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Abstract—Graph Neural Networks (GNNs) have emerged as a
promising class of Machine Learning algorithms to train on non-
euclidean data. GNNs are widely used in recommender systems,
drug discovery, text understanding, and traffic forecasting. Due to
the energy efficiency and high-performance capabilities of GPUs,
GPUs are a natural choice for accelerating the training of GNNs.
Thus, we want to better understand the architectural and system-
level implications of training GNNs on GPUs. Presently, there is
no benchmark suite available designed to study GNN training
workloads.

In this work, we address this need by presenting GNNMark, a
feature-rich benchmark suite that covers the diversity present in
GNN training workloads, datasets, and GNN frameworks. Our
benchmark suite consists of GNN workloads that utilize a variety
of different graph-based data structures, including homogeneous
graphs, dynamic graphs, and heterogeneous graphs commonly
used in a number of application domains that we mentioned
above. We use this benchmark suite to explore and characterize
GNN training behavior on GPUs. We study a variety of aspects of
GNN execution, including both compute and memory behavior,
highlighting major bottlenecks observed during GNN training.
At the system level, we study various aspects, including the
scalability of training GNNs across a multi-GPU system, as well
as the sparsity of data, encountered during training. The insights
derived from our work can be leveraged by both hardware and
software developers to improve both the hardware and software
performance of GNN training on GPUs.
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I. INTRODUCTION

Today, deep neural networks (DNNs) impact many fields,
including image classification [1], speech recognition [2], and
autonomous agents [3]. Popular DNN models, such as Con-
volutional Neural Networks (CNNs) [4] and Transformers [5],
commonly operate on euclidean data. Euclidean data, as the
name suggests, is data that lies in a flat 1D or 2D space. Image
and speech data are two common examples of euclidean data.
However, the vast majority of the data we interact with on a
daily basis is non-euclidean [6]. Some of the common formats
include molecules, social-network graphs, sensor-networks,
and manifolds. Typical DNNs, which have been developed
with euclidean data processing in mind, cannot handle non-
euclidean data efficiently. This is due to the lack of efficient
methods to apply operations directly (e.g., convolutions) to
non-euclidean data [6].
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Graph Neural Networks (GNNs) [7], [8] have emerged
to address this gap of training neural networks on non-
euclidean data. The Pinterest social networking platform uses a
GNN model named PinSAGE [9] to build its recommendation
system. Researchers at Twitter are training GNN models [10]
with temporal graph data. The Drug Repurposing Knowledge
Graph (DRKG) [11] also employs GNN models to study the
impact of existing drugs targeting new diseases.

Thanks to the advances enabled by using GPUs for DNN
training, GPUs have become the de-facto platform for training
GNNs as well. Currently, a majority of the popular GNN
frameworks, such as the Deep Graph Library [12] and PyTorch
Geometric [13], support GPU-based training in their backends.
The growing popularity of GNN models demand efficient
methods and platforms to train GNNs on GPUs. To develop
efficient solutions for GNNs, it is critical to characterize the
GPU’s GNN training behavior in detail. Understanding the
different types of GNN operations and further breaking down
the training execution process can guide GPU developers to
focus on bottlenecks and make informed design decisions.
Additional characteristics, including the scalability of GNN
training on multi-GPU systems and the degree of data sparsity
during training, can be leveraged to train on larger graphs,
especially those that cannot fit in a single GPU’s memory [14].
Broadly speaking, characterizing GNN training workloads
would help us develop a deeper understanding of the compute
and memory characteristics of the GNN operations.

Prior work on characterizing GNNs has focused primarily
on the inference behavior for Graph Convolutional Networks



(GCNs) [15] or targeted a limited set of GNN models [16].
Both model and dataset diversity [16] have not been consid-
ered by these studies. By dataset diversity, we mean differ-
ent types of graphs, including homogeneous, heterogeneous,
knowledge, and dynamic graphs (explored in detail in Section
II). Model diversity implies different types of GNN models,
such as Graph Transformers, Spatio-Temporal GNNs, and
LSTM based GNNs. In previous benchmarking efforts, GNN
inference has been the primary target for characterization
studies [15], [16]. Popular benchmark suites for DNN training,
such as the MLPerf Training Suite [17], Training Benchmarks
for DNN (TBD) [18], DNNMark [19], Fathom [20], and
DawnBench [21], do not consider GNNs as part of their
workloads and deal exclusively with DNNs that deal with
euclidean data. To comprehensively characterize the execution
behavior of GNN training on GPUs, we need a benchmark
suite that includes diverse GNN models that are trained on
diverse datasets. Currently, no such benchmark suite exists.
To fill this gap, we develop GNNMark, a collection of
representative workloads that can be used by the computer
architecture community to study the execution of GNNs on
GPUs. We then analyze the workloads in the GNNMark
benchmark suite, specifically focusing on their behavior during
GNN training on a GPU. Apart from the fact that prior
GNN workload characterization studies primarily focused on
inference, we chose to focus on training given that GPUs
remain the best platform in terms of performance for GNN
training. In contrast, customized accelerators have been shown
to outperform GPUs when executing GNN inference [22]

The contributions of our work include:
1. We present the first GNN training-focused benchmark

suite: We deliver an open-source benchmark suite named
GNNMark (https://gitlab.com/GNNMark/gnnmark), designed
to characterize the training behavior of GNNs on GPUs. Our
suite includes a diverse set of popular GNN models that have
been developed by the machine learning community. The
workloads span seven different application domains and
three different types of graph-based data types.

