
Profiling DNN Workloads on a
Volta-based DGX-1 System

Saiful A. Mojumder1, Marcia S Louis1, Yifan Sun2, Amir Kavyan Ziabari3⇤,
José L. Abellán4, John Kim5, David Kaeli2, Ajay Joshi1

1ECE Department, Boston University; 2ECE Department, Northeastern University; 3Advanced Micro Devices;
4CS Department, UCAM; 5School of EE, KAIST;

{msam, marcia93, joshi}@bu.edu, {yifansun, kaeli}@ece.neu.edu,
amirkavyan.ziabari@amd.com, jlabellan@ucam.edu, jjk12@kaist.edu

Abstract—High performance multi-GPU systems are widely
used to accelerate training of deep neural networks (DNNs) by
exploiting the inherently massive parallel nature of the training
process. Typically, the training of DNNs in multi-GPU systems
leverages a data-parallel model in which a DNN is replicated
on every GPU, and each GPU performs Forward Propagation
(FP), Backward Propagation (BP) and, Weight Update (WU). We
analyze the WU stage that is composed of collective communi-
cation (e.g., allReduce, broadcast), which demands very efficient
communication among the GPUs to avoid diminishing returns
when scaling the number of GPUs in the system. To overcome this
issue, different data transfer mechanisms and libraries have been
introduced by NVIDIA, and adopted by high-level frameworks
to train DNNs. In this work, we evaluate and compare the
performance of peer-to-peer (P2P) data transfer method and
NCCL library-based communication method for training DNNs
on a DGX-1 system consisting of 8 NVIDIA Volta-based GPUs. We
profile and analyze the training of five popular DNNs (GoogLeNet,
AlexNet, Inception-v3, ResNet and LeNet) using 1, 2, 4 and 8
GPUs. We show the breakdown of the training time across the
FP+BP stage and the WU stage to provide insights about the
limiting factors of the training algorithm as well as to identify the
bottlenecks in the multi-GPU system architecture. Our detailed
profiling and analysis can help programmers and DNN model
designers accelerate the training process in DNNs.

I. INTRODUCTION

GPUs have become the most commonly used devices for
training Deep Neural Networks (DNNs) [5], [16], [21], [31].
Thanks to their massively parallel computing capabilities, GPUs
can train a DNN several hundred times faster than CPUs [7],
[22], [34], [45]. As neural networks grow deeper and training
datasets become larger, a single GPU requires several days
(sometimes even weeks) to train a DNN. Hence, multi-GPU
systems are being introduced to achieve faster training of
DNNs [24], [41].

Training a DNN on a multi-GPU system introduces new
challenges. First, the programmer has to distribute the data
(input data and network model data) among multiple GPUs.
The programmer can either distribute the input data onto
multiple GPUs while replicating the network model in each
of the GPUs [41] (referred to as data parallelism), or assign
different parts of the neural network model to distinct GPUs
(referred to as model parallelism) [41]. Both approaches require
data to be transferred and synchronized across GPUs. The

⇤This author completed the majority of this work before joining AMD.

input data is fed to the GPUs as mini-batches. Each mini-
batch consists of a certain number of unique inputs chosen
by the programmer from the dataset. The mini-batch size has
implications on training time, GPU memory usage and training
accuracy. Recent works [15], [37], [43] have shown that batch
size can be increased without losing accuracy. Hence, in our
work we do not consider accuracy as a limiting factor for
increasing batch size, rather we analyze the effects of increasing
batch size on training time, GPU-to-GPU communication and
GPU memory usage. Finally, although we can parallelize the
computation required for training DNNs, the GPUs still need
to communicate with each other during the different phases
of training. High-end multi-GPU systems support methods and
libraries for communication. Depending on the size of neural
networks, communication can pose significant bottlenecks. To
minimize the communication time, both hardware-level (i.e.
NVLinks) and software-level (i.e. NCCL library) solutions have
been introduced. In our work, we evaluate the effectiveness of
these solutions.

Between the two parallelism models mentioned above, data
parallelism is more suitable for a network with more convolu-
tion layers than fully-connected layers, while model parallelism
is more suitable for networks with more fully-connected layers
than convolution layers [20]. As DNN models grow deeper,
convolution layers dominate execution in the model, while the
fully-connected layers are only used in the last few layers.1
Hence, data parallelism is the frequently used model for dis-
tributing a workload across multiple GPUs. According to the
survey by Fox et al. [12], all the DNN frameworks support data
parallelism, while only half (4 out of 8 frameworks) support
model parallelism. Therefore, in our work, we focus on the
data-parallel approach.

We present the limits and opportunities for training the fol-
lowing five DNN workloads: GoogLeNet, AlexNet, Inception-
v3, ResNet and LeNet, on NVIDIA’s Volta-based DGX-1 sys-
tem. These workloads represent a wide mixture of computation
and communication behavior. We present a thorough analysis of
how well the training of various DNNs scales with GPU count
on the DGX-1 multi-GPU system. We identify hardware-level

1In this work, we focus on DNNs equipped with convolution layers, which
are integral parts of the popular DNNs used in both academia and industry [26],
[39].



(i.e. computation, communication and memory capacity) and
software-level (i.e. NCCL library, the programming framework
for DNNs, etc.) bottlenecks present in the training of the various
DNNs using multi-GPU systems.

We have chosen MXNet [6] out of the several DNN training
frameworks (such as Caffe [17], Tensorflow [2], and Torch [8])
that support training on multi-GPU systems. Since all the
frameworks use standard CUDA libraries (such as cuDNN [28],
cuBLAS [30], NCCL [1], etc.), they achieve similar perfor-
mance for training DNN workloads on multi-GPU system [36].

In our analysis, we profile the three stages– Forward Prop-
agation (FP), Backward Propagation (BP), and Weight Update
(WU) of the DNN training process. In prior work [11], [36],
researchers have profiled and characterized the FP and BP
stages in detail. However, to the best of our knowledge, we
are the first to profile DNN workloads on an NVIDIA Volta-
based DGX-1 system and analyze the WU stage. The WU stage
is where GPUs communicate using a data-parallel model, and
that is where the communication bottlenecks mainly arise [41].
In this work, we provide detailed measurements of the time
spent in each stage of training, as well as the memory transfers
that are involved in these stages by looking into both the peer-
to-peer (P2P) data transfer method and NCCL library based
communication method. The information about the behavior
of the DGX-1 system in each stage can help us identify
the bottlenecks and provide guidance on how to improve the
performance of each stage.

The contributions of this work include:
• We compare the impact of P2P and NCCL based commu-

nication methods on the training time of DNN workloads
(LeNet, AlexNet, GoogLeNet, ResNet and Inception-v3)
on NVIDIA’s Volta-based DGX-1 system. We profile
these workloads to isolate and quantify the computation-
intensive and the communication-intensive portion of the
training process to identify the software and hardware-
level bottlenecks.

• Our evaluation shows that multi-GPU communication
latency cannot be hidden by simply increasing the
computation-intensiveness of the workloads or compute
capability of the GPUs. We also show that only increas-
ing the bandwidth (BW) of the interconnect network
in the multi-GPU system cannot completely eliminate
the communication bottleneck. We also need an efficient
implementation of DNN algorithms to take advantage of
the high BW interconnect.

• We quantify the impact of growing network size and in-
creasing batch size on memory usage and identify memory
bottleneck to be a key limiting factor that hinders the
speedup of the training of DNNs on multi-GPU systems.

