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Abstract

Multi-level cell (MLC) NAND flash memories are very
popular storage media because of their power efficiency
and big storage density. This paper proposes to use
nonlinear t-error-correcting codes to replace linear BCH
codes for error detection and correction in MLC NAND
flash memories. Compared to linear BCH codes with
the same bit-error correcting capability t, the proposed
codes have less errors miscorrected by all codewords and
nearly no undetectable errors. For example, the proposed
(8281, 8201, 11) 5-error-correcting code has no errors of
multiplicity six miscorrected by all codewords while the
widely used (8262, 8192, 11) linear shortened BCH code
has

(
11
6

)
× A11 errors in this class, where A11 ≈ 1014 is

the number of codewords of Hamming weight eleven in the
shortened BCH code. Moreover, in spite of the fact that the
Hamming distance of the proposed code is 2t+1, it can also
correct some errors of multiplicity t+1 and t+2 requiring
no extra hardware overhead and latency penalty. In this pa-
per, the constructions and the error correction algorithm for
the nonlinear t-error-correcting codes are presented. The
architecture of the encoder and the decoder for the codes
are shown. The error correcting capabilities, the hardware
overhead, the latency and the power consumption for the
encoder and the decoder will be analyzed and compared to
that of the linear BCH codes to demonstrate the advantages
of the proposed codes for error detection and correction in
MLC NAND flash memories.

1 Introduction

The semiconductor industry witnesses an explosive
growth of the NAND flash memory market in the past sev-
eral years. Due to its high data transfer rate, low power con-
sumption, big storage density and long mechanical durabil-
ity, the NAND flash memories are widely used as storage

media for devices such as portable media players, digital
cameras, cell phones and low-end netbooks.

The increase of the storage density and the reduction
of the cost per bit of flash memories were traditionally
achieved by the aggressive scaling of the memory cell tran-
sistor until the multi-level cell (MLC) technology was de-
veloped and implemented in 1997 [1]. MLC technology
is based on the ability to precisely control the amount of
charge stored into the floating gate of the memory cell for
the purpose of setting the threshold voltage to a number
of different levels corresponding to different logic values,
which enables the storage of multiple bits per cell.

However, one of the main issues caused by the increased
number of programming threshold voltage levels is that the
reliability of the memories is degraded due to the reduced
operational margin. The raw bit error rate of the MLC
NAND flash memory is around 10−6 [2] and is at least two
orders of magnitude worse than that of the single-level cell
(SLC) NAND flash memory [3]. Moreover, the same relia-
bility concerns as for SLC NAND flash memories may be-
come more significant for MLC NAND flash memories, e.g.
program/read disturb, data retention, programming/erasing
endurance [4] and soft errors [5][6][7]. Thereby, a powerful
error correcting code (ECC) that is able to correct at least
4-bit errors is required for the MLC NAND flash memories
to achieve an acceptable application bit error rate, which is
no larger than 10−11 [2].

Several works have investigated the potential usage of
linear block codes to improve the reliability of MLC NAND
flash memories. In [8], the author presented a high-
throughput and low-power ECC architecture based on (n =
4148, k = 4096, d = 9) BCH codes with t = 4. In [9],
a 4Gb 2b/cell NAND flash memory chip incorporating a
250MHz BCH error correcting architecture was shown. The
author of [10] demonstrated that the use of strong BCH
codes (e.g. t = 12, 15, 67, 102) can effectively increase
the number of bits per cell thus further increase the stor-
age capacity of MLC NAND flash memories. In [11], an
adaptive-rate ECC architecture based on BCH codes was



proposed. The design had four operation modes with dif-
ferent error correction capabilities. An ECC architecture
based on Reed-Solomon codes of length 828 and 820 infor-
mation symbols constructed over GF (210) was proposed
in [12], which can correct all bit errors of multiplicity less
or equal to four. The architecture achieves higher through-
put, requires less area overhead for the encoder and the de-
coder but needs 32 more redundant bits than architectures
based on BCH codes with the same error correcting capa-
bility. In [13], an architecture based on asymmetric limited-
magnitude error correcting code was proposed, which can
correct all asymmetric errors of multiplicities up to t.

All the above architectures are based on linear block
codes and have a large number of undetectable errors. In-
deed, for any linear code with k information bits, the num-
ber of undetectable errors is 2k, which is a potential threat
to the reliability of the memory systems. What aggravates
the situation even more is the miscorrection of errors. De-
note by e a binary error vector and ||e|| the multiplicity of
e. A multi-bit error e, ||e|| > t is miscorrected by a t-error-
correcting code if and only if it has the same syndrome as
some e′, ||e′|| ≤ t. It is easy to show that the number of
errors miscorrected by all codewords of a (n, k, d) linear
t-error-correcting code is

∑t
i=1

(
n
i

)
× (2k − 1).

Under the assumption that errors are independent whose
distribution satisfies P (e) = p||e||(1 − p)n−||e||, where p
is the raw bit distortion rate and P (e) is the probability of
the occurrence of event e, the most harmful miscorrected
errors are errors of multiplicity t + 1. Denote by A2t+1

the number of codewords of Hamming weight 2t + 1. The
number of errors of multiplicity t + 1 that are miscorrected
by all codewords is

(
2t+1

t

)
×A2t+1.

For the commonly used (n = 8262, k = 8192, d = 11)
linear BCH codes with t = 5, the number of errors of mul-
tiplicity six miscorrected by all codewords is as large as
462 × A11 ≈ 1017. Such a big number of miscorrected
errors of multiplicity six can not be neglected and should
be taken into account when designing reliable MLC NAND
flash memories.

