
Griffin: Hardware-Software Support for Efficient Page Migration in Multi-GPU
Systems

Trinayan Baruah1 Yifan Sun1 Ali Tolga Dinçer3 Saiful A. Mojumder2,
José L. Abellán4 Yash Ukidave5 Ajay Joshi2 Norman Rubin1 John Kim6 David Kaeli1

1Northeastern University 2Boston University 3Istanbul Technical University,
4Universidad Católica San Antonio de Murcia, 5Millennium USA, 6KAIST

1{tbaruah, yifansun, kaeli}@ece.neu.edu, nrubin3@gmail.com 2{msam, joshi}@bu.edu
3dincer15@itu.edu.tr 4jlabellan@ucam.edu 5yash.ukidave@mlp.com 6jjk12@kaist.edu

Abstract—As transistor scaling becomes increasingly more
difficult to achieve, scaling the core count on a single GPU
chip has also become extremely challenging. As the volume
of data to process in today’s increasingly parallel workloads
continues to grow unbounded, we need to find scalable solutions
that can keep up with this increasing demand. To meet the
need of modern-day parallel applications, multi-GPU systems
offer a promising path to deliver high performance and large
memory capacity. However, multi-GPU systems suffer from
performance issues associated with GPU-to-GPU communi-
cation and data sharing, which severely impact the benefits
of multi-GPU systems. Programming multi-GPU systems has
been made considerably simpler with the advent of Unified
Memory which enables runtime migration of pages to the GPU
on demand.

Current multi-GPU systems rely on a first-touch Demand
Paging scheme, where memory pages are migrated from the
CPU to the GPU on the first GPU access to a page. The
data sharing nature of GPU applications makes deploying an
efficient programmer-transparent mechanism for inter-GPU
page migration challenging. Therefore following the initial
CPU-to-GPU page migration, the page is pinned on that GPU.
Future accesses to this page from other GPUs happen at a
cache-line granularity – pages are not transferred between
GPUs without significant programmer intervention.

We observe that this mechanism suffers from two major
drawbacks: 1) imbalance in the page distribution across mul-
tiple GPUs, and 2) inability to move the page to the GPU
that uses it most frequently. Both of these problems lead to
load imbalance across GPUs, degrading the performance of
the multi-GPU system.

To address these problems, we propose Griffin, a holistic
hardware-software solution to improve the performance of
NUMA multi-GPU systems. Griffin introduces programmer-
transparent modifications to both the IOMMU and GPU
architecture, supporting efficient runtime page migration based
on locality information. In particular, Griffin employs a novel
mechanism to detect and move pages at runtime between
GPUs, increasing the frequency of resolving accesses locally,
which in turn improves the performance. To ensure better
load balancing across GPUs, Griffin employs a Delayed First-
Touch Migration policy that ensures pages are evenly dis-
tributed across multiple GPUs. Our results on a diverse set
of multi-GPU workloads show that Griffin can achieve up to
a 2.9× speedup on a multi-GPU system, while incurring low
implementation overhead.

I. INTRODUCTION

GPUs are powerful compute engines for processing data-
parallel tasks such as signal processing, large scale simula-
tion, and Deep Neural Networks (DNNs). Over the years,
the explosion of Big Data has been able to exhaust the
massive compute resources of a single GPU. Integrating
more and more transistors on a single die to deliver a larger
GPU is becoming extremely difficult [1]. Designing high-
performance systems supporting multiple GPUs has been
shown to be a promising path forward to further improve
application performance [1], [2]. As a result, both industry
and academia are looking for better multi-GPU solutions.
For example, NVIDIA ships DGX-1 [3] and DGX-2 [4]
systems by integrating up to 16 GPUs in each node, targeted
mainly at DNN workloads. Similarly, AMD integrates four
MI25 GPUs in its TS4 servers [5] to accelerate deep learning
applications.

Due to the programming complexity when dealing with
multi-GPU platforms, major GPU vendors, such as NVIDIA
and AMD have added features to GPU programming
frameworks in order to simplify multi-GPU programming.
These features include: Unified Memory (UM), System-
Level Atomics, and GPU-to-GPU Remote Direct Memory
Access (RDMA) [6]. Multi-GPU programming is quickly
gaining momentum as newer and simpler multi-GPU pro-
gramming interfaces that improve system resource utiliza-
tion are developed [7], [8].

Among the various multi-GPU programming features,
UM significantly simplifies multi-GPU programming. UM
allows programmers to allocate memory without specifying
data placement, and the allocated memory can be used
on any CPU or GPU in the system. UM also enables
memory oversubscription [9]. Backed by system memory, a
programmer can allocate memory exceeding a single GPU’s
physical memory space, allowing applications that require a
large amount of GPU memory to run with existing hardware.
With the ever-increasing popularity of UM, improving the
performance of UM for multi-GPU systems is critical.

Since UM does not require the developer to move data



0 5 10 15 20 25 30 35 40
Time (X10000 cycles)

0
20
40
60
80

100

Pe
rc

en
ta

ge
of

 A
cc

es
se

s
GPU 1 GPU 2 GPU 3

Figure 1: The distribution of the accesses to a page in the
Simple Convolution benchmark from multiple GPUs.