2. We carry out architecture-level characterization of
GNNMark workloads during the training process: We
characterize the workloads in GNNMark, considering their
architectural implications during the training process on a
GPU. We are the first to provide a detailed execution time
breakdown of different operations executed during GNN train-
ing and identify the major bottlenecks. We find that these
workloads are much more diverse than typical DNN training
workloads. GNN execution is highly input data and model
dependent. We find that integer operations play a critical role,
a factor which has been relatively ignored in DNN training
studies on GPUs. We also observe significant sparsity during
GNN training. This can potentially be leveraged to train larger
graphs on a single GPU. We also consider multi-GPU support
in the suite, enabling scaling studies of GNNs across multi-
GPU systems.

3.We provide recommendations to improve GPU archi-
tecture and overall system design: We present insights drawn

from our detailed characterization, and suggest changes to
improve the GPU architecture and system design so that GNNs
can be trained more efficiently on them.

II. BACKGROUND

A. Graph Neural Networks

A Graph Neural Network (GNN) is a Machine Learn-
ing (ML) model designed to work on non-euclidean data,
originally proposed to solve node classification problems [23].
The core idea behind using GNNs is to collect and aggregate
information about a graph’s structure to capture its inherent
features and predict properties for specific nodes, connections,
and generalizations to unseen graphs. Figure 1 (left) shows an
example input graph with several edges connecting six nodes
(A–F), where each node is represented by a set of feature
vectors (properties).

Before a GNN model can make predictions, first it must be
trained. As shown in Figure 1 (right), the goal of GNN training
is to learn correlation parameters for each node, capturing
its relation to the rest of the entire graph. More specifically,
a feature vector for node A relates node A’s properties to
its neighbors’ properties, nodes B, C and E. Each of these
neighbors, in turn, have their own feature vectors to relate
to their own neighbors. Hence the properties of node A can
be associated with the properties of every other node in the
graph. This feature of GNNs is also useful for finding missing
properties of nodes in a graph. Similar to DNNs, a GNN can
also have multiple layers, with each layer represented by two
functions: i) an aggregation function and ii) an update func-
tion (i.e., a combination function). As the name suggests, the
aggregation function is responsible for collecting or pooling
the features of the neighbors for a given node. On the other
hand, the update function is responsible for updating each
node’s feature vectors using Multi-Layer Perceptrons (MLPs).
A GNN model can have layers with different aggregation
and update functions. The deeper the GNN model, the more
information a node has about other nodes that distant from
it in the graph. However, training deeper GNNs is difficult,
primarily due to the vanishing gradient problem [24]. As
GNNs grow deeper, the gradients become so small that the
weights stop getting updated. This property makes it difficult
to train the GNN further. To address these challenges, novel
GNN architectures have been proposed to enable deeper GNN
models [25].

B. Types of Graphs

GNNs have been explored in many different fields. Each
type of GNN has inherently different types of graph data [8].
In our survey of GNNs, we observe that there are three such
major categories of graph data:

1. Homogeneous Graphs: A homogeneous graph contains
nodes and edges of a single type. For example, social network
graphs are typically homogeneous, where each node represents
a user, and an edge can represent that one user follows another.
Homogeneous graphs can be directed (e.g., following a user
on Twitter) or undirected (e.g., adding a friend on Facebook).



Another notable collection of homogeneous graph datasets that
are used to evaluate GNN models are citation datasets (e.g.,
Cora, PubMed, Citeseer) [7].

2. Heterogeneous Graphs: A heterogeneous graph contains
nodes and edges of multiple types. A widely used form of a
heterogeneous graph is found in recommendation generation
scenarios. For example, in a dataset designed to recommend
music to users, the graph will consist of two types of nodes:
i) music nodes and ii) user nodes. The edges will correspond
to different interactions between the user and a music piece.
In addition, edges may contain additional information such as
ratings or like/dislike attributes. Knowledge graphs that are
used to model relations between an object and entities are
another form of a heterogeneous graph – e.g., when users
search for a popular celebrity on Google (an object).

3. Dynamic Graphs: A dynamic graph is a special type
of graph where the graph itself, as well as its proper-
ties, can evolve over time. Many real-world graphs, such
as social-network graphs [10], traffic data graph [26] and
communication-network graphs, are dynamic [27]. Note that
dynamic graphs can be either homogeneous or heterogeneous.
For example if we take a homogeneous social network graph,
where nodes represent people and edges represent whether
there is a relationship, the number of relations a person has
or the relations between two people can change over time.
Another common use case of dynamic graphs is to model
traffic data as a dynamic graph and use it for traffic forecasting
and prediction [28].

