
Neural Network-Based Accelerators for Transcendental
Function Approximation

Schuyler Eldridge∗, Florian Raudies†, David Zou∗, and Ajay Joshi∗

∗Department of Electrical and Computer Engineering, Boston University
†Center for Computational Neuroscience and Neural Technology, Boston University

{schuye, fraudies, f2rf2r, joshi}@bu.edu

ABSTRACT

The general-purpose approximate nature of neural network
(NN) based accelerators has the potential to sustain the his-
toric energy and performance improvements of computing
systems. We propose the use of NN-based accelerators to
approximate mathematical functions in the GNU C Library
(glibc) that commonly occur in application benchmarks.
Using our NN-based approach to approximate cos, exp, log,
pow, and sin we achieve an average energy-delay product
(EDP) that is 68x lower than that of traditional glibc exe-
cution. In applications, our NN-based approach has an EDP
78% of that of traditional execution at the cost of an average
mean squared error (MSE) of 1.56.

Categories and Subject Descriptors

C.1.3 [Processor Architectures]: Other Architecture
Styles—adaptable architectures, neural nets; B.7.1 [Inte-
grated Circuits]: Types and Design Styles—algorithms

implemented in hardware

General Terms

Design, Measurement, Performance

Keywords

Bio-inspired Computing; Neuromorphic Architectures

1. INTRODUCTION
As transistors scale into the nanometer regime, sustaining

the scale of energy and performance improvements that were
earlier possible with every new technology generation is be-
coming increasingly difficult [4, 10]. Dennard Scaling-based
improvements [8] are approaching their limits and contin-
ued improvements are expected to come from “More-than-
Moore” architectural improvements [1]. Hence, there is a
critical need to develop novel architectures and program-
ming models that can sustain the historic trends of energy
and performance improvements in computing systems.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI’14, May 21–23, 2014, Houston, Texas, USA.

Copyright 2014 ACM 978-1-4503-2816-6/14/05 ...$15.00.

http://dx.doi.org/10.1145/2591513.2591534.

Computational accelerators offer one method of decreas-
ing energy and improving performance. Accelerators can be
used alongside traditional processor datapaths to speed up
the execution of operations. In such an architecture the pro-
cessor uses either the traditional datapath or the accelera-
tor during execution. However, most accelerators are special
purpose and cannot be leveraged by all applications which
limits their use. A truly general-purpose computational ac-
celerator that complements and accelerates the traditional
Von Neumann architecture broadly would go a long way
towards improving the energy and performance of future
computing systems.

One class of accelerators that has the potential to provide
general-purpose acceleration are NNs. NNs can be config-
ured to execute a variety of operations to arbitrary accuracy
which makes them suitable for general-purpose computa-
tion. Unfortunately, the approximate nature of NN-based
accelerators limits their potential application. However, the
inherent unreliability of current and future nanoscale CMOS
devices has prompted researchers to develop a new compu-
tational paradigm based on approximate execution of oper-
ations. NN-based accelerators, with their approximate na-
ture, can therefore be a good fit for systems based on an
approximate computational paradigm.

Bit-level approximation of instructions or functions is an
alternative approach to improving performance and reduc-
ing energy consumption in current and future CMOS de-
vices. This is particularly appealing when the underlying
function can be approximated by simply reducing the num-
ber of bits used in the function (e.g., bit truncation of in-
structions). The large energy requirements of high precision
instructions can be significantly reduced if only the neces-
sary precision for an application is used [21]. However, this
type of approximation does not reduce the total number of
operations that a processor executes. Consequently, large
performance benefits and high output accuracies are diffi-
cult to achieve.

GPUs and CPUs have dedicated hardware for accelerating
certain transcendental functions. However, the large power
and data transfer overheads of GPUs make them impractical
unless an application has been explicitly written to exploit
a SIMD architecture. Additionally, the general-purpose ap-
proximate nature of NN-based accelerators has the benefit
of allowing one NN-based accelerator to approximate differ-
ent functions without architectural modifications as would
be required of GPUs and CPUs.