II. BACKGROUND

A. DNN

A DNN is a computation system that has multiple layers of
neurons. Neurons in a layer are connected to the neighboring

layers by weighted edges. Each layer applies a set of mathe-
matical operations, such as dot-product of vectors, convolution,
max-pooling or sigmoid to the layer’s inputs.

A DNN can be trained to classify input data samples with
high accuracy. Training a DNN is an iterative process of updat-
ing the parameters (weights) of each layer. The iterative process
performs the following stages in each iteration: 1) Forward
Propagation (FP), 2) Backward Propagation (BP), 3) Weight
Update (WU), and 4) Metric Evaluation (ME). In FP, each
layer performs a set of linear and non-linear operations on the
input data. The common type of layers in a model include: the
convolution layers, the fully connected layers, and the activation
layers. The observed output is then compared with the expected
output. The difference between the two is then fed back into the
network, from the last layer back to the first layer. This is the
BP stage. The output of the BP stage is the local gradients of
the network parameters, suggesting how each parameter should
change its value to reduce the difference between observed
and expected output i.e. improve neural network classification
accuracy. After a complete backward pass, the gradients are
used to update the weights. This process of updating weights
using gradients is based on the Stochastic Gradient Descent
(SGD) algorithm. During the ME stage, performance metrics
such as training accuracy are calculated. This is performed
for each batch of data. Since our evaluation only focuses on
performance rather than algorithm efficiency and the ME stage
only adds a fixed amount of execution time, we do not include
the ME stage in our study.

The FP, BP, and WU stages are repeated multiple times until
the output error rate is less than a desired value. For deep
neural networks with large training datasets it is expensive to
update the weights after performing FP and BP for each input-
output pair of the whole training set. Hence, training data is
randomly sampled into mini-batches. All inputs within a mini-
batch go through the FP and BP stages. The gradients are
accumulated for all input-output pairs within a mini-batch and
WU is performed only once.

B. Multi-GPU DNN Training
Multi-GPU systems provide faster DNN training compared

to single-GPU systems. In multi-GPU systems, the training
is distributed and parallelized across multiple GPUs. In this
work, we do not dive deep into how the DNN algorithm
works. We focus on how the data is managed and moved in
a typical DNN training process. Although the exact stages of
the training process differ from framework to framework, the
overall approach is the same.

The timeline for training DNNs using the synchronous SGD
algorithm with four GPUs is shown in Figure 1. When the
algorithm starts, the CPU randomly generates the internal
parameters of the network model (not shown in the figure, as
this is a one time process). The network model is broadcasted
to all the GPUs. The CPU also loads k mini-batches of the
training data, where k equals to the number of GPUs in the
system, and sends one mini-batch to each GPU (see the left-
most arrows in the figure). All the GPUs perform FP and BP to



CPU

GPU 0

GPU 1

GPU 2

FP

FP

FP

BP

BP

GPU 3

BP

FP BP

AVG

AVG

AVG AG

FP

Time

BP

Sending 
Training Data

Sending 
Gradient Data

WU

Fig. 1: The timeline of an epoch during multi-GPU DNN train-
ing using the data-parallelism approach with synchronous SGD.
FP, BP, AVG, and AG represent forward propagation, backward
propagation, averaging, and add gradients, respectively. (This
figure is not drawn to scale.)

calculate the gradients. The size of the gradient data should be
approximately equal to the size of data in the neural network
model [14].

The gradients calculated by each GPU is not the same
and needs to be averaged. The average is calculated with a
reduction approach. For example, if four GPUs are used, the
gradients calculated by GPU1 will be moved to GPU0 and
GPU0 takes the average of the gradients from GPU0 and GPU1.
Simultaneously, GPU2 collects the gradients from GPU3 and
calculates the average. Finally, GPU0 collects the averaged
result from GPU2 and then calculates the average. GPU0, at
this time, has the averaged gradients. GPU0 updates the neural
network data with averaged gradients and then, it broadcasts
the updated network model to all four GPUs again. Once all
the GPUs have the next mini-batch of the training set sent from
the CPU, the next iteration will start. The process is repeated
for a specific number of epochs.2 Here, the number of epochs
depends on the desired accuracy of training and convergence
of the training algorithm.

MXNet uses a parameter server (PS) based method [9], [23]
to train DNNs using multi-GPU systems. In this method, one of
the GPUs, i.e. GPU0 in the aforementioned example, works as
a server to store the weights and after each update of weights,
all other GPUs pull the updated weights from the server.
MXNet supports pipelining of WU and BP stages to overlap
computation and communication to hide the communication
latency. But the weights are updated using the synchronous
SGD algorithm, which means GPU0 has to wait to receive the
gradients from all the GPUs before updating weights.

An Asynchronous SGD (ASGD) algorithm [10], [32], [46]
can also be used for training DNNs with multiple GPUs.
An ASGD algorithm allows each GPU to update the weights
asynchronously in the server, and continue training with the
updated weights and a new mini-batch of data. This method
suffers from the well-known “delayed gradient problem”, which
decreases the accuracy of training and affects convergence.
The delayed gradient problem occurs when a GPU adds its

2An epoch is a complete pass through all the data in the training dataset.
Each epoch involves processing of multiple mini-batches of data.

gradients to the server, but the weight update using those
gradients is delayed until the server updates the weights based
on all the gradients it has received previously from other
GPUs. Addressing the delayed gradient problem is still an open
research problem and a number of works aim at addressing this
problem [18], [38], [42], [47], [48].

C. Inter-GPU communication
NVIDIA provides CUDA, which is a parallel computing

platform and programming model for GPUs. CUDA allows
memory copy from CPU to GPU and GPU to CPU with the
cudaMemcpy API. Alongside the support for copying data
between the CPUs and the GPUs, CUDA also provides support
for peer-to-peer (P2P) direct transfer and P2P direct access. For
the rest of the paper, ‘P2P’ refers to P2P direct transfer, unless
otherwise specified. In P2P direct transfer, the programmer uses
the cudaMemcpy function which initiates a DMA copy from
one GPU memory to another GPU memory. In this case, the
granularity of data transfer is specified by the programmer. If
P2P direct access is used, one GPU reads from or writes to
another GPU’s memory without performing data copy to its
own memory while executing GPU instructions. In P2P direct
access, the accessing granularity is usually smaller than a cache
line (typically 64 bytes). Using P2P direct access simplifies
the program and can also avoid stopping the kernel during
memory copy operation. In the case of large data transfers, high
throughput is achieved by pipelining communication using P2P
direct access and hiding the latency [33].

For inter-GPU communication, NVIDIA also provides
NVIDIA Collective Communications Library (NCCL) [1].
NCCL includes collectives such as ReduceKernels, Broad-
castKernels, etc., that are optimized for inter-GPU communi-
cation and synchronization. Programmers can move the data
easily from one GPU to another by using the collective algo-
rithms provided by NCCL.

The two collective communication functions that are pro-
vided by NCCL are especially useful in the context of DNN
training. The first function is Broadcast, where the DNN
frameworks can send the updated model data from one GPU to
all other GPUs at the end of the WU stage (see Figure 1). The
second function is AllReduce, which copies the data from
multiple GPUs to a single GPU. DNN frameworks can use it
to calculate the average of the gradients at the beginning of the
WU stage.