C. Graph Neural Network Frameworks

Support for GNN primitives in popular ML frameworks is
increasing. Today, researchers from the ML community are
developing libraries in the form of extensions to frameworks
such as PyTorch and TensorFlow. The two most popular
libraries/extensions that implement customized GNN kernels,
as well as provide programming support in the form of
APIs, are PyTorch Geometric (PyG) [13] and the Deep Graph
Library (DGL) [29]. PyG is an extension based on top of
the PyTorch library and so only supports PyTorch. On the
other hand, DGL provides support for PyTorch, TensorFlow,
and MXNet. Spektral [30] and Aligraph [31] are two sets of
libraries built on top of TensorFlow for GNN training. Graph-
Nets [32] is a GNN framework from Google, supported using
TensorFlow as the backend. As PyG and DGL bridge both
the semantic and performance gaps when developing GNN
models, they are the most widely used frameworks by both
the ML community [33] and architecture community. [15],
[16], [22], [34].

III. BENCHMARK SUITE DESIGN

Characterizing the behavior of GNN training on a GPU
requires a set of representative workloads to cover the wide
variety of GNNs [8], [33]. The variants should include
GNNs used across multiple application domains, including
recommendation systems, classification of molecules, traffic
forecasting, etc. The representative suite should also include

models that consider different classes of real-world graphs,
including knowledge graphs, heterogeneous graphs, and dy-
namic graphs. Also multi-GPU GNN training should be sup-
ported to evaluate the efficacy of training GNNs on multi-GPU
systems.

To satisfy all the above-mentioned criteria, we present GN-
NMark, a benchmark suite designed for studying the behavior
of GNN training on GPUs. Similar to benchmark suites that
target DNN training, such as TBD [18] and MLPerf [17],
we curate our benchmark suite from open-source publicly
available implementations of GNN models. As PyTorch Ge-
ometric (PyG) and Deep Graph Library (DGL) are the main
frameworks employed for developing GNN models by the ML
community, we use models developed using these frameworks.
Since both of these frameworks support PyTorch, we have
chosen models developed in PyTorch. The specific models
chosen for this suite, along with their associated application
domains and datasets, are summarized in Table I. Below we
provide more details about each GNN model.

PinSAGE: GNNs that operate on heterogeneous knowledge
graphs can be used for recommendation tasks. These are
commonly used in social networks. PinSAGE [9] is one such
GNN model that has been developed at Pinterest. Since the
original PinSAGE model is not publicly available, we use
the implementation that has been published by the developers
of DGL. PinSAGE is an improvement upon the GraphSAGE
model [42] for training on large graphs. It uses a random walk
mechanism [43] during aggregation to identify the importance
of a node in the graph, without the need to process the entire
graph. This effectively allows a user to train a model on graphs
that do not fit in GPU memory.

Spatio-Temporal Graph Convolutional Network: Traffic
forecasting is an important problem that falls into the domain
of time-series prediction and uses dynamic graphs. This task is
highly relevant for use in urban areas, where traffic control and
guidance are required. Solving this problem using conventional
euclidean-based DNNs is challenging because of the nonlin-
earity involved in traffic data [44]. One approach to deal with
nonlinearity is to represent the problem as a graph and then
apply depth-wise convolutions on the graph. Spatio-Temporal
Graph Convolutional Networks (STGCN) [26] represent one
such model that has been proposed to solve the problem of
traffic forecasting. We include an STGCN to represent a GNN
model that deals with dynamic graphs.

DeepGCNs: One of the key challenges with the origi-
nal GCN models, such as the one proposed by Kipf and
Welling [45], is that increasing the depth of the model
does not improve the accuracy of the model. This is due
to the vanishing gradient problem [24], which has made
implementing deep GCNs challenging. Therefore, researchers
have developed mechanisms to train deeper GCNs [25], using
ideas borrowed from DNN research, such as residual layers
and skip-connections used in models such as ResNet [46].
DeepGCN is a novel GCN architecture that allows GCNs to
have more layers. Additional layers in a GCN can significantly
improve training accuracy [25], so we include it in our study.



Abbv GNN Model Application Domain Graph Input Type Datasets # Node # Edge

PSAGE PinSAGE Recommendation Heterogeneous Graph Nowplaying (NWP) [35] 22.9M 1.9M

Movielens (MVL) [36] 1.9M 9.7K

STGCN Spatio Temporal GCN Traffic Forecasting Dynamic Graph LA [26] 207 325

PEMS Bay (PEMS) [26] 1722 2694

DGCN Deep GCN Molecular Property
Prediction Homogeneous Graph MOLHIV [37] 1.04M 1.1M

MOLTOX [37] 145K 151K

GW GraphWriter Text Generation Heterogeneous Graph AGENDA [38] 885K 2.57M

KGNN k Graph Neural Networks Protein Classification Homogeneous Graph Proteins (PROT) [39] 43K 162K

ARGA Adverserially Regularized
Graph Autoencoder Node Clustering Homogeneous Graph

Cora [40] 2K 10.5K

CiteSeer (CSEER) [40] 3.3K 9.2K

PubMed (CSEER) [40] 19.7K 88.6K

TLSTM Tree Long Short-Term
Memory Networks

Sentiment Classification Homogeneous Graph Stanford Sentiment Tree-
bank (SNTM) [41]

318K 310K

TABLE I
WORKLOADS IN GNNMARK BENCHMARK SUITE.