In this paper, we present a reconfigurable NN-based ac-
celerator architecture that approximates floating point tran-

X1 X2

bias

bias

Y1

Hidden
Layer

Input
Layer

Output
Layer

Figure 1: Example two-layer MLP NN.

scendental functions to decrease the EDP of these functions
and modern applications. The choice of transcendental func-
tions is driven by two observations. First, floating point in-
structions show general resilience to approximation [9]. Sec-
ond, we have found that certain modern recognition, mining,
and synthesis (RMS) applications in the PARSEC suite [2]
have appreciable numbers of transcendental function calls.
Additionally, RMS applications are known to exhibit re-
silience to approximation [6]. The specific contributions of
this paper are as follows:

• We design and implement an accelerator architecture
using multilayer perceptron (MLP) NNs in the NCSU
FreePDK 45nm predictive technology model [19]. We
then compare the execution of transcendental func-
tions using our NN-based accelerator to traditional
execution with glibc. We compare these implemen-
tations using EDP and accuracy as metrics.

• Our proposed accelerator architecture provides close to
2 orders of magnitude improvement in EDP at the cost
of an average MSE of 9.04× 10−3 across five different
transcendental functions.

• In addition, we evaluate the EDP benefits and accu-
racy trade-offs for benchmarks in the PARSEC suite
when using our NN-based accelerator to execute tran-
scendental functions.

2. RELATED WORK
The general-purpose approximate nature of NNs has been

shown by Cybenko and Hornik [7, 14]. The acceleration
of general-purpose applications (e.g. filtering, FFT) by ap-
proximating regions of code with MLP networks has been
proposed and shown to provide power and performance ben-
efits if the granularity of approximation is sufficiently large
and the approximated code is executed frequently [11]. Fur-
thermore, different types of NNs have been used to approx-
imate large regions of code or whole programs in appli-
cations [5, 15]. Additional approaches explore alternative
benefits that NN-based systems may provide such as fault-
tolerance [12, 13, 20].

Our work extends these prior approaches by utilizing NN-
based accelerators at the level of library functions as opposed
to larger functions or applications. Additionally, our NN-
based accelerators are able to run without static/run-time
code analysis or application failure.

Table 1: Expected, median, and minimum MSE for
100 2-layer, 7 hidden node, 9 fractional bit MLP
NNs trained to execute transcendental functions.

Func. E[MSE] M[MSE] Min[MSE] Domain

sin 5.3×10−4 4.3×10−4 0.4×10−4 [0, π

4
]

cos 5.6×10−4 4.1×10−4 0.2×10−4 [0, π

4
]

asin 21.7×10−4 18.5×10−4 4.9×10−4 [−1, 1]
acos 19.0×10−4 16.5×10−4 5.5×10−4 [−1, 1]
exp 6.3×10−4 4.4×10−4 1.0×10−4 [− log 2, log 2]
log 12.1×10−4 8.4×10−4 0.4×10−4 [1

2
, 1)

3. NEURAL NETS AS APPROXIMATORS

3.1 Theory
MLP NNs are layered structures that process data in a

feedforward manner. The input layer of the NN receives
input data, the data is processed by hidden neurons in one or
more hidden layers, and the output layer of the NN produces
one or more outputs. Figure 1 shows a 2-layer NN1 with
one input layer, one hidden layer, and one output layer.
The output, y, of a neuron in the hidden or output layer is
determined by an activation function φ evaluated using the
sum of all N input edges x0, x1, . . . xN−1 multiplied by each
corresponding edge weight w0, w1, . . . wN−1:

y = φ

(

N−1
∑

k=0

wkxk

)

(1)

While the activation function can take many forms, we find
that sigmoid hidden units and linear output units are able
to accurately approximate the transcendental functions that
we analyze:

sigmoid: φ =
1

1 + e−2s1x
(2)

linear: φ = s2x (3)

The steepness parameters that govern the sharpness of the
sigmoid, s1, and the slope of the linear units, s2, are both set
to one. Input neurons are pass-through and do not modify
their inputs.