III. RELATED WORK

There are a variety of prior studies that profile DNN work-
loads on a GPU and multi-GPU systems in order to gain
insights into the performance bottlenecks that occur during
the time-consuming training process. For instance, Dong et
al. [11] extensively analyze the training process of a Convo-
lutional Neural Network (CNN) model by profiling it on a
layer-by-layer basis. Based on their thorough characterization,
the authors evaluate a number of optimization approaches
such as kernel fusion and cache bypassing to accelerate the
training process. Zhu et al. [49] propose a new benchmark



suite for DNN training that consists of eight state-of-the-art
DNN models from different types of learning– supervised, non-
supervised and reinforcement learning. The DNN models are
implemented in TensorFlow, MXNet and CNTK [44]. They
show a variety of performance analyses and profiling statistics
for the different hardware configurations, especially considering
one node with a single-/multi-GPU system and also multi-
node systems. However, their evaluation mainly focuses on
GPU compute utilization, memory profiling, and throughput.
Our main focus is to precisely account for the communication
bottlenecks of the training in the new Volta-based DGX-1
system. To this end, we delve into the FP, BP and WU stages
of the training process, and identify that the WU stage is a
truly limiting factor as we increase the number of GPUs in the
DGX-1 system. As part of our evaluation, we explore P2P direct
transfer and NCCL-based communication schemes as they are
commonly used in DNN frameworks.

Support for training on multiple GPUs is now standard in
DNN frameworks. Shi et al. [36] explore a selection of these
frameworks including Caffe [17], CNTK, MXNet, TensorFlow,
and Torch, using the three most popular types of DNNs–
Fully-Connected Networks, Convolutional Neural Networks,
and Recurrent Neural Networks, on two CPU platforms and
three GPU platforms. The authors provide guidelines for se-
lecting appropriate combinations of the hardware platforms and
software tools. Bahrampour et al. [4] present a comparative
study of Caffe, Neon [25], TensorFlow, Theano, and Torch,
from three different aspects, namely extensibility, hardware
utilization, and performance. Kim et al. [19] analyze the
GPU performance characteristics of Caffe, CNTK, TensorFlow,
Theano, and Torch from the perspective of a representative
CNN model. Since most of the frameworks rely on the cuBLAS
and the cuDNN library, the computing performance is close
among all the frameworks. In our work, we focus on data
movement approaches and fully study how data movement
impacts the scalability of DNN training in multi-GPU systems.

In the recent past, researchers have also started to study
and reduce the communication overhead in multi-GPU sys-
tems during DNN training. Awan et al. [3] perform a study
comparing the performance of the system when using MPI
versus NCCL in multi-node multi-GPU DNN training. Tallent
et at. [40] compare DNN training performance in PCIe-based
connection vs. NVLink. Gawande et al. [13] compare a Pascal-
based DGX-1 system that uses NVLink interconnects with
Intel Knights Landing (KNL) CPUs interconnected with Intel
Omni-Path. To the best of our knowledge, there is no study
that focuses on the training of DNNs when using NCCL and
P2P communication approaches in a multi-GPU system that
is equipped with NVLink. Our work will study the complex
communication pattern in DNN training on a multi-GPU system
that is equipped with NVLink.

IV. EVALUATION METHODOLOGY

To understand the behavior of DNN workloads on the Volta-
based DGX-1 multi-GPU system, we choose five workloads
(GoogLeNet, AlexNet, Inception-v3, ResNet and LeNet) that

CPU 1 CPU 2

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

PCIe NVLink Intel Quick Path

Fig. 2: Network Topology in a DGX-1 System.

represent different mixtures of computation and communica-
tion. To gain insights into the factors affecting the speedup
of DNN training in a multi-GPU environment, we compare
two most popular inter-GPU communication methods. With
the help of a profiler, we isolate the computation-intensive
and the communication-intensive portion of the workloads to
identify the computation and communication bottlenecks in the
underlying hardware.

A. Evaluation Platform

Our evaluations are performed on NVIDIA’s Volta-based
DGX-1 system [27]. The DGX-1 system has two 20-Core Intel
Xeon E5-2698 v4 CPUs and eight Tesla V100 GPUs. Each
Tesla V100 GPU incorporates 80 streaming multiprocessors
(SMs) and delivers 17.7 TFLOPs single precision computing
capability. The Tesla V100 GPU also features eight tensor cores
that serve as dedicated hardware that can accelerate matrix
operations. With the tensor cores, a Tesla V100 GPU can
achieve a 125 TFLOPs, which is 7⇥ faster than only using the
traditional single precision computing devices. Since we focus
on the DNN workloads where matrix multiplication is the most
common operation, the tensor cores are utilized to accelerate
the training of the DNNs.

Figure 2 shows a high-level view of the network topology
of the Volta-based DGX-1 system. As depicted in Figure 2, the
CPUs in the DGX-1 system use the PCIe bus to communicate
with the GPUs, while the GPUs are connected with high-
bandwidth peer-to-peer NVLink connections. Each NVLink
connection delivers 25 GB/s data transfers in each direction.
For GPU pairs that have more than one connection, NVLink
can aggregate the connections and provide a 50 GB/s virtual
connection. Each CPU has direct access to only four GPUs.
To access the other four GPUs it needs the help of the other
CPU. Some GPUs have two direct connections between them
(e.g. between GPU 0 and GPU 2), while some GPUs have
only one direct connection between them (e.g. between GPU



2 and GPU 3). Moreover, some GPUs may not have a direct
connection between them (e.g. between GPU 3 and GPU 4),
and they require the help of another GPU or two CPUs for
communication. A maximum of one intermediate node (two
hops) is required to connect any pair of GPUs.

B. Framework and Tools
For our evaluation, we use the NVIDIA container image of

MXNet, release 18.04 and CUDA 9.0.176. The DNN frame-
works run on the cuDNN 7.1.1 [28] and cuBLAS 9.0.333 [30].
The MXNet framework uses Broadcast and AllReduce
communication collectives from NCCL 2.1.15. We collect
the profiling data using the nvprof [29] profiler. We use
the NVIDIA System Management Interface nvidia-smi to
monitor memory usage of GPUs.

As discussed in Section II-A, we only execute and profile
the training of DNNs for FP, BP, and WU stages. As FP, BP,
and WU stages are repeatedly executed, the accuracy of the
network will improve. However, the time spent during each of
the three stages within an epoch will remain the same.

C. Workloads and Datasets
For our evaluation, we use five popular neural networks used

for image classification. Table I specifies the number of layers
and parameters in each neural network. Layers in LeNet and
AlexNet are connected serially and consist of 3⇥3 to 11⇥11
kernels in the Convolution layers for feature extraction. LeNet
and AlexNet have a higher number of parameters because
of their relatively larger number of fully connected layers
compared to other neural networks in our evaluation.

GoogLeNet and Inception-v3 networks have both Convolu-
tion layers and Inception layers for feature extraction. Typical
Inception layers consist of small parallel convolution kernels
(1⇥1 to 5⇥5) followed by concatenation layer to concatenate
features extracted from the parallel convolution kernels. Incep-
tion layers allow the network to use both local features (small
convolution kernels) as well as highly abstracted features (larger
convolution kernels). GoogLeNet and Inception-v3 require a
smaller number of parameters compared to AlexNet because
of the inception layers.

ResNets are very deep neural networks with residual blocks.
A residual block is created by combining the output of the
current layer and the output(s) from one or more previous layers
using a shortcut connection (i.e. a direct connection skipping
any layers between the current layer and the previous layer(s).)
Residual block allows training very deep networks without de-
grading the initially extracted features. It also requires a smaller
number of parameters compared to other neural networks.