Specifically, we use a DeepGCN model and train it to per-
form graph property prediction, a common task in molecular
property prediction.

GraphWriter: Automated generation of text from a knowl-
edge graph to form meaningful and coherent sentences is an
open and challenging problem [47]. Text encoding models,
such as the popular Transformer model [5], cannot be directly
applied to a knowledge graph as they do not work with
non-euclidean data. Therefore, ML researchers have devel-
oped GNN-based Transformer models for this task. Graph-
writer [38] is one such novel GNN-based Transformer model,
designed to operate on knowledge-graphs for text generation.

k-GNNs: Most GNN models are one-dimensional in nature
and cannot effectively capture any higher-order information,
such as the properties of subgraphs, within the graph. As
a result, they fail the graph isomorphism test proposed by
Weisfeiler and Lehman [48] (WL algorithm). The WL algo-
rithm is a test used to determine the expressiveness power
of a GNN by testing if an algorithm is able to distinguish
whether two graphs are isomorphic or not. Two graphs are
said to be isomorphic if they have the same number of vertices,
edges, and connectivity. Therefore, researchers have developed
higher-dimensional hierarchical GNNs, called k-GNNs (where
the k stands for the dimension), which can capture properties
of subgraphs [49]. This enables GNNs to perform close to the
k-WL graph isomorphism test [49]. We include two variants of
k-GNNs, (KGNNL and KGNNH to denote a lower and higher
dimensional version of k-GNN, respectively) and use them
to perform classification of protein molecules. The primary
reason we include this workload in our suite is to study how
application characteristics and behavior change as we move
towards higher-dimension GNNs.

Adversarially Regularized Graph Autoencoder: Genera-
tive Adversarial Networks (GANs) are gaining popularity due
to their ability to learn with limited amounts of data [50].
Due to this property, GAN-based architectures are also being

explored for GNNs.Adversarially Regularized Graph Autoen-
code (ARGA) [51] is one such GNN-based GAN model that
is proposed for graph embedding. ARGA has an encoder-
decoder architecture where the encoder is trained to form a
compact representation of a graph, and the decoder is trained
to generate the graph structure. The model is designed to
perform node clustering, which is an unsupervised learning
task, on real-world graphs. ARGA employs this encoder-
decoder architecture within a GAN framework, so that it
can successfully learn the low-dimensional features of the
graph from the high-dimensional graph features. This process
is referred to as graph embedding [52]. We include ARGA
as a representative GAN-based GCN to further increase the
diversity of our benchmark suite. We train ARGA to perform
node clustering on real-world homogeneous graphs, such as
Cora, PubMed, and CiteSeer [45].

Tree-LSTM: Sentiment classification is an important task
in the Natural Language Processing (NLP) domain. Tree Long
Short-Term Memory Networks (Tree-LSTMs) [53] are one
group of models developed for this task. In contrast to the
linear model used in an LSTM, Tree-LSTMs use a tree-
structured network topology and can outperform linear LSTMs
in the sentiment classification task [53]. The Tree-LSTM
method implemented in DGL uses the idea of batching. The
basic idea of batching is to collect smaller graphs that are part
of the dataset and convert them into a batched larger graph.
We include the Tree-LSTM model in GNNMark to study how
batching of multiple small graphs to a larger graph impacts
the behavior of an application.

IV. METHODOLOGY

A. Experimental Platform

To demonstrate the utility of GNNMark, we use an NVIDIA
V100 [54], a commonly used GPU for running neural network
training. V100 is part of the NVIDIA Volta family of GPUs.
Our test system is equipped with an Intel(R) Xeon(R) CPU



E5-2630 CPU that operates at a frequency of 2.4GHz. The
GPU has 80 Streaming Multiprocessors (SMs) and is rated
to deliver 14 TFLOPS of single-precision performance. The
GPU memory uses HBM2 with 16 GB capacity and bandwidth
of 900 GB/s. The combined L1 cache/shared memory/texture
cache has a capacity of 128 KB and is private to each
Streaming Multiprocessor (SM). The L1 memory is backed
by a 6.14 MB L2 cache, which is banked and shared across
all SMs.

For our multi-GPU experiments, we use 4 V100 GPUs on
a node equipped with Intel(R) Xeon(R) E5-2686 v4 2.4GHz
CPUs, hosted on Amazon AWS EC2. Each GPU is inter-
connected using NVIDIA NVLink technology, providing a
total of six links, for an aggregate bandwidth of 300 GB/s.
Both the single-GPU and multi-GPU systems used in our
experiments run CUDA 10.2, cuDNN 7.6.5, and PyTorch
1.5.0. The workloads included in GNNMark use either DGL
version 0.5.2 or PyTorch Geometric 1.6.1, which are the latest
versions of these libraries at the time of writing this paper.

Since multi-GPU training has been shown to improve the
performance of DNN training [55], we also look at how
well GNN training can scale across multiple GPUs. GNN
training can be sometimes be limited by GPU memory ca-
pacity, especially given the continual growth in size of the
input graph [56]. One approach to counter this problem is to
compress the data transferred from the CPU to the GPU and
store the compressed data in GPU main memory. This is only
possible if the data transferred is highly sparse [14]. Therefore,
we also characterize sparsity levels of the data transferred
between the CPU and GPU during GNN training in our suite.