BFS BS FIR FLW FW KM MT PR SC ST
Benchmark

0
25
50
75

100

Pe
rc

en
ta

ge

GPU1 GPU2 GPU3 GPU4

Figure 2: Percentage of pages that get placed in each GPU
under first touch policy in a multi-GPU system with four
GPUs across different workloads.

explicitly using APIs, the hardware has the responsibility to
move the data during execution. Current multi-GPU systems
rely on two mechanisms for remote data access: 1) first-
touch-based Demand Paging (DP) and 2) Direct Cache
Access (DCA). When an application starts, all pages (a page
is 4KB-2MB of contiguous memory space) are allocated in
the CPU memory. When the first GPU accesses a page,
the GPU triggers a GPU page fault and the GPU driver
migrates the page to the GPU memory. The page will remain
pinned in the GPU until the CPU needs to access it again.
If another GPU needs to access the same page, the page
is not migrated, but instead, the GPU uses DCA to request
the data remotely at a single cache-line granularity (further
details in Section II-B).

The motivation behind pinning a page on a GPU after
first-touch migration is based on the inherent data-sharing
nature of GPU applications, which generate repeated page
migrations, significantly impacting performance [10]. Other
mechanisms to perform inter-GPU page migration are not
completely programmer transparent and require the use of
API calls (e.g., cudaMemAdvise [6]), increasing program-
mer effort.

In summary, the CPU-to-GPU data movement mainly
utilizes DP, while the GPU-to-GPU data movement mainly
utilizes DCA in current multi-GPU systems [10], [1]. DP and
DCA have their unique advantages and disadvantages and
complement each other well. DP enables better utilization of
data locality, as all the following memory accesses after the
first migration are local (i.e., on the same GPU). DP transfers
a large amount of data (usually 4KB-2MB) at once over a
slow inter-device fabric, introducing long latency. Moreover,
DP requires modification to the page table, resulting in

instruction pipeline flushes and TLB shootdowns on the
device that currently holds the page [11]. TLB shootdown
is the mechanism by which the OS ensures that page tables
are coherent. Alternatively, DCA does not have to pay the
cost of a page migration. However, it does incur the cost of
remote memory access for every access to a page residing
on another GPU.

In this paper we make two key observations:

1) Existing NUMA multi-GPU mechanisms used to mi-
grate a page only once to a GPU [10], [1], [2] and
then pin it on that GPU are inefficient, and could
potentially benefit from exploiting runtime locality
information to improve performance. As we can see
from Figure 1, the number of accesses to a page from
a particular GPU can change over time (more details
in Section II). Disabling GPU-to-GPU page migration
forces other GPUs in the system to access remote
data using DCA, which in turn can lead to overall
performance degradation. Therefore, enabling GPU-
to-GPU page migration can increase the opportunity
for GPUs to access pages locally. Although GPU-to-
GPU page migration is attractive in terms of reducing
the number of remote data accesses, deploying page
migration on a GPU is challenging given the high cost
associated with migrating a page [11], [10].

2) Our second key observation is that current programmer
transparent methods of migrating pages to GPUs using
a first-touch policy [2], [10] can lead to severe load
imbalance across GPUs, as shown in Figure 2. This
imbalance can lead to conflicts and congestion in the
inter-GPU fabric since the GPU that holds more of the
pages will have to serve more requests from the other
GPUs in the system.

The problems above demand a system-wide solution to
improve multi-GPU NUMA access with the help of GPU-
to-GPU page migration that does not require programmer
intervention. Therefore, we propose Griffin, a hardware-
software solution that improves the GPU microarchitecture,
the Input/ Output Memory Management Unit (IOMMU)
design, as well as the GPU driver. Griffin’s design includes
four complementary mechanisms that work in unison to
solve these problems in NUMA-based multi-GPU systems.
1 To enable efficient inter-GPU migration, we propose

a novel configurable page classification algorithm that can
categorize and select the best pages for inter-GPU migra-
tion. 2 To reduce the cost of inter-GPU and CPU-GPU
migration, we propose a page migration scheduling policy
that can ensure that page migration can be performed with
low overhead. 3 In addition, we design and propose a novel
GPU pipeline draining mechanism that allows runtime inter-
GPU page migration to take place without having to deal
with the overhead of flushing the GPU pipeline. 4 Finally,
we propose a Delayed First-Touch Migration to ensure that

2



INTERCONNECT

CU

L1$ L1 TLB

L2$ L2 TLB

DRAM

RDMA

GPU 2

IOMMU

CPU

PMC

CU

L1$ L1 TLB

L2$ L2 TLB

DRAM

RDMA

GPU 1

PMC
1

2

3

2

4

5

6

Figure 3: Accessing remote GPU memory with Demand
Paging (DP). See Section II for the details of the GPU-
to-GPU DP process.

pages are evenly distributed across GPUs without having to
redistribute them after the initial migration from the CPU.

The main contributions of this work include:
• We characterize the key inefficiencies present in current

programmer transparent page migration mechanisms
designed for multi-GPU systems.

• We present Griffin, a holistic programmer-transparent
hardware-software solution that can improve the per-
formance of multi-GPU systems. Griffin achieves this
by intelligently guiding page placement across multiple
GPUs, reducing page migration overhead and evenly
distributing pages across the GPUs in the system. To
the best of our knowledge, we are the first to propose
an efficient inter-GPU page migration mechanism that
is completely programmer transparent.

