
Neural Networks as Function Primitives:
Software/Hardware Support with X-FILES/DANA

Schuyler Eldridge, Tommy Unger, Marcia Sahaya Louis,
Jonathan Appavoo, and Ajay Joshi

Boston University
{schuye, tommyu, marcia93, jappavoo, joshi}@bu.edu

Amos Waterland and Margo Seltzer
Harvard University

apw@seas.harvard.edu, margo@eecs.harvard.edu

Abstract—Neural networks and machine learning provide util-
ity for analyzing, inferring, learning, and predicting information
from data. Substantial interest in this area has created a wide
proliferation of different software and hardware implementations.
As neural network usage assumedly becomes a dominant com-
ponent in future applications, this wide proliferation of software
and hardware begins to become a problem. With this work, we
treat neural network computation as a functional primitive and
explore the consequences of this approach for hardware design
and software management.

I. INTRODUCTION

Neural networks (NNs) are graphs composed of layers
of neurons that mimic the basic structure and processing of
the brain. Each layer in the graph processes, in parallel, data
received from the previous layer to generate inputs for the next
layer. In this way, information follows a feedforward path from
the input layer, through a number of hidden layers, to an output
layer. Each neuron computes a weighted operation on its inputs
(e.g., a weighted sum) and applies an activation function that
determines its output. Generally, this activation function is a
continuous, differentiable threshold function (e.g., a sigmoid
or an inverse tangent) that mimics the fire/no-fire behavior of
biological neurons.

NNs provide good solutions for classification (mapping
inputs to discrete classes) or regression tasks (mapping inputs
to continuous outputs) where precise solutions are unknown
or hard to find. This trait hinges on the selection of suitable
values for connection weights. NN weights can learn or be
trained through an incremental update method like gradient
descent. During learning, connection weights are updated to
minimize a cost function defined at the output, like mean
squared error (MSE) of an output with respect to a known,
correct output. Differentiable activation functions enable ef-
ficient gradient computation of each neuron with respect to
the output cost function via backpropagation of errors through
the NN. Weights can then be updated across the gradient to
minimize the output cost function for a specific input–output
pair or for all known input–output combinations.

While a number of existing software [4] and hardware [2],
[3] implementations exist, usually without hardware learning
support, current interest in NNs has created a proliferation
of different software and hardware implementations. While
the former (e.g., Caffe, Theano) can target multiple backends
(e.g., CPUs and GPUs), proliferation of custom NN hardware
implementations creates issues of incompatibility. With this

work, we take a step back and view NN computation as a
common computational kernel and treat NN computation as a
first class functional primitive. We then view NN hardware
accelerators as a tightly-integrated coprocessor of general
purpose microprocessors analogous to vector or floating point
units. Under this treatment, we present published and ongoing
work on the development of user and supervisor software and
hardware that enables the management of NN transactions
initiated by processes in a modern multi-process operating
system (OS) [1]. Our software and ISA infrastructure takes
the form of a set of Extensions for the Integration of Machine
Learning in Everyday Systems (X-FILES). As an example
accelerator, we use a backend Dynamically Allocated Neural
Network Accelerator (DANA). We additionally demonstrate
the usage of this combined X-FILES/DANA system.

II. X-FILES/DANA: SOFTWARE AND HARDWARE

At the user level, the X-FILES encompass an API for NN
transactions. An NN transaction encapsulates a request by a
user process to access a specific NN, the communication of
inputs, backend accelerator processing, and the return of out-
puts. We describe an NN with an NN configuration—a binary
representation of all the information necessary to execute a
specific NN. Others treat this as a program with instructions
that move data amongst distinct arithmetic units [2]. We opt
for a raw description of the NN to enable more finely grained,
run-time allocation of resources. At the supervisor level, the
X-FILES enable the safe management of multiple transactions
from disparate processes and for the definition of sets of
shared NN configurations. These sets—address spaces—enable
the safe sharing of NN configurations between processes.
Transactions are identified with TIDs, address spaces with
ASIDs, and NN configurations with NNIDs.

A. Software

Table I shows the user and supervisor API for the X-
FILES. A user process initiates a transaction, writes input
data, and performs a blocking read to initiate and close an
NN transaction:

nnid = 1;
tid = newWriteRequest(nnid, 0, num_output);
write_data(tid, inputs[0], num_input);
read_data_spinlock(tid, &outputs, num_output);

This simple structure requires significant backend support.
Dereferencing of an NNID must happen in a safe way that