B. Profiling Tools

We use several tools for collecting the metrics of interest.
For the kernel-level characteristics, such as cache statistics and
comparisons between compute versus memory behavior, we
use the NVIDIA nvprof profiler (version 10.2) [57]. Similar
to DNNs, GNNs typically launch the same kernel many
times during training. Therefore, when profiling and collecting
hardware performance counters using nvprof, we profile the
same kernel for either fifty kernel invocations or for one epoch,
whichever is shorter. However, nvprof does not provide any
mechanism to collect memory divergence behavior of a work-
load. Therefore, we use the NVBit framework [58] (version
1.4), which is a binary instrumentation tool to collect the
memory divergence information at a kernel level. To collect
the sparsity of the data transferred from the host to the device
during GNN training, we modified the PyTorch source code
to collect this information.

C. Multi-GPU Implementations

We also include multi-GPU versions of each workload
in GNNMark to enable users to study the scalability of
GNN training on multi-GPU systems, as well as under-
stand how well high-level support for multi-GPU DNN train-
ing in frameworks such as PyTorch scale in practice for
GNNs. The multi-GPU implementations are built on the

PyTorch DistributedDataParallel (DDP) method to
train GNNs across multiple GPUs, exploiting data-level par-
allelism. DDP has been shown to scale well, in practice, on
up to 256 GPU nodes [59] for DNN training.

V. RESULTS

A. Execution Time Breakdown

We start our analysis by breaking down the time spent in
the different GNN operations across the different workloads
in our suite. Similar to DNNs [20], GNN training can be
broken down into layers or operations. Prior work divided
GNN training into two phases: i) an aggregation phase, and ii)
an update phase [15]. While this division is appropriate when
looking at GNNs from an ML perspective, we believe that
deeper insights are needed to fully characterize their behavior.
Therefore, we work at the abstraction level of individual
operations [20].

We identify a common set of operations performed dur-
ing GNNMark execution. These operations include general
matrix multiply (GEMM), sparse matrix matrix multiplica-
tion (SpMM), convolutions, scatters, gathers, reductions, index
selection, sorting, and element-wise operations. Element-wise
operations are operations that operate on individual elements
of a tensor and perform operations such as multiplication
of all elements in the tensor by a scalar, change the sign
of all elements in the tensor, adding two tensors of similar
dimensions etc

Figure 2 shows a breakdown of the percentage of time
spent in individual operations across the different workloads
of GNNMark. We can see from Figure 2 that the percentage
breakdown of operations varies significantly across workloads.
For instance, STGCN, a spatio-temporal GNN, is dominated
by 2D convolution operations (60% on average), while DGCN
is dominated by element-wise operations (31% on average).

The execution time breakdown across operations in a GNN
differs greatly from the mix in a typical DNN. Across all
the workloads, we observe that only 25% of the execution
time is spent executing GEMM and SpMM operations. This
is in stark contrast to the mix of operations common in DNN
workloads, where GEMM (convolutional layers and fully-
connected layers) dominate the execution [19]. We find that
GNN training also differs significantly from GNN inference
workloads [15], where GEMM operations are reported to
consume more than 50% of the execution time.

Other common operations, such as sorting, index selection,
reductions and scatter-gather operations, account for 20.8% of
the total execution on average. These operations are primar-
ily used in the graph’s aggregation phase, where the nodes
exchange information with one another before updating the
feature vectors.

PSAGE, when trained on the MVL dataset, spends 20.7%
of its execution on sorting, and only 7.0% of the time on
reductions, whereas ARGA (with Cora data) spends 23% on
reductions and only 6.1% on sorting. This great diversity
and variety of tasks in GNN training present challenges to
architects designing customized accelerators for GNN training
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Fig. 2. Execution breakdown, reported as the percent of total execution time, for individual operations across the different workloads of GNNMark.

given that accelerators are typically designed to optimize only
for a single set of operations.

In contrast to typical DNN workloads, GNN workloads tend
to be more input data-dependent. For PSAGE, the percentage
of time spent in element-wise operations is much higher when
training on the (NWP) dataset (78%), versus training on the
(MVL) dataset (36%). This is because, when training on the
NWP dataset, the feature vectors are 10× larger than when
training on the MVL dataset. As element-wise operations
operate on each value of the input feature vector, the time spent
executing these operations becomes more dominant when
graphs with larger input features are used.

Takeaways: Our performance analysis shows that GNN train-
ing workloads exhibit more diverse behavior as compared to
DNN training workloads. Each model’s characteristics can
differ vastly from others. Even the same GNN model can ex-
hibit different characteristics depending upon the input graph
type. In addition, execution hot spots are no longer limited
to convolution and GEMM operations. We find operations
such as reductions, scatter, gather and sorting also need to
be optimized. The solution of attaching a single-purpose
accelerator to primarily accelerate GEMM operations [60]
during DNN training may not work well for GNN training.