• We implement both the existing NUMA multi-
GPU page migration approach and Griffin in MG-
PUSim [12]. Our evaluation shows that Griffin can
improve the overall multi-GPU system performance by
up to 2.9×, with very low hardware overhead.

II. BACKGROUND & MOTIVATION

In this section, we review how existing state-of-the-art
multi-GPU systems work and discuss why existing solutions
are inefficient for a multi-GPU environment. To demonstrate
the inefficiency, we present results from experiments to help
motivate our work. Our experimental setup for collecting
this data is discussed in Section IV.

A. Multi-GPU Systems

With the slowdown of transistor scaling and the prolif-
eration of big data workloads, single GPU systems can no
longer easily achieve performance scaling. Interconnecting
multiple discrete GPUs with high-bandwidth interconnects
or designing a Multi-Chip-Module (MCM) GPU [1] are
promising approaches to harness the power of more com-
puting resources. However, the inter-GPU communication
fabric (e.g., PCIe or NVLink) is a major performance
bottleneck for NUMA multi-GPU systems. NVLink [13],
which is one of the fastest inter-GPU fabrics available on
the market, can only provide a maximum bandwidth of up to

INTERCONNECT

CU

L1$ L1 TLB

L2$ L2 TLB

DRAM

RDMA

GPU 2

IOMMU

CPU

PMC

CU

L1$ L1 TLB

L2$ L2 TLB

DRAM

RDMA

GPU 1

PMC
1

2
3

Figure 4: Accessing remote GPU memory with Direct Cache
Access (DCA). See Section II for the details of the DCA
process.

300GB/s, which is dwarfed by the local memory bandwidth
(1TB/s on an AMD Instinct MI60 using HBM2 [14]). Also,
previous work [15] has shown that, in many scenarios,
it is difficult to tap into the full bandwidth of the inter-
GPU interconnect. Therefore, limiting inter-GPU traffic and
reducing remote memory access latency is key to delivering
a scalable multi-GPU system. Relying on programmers to
optimize programs adds too much burden and is also error
prone. Instead, hardware should provide mechanisms that
can both simplify multi-GPU programming and improve
multi-GPU system performance.

In this paper, we use a Unified Multi-GPU model which
allows a GPU program that was originally written for a
single-GPU platform to run transparently on a multi-GPU
platform. A similar architecture model (i.e., Unified Multi-
GPU) has been used in prior studies [7], [8], [1], [2], [10],
[12]. Using OpenCL terminology, and assuming a unified
multi-GPU memory model, when the user program launches
a GPU program (i.e., a kernel), a centralized dispatcher
converts the kernel to a 1-D, 2-D, or 3-D grid of threads
(work-items). A group of work-items that always execute
the same instruction at the same time form a wavefront.
Wavefronts are executed in Compute Units (CUs), which are
hardware components that can run wavefront instructions. A
certain number of wavefronts can further be grouped into
workgroups. Wavefronts from the same workgroup always
dispatch work to the same CU. We follow a workgroup
scheduling policy, similar to the NUMA GPU systems
proposed in prior work [1], [10], [2].

B. Multi-GPU Communication Mechanisms

Communication in multi-GPU systems occurs through
two major mechanisms: 1) Page Migration and 2) Direct
Cache Access (DCA) through RDMA. These two modes of
communication can take place between the CPU and GPU,
or between multiple GPUs, and work as follows:

Page Migration: The mechanism to support page migra-
tion in GPUs [11] is shown in Figure 3. Assuming GPU 2
needs to access the data that is located in GPU 1’s memory
hierarchy, the GPU-to-GPU page migration process is as
follows. 1 : The process starts with one of the GPU 2’s

3



CUs generating a memory access request, with the L1 TLB
performing address translation. When the address translation
request arrives at the IOMMU for servicing, the IOMMU
detects that the page is not present on GPU 2 and triggers
a page fault to be handled by the GPU driver. 2 : The
driver, upon receiving the page fault request, flushes GPU
1 to invalidate the page on GPU 1 for ensuring translation
coherence. The flushing process includes flushing in-flight
instructions in the CU pipeline, in-flight transactions in the
caches and TLBs, and the contents of the caches and TLBs.
3 : The Page Migration Controller (PMC) migrates the page

from GPU 1 to GPU 2 and notifies the driver about the
completion of the page migration. 4 : Then, the driver can
let GPU 1 replay the flushed memory transactions before
continuing execution. 5 : Now that the page table has been
updated with the newly migrated page, it can send back the
updated address translation to the L1 and L2 TLBs of GPU
2. 6 : Finally, with the updated translation information,
GPU 2 can finish the memory access. We cannot skip the
GPU flushing process for three reasons: 1) the TLB may
buffer stale translation information, 2) the L2 cache may
hold data that is more recent than the data in the DRAM,
3) in-flight memory transactions in the L1 caches, the L2
caches and the TLBs can have stale translations that have to
be discarded. A similar model of page migration also applies
for page migration between a CPU and GPU [11].