We consider both strong scaling and weak scaling in our
evaluation. Strong scaling of the training of DNNs is the
speedup in training time as we increase the number of GPUs
while keeping the size of the input dataset fixed. Weak scaling
is the speedup in training as we increase the number of GPUs
as well as the size of the input dataset by a factor equal to
the GPU count. We use 256K images from Imagenet dataset to
train our networks for evaluating the strong scaling. The input

TABLE I: Description of the networks. (Conv = Convolution,
Incep = Inception, and FC = Fully Connected)

Network Layers Conv
Layers

Incep
Layers

FC
Layers Weights

LeNet 5 2 0 2 60K
AlexNet 8 5 0 3 60M
GoogLeNet 22 3 9 1 4M
Inception-v3 48 7 11 1 24M
ResNet 110 1071 0 1 55M
1 Conv layers with residual input from previous layers

image dimension is 299⇥299⇥3 for Inception-v3 and ResNet,
and 224⇥224⇥3 for the other networks. For evaluating weak
scaling, we use 256K, 512K, 1024K and 2048K images for 1,
2, 4 and 8 GPUs, respectively.

V. EVALUATION

In this section, we present our evaluation and analysis of
the training of 5 DNN workloads using NVIDIA’s Volta-based
DGX-1 multi-GPU system. Here, we discuss the comparison
of the P2P and the NCCL communication methods, quantify
the NCCL overhead, show the breakdown of training time
into FP+BP and WU stages, determine memory usage, and
provide analysis on weak scaling for training the DNNs. We
also provide in-depth insights and guidance for future endeavors
for accelerating the training of DNN workloads using multi-
GPU systems.

A. Comparison of P2P and NCCL
In this subsection, we compare the training time for the DNN

workloads with the batch sizes of 16, 32 and 64 using the P2P
and the NCCL communication methods and identify the factors
that affect the training of the DNNs on the DGX-1 multi-GPU
system.

Figure 3 shows the total training time for 5 different work-
loads using 1, 2, 4 and 8 GPUs. To analyze the results, first
we start with the smallest network (LeNet) and discuss the
impact of increasing the number of GPUs for a given batch
size on LeNet using the P2P communication method. Then we
discuss the impact of increasing batch size for training LeNet
with P2P for a given GPU count. Afterwards, we discuss the
effect of increasing both the batch size and the number of
GPUs on the 5 workloads. Then, we compare the impact of
the two communication methods for all the workloads, different
batch sizes and different number of GPUs. Finally, we provide
insights obtained from our analysis.

For training LeNet with a batch size of 16, as we increase
the number of GPUs, the overall training time decreases for
both P2P and NCCL. With P2P we can speed up the training
time by factors of 1.62⇥, 2.37⇥ and 3.36⇥ for 2, 4 and 8
GPUs, respectively. On the other hand, with NCCL we achieve
speedup factors of 1.56⇥, 2.27⇥ and 2.77⇥ for 2, 4 and 8
GPUs, respectively. This is understandable because LeNet is a
very small network with only 2 convolution layers. GPUs do
not have sufficient computation for this workload to hide the
latency of communication. As a result, communication time



16 32 64
(a)

0

5

10

15

20

LeNet with P2P

16 32 64
(c)

0

5

10

15

20

25

30

AlexNet with P2P

16 32 64
(e)

0

50

100

150

200

250

ResNet with P2P

16 32 64
(i)

0

50

100

150

200

GoogLeNet with P2P

16 32 64
(k)

0

100

200

300

400

500

Inception-V3 with P2P

16 32 64
(b)

0

5

10

15

20

LeNet with NCCL

16 32 64
(d)

0

5

10

15

20

25

30

AlexNet with NCCL

16 32 64
(f)

0

50

100

150

200

250

ResNet with NCCL

16 32 64
(j)

0

50

100

150

200

GoogLeNet with NCCL

16 32 64
(l)

0

100

200

300

400

500

Inception-V3 with NCCL

Batch Size

To
ta

l T
ra

in
in

g 
tim

e 
(s

)

1 GPU 2 GPUs 4 GPUs 8 GPUs

Fig. 3: Training time per epoch for 5 different workloads on the Volta-based DGX-1 system using the P2P and the NCCL-based
communication. Each bar represents the mean training time of 5 repetitions. The standard deviation is shown by the black line
on top of each bar.

dominates the training time. Hence, the training time does not
decrease linearly for this workload as we increase the number
of GPUs. P2P outperforms NCCL for this workload due to the
overhead associated with incorporating NCCL into MXNet. In
Section V-B we quantify this overhead.

For all GPU counts, we observe that the time spent in training
LeNet decreases almost linearly as we increase the batch size
from 16 to 32 to 64. For instance, for training LeNet using
4 GPUs with P2P, as we increase the batch size from 16 to
first 32 and then 64, the training time decreases by a factor
of 1.92⇥ and 3.67⇥, respectively. With the increased batch
size, two factors affect computation. The first factor is the total
number of batches that the GPU needs to process decreases for
a fixed dataset. The second factor is that the number of images
each GPU needs to process increases. While a decrease in the
number of batches helps reduce computation time, an increase
in the number of images per batch leads to increased utilization
of GPU compute cores, provided that the cores are not already
saturated. If the compute cores become saturated, increasing the
batch size may lead to a computation bottleneck. Moreover, as
the number of batches decreases with a larger batch size, the
frequency of inter-GPU communication decreases. However,
the amount of data that needs to be transferred for each WU
from one GPU to another remains constant. This is because the
number of gradients and weights is independent of the batch
size, and depends solely on the DNN. Hence, increasing the
batch size helps decrease the communication time.

Using the P2P communication method, the training time for
all workloads under study decreases as the batch size increases.
As we increase the number of GPUs from 1 to 2, for all the
workloads, we observe up to a 1.8⇥ speedup in the training
time. However, we do not get the same rate of speedup when
using 4 and 8 GPUs. This is because P2P memcopy becomes
increasingly communication heavy as we increase the number
of GPUs. For instance, consider the 4 GPU case. In the MXNet
implementation using P2P, the gradients are aggregated on
GPU0. Hence, the other 3 GPUs transfer their locally computed
gradients to GPU0 using a reduction operation, as discussed
in Section IIB. Then, GPU0 updates the weights using the
gradients and transfers the updated weights to all the GPUs.
The transfer of the gradients and the weights is parallelized
using an asynchronous data transfer between GPUs. Note that
the DGX-1 system provides asymmetric interconnects between
different pairs of GPUs. This can cause some of the GPUs to
become idle during DNN training. The BW for communication
between GPU0 and GPU1, and GPU0 and GPU2, is twice the
BW rate between GPU0 and GPU3 (see Figure 2). As a result,
after updating weights, GPU3 has to wait longer than GPU1 and
GPU2 to receive the updated weights. This causes GPU1 and
GPU2 to remain idle until GPU3 receives the updated weights.3

3It is possible that GPU1 and GPU2 execute FP and BP immediately after
receiving the updated weights. In that case, before synchronizing the gradients,
GPU1 and GPU2 have to remain idle after executing FP and BP, until GPU3
finishes executing FP and BP.



For the training with 8 GPUs, the situation is even worse
because of the lack of direct connectivity using NVLink be-
tween all the GPUs. For instance, GPU0 has direct NVLink
connections with GPU1, GPU2, GPU3, and GPU6. When
weights are transferred from GPU0 to GPU4, GPU5, and
GPU7, direct P2P memory transfers cannot be used. Instead,
weights are transferred using a device-to-host (DtoH) memory
copy followed by a host-to-device (HtoD) memory copy over
the slow PCIe interconnect.4 Hence, the communication time
can be significantly longer for training a DNN using 8 GPUs
if the number of weights is large. MXNet tries to overcome
this issue by performing multi-stage transfers through NVLink.
More precisely, since GPU1 has a direct NVLink connection
with GPU7, GPU0 first transfers the weights to GPU1 and then
GPU1 transfers the weights to GPU7. This multi-stage transfer
requires some additional time, which results in a non-linear
speedup as we increase the GPU count from 2 to 4 to 8.