To reduce the number of undetectable and miscorrected
errors, nonlinear minimum distance robust and minimum
distance partially robust codes have been proposed in
[14][15][16]. An ECC architecture based on nonlinear
single-error-correcting, double-error-detecting (SEC-DED)
codes for the protection of memories against soft errors has
been shown in [15].

In this paper, we first generalize the existing nonlinear
perfect Hamming codes, i.e. Vasil’ev codes [17], to gen-
erate partially robust nonlinear t-error-correcting codes of
any length and any Hamming distance. Then we propose
an ECC architecture for MLC NAND flash memories based
on the generalized nonlinear t-error-correcting codes. The
proposed architecture has nearly no undetectable errors and

much less errors miscorrected by all codewords than that
based on the linear BCH codes with the same error correct-
ing capability t at the cost of only a little extra overhead in
area, latency and power consumption. Moreover, the pro-
posed architecture can also correct some errors of multi-
plicity t + 1 and t + 2 requiring no extra overhead resulting
in further improvement of the reliability of the memories.

In addition to errors that are undetectable or miscor-
rected by all codewords, there are also some errors which
are masked or miscorrected by a fraction of codewords of
the proposed nonlinear t-error-correcting codes, which are
called conditionally detectable and conditionally miscor-
rected errors. We note that the data-dependent error de-
tection and correction properties of the proposed codes are
useful for detecting and locating repeating errors, e.g. errors
introduced by hardware malfunctions such as data retention
and programming/erasing failure.

The rest part of the paper is organized as follows. In Sec-
tion 2, we briefly review the architecture of MLC NAND
flash memories and explain the error model we use in the
paper. In Section 3, we generalize the constructions of ex-
isting nonlinear perfect Hamming codes for any length and
any distance and analyze their error detecting capabilities.
In Section 4, the error correction algorithm for the proposed
nonlinear t-error-correcting codes will be presented. The
error correcting capability of the proposed codes will be
evaluated. The hardware design of the encoder and the de-
coder for the proposed codes will be given in Section 5.
The area overhead, the latency and the power consumption
of the design will be estimated and compared to that of the
linear BCH code and the advantage of the proposed archi-
tecture will be demonstrated. We conclude the paper in Sec-
tion 6.

2 Overview of MLC NAND Flash Memories

2.1 Cell Threshold Voltage Distribution

MLC memory cell is able to store multiple bits by pre-
cisely controlling the threshold voltage level. In practice,
the threshold voltage of the whole memory array satisfies a
Gaussian distribution due to random manufacturing varia-
tions. Figure 2 illustrates the threshold voltage distribution
of a multi-level cell which can store 2 bits. Denote by σ the
standard deviation of the middle two Gaussian distributions.
The standard deviations of the outer two distributions are
approximately 4σ and 2σ. Each voltage range corresponds
to a specific logic value represented as a 2-bit binary vec-
tor. Different schemes can be used for mapping the logic
values to binary vectors. A direct mapping was used in [1]
while the author in [12] proposed to use a Gray mapping to
improve the reliability of the memory since it is more likely
that a voltage level will be taken as one of its adjacent levels



during READ operation when error happens (Figure 2).

Figure 1: Threshold voltage distribution for 2bit/cell

2.2 Data Organization

The data of the NAND flash memory is organized in
blocks. Each block consists of a number of pages. Each
page stores K data bytes and R spare bytes. The spare area
is physically the same as the rest of the page and is typically
used for overhead functions such as ECC and wear-leveling
[18]. The proportion of the spare bytes in the total number
of bytes per page is usually 3% , e.g. 64 spare bytes for
2048 data bytes. More spare bytes may be required as the
page size increases, e.g. 218 spare bytes for 4096 data bytes
[2]. Due to the existence of spare bytes, the number of re-
dundant bits of the error correcting codes used for NAND
flash memories is not as critical as for other types of mem-
ories such as SRAM and DRAM where the area overhead
is mostly determined by the number of redundant bits. This
allows for a flexible design of more powerful error correct-
ing codes for NAND flash memories.

Figure 2: Data organization in NAND flash memories

2.3 Error Model for MLC NAND Flash
Memories

Similar to SLC flash memories, the primary failure
mechanisms for MLC NAND flash memories include
threshold voltage distribution, program/read disturb, data
retention, programming/erasing endurance and single event
upset. However, while for SLC flash memories a lot of er-
rors are asymmetric, e.g. errors introduced by program dis-

turb and data retention [13], for MLC NAND flash memo-
ries errors have no preferred symmetry [19]. Moreover, ex-
perimental results show that errors in MLC flash memories
are more likely to occur uniformly within a page without
any observable burstiness or local data dependency [19].
Thereby, throughout the paper we assume a random sym-
metric error model, where P (e) = p||e||(1 − p)n−||e||, p is
the raw bit distortion rate and ||e|| is the multiplicity of the
error. However, we want to emphasize that the proposed
nonlinear t-error-correcting codes can also provide a guar-
anteed level of reliability in situations where the error model
is unpredictable or multi-bit errors are more probable.