Direct Cache Access through RDMA: In this mode, the
requested data is accessed remotely using the interconnect
between the devices (i.e., the CPUs and GPUs) without
migrating the page. The process primarily involves three
steps, as shown in Figure 4. 1 : When a GPU’s CU needs to
access data, a read or write request is sent to the L1 cache.
The L1 cache translates the address with the help of the L1
and L2 TLBs. Since the data is not in the current GPU, the
translation request is eventually sent to the IOMMU. 2 :
Rather than triggering a Page Fault, the IOMMU returns the
remote GPU physical address. 3 : Receiving the translation
for a physical address on a remote GPU, the L1 cache
redirects the request to the RDMA engine to fetch data from
the remote GPU’s L2 cache. The data is returned to the
requesting GPU. As the translation does not belong to the
physical address space owned by the requesting GPU, and
TLBs are not kept hardware coherent in current GPUs, the
translation is not cached.

C. Current Challenges

In this section, we identify and present four major chal-
lenges that plague current multi-GPU system performance,
preventing these systems from achieving good scaling. They
are as follows:

1. Non-programmer transparent inter-GPU page mi-
gration: Due to the nature of data sharing among GPU
applications, a simple page migration scheme based on de-
mand paging alone is inefficient in multi-GPU systems [10].

Previous work on multi-GPU systems [10], [2], [1] has
advocated for mechanisms that pin pages on the GPU after
an initial migration based on first touch information. Future
accesses to this page from other GPUs use Direct Cache
Access [10] as described above. A major problem with
pinning the page location based on a first-touch policy is
that the page cannot be dynamically moved to another GPU
based on the dynamic access patterns. Enabling efficient
inter-GPU page migration requires programmer intervention
and is time-consuming [6].

To illustrate how a page is moved between GPUs, we
analyze how a particular page in the Simple Convolu-
tion (SC) benchmark [12] is accessed. SC is a representative
machine learning workload that can be executed on multi-
GPU systems. As shown in Figure 1, the distribution of
accesses to the same page by different GPUs can vary over
time. The first-touch policy migrates the page first to GPU 3.
At the beginning of the application, most of the accesses to
this page are from GPU 3 only. However, as time progresses,
the number of accesses to this page from GPU 3 becomes
negligible, whereas the number of accesses from GPU 2
start to increase. After some time, the number of accesses
from GPU 2 starts decreasing, and then the page is mostly
accessed by GPU 1. However, the page still continues to
reside in GPU 3’s memory, requiring GPU 1 to perform a
large number of remote accesses for that page. This example
helps illustrate the current inefficiencies of the first-touch
policy, where pages cannot migrate between GPUs in a
programmer transparent fashion. A more intelligent page
migration scheme should be able to detect such changes
in the access pattern to a page, and then migrate the
page transparently to the GPU that accesses it the most.
Allowing the page to migrate between GPUs will provide
more opportunities for the GPUs to exploit temporal locality,
thereby improving performance.

2. First-Touch Demand Paging: By default, Unified
Memory (UM) first allocates memory on the CPU, allowing
the CPU to initialize the data. When any GPU attempts to
access the data, the address translation request will be sent to
the IOMMU and will trigger a Page Fault to be handled by
the GPU driver. The GPU driver waits until the CPU is not
actively accessing the page and then migrates the page to the
GPU. Since the first GPU that attempts to access the page
acquires the page, the policy is called a first-touch policy.
The first-touch policy can lead to an imbalance in page
assignment. In our experiments that count the percentage of
the pages that are migrated to each GPU using the first-touch
policy (see Figure 2), we find patterns in many applications
where first-touch policy favors a certain GPU and assigns a
large number of pages to that GPU. Even when we guarantee
that the workgroup scheduler evenly distributes workgroups
across all GPUs, a large portion of pages end up being placed
in one or more GPUs.

The imbalance in page assignment is mainly caused by

4



Load A
GPU1 

Finished

Load B
GPU1 

Ongoing

Load C
GPU1 

Ongoing

Load D
GPU2 

Ongoing

Figure 5: Example status of the page table walkers in an
IOMMU with one completed page table walk and three
ongoing page table walks.

the slight differences in start times of the wavefronts on
each GPU. Even though the dispatcher services workgroups
in a round-robin fashion across all the GPUs, GPU 1 always
requests the first work-group in each round, acquiring a
slight “advantage” in the competition for pages. Besides,
the network arbiter can also contribute to the imbalance.
The GPU that generates requests the fastest may be more
likely to be selected by the network arbiter for servicing,
and this in turn, makes the GPU generate requests even
faster. As a consequence, an excessive percentage of pages
are first allocated on a single GPU. This imbalance in page
assignment has substantial performance implications. It can
result in an increase in the number of cache conflicts in the
Last Level cache (LLC) of the GPU which holds the cache
lines corresponding to the majority of the pages. Since the
other GPUs will all be requesting data from this GPU, it
will increase congestion in the RDMA engine and the inter-
GPU fabric, which further exacerbates the problem. On the
other hand, the GPUs which holds only a few pages will
experience low utilization of their local memory bandwidth,
L2 caches, and inter-GPU links.