TABLE I. X-FILES SOFTWARE LIBRARY FUNCTIONS FOR COMMUNICATION WITH THE X-FILES ARBITER AND MANAGING THE ASID–NNID TABLE

Function User/Supervisor Description

tid = newWriteRequest(nnid, learningType, numOutputs) user Initiate a new transaction returning a TID
writeData(tid, *inputs, num_input) user For register mode, write input data and, optionally, training data
readDataSpinlock(tid, *output, num_output) user For register mode, try to read output data until successful
tidKill(tid) user Kills an executing transaction
oldTid = setAsid(asid) supervisor Change the ASID returning the old TID to the OS for storage
setAntp(*table) supervisor Set the ASID–NNID Table Pointer and the number of ASIDs
asidNnidTableCreate(**table, numAsid, numNnid) supervisor ASID–NNID Table constructor
asidNnidTableDestroy(**table) supervisor ASID–NNID Table destructor
nnid = addNnid(**table, asid, *nnConfiguration) supervisor Adds an NN Configuration to an existing ASID–NNID Table
removeNnid(**table, nnid) supervisor Remove a specific NNID from an exsiting ASID–NNID Table

*NN Configuration

*NN Configuration

ASID-NNID Table Ptr
*ASID-NNID *IO QueueNum NNIDs

*ASID-NNID *IO QueueNum NNIDs

*ASID-NNID *IO QueueNum NNIDs

Status/Header *Input *Output

Ring Buffers

Num ASIDs

Header

Neurons

Weights

Layers

Fig. 1. An ASID–NNID Table for dereferencing NN configurations

Rocket
Core

L1$

ASID

ASID-NNID
Table
Walker

ASID-NNID Table Pointer

Num ASIDs

ASID NNID State
Transaction Table

RR
Arbiter

TID

X-FILES Hardware Arbiter

Control

PE

Configuration
Cache

ASID NNID State

Cache
Memory

Local
Storage

PE Table
State

DANA Accelerator

Fig. 2. The X-FILES/DANA hardware architecture. Neural network transac-
tions are managed by a hardware arbiter and executed on a backend accelerator.

aligns with our address space model. The OS manages an
ASID–NNID Table which dereferences an NN configuration
from an ASID and NNID. Figure 1 shows the data structure
used to represent an ASID–NNID Table. Given an ASID–
NNID Table Pointer (ANTP), a supervisor system can discern
the set of NNIDs, assigned sequentially, that belong to a
specific ASID. Each NN configuration, shown at a high level in
the bottom left of Figure 1, consists of four regions that com-
pletely describe an NN: global information stored in a header
and a description of the layers, neurons, and all weights. We
additionally provide an asynchronous communication method
via input and output in-memory ring buffers. OS creation of
an ASID–NNID Table can then be accomplished with the
following code snippet:

asid_nnid_table * table;
asid_nnid_table_create(&table, num_asid,

num_configs);
attach_nn_configuration(&table, asid, file_nn);
set_antp(table);

B. Hardware

The hardware for our X-FILES/DANA system spans two
distinct components—an X-FILES hardware arbiter (storing
transaction and ISA state) and a backend accelerator DANA—
shown in Figure 2. The hardware arbiter maintains the state of
all executing NN transactions and facilitates communication
with the ANTP via an ASID–NNID Table Walker. DANA
consists of a number of processing elements (PEs) which
implement the underlying computations of a neuron. NN
configurations are cached locally on DANA while intermediate
computations are stored in local per-transaction storage.

Execution of NN computations on DANA then involves the
mapping of the neurons, described by the NN configuration,
to PEs. DANA allocates these PE resources dynamically
allowing for the computations of multiple NN transactions to
be interleaved and enabling higher overall throughput of NN
computation.

III. OPEN SOURCE AND FUTURE WORK

We are currently in the process of open sourcing the X-
FILES software libraries (with Linux kernel integration) as
well as X-FILES/DANA hardware designs. This ongoing work
treats X-FILES/DANA hardware as a drop-in accelerator of the
RISC-V rocket microprocessor [5] providing fast integration
with an existing hardware and software ecosystem.

ACKNOWLEDGMENTS

This work was supported by a NASA Space Technology
Research Fellowship, the National Science Foundation with a
Graduate Research Fellowship under Fellow ID 2012116808, a
Google Faculty Research Award, and a CAREER award under
ID CNS-1254029 and CNS-1439069.

REFERENCES

[1] S. Eldridge, A. Waterland et al., “Towards general-purpose neural net-
work computing,” in Proc. PACT, 2015.

[2] H. Esmaeilzadeh, A. Sampson et al., “Neural acceleration for general-
purpose approximate programs,” in Proc. MICRO, 2012.

[3] C. Farabet, C. Couprie et al., “Learning hierarchical features for scene
labeling,” IEEE Tran. Pattern Anal., vol. 35, no. 8, pp. 1915–1929, 2013.

[4] Y. Jia, E. Shelhamer et al., “Caffe: Convolutional architecture for fast
feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[5] A. Waterman, Y. Lee et al., “The risc-v instruction set manual, volume i:
User-level isa, version 2.0,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2014-54, May 2014.

	Introduction
	X-FILES/DANA: Software and Hardware
	Software
	Hardware

	Open Source and Future Work
	References