3 Constructions of Nonlinear t-Error-
Correcting Codes

Throughout the paper we denote by ⊕ the addition in
binary field and (n, k, d) a n-bit binary code with k infor-
mation bits and Hamming distance d. In general, the error
correcting capability t = bd−1

2 c.
The error detection properties of nonlinear codes are

highly related to nonlinear functions. The nonlinearity of a
function f : GF (2k) → GF (2r) can be measured by using
derivatives Daf(x) = f(x ⊕ a) ⊕ f(x). The nonlinearity
measure can be defined by (from [20])

Pf = max
0 6=a∈GF (2k)

max
b∈GF (2r)

P (Daf(x) = b), (1)

where P (E) denotes the probability of occurrence of event
E. The smaller the value of Pf is, the higher the corre-
sponding nonlinearity of f is. When Pf = 2−r, f is a
perfect nonlinear function.

3.1 Generalized Vasil’ev Codes

Vasil’ev code was first proposed in [17] in 1962 for
n = 2r − 1 and t = 1, where r is the number of redundant
bits. We generalize the original construction to generate
nonlinear partially robust codes with any length n and any
Hamming distance d as shown in the following theorem.

Theorem 3.1 Let V be a (n1, k1, d) code and {(u, uP )} be
a (n2, k2, d − 1) code, where u ∈ GF (2k2), k2 ≤ n1 and
P is a k2 × r2 binary encoding matrix (the last r2 columns
of the generator matrix of the code in standard form), r2 =
n2 − k2. Let f : GF (2k1) → GF (2r2) be an arbitrary
mapping such that f(0),0 ∈ GF (2k1) is equal to zero and
f(y)⊕f(y′) 6= f(y⊕y′) for some y, y′ ∈ GF (2k1). Denote
by vk the information bits of v ∈ V . The code defined by

C = {(u, (u,0)⊕v, Pu⊕f(vk))},0 ∈ GF (2n1−k2) (2)

is a (n1 +n2, k1 + k2, d) partially robust code with 2k2 un-
detectable errors. The remaining errors are detectable with



a probability of at least 1−Pf , where Pf is the nonlinearity
of f .

Proof Let c = (u, (u,0) ⊕ v, Pu ⊕ f(vk)), c′ =
(u′, (u′,0)⊕ v′, Pu′⊕ f(v′k)) be two codewords of C. The
Hamming distance between c and c′ is

||c⊕ c′|| = ||u⊕ u′||+ ||(u,0)⊕ v ⊕ (u′,0)⊕ v′||
+ ||Pu⊕ f(vk)⊕ Pu′ ⊕ f(v′k)||
≥ ||v ⊕ v′||.

1. If v 6= v′, ||c⊕c′|| ≥ d because the Hamming distance
of V is d.

2. If v = v′, ||c⊕c′|| = 2×||u⊕u′||+ ||Pu⊕Pu′|| ≥ d
because the Hamming distance of {(u, Pu)} is d− 1.

Thereby, the Hamming distance of C is d. We say that an
error e is masked by a codeword c if e⊕ c = c′ ∈ C. Let H
be the parity check matrix of V . An error e = (e1, e2, e3)
where e1 ∈ GF (2k2), e2 ∈ GF (2n1) and e3 ∈ GF (2r2) is
masked if and only if H((e1,0) ⊕ e2) is zero and f(ṽk) ⊕
f(vk)⊕p(e1)⊕ e3 = 0, where ṽk is the information part of
ṽ = v⊕ e1⊕ e2. The errors can be divided into four classes
as follows.

1. (e1,0) = e2 and Pe1 = e3. The error will always be
masked. The number of errors in this class is 2k2 ;

2. (e1,0) = e2 but Pe1 6= e3. The error will always be
detected. There are 2n2 − 2k2 errors belonging to this
class;

3. H((e1,0) ⊕ e2) is zero but (e1,0) 6= e2. The error
masking probability depends on the nonlinear function
f . In the worst case, a specific error will be masked
by Pf × |C| codewords. The number of errors in this
class is 2n2(2k1 − 1);

4. H((e1,0) ⊕ e2) is not zero. The error will always be
detected. The number of errors is 2n2(2n1 − 2k1). �

Remark 3.1 Vasil’ev code is a special case where
{(u, Pu)} is a linear parity code with minimum distance
two and V is a perfect Hamming code.

Some partially robust nonlinear BCH codes as good as
linear BCH codes in terms of the number of redundant bits
for the same distance and length can be generated based on
the above construction.

Example 3.1 In [21], it was shown that the largest possible
k for binary codes with n = 63 and d = 5 is 52. Let V be a
(63, 52, 5) code. Let {(u, Pu)} be a (4, 1, 4) repetition code
that contains only 2 codewords 0000 and 1111. Select f to
be a quadratic perfect nonlinear function f = s1 •s2⊕s3 •
s4 ⊕ · · · ⊕ s13 • s14 with Pf = 1

8 where si ∈ GF (23) and
• is the multiplication in GF (23). A (67, 53, 5) partially
robust nonlinear BCH code can be constructed as described

in Theorem 3.1. This code has Hamming distance five and
only one undetectable nonzero error with the same number
of redundant bits as linear BCH codes. All the other errors
are detectable with a probability of at least 0.875.

4 Error Correction Algorithm for Nonlinear
t-Error-Correcting Codes

4.1 Parameters of the Selected Code

For the protection of MLC NAND flash memories,
we propose to use a (8281, 8201, 11) nonlinear 5-error-
correcting code with n1 = 8270, k1 = 8200, n2 =
11, k2 = 1. The detailed construction of the code is de-
scribed below. All the algorithms and analysis in this sec-
tion are also applicable to codes with other lengths and cor-
recting capabilities.