For training LeNet with a batch size of 16, P2P achieves a
better speedup of training time than NCCL as we increase the
GPU count. P2P achieves better training time than NCCL even
if we increase the batch size for training LeNet. This applies for
training AlexNet as well, because AlexNet has only 5 convolu-
tion layers and a large number of weights (⇠60M). This implies
that if the number of computation-intensive layers is small,
the overhead associated with incorporating the NCCL library
cannot be amortized and P2P will outperform NCCL. Note
that DNNs with a small number of computationally-intensive
layers (i.e., Lenet, AlexNet) achieve non-linear speedup as
we increase the GPU count to 4 and 8. This is because the
amount of computation is not sufficient to hide the latency of
communication, as well as synchronization, among the GPUs.
However, for workloads with a larger number of computation-
intensive layers, NCCL continuously outperforms P2P, as we
increase the batch size for 4 and 8 GPUs. For a batch size of
16, training of GoogleNet is 1.1⇥ and 1.2⇥ faster when using
NCCL as compared to P2P for 4 and 8 GPUs, respectively. For
both ResNet and Inception-v3, the training with a batch size of
16 is 1.1⇥ and 1.25⇥ faster using NCCL than using P2P with
4 and 8 GPUs, respectively. This is because NCCL pipelines
the data transfer for updating and transferring the weights
using AllReduce and Broadcast operations, respectively.
This implies that the process of pipelining data transfers can
amortize the NCCL overhead if there are sufficient number of
data transfers 5.

Our evaluation based on training time provides the following
insights:

• Increasing batch size reduces training time for an epoch
linearly for all the workloads we evaluated in this work.
Hence, to accelerate DNN training hardware support is
needed to facilitate training with larger batch sizes.

• Whether increasing the number of GPUs to train a par-
4This is a limitation of the design of DGX-1. The “routers” within each

GPU do not have the ability to route a packet to another node, and thus,
the communication for all non-1-hop packets go through the CPU. This not a
fundamental limitation, but instead, a design decision.

5More layers with weights mean more number of data transfers.

ticular network will lead to faster training depends on the
computation-intensity of the workload and the communi-
cation method.

• With the increase of computation-intensive layers in DNN
workloads, although the overall training time increases,
we can reduce training time by increasing the number of
GPUs.

• With NCCL, training time decreases significantly for 4
and 8 GPUs if the DNN workload has a sufficiently large
number of computation-intensive layers.

• NCCL implementation has additional overhead compared
to P2P implementation. NCCL should be used for training
with more than 4 GPUs if the DNN network model is
large, otherwise, P2P is sufficient.

B. NCCL Overhead
In the previous section, we explained that using NCCL for

communication comes with additional overhead. When NCCL
is used as the communication method, MXNet uses different
source code (i.e. variables, functions, and kernels) compared to
P2P even if only one GPU is used. MXNet uses AllReduce
and Broadcast collectives available in NCCL for aggregat-
ing gradients and transferring updated weights to the GPUs,
respectively. In particular, two kernels (ReduceKernel and
BroadcastKernel) are used when NCCL is used as the
communication method. These kernels leverage the P2P direct
memory access where one GPU can directly use the data on
another GPUs memory without transferring the data to its own
memory. Note that the P2P communication method that we
compare with NCCL uses P2P direct data transfers which is
different from P2P direct memory access. Since the kernels
executed by the GPUs are different for NCCL and P2P method,
the CUDA runtime API overhead varies as data is accessed
using different methods. For DNN training, the overhead for
NCCL is larger than the overhead for P2P. However, NCCL
overcomes this overhead by pipelining the data transfer as
we increase the GPU count. In this section, we measure that
additional NCCL overhead by comparing the training times on
a single GPU for P2P and NCCL. This result explains why the
use of NCCL cannot help reduce the training time for all types
of workloads.

Table II shows the NCCL overhead over P2P for training the
5 DNNs with different batch sizes on a single GPU. The percent
overhead varies by a value of less than 3.6 for large networks
(i.e. GoogLeNet, Inception-v3 and ResNet) with the increase
of batch size while the percentage of overhead increases with
batch size for smaller networks (LeNet and AlexNet). This is
because as the batch size increases, the overall computation
time reduces significantly for these smaller workloads and
the NCCL overhead becomes more significant. This additional
overhead is also present in the multi-GPU training. In the
MXNet implementation, the P2P memcopy method requires
hundreds of GBs of data copy per epoch from 3 GPUs (for
training with 4 GPUs) or 7 GPUs (for training with 8 GPUs)
to one of the GPUs’ (GPU0) memory, whereas using NCCL,
one GPU simply reads another GPU’s memory and directly uses



TABLE II: NCCL overhead compared to P2P for the workloads
executed on a single GPU.

Network Batch Size NCCL Overhead (%)
LeNet 16 16.4
LeNet 32 24
LeNet 64 26.7

AlexNet 16 21.8
AlexNet 32 21.8
AlexNet 64 31.8
ResNet 16 20.1
ResNet 32 22.9
ResNet 64 19.3

GoogLeNet 16 18.7
GoogLeNet 32 17.5
GoogLeNet 64 16.2
Inception-v3 16 16.9
Inception-v3 32 19.4
Inception-v3 64 18.9

the data for computation. As NCCL reduces the communication
time by leveraging the pipelining in data transfer, training a
network using 2 GPUs cannot benefit much from the pipelining,
rather it suffers from additional NCCL overhead. However,
if a network is large, NCCL benefits significantly from the
pipelining and overcomes the NCCL overhead when training
the network with 4 and 8 GPUs. Hence, with 4 and 8 GPUs,
we observe a better speedup in the training time of ResNet,
GoogleNet and, Inception-v3 using NCCL compared to training
time using P2P.

C. Training Time Breakdown

In this section, we show the breakdown of the total training
time into computation (FP+BP) and communication (WU)
time. The dataset contains a fixed set of 256K images from
the Imagenet dataset for this experiment. Figure 4 shows the
breakdown of the total training time for the 5 workloads for
different batch sizes and GPU counts when using NCCL-based
communication. Since our comparison between P2P and NCCL
shows that NCCL has the potential to significantly decrease the
training time and achieve larger speedup compared to P2P as
we increase the network size and GPU count, in this subsection,
we only consider NCCL-based communication. We use the
nvprof profiler for this analysis.

During the FP stage of DNN training, the outputs (i.e.
feature maps) of different layers are generated for an input
batch of data (i.e. images). During the BP stage, the error
at the final output layer is calculated and back-propagated to
compute the gradients. Hence, FP and BP are the compute-
intensive portions of DNN training. During the WU stage, the
gradients are aggregated and synchronized using AllReduce
operations from the NCCL library and the updated weights
using the aggregated gradients are broadcasted to all GPUs
using Broadcast operations from the NCCL library. Hence,
the amount of computation is negligible in the WU stage. So,
we make the assumption that the time spent in the WU stage

TABLE III: cudaStreamSynchronize API overhead for
training LeNet with a batch size of 16, 32 and 64 using 1, 2,
4 and 8 GPUs.