An NN can be trained to approximate a function through
error backpropagation that adjusts weights to minimize the
output error using a Euclidean distance metric (i.e., gradient
descent) [18]. Other algorithms use different distance met-
rics or approaches to accelerate convergence, i.e., Resilient
Backpropagation [17] used by the Fast Artificial Neural Net-
work (FANN) library [16]. The universal approximation
ability of NNs can be exploited to enable one NN to approx-
imate different functions. We illustrate this by showing the
ability of one NN to approximate several different transcen-
dental functions. We train 100 randomly initialized NNs
(1 input neuron, 7 hidden neurons, and 1 output neuron)
to separately compute transcendental functions over lim-
ited input domains using training and validation datasets.
The expected, median, and minimum MSE of the validation
datasets are shown in Table 1. The choice of 7 hidden neu-
rons is arbitrary and is only meant to qualitatively validate
the ability of NNs to act as generic approximators. Note that
the chosen, limited input domains decrease the complexity

1We use the general convention of counting NN layers as the
number of hidden layers plus one for the output layer.

CPU

nn-based accelerator

hd
de
n0

hi
dd
en
1

hi
dd
en
2

ou
tp
ut
0

ff ff ff

weights

ctrl*>>

+ ff ϕ

inputs[2:0] valid_in

valid_outoutput

output_0

ff

postscale

pipeline register

combinational logic

ϕ 1 cycle sigmoid unit

flip-flopff

ff

ffff

1 cycle postscalepostscale

2 cycle prescaleprescale

prescale ff

ff

Figure 2: Block diagram of an NN-based accelerator with 3 hidden neurons and 1 output neuron. Input
neurons are pass-through and not shown. The internals of an output neuron are shown in the middle and
a legend on the right. Each neuron uses a single multiplier, a single accumulator, and a piecewise linear
approximation unit. Processing is pipelined within a neuron as well as across layers.

Table 2: Identities from Walther [23] to convert
full-domain inputs onto finite domains d for the
CORDIC algorithm [7].

Identity Domain

sin(d+ qπ

2
) =

sin(d) if q%4 = 0
cos(d) if q%4 = 1

− sin(d) if q%4 = 2
− cos(d) if q%4 = 3

0 < d < π

2

cos(d+ qπ

2
) =

cos(d) if q%4 = 0
− sin(d) if q%4 = 1
− cos(d) if q%4 = 2

sin(d) if q%4 = 3

0 < d < π

2

log(d2q) = log(d) + q log(2) 1

2
≤ d < 1

exp(q log 2 + d) = 2q exp(d) |d| < log 2

Table 3: Scaling steps using Table 2 identities.

Step sin x, cosx expx log x

f(d, q) x = qπ

2
+ d x = q log 2 + d x = d2q

pre-1 q = ⌊ 2x

π
⌋ q = ⌊ x

log 2
+ 1⌋ q = ⌈lg x⌉

pre-2 d = x− qπ

2
d = x− q log 2 d = x >> q

NN y = NN(d) d = NN(d) d = NN(d)
post not needed y = d << q y = d+ q log 2

of the input-output surface that the NNs need approximate.
Training an NN to directly approximate one of these func-
tions, e.g., sin x, on an unbounded domain is intractable. So
long as the input-output surface of the NN is representative
of the whole function, input prescaling and output postscal-
ing methods can be developed that allow an NN, that com-
putes over a limited domain, to effectively compute over the
full input domain of the whole function.

For our NN-based approximator, we implement prescal-
ing and postscaling steps using mathematical identities and
scalings of the CORDIC algorithm [22, 23] and shown in Ta-
bles 2 and 3. For example, say we want to compute sin x for
any x using our NN, but our NN cannot handle unbounded
inputs. We train our NN to compute sin d and cos d for all d
on the limited domain (0, π

2
). Knowing that we can compute

sin x as sin(d+ qπ

2
) we find d and q and compute the answer

for any x using our limited domain NN.
The two prescaling steps in Table 3 are used to find q and

d using computationally easy operations, i.e., multiplication
with a constant, addition/subtraction, and bit manipula-

tions. Post scaling operations are necessary for exp and log,
but not sin and cos. The pow function cannot be computed
using an identity. However, it can be computed as a combi-
nation of log and exp as follows:

a
b = e

b log a (4)

We use these identities and scalings to implement an NN-
based accelerator for transcendental functions.