Denote by c = (x1, x2, x3) a codeword of the nonlin-
ear t-error-correcting codes constructed as in Theorem 3.1.
From (2), we have

x1 = u, x1 ∈ GF (2k2),
x2 = (u,0)⊕ v, x2 ∈ GF (2n1),
x3 = Pu⊕ f(vk), x3 ∈ GF (2r2).

Let V be a (8270, 8200, 11) linear BCH code. To simplify
the encoding and decoding procedures, we select {(u, Pu)}
to be a repetition code with k2 = 1 and r2 = 10. f :
GF (28200) → GF (210) is chosen to be a quadratic perfect
nonlinear function with Pf = 2−10 for the purpose of max-
imizing the error detection and correction capabilities of the
code. f is defined by

f(s) = s1 • s2 ⊕ s3 • s4 · · · s819 • s820, (3)

where si ∈ GF (210), 1 ≤ i ≤ 820 and • is the multiplica-
tion in GF (210). The resulting nonlinear 5-error-correcting
code constructed as in Theorem 3.1 is a (8281, 8201, 11)
partially robust code with only one undetectable nonzero
error. In addition, there is a small fraction of errors which
are detectable with a probability of at least 1− 2−10.

Remark 4.1 1. From Theorem 3.1, the Hamming dis-
tance of {(u, Pu)} should be larger or equal to d− 1.
For error correcting code with t = 5, r2 ≥ 9. We
select r2 = 10 because quadratic perfect nonlinear
function from GF (28200) to GF (29) does not exist.

2. The pages in MLC NAND flash memories typically
contain 2048 or 4096 data bytes. Multiple codes with
separate redundant bits can be used to protect the
whole page.



4.2 Algorithm and Properties

In this section we present the error correction algorithm
for the case when {(u, Pu)} is a repetition code with k2 =
1 and r2 ≥ d − 2. We also assume that f is a perfect non-
linear function with Pf = 2−r2 . The error will be corrected
only if at least one of the information bits is distorted. If
all errors are in the redundant bits, no correction will be at-
tempted. Denote by e = (e1, e2, e3) the error vector and

Case ê2 S1

No errors are detected 0 ∈ GF (2n1) 0
Errors of multiplicity at
most t are detected

Detected error
vector

||ê2||

Errors of multiplicity
larger than t are detected

0 ∈ GF (2n1) -1

Table 1: The output of the linear BCH decoder
c̃ = (x̃1, x̃2, x̃3) the distorted codeword, where e1, x̃1 ∈
GF (2) (k2 = 1), e2, x̃2 ∈ GF (2n1), e3, x̃3 ∈ GF (2r2)
and x̃i = xi ⊕ ei, 1 ≤ i ≤ 3. Denote by ṽ = (x̃1,0) ⊕ x̃2

the distorted codeword in V and ṽk the information part
of ṽ. After receiving the possibly distorted memory output
(x̃1, x̃2, x̃3), compute S2 = Px̃1 ⊕ f(ṽk) ⊕ x̃3. Decode ṽ
using the standard decoder for the linear BCH code. The
output of the linear BCH decoder contains two parts. One
is the decoded error vector ê2 and the other is the error flag
signal S1. The values for these two signals in different cases
are described in Table 1. The detailed error correction algo-
rithm for the proposed nonlinear t-error-correcting code is
as stated below.

1. Compute ê2, S1 and S2.
2. If S1 = 0, S2 = 0,0 ∈ GF (2r2), no error is detected.

Undetectable Errors: Rewrite ṽ and S2 as follows.

ṽ = (x1,0)⊕ x2 ⊕ (e1,0)⊕ e2, (4)
S2 = f(ṽk)⊕ f(vk)⊕ Pe1 ⊕ e3. (5)

Denote by H the parity check matrix of the linear BCH
code. Nonzero errors will be masked if and only if
S1 = 0 and S2 = 0. If (e1,0) = e2 and Pe1 = e3, S1

and S2 are always zero and the error is undetectable.
The number of errors in this class is 2k2 . Since in our
case k2 = 1, there is only one nonzero error that can
not be detected.

3. If S1 = 0, S2 = 1, where 1 is the all one’s vector in
GF (2r2), the error is e = (1, 1,0 ∈ GF (2n1+n2−2)).
Miscorrection : A nonzero errors e′ will be miscor-
rected as e if and only if S1 = 0 and S2 = 1. The only
error e′ that will be miscorrected by all codewords has
e′1 = 0, e′2 = 0 ∈ GF (2n1) and e′3 = 1 ∈ GF (2r2).
The multiplicity of e′ is r2.

4. Suppose S1 = 0, S2 6= 1, S2 6= 0.

(a) If ||S2|| ≥ r2−t+2, the error is e = (1, 1,0,1⊕
S2), where 0 ∈ GF (2n1−1).
Miscorrection : Errors e′ = (0,0, S2) will be
miscorrected as e by all codewords, where 0 ∈
GF (2n1). The number of miscorrected errors in
this class is

∑r2−1
i=r2−t+2

(
r2
i

)
. The multiplicity of

||e′|| is at least r2 − t + 2.

(b) If ||S2|| < r2 − t + 2, an error in x3 or an error
of multiplicity larger than t is detected.

5. If S1 = −1, an error of multiplicity larger than t is
detected.

6. If S1 > 0, let x̂2 = x̃2 ⊕ ê2, v̂ = (x̃1,0)⊕ x̂2. Denote
by v̂k the information bits of v̂. Compute Ŝ2 = Px̃1⊕
f(v̂k)⊕ x̃3 = f(v̂k)⊕ f(vk)⊕ Pe1 ⊕ e3.