Batch Size GPU Count Time (%)

16

1 89.2
2 94.1
4 86.7
8 76.4

32

1 86.7
2 91.9
4 78.6
8 68.8

64

1 81.6
2 86.1
4 69.8
8 54.4

is primarily for communication.6 Note that for the single GPU
case the WU is nearly two orders of magnitude lower than
the FP and BP stage [35] because updating weights is simple
matrix addition operation (i.e. Y = aX +B, where a is scalar
and Y and B are vectors) and does not involve any inter-GPU
communication. Hence, in our evaluation, we do not report the
time spent in the WU stage for single GPU training. To analyze
the results, first, we discuss the impact of increasing the number
of GPUs on the FP+BP and WU stages for training LeNet with
a given batch size. Then, we discuss the effect of increasing the
batch size on the FP+BP and WU stages for training LeNet for
a given GPU count. We discuss the effect of both batch size
and GPU count across all the workloads. Finally, we present
the insights obtained from the breakdown of training time into
FP+BP and WU stages,

For the training of LeNet with a batch size of 16, we
observe more than two-fold improvement for FP+BP time as
the number of GPUs increases from 1 to 2. This is because
the training with 1 GPU suffers from 21.8% additional NCCL
overhead that we have shown in Section V-B. However, as
the number of GPUs further increases, the time required for
FP+BP decreases non-linearly. Our profiling results show that
the cudaStreamSynchronize API consumes most of the
time among all APIs.7 Table III shows the percent overhead of
cudaStreamSynchronize for training LeNet with a batch
size of 16 using 1, 2, 4 and GPUs. LeNet with a compute
utilization of only 18.3% fails to amortize this CUDA API
overhead, and so we observe a non-linear scaling of time spent

6Since MXNet allows overlap of BP and WU, some of the communication
latency can be hidden. The WU stage takes into account the hidden latency.
Hence, the actual communication time is larger than the time required for the
WU stage.

7While training DNNs using GPUs, the training process is conducted with
the help of multiple CUDA streams. Each stream is responsible for a unique set
of tasks (i.e., one CUDA stream performs FP, while another performs BP). All
the tasks assigned to a particular stream execute sequentially, but the different
streams can be executed in parallel. The cudaStreamSynchronize API is
used to maintain synchronization of the streams with the CPU or host thread. It
holds off execution in the CPU or host thread until all the CUDA tasks assigned
to the stream referenced by cudaStreamSynchronize finish execution.
This overhead can be amortized by assigning more tasks to the stream before
synchronization.



Fig. 4: Breakdown of training time into computation (FP stage and BP stage) time and communication (WU stage) time. The
X-axis represents (GPU count, Batch Size).

in the FP+BP stages. The time spent in the WU stage decreases
almost linearly as we increase the number of GPUs from 2 to
4 to 8, for a batch size of 16.

As we increase the batch size for training LeNet, both the
time for FP+BP stage and time for WU decreases linearly.
This is expected because doubling the batch size halves not
only the number of batches each GPU processes, but also the
number of times each GPU needs to communicate with other
GPUs for a fixed dataset. Since LeNet is neither a computation-
intensive (only 2 convolution layers) nor a communication-
intensive (only ⇠60k parameters) workload, batch sizes of 32
and 64 cannot saturate the compute cores or the NVLink BW.
Nonetheless, Table II shows that as we increase the batch size,
percentage of time spent for cudaStreamSynchronize
decreases. This is because with the increased batch size, each
CUDA stream performs more computations or tasks while the
number of times synchronization of streams is required reduces.

As the number of computation-intensive layers in the work-
load increases, we observe that time spent in FP+BP stage
reduces almost linearly for all GPU count (for Inception-v3,
we achieve near ideal linear scaling for the batch sizes of 16
and 32). However, the time spent in the WU stage achieves
ideal linear scaling only for AlexNet which has ⇠60M weights
and only 8 layers. As we increase the GPU count from 2 to 4 to
8, although for other workloads we do not obtain linear scaling,
we observe that from ResNet!GoogLeNet!Inception-v3, the
WU stage achieves better speedup. From our observation, it is
evident that workloads with more weights per layer (for layers
that contain weights) show better speedup in the WU stage.
This is because transferring a small amount of data is a waste
of NVLink BW if the layers have a small number of weights.

Based on our evaluation using nvprof, in this section we
provide the following insights:

• Computation time for FP+BP dominates the training time
as we increase the number of GPUs for the workloads
under study.

• In order to achieve close to ideal linear scaling, FP+BP
stages need to utilize GPU compute cores efficiently (i.e.
we can increase GPU compute utilization by increasing the
amount of work in each GPU by increasing the batch size

and correspondingly, reduce the number of data transfers).

D. Memory Usage Analysis

During our evaluation, we observe that the memory capacity
of GPUs limits the maximum batch size that can be used
to train a DNN. Hence, in this section, we perform an in-
depth evaluation of memory usage by GPUs prior to the start
of the training (pre-training) and during training. During the
pre-training stage, the network model is transferred to the
GPUs from the CPU and during the training stage additional
GPU memory space is required to house the feature maps
and temporary results. We varied the batch size to see the
impact of batch size on both the pre-training and the training
stage memory usage for 5 DNN workloads. During training,
since one of the GPUs (typically GPU0) is responsible for
coordinating the other GPUs, it requires additional memory.

Table IV shows the memory usage for 4 GPUs during the
pre-training and training phase. Note that all the GPUs require
the same amount of memory during the pre-training phase.
Additionally, there is a less than 5% difference in the memory
usage of P2P memcopy and NCCL based communication
methods. Hence we are only reporting memory usage for
NCCL-based communication method. We observe that during
the training of DNNs, all the GPUs except GPU0 consume
the same memory irrespective of the number of GPUs used
for training. Furthermore, for training using 2, 4 or 8 GPUs,
GPU0 consumes almost the same amount of memory. Hence,
the 4 GPU memory results are representative of the memory
usage for training with 2, 4 and 8 GPUs.

As we increase the batch size, the memory usage increases
for all workloads. While the increase in the pre-training
memory usage is insignificant, the memory usage increases
significantly during training. For instance, increasing the batch
size from 16 to 64 increases the GPU memory consumption
by a factor of 1.83⇥ for Inception-v3. This is because with
an increased batch size, GPUs produce more feature maps or
intermediate results. For all the workloads, GPU0 uses more
memory than the other GPUs used in training. This is because
MXNet uses GPU0’s memory for gradient aggregation and
weight update. As we increase batch size, the increase in the



TABLE IV: Memory usage when using the NCCL-based communication method during the pre-training stage and the training
stage of DNNs when using 4 GPUs. The memory usage of all GPUs is the same for the pre-training stage. GPUz refers to the
memory usage of a GPU during the pre-training, where z can take any value from 0 to 3. GPU0 refers to the memory usage of
the GPU0 during training while GPUx refers to memory usage of the remaining GPUs, where x can take any value from 1 to 3.

Network Batch Pre-training Training Training Additional Mem. Usage Increase in Mem. Usage
Size GPUz (GB) GPU0 (GB) GPUx (GB) in GPU0 w.r.t. GPUx (%) w.r.t. the Batch Size of 16 (%)

LeNet 16 1.37 2.76 1.96 41.1 –
LeNet 32 1.38 2.84 2.04 39.4 3.0
LeNet 64 1.40 2.89 2.36 22.7 4.8

AlexNet 16 1.24 2.15 1.55 39.2 –
AlexNet 32 1.25 2.36 1.76 34.5 9.9
AlexNet 64 1.27 2.97 2.37 25.6 38.2
ResNet 16 1.08 3.62 3.29 10.1 –
ResNet 32 5.98 5.66 5.63 6.2 56.1
ResNet 64 11.06 9.48 9.15 3.5 161.5

GoogLeNet 16 0.92 2.35 2.24 4.7 –
GoogLeNet 32 0.94 3.64 3.55 2.5 55.2
GoogLeNet 64 0.97 6.17 6.07 1.6 162.8
Inception-v3 16 1.04 3.89 3.60 7.9 –
Inception-v3 32 1.06 6.70 6.06 10.5 72.3
Inception-v3 64 1.09 11.01 10.78 2.4 183.3

memory required for feature maps is significantly large. But
the additional memory required for gradients does not increase
proportionately. Hence, the percentage of additional memory
usage by GPU0 decreases with increased batch size.