3.2 Implementation
In this section, we describe the architecture of our pro-

posed NN-based accelerator. The architecture for log and
exp is shown in Figure 2. The architecture is composed of
prescaling and postscaling units, hidden neurons (hidden0,
hidden1, and hidden2) and an output neuron (output0).
The input layer is pass-through and not shown. Processing
is pipelined across neurons, i.e., the hidden layer can operate
on data while the output layer is operating on the previous
data. Additionally, weight–input multiplication and accu-
mulation is processed in a 3-stage, internal neuron pipeline.
The accelerator works alongside a CPU and operates as fol-
lows.

When the CPU encounters one of the transcendental func-
tions supported by our NN-based accelerator, the input val-
ues are passed to the accelerator by means of multiplexed
connections. The NN-based accelerator thereby acts as an
additional execution unit. We consequently assume this con-
nection is implemented with combinational logic and does
add to the latency and energy of the architecture. Data ar-
riving at the NN-based accelerator passes through a 2-cycle
prescaling stage (see Table 3) before entering the network
along with a data valid flag. Each hidden neuron then op-
erates in parallel on its inputs. A neuron latches input data
and begins computation when it sees a data valid signal
(valid_in). A neuron then multiplies each input by its cor-
responding weight in a 3-stage pipeline. The input from
the bias neuron is implemented as the starting value for
the accumulation flip-flop. The accumulated sum is passed
through a 1-cycle activation function, φ. Each hidden neu-
ron output is then sent to the output unit while a data
valid signal (valid_out) is asserted. The output unit pro-
cesses data similarly and returns data to the CPU through
a postscaling unit (see Table 3). In the case of sin and cos,
postscaling is not necessary and data is returned directly
to the CPU. Processing is pipelined across NN layers and
within a neuron.

−5 0 5
−1

0

1

x

cos x

−5 0 5
0

200

400

expx

0 2 4 6

−2

0

2

log x

Function Value (left y axis) Squared Error (right y axis)

−5 0 5
0

20

40

60

pow(2, x)

−5 0 5
−1

0

1

x

sin x

10−3

100

103

Figure 3: NN-based functions and their errors. Note: Error is plotted on a log scale using the right y axis.

The latency and throughput for a single neuron can be
defined as follows, whereN is the number inputs to a neuron:

latency = 6 +N − 1 = N + 5

throughput =
1

N + 5

(5)

The latency of the entire NN is a function of the number of
inputs to the NN (Ni), the number of neurons in the hidden
layer (Nh, i.e., the number of inputs to the output neuron),
and the latency of the scaling stages (Ls). The throughput
is the inverse latency of the longest stage (i.e., either the
hidden layer or the output layer). The scaling latency is two
for cos and sin and three for log and exp.

latency = Ls + (Ni + 5) + (Nh + 5)

throughput =
1

max(Ni, Nh) + 5

(6)

4. EVALUATION
In this section, we compare accelerator-based execution

with traditional execution of transcendental functions using
EDP and accuracy metrics. We also explore the impact of
NN-based accelerator usage on overall application behavior.

4.1 Accelerator-Based Execution versus Tra-
ditional Execution

To compare the accelerator-based execution and the tra-
ditional execution of transcendental functions, we use the
Verilog hardware description language (HDL) to implement
2-layer NN designs in hardware with 1–15 hidden neurons
and 6–10 fractional bits. We select these ranges because we
find that NNs with too many hidden neurons are prone to
overtraining and NNs with fewer than 6 fractional bits show
high error rates. NNs are then synthesized and placed-and-
routed (PnR) using a Cadence toolflow that uses the NCSU
FreePDK 45nm predictive technology model to generate the
final hardware design. All designs are run at their maximal
possible frequencies as determined by the Cadence tools. We
determine the energy using PnR tools with random data ap-
plied to input neurons. We evaluate the accuracy of these
configurations by testing 100 trained instances of each NN
configuration for each transcendental function. We use the
FANN library to implement train and test these NNs in soft-
ware.

For each transcendental function we select the NN con-
figuration that minimizes the Energy-Delay-Error Product
(EDEP) metric, which we define as follows:

EDEP = energy×
latency in cycles

frequency
×MSE (7)

Table 4: NN-based accelerator hardware parameters
with minimum EDEP for sin, cos, log, and exp.