3. FCFS Handling of Page Faults: The default IOMMU
scheduler, which handles requests that miss in the local
GPU’s TLB, services requests based on a First Come First
Serve (FCFS) basis. In the event of a first-touch access on
current multi-GPU systems, a completed page table walk
can trigger a page migration request. However, this mode of
handling first-touch page migration requests is inefficient,
leading to unnecessary TLB shootdowns and flushing on
the CPU. During inter-GPU migration, the overhead of
TLB shootdowns and pipeline flushing will be incurred by
the GPU servicing the migration. The overhead is even
higher on GPUs and the recovery cost of flushing can be
quite high [11]. As an example, Figure 5 shows the state
of multiple page-table walkers in the IOMMU which are
servicing page walk requests from two different GPUs. All
of these requests are first-touch accesses and will be selected
for page migration from the CPU memory. The completed
page table walk requests are shown in white, whereas the
colored boxes are page table walks that have not yet been
completed. The default FCFS scheduler will schedule a
page migration request immediately for Load A without
taking into consideration that the other three loads (Loads
B, C and D) may also trigger page migration requests to
the CPU. Thus, assuming these page table walks finish at
different times, each of these requests will result in a TLB

shootdown and pipeline flush on the CPU. However, instead
of scheduling the migration request immediately, if we delay
the migration and wait for the pending page table walk to
complete, it will result in batching of these page migration
requests together. This will result in only a single shootdown
and flush on the CPU, which can provide huge performance
improvements. In a similar manner, during inter-GPU page
migration, batching of page migration requests can signifi-
cantly reduce the high setup and recovery costs associated
with a page transfer.

4. High cost of GPU Flushing: Finally, the high cost of
flushing the GPU pipeline [11] before an inter-GPU page
migration, can lead to extremely high overheads. This is
because a large amount of in-flight work that has to be
discarded during a pipeline flush. Alternative approaches are
needed that can mitigate this overhead, enabling multi-GPU
systems to migrate pages without incurring high overhead.

III. GRIFFIN

Griffin provides a holistic hardware-software solution to
tackle issues related to NUMA accesses and page mi-
gration in modern-day multi-GPU systems. As shown in
Figure 6, Griffin is mainly composed of four parts, includ-
ing: Delayed First-Touch Migration (DFTM), Cooperative
Page-Migration Scheduding (CPMS), Dynamic Page Clas-
sification (DPC), and Asynchronous Compute Unit Drain-
ing (ACUD). Among the proposed four components, DFTM
and DPC are targeted at finding the best page to migrate,
while CPMS and ACUD are targeted at reducing page
migration overhead.

Figure 6 shows how the 4 components of Griffin work
together. When a Compute Unit (CU) requests an address
translation 1 , the IOMMU uses multi-threaded Page Table
Walkers (PTW) to find the page in the page table. If the
IOMMU detects the page is in the CPU, the page fault is
transferred to DFTM 2 to check if the page should be
migrated or not. If DFTM decides the page needs migration,
the migration request is passed to CPMS. Rather than
migrating the page immediately, CPMS will wait for the
current on-going IOMMU page walking to finish and try to
batch page migrations 3 .

Alternatively, if the IOMMU detects the page is on
another GPU, the IOMMU will always send the remote
physical address back to the CU and the CU will then use
this translation to access remote memory through RDMA
4 . In addition, CPMS defines a page migration period so

that the GPU driver (which runs on the CPU) can collect
the page access count from the CUs across the different
GPUs and, at the end of the period, forward the page access
count to the IOMMU 5 . Once the IOMMU has all the
page access count data, the IOMMU incorporates DPC to
determine which page should be migrated to which GPU and
the decision is sent to the CPMS for finding opportunities to
batch migrations 6 . Finally, CPMS will batch the migration

5



PTW

CU

Driver DFTM New Period

Flush CPUPTW

CPMS

Acc Count

DPC

ACUD Page

1CPU &
IOMMU

GPU Page Page

CPMS

Page Page

2
2

3

4 5

5

6

7

Figure 6: An overview of Griffin showing the four major components of Griffin. The GPU driver runs on the CPU. DFTM
handles initial page migration from CPU. CPMS schedules and batches page migrations from CPU to GPU as well as GPU
to GPU. DPC decides which pages to migrate. ACUD handles the TLB shootdown process on the GPU from which the
page is about to be migrated.

requests to reduce the overhead of page migration. CPMS
will then coordinate with the GPU driver to drain the GPU
using ACUD 7 , a special GPU draining approach that is
specially designed for page migration, to reduce draining
overhead. Overall, the goal is to ensure migration of pages
across GPUs at runtime and to do it at low cost.

A. Delayed First-Touch Migration

Delayed First-Touch Migration (DFTM) tackles the prob-
lem of page assignment imbalance across multiple GPUs,
as described in Section 2.3. With DFTM, when a page
fault is detected by the IOMMU and the page is resident
on the CPU, it will first check the occupancy of the GPU
that requests the page. We define occupancy as the ratio
of pages in the requesting GPU as compared to the total
pages in all the GPUs. If the requesting GPU has the highest
occupancy among all the GPUs, the page is not migrated
to the requesting GPU. Instead, the IOMMU returns the
physical address on the CPU and guides the GPU to access
the data using DCA. If the GPU tries to access the page for
a second time, the IOMMU triggers a page fault so that the
page can be migrated.

By delaying the migration on the first touch, we balance
the accuracy of page-migration and node balancing. Denying
the GPU that has the highest occupancy restricts the GPU
from acquiring too many pages. If a request for this page
arrives from a GPU that has low occupancy, then the page
is migrated to that low-occupancy GPU, thereby balancing
the effective occupancy. The decision to migrate on the
second touch rather than waiting longer reduces the number
of repeated accesses to CPU memory from the GPU side
and reduce long delays waiting for transactions to complete.