As the number of feature maps increases with the increase in
the number of layers, the memory usage increases significantly.
Note that the increase in feature maps do not necessarily depend
on the number of layers, rather it depends on total nodes
(neurons) in different layers. For a batch size of 64, GPU0
requires a memory usage of 2.37GB to train AlexNet while
GPU0 requires 11GB of memory to train Inception-v3. Memory
required for feature maps can only be reduced by making
algorithm-level changes.

During our evaluation, we also tried to evaluate batch sizes
larger than 64 per GPU for all the workloads. However, we
could not train Inception-v3 and ResNet with a batch size
larger than 64 per GPU, and we could not train GoogleNet
with a batch size larger than 128 per GPU, due to GPU
memory limitations. Hence, future research should focus on
both increasing memory capacity while preserving the memory
BW from the hardware-level, as well as more efficient memory
mapping from the software-level.

Our evaluation in this subsection provides the following
insights:

• While increasing the batch size reduces the training time of
DNNs for each epoch, the amount of GPU memory limits
the maximum batch size that can be used for training DNN
workloads.

• For larger workloads (i.e. ResNet, GoogleNet, and
Inception-v3), the memory required for intermediate out-
puts at different layers far exceeds the memory required
for the network model.

E. Weak Scaling

We evaluated the weak scaling trends of the training time
of the 5 DNN workloads by increasing the number of images
in the dataset as we increase the number of GPUs. We use
256k, 512k, 1024k, and 2048k images for 1, 2, 4, and 8 GPUs,
respectively. Figure 5 shows the average time for training with
256K images for both P2P and NCCL using 1, 2, 4 and 8
GPUs, as well as the total training time for evaluating weak
scaling. Based on our evaluation of weak scaling we provide
the following insights:

• The speedup for training LeNet with weak scaling is larger
than that with strong scaling for all the batch sizes with
both P2P and NCCL. As discussed in Section V-C, the
overhead associated with CUDA APIs affects training time
of LeNet. As the dataset size is increased for weak scaling,
the overhead associated with creating and synchronizing
CUDA streams gets amortized, which leads to a slightly
improved training time over strong scaling training time
for LeNet.

• When using weak scaling, AlexNet shows better training
time for the batch sizes of 32 and 64 compared to strong
scaling. With a small number of computation-intensive
layers, AlexNet suffers from the overhead of CUDA APIs
for creating and synchronizing streams. As we increase
the number of batches, it amortizes some of the overheads.
Since AlexNet has a large number of weights per layer,
it utilizes the high BW of NVLink more efficiently than
LeNet.

• In case of the relatively more computation-intensive work-
loads i.e. ResNet, GoogLeNet, and Inception-v3, when
using weak scaling we achieve speedups that are less than
17% higher as compared to speedups with strong scaling
using NCCL for all the batch sizes.



(a)

0

10

20

30

40
LeNet with P2P

(c)

0

10

20

30

40

50

60

AlexNet with P2P

(e)

0

100

200

300

400

500

600

ResNet with P2P

(i)

0

100

200

300

400

GoogLeNet with P2P

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64
(k)

0

200

400

600

800

1000

Inception-V3 with P2P

16 32 64
(b)

0

10

20

30

40
LeNet with NCCL

16 32 64
(d)

0

10

20

30

40

50

60

AlexNet with NCCL

16 32 64
(f)

0

100

200

300

400

500

600

ResNet with NCCL

16 32 64
(j)

0

100

200

300

400

GoogLeNet with NCCL

16 32 64
(l)

0

200

400

600

800

1000

Inception-V3 with NCCL

Batch Size

To
ta

l T
ra

in
in

g 
tim

e 
(s

)

1 GPU 2 GPUs 4 GPUs 8 GPUs

Fig. 5: Weak scaling evaluation for the 5 workloads. The height of the ‘entire bar’ represents the total time per epoch for training
with 256k, 512k, 1024k and, 2048k images using 1, 2, 4 and, 8 GPUs, respectively. The height of the ‘hatched bar’ represents
the average time to train with 256k images. This facilitates the comparison between the training time for weak scaling with that
for strong scaling.

F. Accelerating Training of DNNs
Based on our evaluation, we make the following suggestions

to accelerate DNN training:
• In Section V-A and Section V-B, we have shown that

NCCL does not always perform better than P2P because of
additional overhead associated with NCCL. This overhead
needs to be reduced. Apart from that, frameworks such as
MXNet should be improved to leverage the best available
communication method automatically for a given DNN
workload.

• Increasing the GPU count does not improve the training
time for smaller workloads as shown in Section V-A.
Hence, the size of the workload (i.e. number of compute-
intensive layers, number of weights, etc.) should be taken
into account to choose the proper GPU count.

• Our evaluation in Section V-C shows that for FP+BP
stages do not achieve ideal linear speedup as we increase
the batch size for a number of computation-intensive
workloads. GPUs with more tensor cores and compute
cores can help accelerate the FP+BP stage.

• Our memory analysis in Section V-D showed that GPU
memory capacity can be a severe bottleneck for training
DNNs as larger networks need to be trained with larger
batch sizes to reduce training time. The maximum batch
size that can be used to train a network is limited by
GPU memory capacity for data parallel implementation

of training. Hence, significant improvement in the memory
technology is required to increase GPU memory capacity.8

• Our evaluation show that inefficiency in the implementa-
tion of high-level frameworks such as MXNet, may lead
to under-utilization of GPU resources. For instance, addi-
tional memory consumption of GPU0 compared to other
GPUs causes under-utilization of available GPU memory.
This can be solved by a more efficient distribution of data.

• CUDA API overheads for maintaining synchronization
consume a significant amount of training time. Faster syn-
chronization mechanism needs to be developed to utilize
the GPU resources more efficiently.

VI. CONCLUSION

In this work, we performed a comprehensive analysis to un-
derstand the computation and communication pattern of train-
ing DNN workloads on a multi-GPU system. We used Volta-
based DGX-1 multi-GPU system and characterized data move-
ment and memory usage of five DNN workloads (GoogLeNet,
AlexNet, Inception-v3, ResNet and LeNet). We used the
MXNet framework for training DNN workloads using data
parallelism approach. We compared NCCL library based com-

8The memory required for training a DNN using GPUs can depend on how a
framework is implemented. Hence, different frameworks may need a different
amount of memory for training the same DNN. But the memory required for
the output at each layer must be the same for all frameworks, for a given DNN.



munication with P2P memcopy based communication among
GPUs.

Based on our evaluation, we found that the multi-GPU
scalability heavily depends on the neural network architecture,
batch size, and the GPU-to-GPU communication method. We
conclude that workloads scale better with NCCL based com-
munication than P2P for 4 and 8 GPUs. NCCL introduces
significant overhead to DNN training, especially when using
1 or 2 GPUs for training. Finally, we provide suggestions
to accelerate DNN training. As future work, we will use the
results from this paper to study the distribution of data to better
utilize the memory across all the GPUs and to customize the
communication between GPUs to use the asymmetric NVLink
topology more efficiently.