(a) If Ŝ2 = 0,0 ∈ GF (2r2), the error is e =
(0, ê2,0). If the located errors are all in the
redundant bits of ṽ, no correction will be at-
tempted. Otherwise the data will be corrected by
XORing x̃2 with ê2.
Miscorrection : A nonzero error e′ will be mis-
corrected as e if and only if Ŝ2 = 0. The only er-
ror e′ that will be miscorrected by all codewords
is

e′ = (1, 1⊕ ê2[n1 − 1], ê2[n1 − 2 : 0],1),

where ê2[n1 − 1] is the most significant bit of ê2

and ê2[n1 − 2 : 0] is the n − 1 least significant
bits of ê2. Since there are

∑t
i=1

∑t−i
j=0

(
k1
i

)(
r1
j

)
possible ê2, the number of miscorrected errors in
this class is

∑t
i=1

∑t−i
j=0

(
k1
i

)(
r1
j

)
. The multiplic-

ity of e′ is at least r2 + 1.

(b) If Ŝ2 = 1, where 1 is the all one’s vector in
GF (2r2), the error is

e = (1, 1⊕ ê2[n1 − 1], ê2[n1 − 2 : 0],0).

Miscorrection : A nonzero error e′ = (0, ê2,1),
where 1 ∈ GF (2r2) will be miscorrected as e
by all codewords. The number of miscorrected
errors in this class is

∑t
i=1

(
n1
i

)
. The multiplicity

of e′ is at least r2 + 1.

(c) If Ŝ2 6= 0 and Ŝ2 6= 1.

i. If ||ê2|| = t, an error of multiplicity larger
than t is detected.

ii. If ||ê2|| < t and 1 ≤ ||Ŝ2|| ≤ t − ||ê2||, the
error is e = (0, ê2, Ŝ2).
Miscorrection : Errors e′ in the follow-
ing format will be miscorrected by all code-
words as e:

e′ = (1, 1⊕ê2[n1−1], ê2[n1−2 : 0],1⊕Ŝ2).



The number of miscorrected errors is∑t−1
i=1

∑t−1−i
j=0

∑t−i−j
l=1

(
k1
i

)(
r1
j

)(
r2
l

)
. Since

1 ≤ ||Ŝ2|| ≤ t− ||ê2||, we have

r2 − t + ||ê2|| ≤ ||1⊕ Ŝ2|| ≤ r2 − 1.

Thereby the multiplicity of e′ is at least r2 −
t + 2.

iii. If ||ê2|| < t and either{
ê2[n1 − 1] = 1,

r2 − t + ||ê2|| ≤ ||Ŝ2|| ≤ r2 − 1,

or{
ê2[n1 − 1] = 0,

r2 − t + 2 + ||ê2|| ≤ ||Ŝ2|| ≤ r2 − 1,

is satisfied, the error is

e = (1, 1⊕ê2[n1−1], ê2[n1−2 : 0],1⊕Ŝ2).

Miscorrection : Errors e′ = (0, ê2, Ŝ2)
will be miscorrect as e by all code-
words. The number of miscorrected errors
in this class is

∑t−2
i=0

∑t−i−1
j=1

(
n1−1

i

)(
r2
j

)
+∑t−1

i=1

∑t−i−2
j=1

(
n1−1

i

)(
r2
j

)
. The multiplicity

of e′ is at least r2 − t + 2.

The next Corollary derived from the above error cor-
rection algorithm shows that the number of errors that are
masked or miscorrected by all codewords of the nonlinear
t-error-correcting code is drastically reduced compared to
that of linear BCH codes.

Corollary 4.1 Let {(u, Pu)} be a repetition code with
k2 = 1 and r2 ≥ d − 2. Let f be a perfect nonlinear func-
tion with Pf = 2−r2 . The nonlinear t-error-correcting code
constructed as in Theorem 3.1 has only one undetectable
error. The smallest possible multiplicity of errors that are
miscorrected by all codewords is r2 − t + 2. The total num-
ber of errors that are miscorrected by all codewords is

1 +
∑t

i=1

∑t−i
j=0

(
k1
i

)(
r1
j

)
+

∑t
i=1

(
n1
i

)
+

∑r2−1
i=r2−t+2

(
r2
i

)
+

∑t−1
i=1

∑t−1−i
j=0

∑t−i−j
l=1

(
k1
i

)(
r1
j

)(
r2
l

)
+

∑t−2
i=0

∑t−i−1
j=1

(
n1−1

i

)(
r2
j

)
+

∑t−1
i=1

∑t−i−2
j=1

(
n1−1

i

)(
r2
j

)
.

The number of errors of multiplicity t + 1 that are miscor-
rected by all codewords is 2

(
r2

t−1

)
+

(
r2

t−2

)
.

Remark 4.2 The above error correction algorithm can
also correct some errors of multiplicity t + 1 and t + 2.
Rewrite ṽ as ṽ = (x̃1,0)⊕ x̃2 = v ⊕ (e1,0)⊕ e2. As long
as ||(e1,0)⊕e2|| ≤ t, the error can be located by the linear
BCH code as ê2 = (e1,0)⊕ e2. If e1 = e2[n1−1] = 1 and
||e2|| > 1, then Ŝ2 = 1 and the error belongs to case 6(b).
Obviously, errors of multiplicity t+1 and t+2 in this class
can also be corrected by the above algorithm.

