger or equal to 0.5. As expected,
the number of bad errors for (b),(c) and (d) are drastically reduced compared with ar-
chitectures based on linear arithmetic codes. Compared with (d), the advantage of (b)
and (c) is that they require less hardware overhead than the former. (For the estimation
of the hardware overhead for (x, |x2|p) code, please refer to [10]).

To further demonstrate the advantages of multilinear arithmetic codes, we compare
the error/fault detection capabilities of the above four alternatives when errors at the
output of the devices repeat. As discussed in Section 2, we assume that an attacker can
use any fault injection methodologies and can inject faults with high spatial resolution
to generate a specific error at the output of the device. Once injected, the fault/error stays
for several clock cycles because the temporal resolution of the fault injection method is
limited.

The X-Axis in Figure 3 is the number of consecutive clock cycles that the error
lasts, which is denoted by t. Suppose the same error stays at the output for t consecutive
clock cycles, the error is said to be detected if it is detected at least once among these t
clock cycles. Otherwise, we say that the error is masked. Figure 3(a) compares the error
masking probability for linear, [|x|p, |2x|p], [p, q] and (x, |x2|p) arithmetic codes. The
Y-Axis is the average error masking probability.



(a) (b)

(c) (d)
Fig. 2: Number of bad errors for 8-bit multipliers protected by (a) linear arithmetic
codes, (b) [|x|p, |2x|p] codes, (c) [p, q] codes and (d) (x, |x2|p) codes

The average error masking probabilities of all four alternatives decrease as t in-
creases. However, [|x|p, |2x|p], [p, q] and (x, |x2|p) arithmetic codes have much better
error detection capabilities than linear codes for large t. Figure 3(b) plots the ratio of
the average error masking probability of [|x|p, |2x|p], [p, q] and (x, |x2|p) codes to that
of the linear arithmetic codes. When the error stays for two consecutive clock cycles,
the error detection abilities for multilinear and robust arithmetic codes are already twice
better than that of linear codes. (x, |x2|p) has the lowest error masking probability when
t = {2, 3, 4}. For t > 6, [|x|p, |2x|p] codes and (x, |x2|p) codes have similar perfor-
mance. [p, q] codes are the best among the three nonlinear arithmetic codes when t > 4
and p = 31, q = 29. For smaller q, the error detection ability of [p, q] codes will be
worse but still better than linear arithmetic codes. Thereby, the proposed multilinear
arithmetic codes can provide comparable or even better error protection abilities than
partially robust arithmetic codes (x, |x2|p) while requiring much less hardware over-
head. Architectures based on nonlinear arithmetic codes are better than that based on
linear arithmetic codes in terms of the number of bad errors and have lower error mask-
ing probability in lazy channels where errors tend to repeat.

(a) (b)
Fig. 3: Error detection properties of 8-bit multipliers protected by linear, multilinear
and partially robust arithmetic codes in lazy channels



5 Conclusions

In this paper we presented several constructions of multilinear arithmetic codes and
compared their error detection properties to that of linear and partially robust arithmetic
codes. Architectures of reliable multiplier based on multilinear arithmetic codes were
introduced. Experimental results show that the error detection capability can be signif-
icantly improved over that of linear codes at the expense of a very mild increase in the
hardware overhead (Table 5). The proposed multilinear codes can achieve as good error
detection abilities as that of the partially robust arithmetic codes with smaller hardware
overhead and are better choices than linear arithmetic codes in lazy channels where
errors tend to repeat. These codes can efficiently prevent the attackers from injecting
undetectable faults/errors under the assumption that the temporal resolution of the fault
injection methodologies is limited. Finally, we would like to point out that in this paper
we considered only the case when multilinear codes are constructed from 2 codes. But
the results can be easily generalized to any number of codes.
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