B. Instruction Mix and GFLOPS/GIOPS Analysis

Another aspect of GNN training behavior is the dynamic
instruction mix present in different workloads. As we can see
in Figure 3, integer instructions play a larger role than floating-
point instructions across all workloads. On average, 64%
of the executed instructions are integer (int32) instructions,
whereas only 28.7% are single-precision floating point (fp32)
instructions. The only workload where this trend is reversed
is in GraphWriter (GW). This is because in GW, a majority of
the time is spent on GEMM and SpMM operations (as seen
in Figure 2) which work on fp32 data. While improving the
performance of fp32 instructions has received a lot of atten-
tion, int32 instructions have not received the same. Given that
int32 instructions dominate GNN execution during training,
improving the performance of integer math on a GPU is a
critical factor when trying to accelerate GNN training.

Figure 4 presents the number of GFLOPS and GIOPS
executed by our workloads in GNNMark. We observe that the

average GFLOPS rate is 214 GFLOPS, and the average GIOPS
rate is 705 GIOPS. The observed average GFLOPS rate is
much lower than the theoretical max GFLOPS of the V100,
which is 14 TFLOPS for fp32 arithmetic [54] (the V100 specs
do not mention the peak theoretical GIOPS. We believe it to
be close to the peak theoretical GFLOPS). GW has the highest
fp32 performance of 1.99 TFLOPS. Being a transformer-
based ML model, GW can effectively use most of the parallel
resources on a GPU [5]. We also observe that, while graph
batching has been proposed to improve performance in DGL,
TLSTM is still able to achieve only 74 GFLOPS.

The average IPC measured across all the workloads was
found to be 0.55, which reflects the memory-bound nature
of the workloads. When comparing the GFLOPS and GIOPS
of different operations, we observe that the GEMM operations
typically have a higher GFLOPS (in the mid 300’s) as opposed
to other operations, such as reductions, scatters and gathers
that have lower rates (in the 100 GFLOPS/GIOPS range)
suggesting a very low overall GPU utilization. Given that these
operations can dominate the execution time, it is important for
both hardware and software developers to focus on improving
the performance of these operations.

Takeaways: Our analysis reveals that, during GNN training,
execution is dominated by integer operations. Thus, to ac-
celerate GNN training on either GPUs or accelerators, int32
arithmetic performance will be key. The overall performance
in terms of GFLOPS/GIOPS for GNNs is relatively low
compared to the peak performance of the hardware. This
suggests that GNN training is primarily memory bound. Given
that operations such as reductions, scatters, gathers and sorting
can occupy a good chunk of the execution time during
GNN training, it is important for both hardware and software
developers to focus on improving the performance of these
operations.

C. Stalls and Cache Analysis

Developing a comprehensive understanding of major stalls
in the GPU hardware during GNN training can help guide
architectural design decisions when tuning the performance
of these workloads. Given that caches can greatly improve
the performance of GPU applications, it is also important
to look at their efficiency in the context of GNN training.
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Fig. 3. Breakdown of fp32 vs. int32 instructions across the different
workloads in GNNMark.
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Fig. 4. GFLOPS and GIOPS across the different workloads in GNNMark.

In Figure 5 we show the distribution of different types of
stalls observed in GNN training. We find that execution
is stalled primarily due to Memory Dependency, Execution
Dependency and Instruction Fetch. The high percentage of
Memory Dependency stalls (34.3% on an average) suggests
that the memory subsystem is inefficient in serving data read
requests to the GPU cores. From Figure 6, we observe that
GNN workloads have an extremely low L1 D-cache hit rate
on the V100 (a mere 15%, on average) which is the primary
reason for these stalls.

We also analyze the impact of divergent load instructions.
The load instructions associated with a warp are said to be
divergent if they access more than one cache line (a line
is 128B on the V100). Memory divergence can impact the
performance of typical graph workloads, such as Breadth
First Search and PageRank [61]. Therefore, it is important to
characterize the degree of memory divergence present during
GNN training.

We observe 32.5% of divergent load instructions, on aver-
age, across the different workloads. This percentage is large
and is highly correlated with resulting low L1 D-cache hit
rates. While the larger L2-cache (6MB) on the V100 fares
significantly better with a 70% hit rate on average, the inability
of the L1 D-cache to effectively hold the working set can put
pressure on the L2 cache to satisfy the memory requirements.
Across the different operations, we observe that GEMM,
SpMM and GEMV have poor locality (i.e., a low L1 D-cache
hit rate, less than 10% on average). The L1 D-cache hit rates
of other operations, such as indexing, scatters, gathers and
sorting, are also low (below 15%, on average).

The high percentage of Execution Dependency stalls (i.e.,
29.5% on an average) points to the fact that across the
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Fig. 5. Stall breakdown across operations in GNNMark.

entire set of workloads, there are many dependencies between
instructions in a warp, which results in low instruction-level
parallelism. Microarchitectural enhancements to support out-
of-order execution in the GPU pipeline [62] can therefore
potentially accelerate GNN training.