B. Cooperative Page Migration Scheduling

One of the major costs of page migration is the high
overhead of the operations performed before the page is mi-
grated. This cost involves events such as TLB shootdowns,
instruction pipeline draining/flushing, and cache flushing.
Although runtime page migration can help reduce the remote
data transfer, the overheads of page migration can quickly
negate that benefit. To reduce this overhead as much as
possible, Griffin employs a Cooperative Page Migration

Scheduling (CPMS) scheme that coordinates the flushing
and page transfers. The main idea of CPMS is to batch page
migration requests so that one instance of flush at the source
of the pages can be followed by many page migrations.

We batch page migrations in the following two cases:
1. CPU-GPU Page Migration: It is not uncommon

for one GPU to generate a stream of page fault requests
for the CPU to handle, especially at the beginning of an
application’s execution phase. The multithreaded nature of
the IOMMU’s Page Table Walker (PTW) provides ample
opportunity for batching [16].

To utilize the batching opportunity presented in CPU-
GPU migration, CPMS will not schedule page migration
requests immediately when a page fault is generated. Instead,
CPMS waits for a certain number of page walks (represented
by hyperparameter NPTW in Table I) across the multiple
page table walkers to complete. NPTW is set to eight in
our simulations since current IOMMU consists of eight
page table walkers [16]. Once the page walks complete,
CPMS collects all the page faults and schedules CPU flushes
and page data transfers by coordinating with the operating
system.

2. GPU-GPU Migration: Since the number of candidate
pages for migration is usually higher than the number of
GPUs, multiple pages are likely to be migrated from one
GPU. When one GPU is the common source of multiple
page migrations, grouping the migrations can reduce the
overhead by incurring the setup cost for page migration at
the source GPU only once.

To create the opportunity for batching GPU-GPU migra-
tions, CPMS first disables the “on-demand” page migration
between GPUs because it can lead to a lot of back and forth
page transfers across the multiple GPUs [10]. CPMS will
make decisions about which pages to migrate from one GPU
to another and which pages should remain in their current
place. As CPMS is implemented in the driver, it can easily
acquire global information and make overall decisions.

Next, CPMS divides multi-GPU execution into periods
(Section III-C). During each period, GPUs only use DCA to
access remote data. Dividing the execution into periods and
intelligently migrating the pages can effectively avoid page
migration because of a single memory transaction, avoid

6



page ping-ponging [17] and enable grouping of migrations
by only draining a GPU once using ACUD.

CPMS makes migration decisions at the beginning of a
migration phase. It first relies on the DPC (to be introduced
in Section III-C) to find the candidate pages to migrate. After
receiving the candidate page for migration, CPMS decides
which GPU to flush and which pages to migrate. According
to the configured time between migrations, CPMS limits the
number of pages to migrate and the number of GPUs to
flush. Thanks to the ACUD (to be introduce in Section III-D)
and the GPU-GPU DCA mechanisms, page migration and
GPU execution can run concurrently without any significant
overhead.

C. Dynamic Page Classification

Before migrating any page, Griffin needs to determine
if a page needs to be migrated. We employ a Dynamic
Page Classification (DPC) approach that can detect and
understand the access pattern to a page made by GPUs.
Then, for each type of page, we apply different approaches
to determine if the page should be migrated. This mechanism
is used to guide the inter-GPU migration.

To begin DPC, we collect access counts from the GPUs.
Each Shader Engine (SE) (a group of up to 16 Compute
Units and the associated L1 caches) is augmented with a
page access counter that monitors the number of memory
transactions issued by the Shader Engine. It maintains a
table that records the number of post-coalescing memory
transactions that access each page. Then, at a predefined
interval (number of cycles defined by hyperparameter Tac),
the count is collected by the GPU driver and the per-GPU
access count is transferred to the IOMMU. Considering that
a page ID is 36 bits wide for a 4KB page (48b physical
address space minus 12b in-page address offset) and we use
8 bits (overflow keeps the saturating counter value at 0xff)
to represent the access count, a message that contains the
information for 20 pages (more than enough, based on our
experiments) only takes 110 bytes, which is smaller than
two cache lines. The access counter is reset to 0 after the
count is transferred to the GPU driver.

Our hardware implementation of access counters col-
lects access counts at the L1 cache level since our caches
are Virtually-Indexed-Physically-Tagged (VIPT). The im-
plementation of these counters can also be moved up to
a higher level of the memory hierarchy if L1 caches are
Virtually-Indexed-Virtually-Tagged (VIVT). The basic tenet
is that the access counter must be changed before the address
translation is done. Hence, the counter location depends on
the type of caches being used.