NN Func. Area (um2) Freq. (MHz) Energy (pJ)

h1_b6 cos,sin 1259.50 337.38 8.30
h3_b7 exp,log 3578.50 335.80 24.81

Table 5: MSE and energy consumption of our NN-
based implementation of transcendental functions.

Func. NN MSE Energy (pJ)

cos h1_b6 9.38×10−4 8.30
exp h3_b7 1.68×10−4 24.81
log h3_b7 1.45×10−4 24.81
pow h3_b7 4.32×10−2 101.67
sin h1_b6 7.37×10−4 8.30

The parameters of the networks with a minimum EDEP for
sin, cos, log, and exp are shown in Table 4. We find that sin
and cos have minimal EDEP for a network with 1 hidden
neuron and 6 fractional bits (abbreviated h1_b6). A net-
work with 3 hidden neurons and 7 fractional bits (h3_b7)
has minimal EDEP for log and exp. Using prescaling and
postscaling, the outputs and squared error of these networks
are shown in Figure 3. Error is plotted on a log scale on the
right axis. We additionally show the output and error for
pow which is computed using a combination of log and exp.
Figure 3 shows that our NN-based accelerator can be used to
approximate these five transcendental functions. Addition-
ally, error and output scale together, i.e., a small output has
a small error and a large output has a larger error. Table 5
shows the NN configuration, MSE and energy consumed by
the NN-based execution of the transcendental functions.

Traditional execution of the transcendental functions in-
volves executing a series of floating point instructions in-
cluding addition, subtraction, and multiplication. Table 6
shows the average number of instructions that are executed
for each transcendental function. We generate this table us-
ing the gem5 simulator [3] to trace small programs that re-
peatedly call transcendental functions with random inputs.
We process these traces to pull out only those instructions
related to transcendental function calls. Control, integer,
and move instructions are aggregated in separate columns.
Instructions executed less frequently than floating point sub-
traction are not shown in the table. Due to random inputs,
the average number of instructions per function is not an
integer. This is expected because glibc executes different
code paths depending on input value.

For a valid EDP comparison of the NN-based execution
with traditional glibc execution, we compute the energy per

Table 6: Mean floating point instruction counts (ss denotes single precision and sd denotes double precision)
in single precision (e.g., cosf) and double precision (e.g., cos) glibc transcendental functions. Fractional
instruction counts occur because glibc takes different code paths based on the random input values used.
The estimated energy per function is shown using energy per instruction data from Table 7.

Func. addsd addss mulsd mulss subsd subss Total Instructions Energy (pJ)

cos 7.42 0.00 11.64 0.00 8.41 0.00 114.55 966.61
cosf 0.00 3.00 0.00 10.00 0.00 7.03 103.45 365.13
exp 11.00 0.00 14.00 0.00 6.00 0.00 159.97 1158.10
expf 5.00 1.00 5.00 1.00 2.00 1.00 218.00 453.16
log 18.06 0.00 11.79 0.00 5.09 0.00 226.86 994.72
logf 0.00 7.69 0.00 11.38 0.00 3.65 143.09 415.44
pow 32.46 0.00 30.54 0.00 20.54 0.00 337.53 2561.33
powf 0.00 23.32 0.00 35.00 0.00 26.32 354.56 1292.49
sin 8.17 0.00 10.97 0.00 5.99 0.00 109.40 909.30
sinf 0.00 3.00 0.00 8.54 0.00 5.16 96.68 311.42

Table 7: Parameters of traditional glibc implemen-
tations of floating point instructions.

Instruction Area (um2) Freq. (MHz) Energy (pJ)

addss 635.5 388 1.00
addsd 1466.7 388 2.20
mulss 6505.3 283 35.51
mulsd 16226.5 135 80.05

Table 8: EDP of NN-based and traditional glibc

execution of transcendental functions.

Func. EDP-NN EDP-Single EDP-Double

cos 3.44×10−19 1.89×10−17 5.54×10−17

exp 1.26×10−18 3.62×10−16 9.26×10−17

log 1.26×10−18 2.97×10−17 1.13×10−16

pow 1.05×10−17 2.29×10−16 4.32×10−16

sin 3.44×10−19 1.51×10−17 4.97×10−17

floating point instruction using the same Cadence toolflow.
The area, maximum operating frequency, and energy for
floating point addition and multiplication is shown in Ta-
ble 7. Floating point subtraction is taken to be equivalent to
floating point addition. Other instructions are not evaluated
as we find that floating point addition, multiplication, and
subtraction are the most frequently executed instructions
(after move instructions) in glibc transcendental functions.