Example 4.1 In this example we show the encoding and
decoding procedure of a (32, 19, 5) nonlinear 2-error-
correcting code. Let V be a (28, 18, 5) linear BCH code
whose generator polynomial is g(x) = x10 + x9 + x8 +
x6 +x5 +x3 +1. Let {(u, Pu)} be a repetition code, where
u ∈ GF (2), Pu ∈ GF (23). Select f to be a quadratic per-
fect nonlinear function from GF (218) to GF (23) defined by
f = s1•s2⊕s3•s4⊕s5•s6. Let 1010110011110100111 be
the 19-bit message that needs to be encoded. Then u = 1,
vk = 110110011110100111. The redundant bits for V is
0001111111 and Pu ⊕ f(vk) = 101. Thereby the entire
codeword is 10101100111101001110001111111101. Sup-
pose the four left-most bits are distorted. The distorted
codeword is 01011100111101001110001111111101. ṽ =
1011100111101001110001111111. The decoder will cor-
rect the 2-bit error ê2 = 0110000000000000000000000000
in ṽ. After this, we re-compute S2. Ŝ2 = Px̃1 ⊕ f(v̂k) ⊕
x̃3 = 111, which belongs to case 6.(b). The error is

e = (1, 1⊕ ê2[n1 − 1], ê2[n1 − 2 : 0],0)
= 11110000000000000000000000000000.

Thereby, an error of multiplicity four is successfully cor-
rected although the Hamming distance of the code is only
five.

In Table 2, we compare the number of errors
miscorrected by all codewords for the conventional
(8262, 8192, 11) linear BCH code and the proposed
(8281, 8201, 11) nonlinear 5-error-correcting code. Denote
by Ai the number of codewords of multiplicity i belong-
ing to the linear BCH code. For every codeword c of
multiplicity eleven belonging to the linear BCH code, if
e ⊕ e′ = c, ||e|| = 5 and ||e′|| = 6, ||e′|| will be mis-
corrected by all codewords as e since they have the same
syndrome. Thereby, the number of errors of multiplicity
six miscorrected by all codewords of the linear BCH code
is A11

(
11
6

)
. (If the error is only corrected when there is at

least one information bit is distorted, this number will be
a little smaller.) Similarly, the number of errors of multi-
plicity seven miscorrected by all codewords of the linear
BCH code is A11

(
11
7

)
+ A12

(
12
7

)
. According to the re-

sults presented in [21], for a (8262, 8192, 11) linear short-
ened BCH code, A11 and A12 can be roughly estimated by
A11 =

(
8262
11

)
/270 ≈ 1014 and A12 =

(
8262
12

)
/270 ≈ 1017.

The proportion F of errors that are always miscorrected
by the linear BCH code can be calculated as

F =
(2k1 − 1)

∑t
i=1

(
n1
i

)
2n1

≈
∑t

i=1

(
n1
i

)
2r1

. (6)

For the linear (8262, 8192, 11) linear BCH code, F ≈
10−4.

The smallest possible multiplicity for errors that are
always miscorrected by the proposed nonlinear t-error-



correcting is r2 − t + 2. For the (8281, 8201, 11) 5-error-
correcting code, r2 = 10. Hence no errors of multiplicity
six will be miscorrected by all codewords of the code. From
Corollary 4.1, the number of errors of multiplicity seven
which are always miscorrected is only 540. The total num-
ber of errors that are always miscorrected is of the order of
magnitude 1017. Thereby, the proportion of errors miscor-
rected by all codewords of the proposed nonlinear code is
very close to zero.

In addition to errors that are miscorrected by all the code-
words, there are also errors which are conditionally mis-
corrected by the nonlinear t-error-correcting codes. How-
ever, these errors usually have high multiplicities. More-
over, most of the conditionally miscorrected errors are only
miscorrected with a probability of 2−r2 = 2−10. Thereby,
the existence of conditionally miscorrected errors will not
compromise the reliability of NAND flash memories pro-
tected by the nonlinear t-error-correcting codes.

There is only one error which is undetectable by the pro-
posed nonlinear 5-error-correcting code. All the other errors
will be detected with a probability of at least 1−2−10 while
most of them will always be detected. When error stays for
several clock cycles, the probability that the error will be
detected and successfully located will drastically increase.

We note that the enhanced capability of the proposed
nonlinear 5-error-correcting code to detect and correct re-
peating errors is very helpful for MLC NAND flash memo-
ries for the protection of hardware malfunctions such as data
retention and programming/erasing endurance failure [4].
Due to the decreased programming voltage margin, data re-
tention is more likely to happen for MLC technology than
for SLC technology. The problem of programming/erasing
endurance also becomes more serious for MLC NAND flash
memories, for which the typical number of supported pro-
gram/erase cycles is fewer than 10000 [2]. Errors intro-
duced by these hardware failures will never disappear or
will only disappear after the next erasing or programming
operation. Hence, the proposed nonlinear t-error-correcting
code with stronger error detection and correction capability
for repeating errors can be used together with other protec-
tion schemes to efficiently detect these failures and protect
the devices against them.