However, raw access counts that are directly collected
from the GPUs cannot be leveraged directly for page migra-
tion. The counts will vary depending upon the application
running and therefore using them directly is not practical.
A page may not have a high access count because the

wavefront that uses the page is not scheduled to run during
a time period. This does not necessarily imply that the page
is not going to be used by the GPU in the future. At the
same time, a burst of accesses to a page from a certain GPU
does not necessarily mean that the GPU needs the page in
the future. To solve this problem and to get a more reliable
classification counts, we introduce an access count filter that
is based on a moving average algorithm [18]. This algorithm
is implemented in the IOMMU. A hyperparameter α that
varies from 0 to 1 to determine how soon the filter forgets the
history access count. A larger α indicates the classifier puts
more weight on recently collected data and migrates pages
more aggressively, while a smaller α migrates pages more
conservatively. Assuming for a certain page p, the filtered
access count of the page by GPU g at period n is Cpg

n , and
the newly collected access count from GPU is Npg , we use
the following formula to calculate the new filtered accesses
count Cpg

n .

Cpg
n+1 = (1− α) ∗ Cpg

n−1 + αNpg

After the IOMMU updates the filtered access count,
Griffin runs its page classification algorithm to select eligible
candidates for migration. We propose and design a novel
page classification approach to ensure that pages are mi-
grated between devices only if the migration is beneficial for
the locality. We classify a page into five different categories
as listed below:

1) Mostly Dedicated Page: A page is classified as
Mostly Dedicated if the page is mainly accessed only
by one GPU. To be classified as a Mostly Dedicated
Page, the access count from this GPU should be
significantly higher (with threshold represented by λd)
than the GPU with the second-highest access count. In
this case, a page should be migrated if it is not on the
GPU that has the highest access count.

2) Shared Page: A page is classified as Shared if the
page is accessed by multiple GPUs without significant
variation in the number of access counts to this page.
We set the hyperparameter λs to classify the page as
shared if the highest access count is smaller than λs
times the second highest access count. This page is
a candidate for migration if it is currently located on
a GPU that has a very low access count. However, if
it is already located on a GPU that has only a slight
variation in the access count when compared to the
GPU that has the highest access count, then this page
is not selected for migration as it is not worth the
overhead.

3) Streaming Page: GPU workloads can also have mem-
ory access patterns that are streaming in nature. We
classify a page as streaming if the access counts to
this page keeps low (access count under λt per cycle)
significantly after the initial access. This type of page
is also not considered for Inter-GPU migration as the

7



Command
Processor

CU1

CU2

Drain Cmd

Drain for page 
[A, B, ...]

Mem Trans
Long Latency Mem Trans

Mem Trans
Mem Trans on Draining Page

Done Done
Flush L2$ & TLB Page Data

Continue

Mem Trans

Mem Trans

Figure 7: Timeline for Asynchronous Compute Unit Drain-
ing.

overhead is too high and there is not enough locality
to exploit.

4) Owner-Shifting Page: As shown in Figure 1, it is
common that a page is previously majorly accessed by
one GPU (owner), but as the application progresses,
another GPU starts accessing it more often. We clas-
sify such pages as “owner-shifting” pages. If the DPC
cannot classify the page as the Mostly Dedicated,
Shared, or Streaming and the access count of the
owner GPU is decreasing while the access count of
another GPU is increasing, DPC changes the page
class to “owner-shifting”. Griffin always migrates the
Owner-Shifting pages to the GPU with an increasing
access count.

5) Out-of-interest Page: When a page cannot be classi-
fied by any of the classes above, we are not interested
in the page and we do not consider it for migration.

Since the DPC classifies pages and decides which pages
to migrate, the candidate pages will be passed to the CPMS
component which decides on the best order to drain the
GPUs and transfer the data.

D. Asynchronous Compute Unit Draining

One of the major challenges in runtime page migration is
the high cost of TLB shootdowns and instruction pipeline
flushes. These operations are needed to ensure correctness
of the application. Pipeline draining refers to the mechanism
where all the in-flight instructions are allowed to complete
and the scheduler does not issue any more new instruc-
tions to the pipeline. State-of-the-art pipeline draining for
GPUs [19], [20] will wait for all pending requests from
the current workgroup in the GPU pipeline to complete
before marking the drain as completed. However, this is
not necessary for page migration. Workgroups can take
an extremely long time to complete, depending upon the
number of memory transactions they have in flight. Note that
some of these requests can end up triggering page migration
requests from the CPU, which can take a very long time to
resolve. This is one of the reasons why page migration has
traditionally relied on pipeline flushing [11] as the page can
be migrated immediately after the flush. However, flushing
a GPU pipeline drops a large amount of in-flight work on

Param Value Description

NPTW 8 The number of page walks to wait before triggering
page migration.

Tac 1000 Number of cycles between collecting access count.
α 0.03 The rate that the page access count filter forgets

the history.
λd 2.0 The min ratio between the highest access count

and the 2nd highest access count for a page to be
considered Mostly Dedicated

λs 1.3 The max ratio between the highest access count
and 2nd highest access count for a page to be
considered Shared

λt 0.03 The max number of access per cycle from a GPU
for a page to be considered as Streaming

Table I: Default Hyperparameter Configuration.

the floor, incurring high recovery costs.

To avoid the high overhead of pipeline draining and
flushing, we propose a low-cost Asynchronous Compute
Unit Draining (ACUD). ACUD works as shown in Figure 7.
When a page or a group of pages are selected for migration,
the GPU driver will send a drain request to the GPU which
holds the page. This request carries information about the
pages that are about to be migrated.