Using the floating point addition, multiplication, and sub-
traction instruction counts and energy per instruction in Ta-
ble 7, we calculate the energy per traditional transcendental
function. Energy per transcendental function is shown in
the last column of Table 6. We then compare the EDP of
traditional and NN-based implementations. We did not use
EDEP as the comparison metric because the MSE of a glibc
implementation is effectively zero. We assume that instruc-
tions in transcendental functions can achieve an IPC of one
at 2 GHz. The EDP comparison against single and dou-
ble precision glibc implementations is shown in Table 8.
The EDP value for our NN-based execution is, averaging
between single and double precision, 68x lower than that of
traditional execution. Our NN-based design trades off an
average transcendental function MSE of 9.04×10−3 for this
EDP savings.

Table 9: Percentage of total application cycles spent
in transcendental functions and the estimated EDP
of an NN-based accelerator implementation normal-
ized to traditional, single precision floating point ex-
ecution. Applications in the lower division have no
transcendental functions.

Benchmark % Total Cycles Normalized EDP

blackscholes 45.65% 0.5583
bodytrack 2.25% 0.9783
canneal 1.19% 0.9885
swaptions 39.33% 0.6191

dedup 0.00% 1.0000
fluidanimate 0.00% 1.0000
freqmine 0.00% 1.0000
raytrace 0.00% 1.0000
streamcluster 0.00% 1.0000
x264 0.00% 1.0000
vips 0.00% 1.0000

4.2 NN-Based Accelerators in Applications
We analyze the EDP versus accuracy trade-offs associated

with using our NN-based accelerators in applications. We
execute benchmarks in the PARSEC suite using the gem5
simulator and record cycle counts. We then determine the
percentage of total cycles that benchmarks spend executing
transcendental functions. The EDP savings for each bench-
mark then follow an Amdahl’s law convention—total EDP
savings are limited by the number of cycles each benchmark
spends executing transcendental functions. Table 9 shows
the normalized EDP savings by applying the single preci-
sion floating point EDP reductions in Table 8. Results for
facesim and ferret are excluded because cycle counts were
not able to be obtained using gem5. Some applications do
not use transcendental functions. However, NN-based accel-
erators may be reconfigured to approximate small or large
portions of these applications for EDP savings.

We then build a software library that redefines the execu-
tion of selected transcendental functions (cos, exp, log, pow,
and sin). Our software implementation uses the NN config-
urations listed in Table 5 for executing each transcendental
function. We execute benchmarks in the PARSEC suite and
compare their outputs to those of traditional execution of
PARSEC benchmarks that rely on traditional glibc. For

Table 10: Application output MSE and percent er-
ror using NN-based accelerators.

Benchmark MSE E[|%error|]

blackscholes 4.48×10−1 24.6236%
bodytrack 2.07×10−1 29.6321%
canneal 2.89× 108 0.0025%
ferret 1.03×10−3 1.9633%
swaptions 5.59× 100 36.8205%

this analysis, we only execute benchmarks that have tran-
scendental function calls: blackscholes, bodytrack, can-
neal, ferret, and swaptions. We report the MSE and
expected percent absolute error of application outputs in
Table 10. The MSE and expected percent absolute error for
all benchmarks is in an acceptable range. The output for
canneal is a single large value, hence the large MSE, but
low percent error.

Overall, NN-based accelerators approximating transcen-
dental functions are able to provide substantial EDP re-
ductions over standard glibc implementations. However,
EDP and performance gains (and accuracy trade-offs) are
explicitly governed by an Amdahl’s law convention—any
gains or losses that NN-based accelerators provide are di-
rectly proportional to the percentage of time that an applica-
tion spends using the approximated functions. Benchmarks
blackscholes and swaptions spend approximately 40% of
their execution time computing floating point transcenden-
tal functions and can consequently decrease their EDP sub-
stantially. Benchmarks dedup, freqmine, raytrace, stream-
cluster, and x264 do not use any of the transcendental func-
tions that we approximate. These benchmarks consequently
see no EDP improvements or accuracy reductions. Bench-
marks bodytrack and canneal make limited use of approx-
imated transcendental functions and see modest EDP gains
and small accuracy losses. All applications executed ran to
completion without runtime errors.