5 Hardware Design of the Encoder and the
Decoder for Nonlinear t-Error-Correcting
Codes

5.1 Encoder Architecture

The encoders for linear BCH codes are conventionally
implemented based on a linear feedback register (LFSR) ar-
chitecture. Both the serial and the parallel architectures for
LFSRs are well studied in the community. In general, the

serial LFSR needs k clock cycles while the parallel LFSR
needs only dk/qe clock cycles to finish the computation of
the redundant bits at the cost of higher hardware complex-
ity, where k is the number of information bits and q is the
parallelism level of the LFSRs. Compared to the encoder

The conventional
(8262, 8192, 11)
linear BCH code

The proposed
(8281, 8201, 11)
nonlinear code

||e|| = 6 A11

(
11
6

)
≈ 1017 0

||e|| = 7 A11

(
11
7

)
+ A12

(
12
7

)
540

≈ 1020

Fraction of mis-
corrected errors

≈ 10−4 ≈ 0

Table 2: Comparison of the number of miscor-
rected errors for the (8262, 8192, 11) linear BCH code
and the proposed (8281, 8201, 11) nonlinear 5-error-
correcting code

for linear BCH codes, the encoder for the proposed nonlin-
ear t-error-correcting code mainly requires one more multi-
plier in GF (2r2) and two r2-bit registers. The architecture
of the encoder for the nonlinear (8281, 8201, 11) 5-error-
correcting code is shown in Figure 3. The design is based on
the parallel LFSR proposed in [22]. The parallelism level of
the design is ten. During each clock cycle, ten information
bits are inputted to the encoder. The most significant bit
(msb) of the message is inputted via a separate port. The
first information bit for the linear BCH code is derived by
XORing msb with the first bit of msg at the first clock cy-
cle (when cnt = 0 as shown in the figure). The bottom half
of the architecture is a parallel LFSR used to generate the
redundant bits for linear BCH codes. D is a 10× 70 binary
matrix [22]. During each clock cycle, the ten most signif-
icant bits in the shift register is XORed with the new input
and then multiplied by D. The output of the multiplier is
XORed with the shifted data of the shift register to generate
the input to the register. The top half of the architecture is
for the computation of nonlinear redundant bits. During the
even-numbered clock cycles, the 10-bit input is buffered.
During the odd-numbered clock cycles, the buffered data is
multiplied by the new input in GF (210) and then added to
the output registers. A 10-bit mask is XORed with the data
in the output register to generate the nonlinear redundant
bits. For the (8281, 8201, 11) 5-error-correcting code, 820
clock cycles are required to complete the encoding of the
message.

5.2 Decoder Architecture

The decoding of the nonlinear t-error-correcting codes
requires the decoding of a linear BCH code with one less
information bits. The standard decoder for the linear BCH



codes mainly contains three parts: the syndrome compu-
tation block, the error locator polynomial generation block
and the Chien search block.

Figure 3: The architecture of the encoder for the
(8281, 8201, 11) nonlinear 5-error-correcting code

5.2.1 Syndrome Computation

Without loss of generality, assume that the linear BCH
code is a narrow-sense BCH code [21]. Denote by
c̃ = (x̃1, x̃2 · · · x̃n−1, x̃n) the received codeword. For a
(n, k, d = 2t + 1) linear t-error-correcting BCH codes, the
syndromes are defined as Śi =

∑n−1
j=0 xj+1α

ij , 0 ≤ i ≤
2t − 1, where α is the primitive element of a finite field
GF (2m). For binary linear BCH codes, Ś2i = Ś2

i . Thereby
only odd-numbered Śi needs to be computed from c̃. The
other syndromes can be computed using a much simpler
square circuit in GF (2m). To improve the throughput of the
decoder, a parallel design can be applied to process multiple
bits per clock cycle. Figure 4 shows the syndrome compu-
tation circuit with a parallelism level of q for one Śi. t such
structures are needed for the whole block. In our design the
parallelism level is ten. The computation of syndromes for
the linear BCH code will be finished in 827 clock cycles.

Figure 4: The syndrome computation block with a
parallelism level of q for linear BCH codes

5.2.2 Error Locator Polynomial Generation

After the syndromes are computed, the error locator poly-
nomial Λ will be generated using the Berlekamp-Massey
(BM) algorithm. The hardware implementations of the BM
algorithms have been well studied in the community [23]
[24] [25] [26]. In our design a fully serial structure proposed
in [23] is used to minimize the area overhead. The design

mainly requires three multipliers in GF (2m) and two FI-
FOs. t(t + 3)/2 clock cycles are required to generate the
error locator polynomial Λ. When t = 5, the number of
clock cycles needed is 20.

5.2.3 Chien Search

Denote by α the primitive element in GF (2m). The Chien
search algorithm exhaustively tests whether αi is a root of
the error locator polynomial Λ. If Λ(αi) = 0, the error
location is 2m − 1− i. Rewrite Λ(αi) as:

Λ(αi) = λ0 ⊕ λ1α
i ⊕ λ2α

2i ⊕ · · · ⊕ λtα
ti

= λ0,i ⊕ λ1,iα⊕ λ2,iα
2 ⊕ · · · ⊕ λt,iα

t.

The computation complexity is reduced based on the fact
that λj,i+1 = λj,iα

j , 0 ≤ j ≤ t. The algorithm can also
be paralleled to test multiple positions per clock cycle. A
typical implementation of the algorithm with a parallelism
level of q contains t m-bit multiplexers and registers, q × t
multipliers for multiplication by a constant and q adders in
GF (2m) [27]. In [28], a strength-reduced parallel Chien
search architecture is proposed. The author showed that
by a simple transformation of the error locator polynomial,
most of the Galois field multiplications can be replaced by
shift operations resulting in much lower hardware complex-
ity (Figure 5). For the detail of the architecture, please refer
to [28]. We implement the strength-reduced Chien search
architecture with a parallelism level of ten. 827 clock cy-
cles are required to complete the error locating procedure.