Surprisingly, Instruction Fetch stalls are also signifi-
cant (21.6% on an average). This is due to two reasons. The
first is that the instruction cache is ineffective in caching
all the instructions. Although the V100 architecture has a
new 12KB L0 I-cache that is backed by a larger 128KB
L1 I-cache, it seems to not be highly effective in caching
all instructions during kernel execution. The second reason
is that loop unrolling techniques [63], which are used to
improve the performance of a GPU kernel, can negatively
impact the instruction cache hit rate and increase the stalls
due to instruction fetching [64].

As observed in Figure 5, for commonly used GNN op-
erations (Conv2D is used only for STGCN and BatchNorm
for DeepGCN), the scatter and gather operations, index se-
lection operations have a higher rate of stalls when compared
to GEMM due to memory dependencies. This is primarily
because both scatter and gather, as well as index selection
operation, exhibit an irregular memory access pattern.

Takeaways: Our analysis of the stalls during GNN training
shows that stalls due to Memory Dependency, Execution
Dependency and Instruction Fetch can be significant. While
GPU architecture research has focused on removing the first
two types of stalls, improving the performance of instruction
fetching has been neglected. Therefore, architects and compiler
developers should focus on developing techniques to improve
instruction fetching to optimize the performance of GNN
training.

GNN training also suffers from a high degree of L1 D-
cache misses and a significant number of divergent load
instructions across all operations. The extremely high L1 D-
cache miss rates suggest that caching is not effective for GNN
workloads. We envision two potential solutions to alleviate
this problem. The first is to employ half-precision-training
for GNN training, which uses only 16-bit data instead of 32-
bit data and can thereby reduce the L1 D-cache miss rates.
Alternatively, L1 cache bypassing solutions [65], [66] can be
explored to alleviate this problem.
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D. Sparsity during GNN training

Training sparsity refers to the zero values (as a percentage of
all values) that are transferred during CPU-to-GPU memory
copies during the GNN training process. For characterizing
the average sparsity, we report the percentage of zero values
observed in CPU-to-GPU data transfers during GNN training.
From Figure 7, an average sparsity of 43.2% was observed dur-
ing GNN training. This suggests that compression techniques
could be employed. Rhu et al. [14] proposed using compres-
sion to alleviate the problem of training large DNN models
on a GPU. While GNN models are smaller than conventional
DNN models (e.g., Resnet-50 is 50-layers deep, whereas most
GNNs today have fewer than 10 layers), the input graph can
occupy a significant portion of GPU memory (up to 90% in
our experiments). While the ML community has proposed
sampling the graph to address this problem [9], there are
situations where training on the whole graph has been shown
to provide better accuracy [56]. We suggest compressing the
data in GPU memory to facilitate training on large graphs.

We can also observe a clear, predictable pattern in the data
sparsity (from Figure 8), providing opportunities to apply
adaptive compression algorithms [67]. As the sparsity values
change during training, the GNN training framework may need
to exploit different compression solutions and formats that
work the best for a specific sparsity level.

Looking at the average sparsity for PSAGE in Figure 7, we
can conclude that training sparsity is a function of both the
model and the input graph. When using the MVL dataset, the
average sparsity is 22%, but it reduces to 11% when training
on the NWP dataset.

In terms of models, since many GNNs such as Graph-
Transformer, DeepGCNs and ARGA use activation functions
such as ReLU and PReLU in their layers, they produce
highly sparse data. We suggest applying compression to take
advantage of this sparsity. The result will be that we can train
larger graphs on a single GPU. We plan to pursue this path in
future work.

Takeaways: Training on graphs that are larger than the size of
GPU memory is a challenging problem. Thus, exploiting the
high degree of sparsity present in GNN workloads by using
compression techniques can begin to address this problem.
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Fig. 7. Average sparsity in the data transferred from CPU-to-GPU during
GNN training in GNNMark workloads.

E. Scalability of GNN training using multi-GPU systems

Using the multi-GPU implementations that we developed
for the GNNMark workloads using PyTorch DDP, we eval-
uate the strong scaling characteristics of the workloads in
GNNMark. We train all our models for five epochs (we
observe similar performance across all epochs) and report the
average time-per-epoch, an approach used in previous
work [55], to understand the performance of DNN workloads
on multi-GPU systems. We do not evaluate ARGA, as the
application inherently sends the entire graph to the GPU as a
part of its training process, and therefore distributing the same
graph across multiple GPUs does not help. The first thing we
can clearly observe from Figure 9 is that not all workloads
benefit from multi-GPU training. While DGCN,STGCN and
GW show considerable performance gains, the same does
not hold true for the other applications. TLSTM does not
benefit from multi-GPU training. Given that this is an LSTM-
based GNN model with low computational GFLOPS/GIOPS
intensity, the application is unable to take advantage of the ad-
ditional computing power offered by multi-GPU systems. For
PSAGE, we observe performance degradation when scaling
across multiple GPUs. This is primarily because the PSAGE
implementation in DGL uses a batch sampling mechanism
which is not compatible with PyTorch DDP. As a result, the
training data gets replicated across multiple devices and this
replication results in redundant computation and unnecessary
communication which in turn hurts performance.