5. CONCLUSION
NN-based accelerators provide a malleable substrate on

which different types of approximate computations can be
executed. Our work demonstrates that their inclusion in fu-
ture architectural designs has the potential to reduce EDP at
the cost of application output error. A hardware-level com-
parison of NN-based and glibc execution of transcendental
functions shows that the EDP for NN-based execution is, on
average, 68x lower than that of glibc execution. Moreover,
the use of an NN-based accelerator to approximate tran-
scendental functions in PARSEC benchmarks uses, averaged
across the 5 benchmarks with transcendental functions, 78%
of the EDP of a traditional glibc implementation. Output
MSE and percent absolute error are, on average, 1.56 and
0.24, excluding canneal. These results indicate that library-
level approximation may be a viable direction for leveraging
energy reductions while maintaining safe program execution.
This work can be furthered by using NN-based accelerators
to approximate additional functions in glibc and other li-
braries.

6. ACKNOWLEDGMENTS
This work was supported by a NASA Office of the Chief

Technologist’s Space Technology Research Fellowship.

7. REFERENCES
[1] W. Arden, et al. More-than-moore. International

Technology Roadmap for Semiconductors, 2010.

[2] C. Bienia et al. Benchmarking modern

multiprocessors. Princeton University, 2011.

[3] N. Binkert, et al. The gem5 simulator. ACM Comp.

Ar., 39(2):1–7, 2011.

[4] S. Borkar et al. The future of microprocessors. Comm.

ACM, 54(5):67–77, 2011.

[5] T. Chen, et al. Benchnn: On the broad potential
application scope of hardware neural network
accelerators. In IISWC, 2012.

[6] V. K. Chippa, et al. Analysis and characterization of
inherent application resilience for approximate
computing. In DAC, 2013.

[7] G. Cybenko. Approximation by superpositions of a
sigmoidal function. Math. Control Signal,
2(4):303–314, 1989.

[8] R. H. Dennard, et al. Design of ion-implanted mosfet’s
with very small physical dimensions. IEEE J. Solid-St.

Circ., 9(5):256–268, 1974.

[9] H. Duwe. Exploiting application level error resilience
via deferred execution. Master’s thesis, University of

Illinois at Urbana Champaign, 2013.

[10] H. Esmaeilzadeh, et al. Dark silicon and the end of
multicore scaling. In ISCA, 2011.

[11] H. Esmaeilzadeh, et al. Neural acceleration for
general-purpose approximate programs. In MICRO,
2012.

[12] A. Hashmi, et al. Automatic abstraction and fault
tolerance in cortical microachitectures. In ISCA, 2011.

[13] A. Hashmi, et al. A case for neuromorphic isas. ACM
SIGPLAN Notices, pages 145–158, 2011.

[14] K. Hornik. Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2):251–257,
1991.

[15] B. Li, et al. Memristor-based approximated
computation. In ISLPED, 2013.

[16] S. Nissen. Implementation of a fast artificial neural
network library (fann). Technical report, Department
of Computer Science University of Copenhagen
(DIKU), 2003. http://fann.sf.net.

[17] M. Riedmiller et al. A direct adaptive method for
faster backpropagation learning: The rprop algorithm.
In ICNN, 1993.

[18] D. E. Rumelhart et al. Parallel distributed processing:

explorations in the microstructure of cognition. Volume

1. Foundations. MIT Press, Cambridge, Ma, 1986.

[19] J. E. Stine, et al. Freepdk: An open-source
variation-aware design kit. In MSE, 2007.

[20] O. Temam. A defect-tolerant accelerator for emerging
high-performance applications. In ISCA, 2012.

[21] S. Venkataramani, et al. Quality programmable vector
processors for approximate computing. In MICRO,
2013.

[22] J. E. Volder. The cordic trigonometric computing
technique. IRE Tran. Comput., EC-8(3):330 –334,
sept. 1959.

[23] S. Walther. A unified algorithm for elementary
functions. AFIPS, 1971.