ACKNOWLEDGEMENT

We sincerely thank the paper shepherd, Dr. Sherief Reda and
the anonymous reviewers for their useful feedback. This work
was supported in part by NSF CNS-1525474 and MINECO
TIN2016-78799-P.

REFERENCES
[1] Nvidia collective communications library (nccl), May 2018.
[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[3] A. A. Awan, C.-H. Chu, H. Subramoni, and D. K. Panda. Optimized
broadcast for deep learning workloads on dense-gpu infiniband clusters:
Mpi or nccl? arXiv preprint arXiv:1707.09414, 2017.

[4] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah. Com-
parative study of deep learning software frameworks. arXiv preprint
arXiv:1511.06435, 2015.

[5] L. Brown. Deep learning with gpus. Larry Brown Ph. D., Johns Hopkins
University, 2015.

[6] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[7] X.-W. Chen and X. Lin. Big data deep learning: challenges and
perspectives. IEEE access, 2:514–525, 2014.

[8] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like
environment for machine learning. In BigLearn, NIPS Workshop, number
EPFL-CONF-192376, 2011.

[9] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing.
Geeps: Scalable deep learning on distributed gpus with a gpu-specialized
parameter server. In Proceedings of the Eleventh European Conference
on Computer Systems, page 4. ACM, 2016.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, et al. Large scale distributed deep networks.
In Advances in neural information processing systems, pages 1223–1231,
2012.

[11] S. Dong, X. Gong, Y. Sun, T. Baruah, and D. Kaeli. Characterizing the
microarchitectural implications of a convolutional neural network (cnn)
execution on gpus. In Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering, ICPE ’18, pages 96–106, New
York, NY, USA, 2018. ACM.

[12] J. Fox, Y. Zou, and J. Qiu. Software frameworks for deep learning at
scale. Internal Indiana University Technical Report, 2016.

[13] N. A. Gawande, J. B. Landwehr, J. A. Daily, N. R. Tallent, A. Vishnu, and
D. J. Kerbyson. Scaling deep learning workloads: Nvidia dgx-1/pascal
and intel knights landing. In 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 399–
408, 2017.

[14] X. Glorot and Y. Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages
249–256, 2010.

[15] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch sgd: training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[16] J. Hagerty, R. J. Stanley, and W. V. Stoecker. Medical image processing
in the age of deep learning. 2017.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. In Proceedings of the 22Nd ACM International
Conference on Multimedia, MM ’14, pages 675–678, New York, NY,
USA, 2014. ACM.

[18] J. Keuper and F.-J. Pfreundt. Asynchronous parallel stochastic gradi-
ent descent: A numeric core for scalable distributed machine learning
algorithms. In Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments, page 1. ACM, 2015.

[19] H. Kim, H. Nam, W. Jung, and J. Lee. Performance analysis of cnn
frameworks for gpus. In Performance Analysis of Systems and Software
(ISPASS), 2017 IEEE International Symposium on, pages 55–64. IEEE,
2017.

[20] A. Krizhevsky. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997, 2014.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural infor-
mation processing systems, pages 1097–1105, 2012.

[22] D. Li, X. Chen, M. Becchi, and Z. Zong. Evaluating the energy
efficiency of deep convolutional neural networks on cpus and gpus.
In Big Data and Cloud Computing (BDCloud), Social Computing
and Networking (SocialCom), Sustainable Computing and Communica-
tions (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE Inter-
national Conferences on, pages 477–484. IEEE, 2016.

[23] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning
with the parameter server. In OSDI, volume 14, pages 583–598, 2014.

[24] Y. Miao, H. Zhang, and F. Metze. Distributed learning of multilingual
dnn feature extractors using gpus. 2014.

[25] I. NervanaSystems. The neon deep learning framework, 2017.
[26] H. Noh, S. Hong, and B. Han. Learning deconvolution network for seman-

tic segmentation. In Proceedings of the IEEE international conference
on computer vision, pages 1520–1528, 2015.

[27] NVidia. Nvidia dgx-1 with tesla v100 system architecture.
[28] NVidia. Nvidia cudnn, 2018.
[29] NVidia. Profiler user’s guide, 2018.
[30] C. Nvidia. Cublas library. NVIDIA Corporation, Santa Clara, California,

15(27):31, 2008.
[31] K.-S. Oh and K. Jung. Gpu implementation of neural networks. Pattern

Recognition, 37(6):1311–1314, 2004.
[32] T. Paine, H. Jin, J. Yang, Z. Lin, and T. Huang. Gpu asynchronous

stochastic gradient descent to speed up neural network training. arXiv
preprint arXiv:1312.6186, 2013.

[33] P. Patarasuk and X. Yuan. Bandwidth optimal all-reduce algorithms for
clusters of workstations. Journal of Parallel and Distributed Computing,
69(2):117–124, 2009.

[34] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[35] S. Shi and X. Chu. Performance modeling and evaluation of distributed
deep learning frameworks on gpus. arXiv preprint arXiv:1711.05979,
2017.

[36] S. Shi, Q. Wang, P. Xu, and X. Chu. Benchmarking state-of-the-art deep
learning software tools. In 2016 7th International Conference on Cloud
Computing and Big Data (CCBD), pages 99–104, Nov 2016.

[37] S. L. Smith, P.-J. Kindermans, and Q. V. Le. Don’t decay the learning
rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[38] A. Srinivasan, A. Jain, and P. Barekatain. An analysis of the delayed
gradients problem in asynchronous sgd. 2018.

[39] S. Stabinger, A. Rodrı́guez-Sánchez, and J. Piater. 25 years of cnns:
Can we compare to human abstraction capabilities? In International
Conference on Artificial Neural Networks, pages 380–387. Springer, 2016.

[40] N. R. Tallent, N. A. Gawande, C. Siegel, A. Vishnu, and A. Hoisie.
Evaluating on-node gpu interconnects for deep learning workloads. In
International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, pages 3–21. Springer,
2017.

[41] O. Yadan, K. Adams, Y. Taigman, and M. Ranzato. Multi-gpu training
of convnets. arXiv preprint arXiv:1312.5853, 2013.

[42] Q. Yao, X. Liao, and H. Jin. Training deep neural network on multiple
gpus with a model averaging method. Peer-to-Peer Networking and
Applications, 11(5):1012–1021, 2018.

[43] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer. 100-epoch
imagenet training with alexnet in 24 minutes. ArXiv e-prints, 2017.

[44] D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter,
O. Kuchaiev, Y. Zhang, F. Seide, H. Wang, et al. An introduction to
computational networks and the computational network toolkit. Microsoft
Technical Report MSR-TR-2014–112, 2014.

[45] H. Zhang, Z. Hu, J. Wei, P. Xie, G. Kim, Q. Ho, and E. Xing. Poseidon:
A system architecture for efficient gpu-based deep learning on multiple
machines. arXiv preprint arXiv:1512.06216, 2015.

[46] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu. Asynchronous
stochastic gradient descent for dnn training. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on,
pages 6660–6663. IEEE, 2013.

[47] S.-Y. Zhao and W.-J. Li. Fast asynchronous parallel stochastic gradient
descent: A lock-free approach with convergence guarantee. In AAAI,
pages 2379–2385, 2016.

[48] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y.
Liu. Asynchronous stochastic gradient descent with delay compensation.
arXiv preprint arXiv:1609.08326, 2016.

[49] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Phanishayee, B. Schroeder,
and G. Pekhimenko. Tbd: Benchmarking and analyzing deep neural
network training. arXiv preprint arXiv:1803.06905, 2018.