Takeaways: Multi-GPU systems do not always benefit GNN
training. Therefore, ideas such as topology-aware scheduling
and fine-grained graph partitioning that have been proposed
by researchers in graph-centric GNN frameworks, such as
ROC [56] and NeuGraph [68], should be adopted by high-
level frameworks, such as PyG and DGL, to enable more
efficient GNN training. Currently, these frameworks are not
open source, and hence, we cannot evaluate them for the
GNNMark workloads.

VI. RELATED WORK

Past GPU benchmark suites have provided guidance to
GPU architects. To date, GPU benchmarks fall into one of



Fig. 8. Sparsity heat map for DeepGCN when running on the MOLHIV
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two categories. They either evaluate general-purpose GPU
computing capabilities [61], [69]–[73], or target assessment
of the performance of a specific class of workloads [74]–[76].
With the growing popularity of DNN workloads, a new wave
of DNN benchmarks have been developed.

Benchmarking Deep Learning Workloads and Workload
Characterization: Early DNN benchmark suites explored the
execution performance of low-level primitives [19], [77], as
well as end-to-end inference and training [20], [21]. Later ef-
forts included a more diverse set of DNN algorithms, including
a broader range of network models and commercial efforts.
TBD [18] is a DNN benchmark suite proposed by Zhu et al.
to study DNN training performance on GPUs. AIBench [78]
is an industry-initiated benchmark suite that is focused on
industrial AI services. Mattson et al. [79] proposed the MLPerf
training and MLPerf inference suites. MLPerf adopts ideas
from prior DNN benchmark suites to develop an industry-
standard DNN-focused benchmark suite, designed so that new
hardware and software optimizations can be evaluated fairly.
To date, MLPerf has primarily focused on DNNs. In terms of
architectural characterization, Dong et al. [80] looked at the ar-
chitectural implications of CNN training on a GPU. Mojumder
et al. [55] profiled DNN models trained on an NVIDIA DGX-1
system. However, all these prior workload studies were limited
to DNNs that operate on euclidean data (e.g., images, video
and speech). GNNMark is designed specifically to bridge this
gap, providing the architecture community with an appropriate
benchmark suite to study GNN training behavior. We also plan
to work with the MLPerf consortium to integrate our GNN
models into their training suite in the future.

Workload Characterization for GNNs: GNNs have re-
cently attracted attention from the computer architecture com-
munity due to their growing popularity in the machine learning
domain. Yan et al. [15] have characterized Graph Convolu-

tional Network (GCN) inference performance, focusing on
aggregation and model update phases. Zhang et al. [16]
have also characterized the inference performance of GNNs.
Their work decomposes GNN inference execution into a
Scatter-ApplyEdge-Gather-ApplyVertex (SAGA) pipeline and
then analyzes the behavior of each phase. They also present
insights on how to efficiently design a GNN accelerator for
inference. While a benchmark suite is also created as a part
of their study, it is designed primarly for inference and is
not available publicly. Most prior GNN studies focused on
inference, ignoring the training process that tends to consume
a large number of GPU hours. Also, the models evaluated are
only designed to process homogeneous graphs. Other related
work focused on characterizing GNN inference and designing
customized accelerators for that purpose [22], [34], [81]. In
contrast, GNNMark includes GNN models that work across a
wide range of graph data, including spatio-temporal graphs and
heterogeneous graphs. GNNMark also includes multi-GPU
implementations of GNNs, making it suitable for research
on GNN training behavior targeting GPUs. The applications
included in GNNMark can also be used to drive inference
studies by first training the models to a target accuracy, and
then using the pretrained models to characterize inference.
We plan to extend the suite to support inference studies by
providing a set of pretrained models in the future.

Dwivedi et al. [82] propose a benchmark suite targeting
GNN models for the machine learning community. In contrast
to GNNMark, which is designed to drive architectural studies,
their benchmark suite is more focused on comparing the
accuracy and performance of different popular GNN models
in the literature, evaluating the models against a standard
collection of graph datasets.

VII. CONCLUSION AND FUTURE WORK

In this paper we present GNNMark, a diverse benchmark
suite of GNN workloads designed for characterization of GPU
performance. To the best of our knowledge, we are the first
to propose a GNN-training focused benchmark suite for the
architecture community. We use GNNMark to perform a de-
tailed characterization of GNNs to understand the architectural
implications of training on GPU systems. Our work provides
novel insights that show what are the major architectural
bottlenecks in GNN training and suggests how they can be
potentially addressed.

Clearly, a single GNN model can exhibit different character-
istics, based on the input graph. We also observe that, unlike
DNNs, GEMM and convolution operations are less dominant
in GNN execution. Instead, integer operations required for
graph processing can dominate execution, suggesting that
improving the performance of integer math is paramount. A
high degree of instruction fetch stalls show that the instruction
cache on the GPU can limit GNN performance. Finally,
we also report on the training sparsity and strong scaling
characteristics of GNN training using our suite.

For future work, given the high sparsity found in these
workloads, we plan to explore using compression to accelerate



GNN training on large graphs, as well as understand the weak
scaling characteristics of GNN training. We also plan to update
our suite using the time-to-train metric proposed by the
developers of MLPerf [79] and support half-precision-training
in GNNMark. We also plan to add more models, such as those
in the realm of Reinforcement Learning based GNNs [83], to
GNNMark.
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