Figure 5: Strength-reduced Chien search architecture
with a parallelism level of q

5.2.4 Decoder Architecture for the Nonlinear 5-Error-
Correcting Code

The detailed architecture of the decoder for the proposed
(8281, 8201, 11) nonlinear 5-error-correcting code is shown
in Figure 6. The whole decoding procedure requires 1675
clock cycles assuming a parallelism level of ten. During
the first 827 cycles, S2 and the syndrome of the linear BCH
code are computed. If no errors are detected by the linear
BCH code, the decoding procedure will be completed at the
828th clock cycle. Depending on the value of S2, either



the first two information bits will be flipped or ERR will
be pulled down by the ERR generating circuit which indi-
cates that there are no errors occurring to the information
bits of the code. The latency for the error locator polyno-
mial generation and the Chien search will be only incurred
when errors are detected by the linear BCH code, which can
effectively reduce the average decoding latency.

If errors are detected by the linear BCH code, the
Berlekamp-Massey algorithm will take another 20 clock cy-
cles to generate the error locator polynomial Λ. After this
the Chien search block will exhaustively test all possible
error locations. If Λ(αi) = 0, then the error location is
2m − 1 − i. Since a (8270, 8200, 11) shortened BCH code
is used, only Λ(αi), 8114 ≤ i ≤ 16383 (m = 14) need to
be computed. The original strength-reduced Chien search
architecture is slightly modified for the decoding of short-
ened linear BCH codes. The constant inputs to the bottom
t Galois field multipliers in Figure 5 are set to be α−10i in-
stead of α10i, 1 ≤ i ≤ t (q = 10).

Ŝ2 is initialized to be S2 and is serially updated during
the Chien search stage. Starting from the 848th clock cycle,
the 10-bit FIFO output xi (possibly distorted codeword) and
the decoded 10-bit error vector ei will be buffered in two
10-bit registers. At each odd-numbered clock cycle, Ŝ2 is
updated as follows.

Ŝ2 = Ŝ2 ⊕ xi−1 • xi ⊕ (xi−1 ⊕ ei−1) • (xi ⊕ ei). (7)

At the 1675 clock cycle, the value of Ŝ2 is used to re-check
whether the most significant two bits are successfully cor-
rected. A 2-bit error mask will be generated to make adjust-
ment to these two bits according to the check results.

Figure 6: Decoder architecture for the proposed
(8281, 8201, 11) nonlinear 5-error-correcting code

5.2.5 Area Overhead, Latency and Power Consump-
tion

The (8262, 8192, 11) linear BCH code and the proposed
(8281, 8201, 11) nonlinear code are modeled in Verilog and
synthesized in cadence RTL compiler using the Nangate
45nm open cell library [29]. Both of the designs are placed
and routed in cadence Encounter. In Table 3 we compare the

post-routed area overhead, latency and power consumption
of the encoders and the decoders for the above two codes
under the typical operation condition with a voltage supply
of 1.1V and a temperature of 25C. All the designs have a
parallelism level of ten. Both of the encoders can operate at
1GHz resulting in a encoding throughput of 10Gb/s. The
decoders can operate at 400MHz resulting in a decoding
throughput of 4Gb/s. Compared to the (8262, 8192, 11)
linear BCH code, the proposed (8281, 8201, 11) nonlinear
code requires the same number of clock cycles for the en-
coding and only one more clock cycle for the decoding.
Thereby, the proposed code has the same encoding latency
and only a little worse decoding latency than the linear BCH
code.

For the encoder and decoder for the proposed nonlinear
code, the total area overhead and power consumption are in-
creased by 14.0% and 14.7% respectively compared to the
linear BCH code, which is acceptable given the fact that the
reliability of the MLC NAND flash protected by the pro-
posed code will be largely improved compared to that pro-
tected by the linear BCH code (Table 2).

(8262, 8192, 11)
linear BCH code

(8281, 8201, 11)
nonlinear code

Encoder Decoder Encoder Decoder
Parallelism Level 10 10 10 10

Clock Speed(Hz) 1G 400M 1G 400M

Throughput 10Gb/s 4Gb/s 10Gb/s 4Gb/s

Latency (Cycles) 820 1674 820 1675

Latency (µs) 0.82 4.185 0.82 4.1875

Area (µm2) 1674.6 19182.2 2765.3 21017.1

Power(mW ) 1.294 5.329 2.158 5.439

Table 3: Comparison of the area, the latency and
the power consumption of the (8262, 8192, 11) linear
BCH code and the proposed (8281, 8201, 11) nonlin-
ear code (Voltage = 1.1V , Temperature = 25C)

6 Conclusions

The design of reliable MLC NAND flash memories
based on nonlinear t-error-correcting codes is proposed.
The proposed code has much less undetectable and mis-
corrected errors than the conventional linear BCH codes
(Table 2). The selected (8281, 8201, 11) nonlinear 5-error-
correcting code has no miscorrected errors of multiplicity
six, which are the most dangerous errors assuming an in-
dependent error model. Moreover, in spite of the fact that
the Hamming distance of the proposed code is eleven, it can
also correct some errors of multiplicity six and seven with-
out extra hardware overhead and decoding latency resulting
in further improvement of the reliability of the MLC NAND
flash memories. We present the error correction algorithm,
describe architectures for the encoder and decoder, imple-
ment the encoder and decoder in hardware and compare the



area overhead, the time latency and the power consumption
of architectures based on the proposed code to that based on
a (8262, 8192, 11) linear BCH code. The results show that
our codes can achieve a much better reliability with nearly
the same time latency and only a little more area overhead
and power consumption than the linear BCH code (Table 3).
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