When a CU receives a drain request, the workgroup
scheduler is paused from issuing any new instructions to
the GPU pipeline. On a GPU system, every CU maintains a
buffer of in-flight memory transactions. The buffer maintains
information about the memory addresses that are currently
being accessed. These memory addresses are then compared
against the memory addresses of the pages that are about to
be migrated (contained in the drain request). If there are no
pending memory transactions by a CU for the pages that
are about to be migrated, the CU will immediately respond
with the Drain Completion message, without waiting for
other memory transactions to finish. Once all the CUs are
drained, a TLB shootdown is performed that invalidates the
entries for pages which are about to be migrated and flushes
the corresponding blocks of data from the L2 cache before
initiating the page migration. During L2 flushing, other
memory transactions can continue as the flushing affects
only the addresses related to the pages that are about to be
migrated. The CU drain ensures that there are no existing
memory access transactions to any blocks associated with
the migrating pages.

ACUD outperforms existing draining/flushing schemes in
4 ways: 1) it allows most of the memory operations to
continue during draining, 2) it does not discard any progress
from the GPU pipeline that has already been made, 3)
compute instructions can overlap with memory transfers, as
the Continue message is sent before the page data transfer
starts, and 4) the ACUD waits the minimum amount of time
before the page can be safely transferred.

8



Component Configuration
Number
per GPU

CU 1.0 GHz 36
L1 Vector Cache 16KB 4-way 36
L1 Inst Cache 32KB 4-way 1 per SE
L1 Scalar Cache 16KB 4-way 1 per SE
L2 Cache 256KB 16-way 8
DRAM 512MB HBM 8
L1 TLB 1 set, 32-way 54
L2 TLB 32 sets, 16-way 1
IOMMU 8 Page Table Walkers -
Intra-GPU Network Single-stage XBar 1
Inter-Device Network 32GB/s PCIe-v4 -

Table II: Multi-GPU System Configuration.

IV. EVALUATION METHODOLOGY

We evaluate Griffin with the multi-GPU simulator MG-
PUSim (version 1.4.1) [12]. MGPUSim natively supports
multi-GPU system simulation and has been validated against
AMD multi-GPU systems.

Simulator Extension: We extend MGPUSim to fully
support Unified Memory and multi-GPU Demand-Paging.
All steps involved in the page migration, such as TLB shoot-
downs, pipeline flushing/draining, L1/L2 cache flushing, and
the page transfer using Page Migration Controller (PMC),
have been faithfully modeled in changes to MGPUSim.
In our experiments, unless otherwise specified, we use the
Griffin hyperparameter values, as listed in Table I.

Evaluating Multi-GPU System: We evaluate a system
with 4 AMD Radeon Instinct MI6 GPU [21], with the
parameters listed in Table II. Each GPU consists of 4 Shader
Engines (SE), with each of them consisting of 9 Compute
Units (CUs), making a total of 36 Compute Units per GPU.
Each GPU has a multi-level cache hierarchy where L1
caches are private to each CU and L2 cache is shared among
the CUs of a GPU. The multiple GPUs in the system are
connected with a PCIe-v4 link, providing 32GB/s in each
direction.

CUs use virtual addresses, and caches and memory
controllers use physical addresses. Address translation is
performed with the help of TLBs and the I/O Memory
Management Unit (IOMMU). Each CU is equipped with
a private L1 TLB and the L2 TLB is shared among all
the CUs in each GPU. If the translation misses in the L2
TLB, the translation request is forwarded to the IOMMU
(physically located on the CPU) over the PCIe link. The
IOMMU consists of multiple page table walkers to service
the high memory request rate from the GPUs. We set the
page size to 4KB, which is used by most of the current
systems as large pages cause higher degree of false sharing
as well as page migration overhead [22].

Although MGPUSim does not model CPU execution,
we do model the CPU’s memory, CPU L2 cache, and the
IOMMU on the CPU die. We add a fixed 100 cycle penalty

(as used in other studies [11]) for the penalty of flushing the
CPU due to page migrations out of the CPU.

For TLB shootdowns on the GPU, we precisely model
the penalty. Since MGPUSim models the actual connections
between components and communication is performed ex-
plicitly through messages, the latency will vary. In reality,
the cost of a TLB shootdown on the GPU will also depend
on the amount of inflight work that is flushed, as well as
the recovery cost incurred every time a TLB shootdown
occurs. Our TLB shootdown invalidates only the entries for
pages involved in the current migration process as opposed
to invalidating the entire TLB. This is because invalidating
the entire TLB can lead to a lot of TLB misses, which is
extremely expensive on GPUs [23].

Baseline NUMA Multi-GPU System: Our baseline
NUMA multi-GPU system follows the mechanism of page
migration that has been widely used in previous work [10],
[2]. On a first-touch access by a GPU, the page is migrated
from the CPU to the GPU. Future accesses to this page does
not result in page migrations. If this page is accessed in the
future by other GPUs, the communication happens through
DCA.

Workloads: We evaluate multiple workloads from AM-
DAPPSDK [24], Hetero-Mark [25], and SHOC [26] bench-
mark suite. In addition to the benchmarks that are origi-
nally supported by MGPUSim, to explore more irregular
memory access patterns, we have extended the simulator
to support various graph-based workloads including Floyd-
Warshall [24], PageRank [25], and Breadth First Search [24].
The workloads span multiple scientific domains, including
machine learning, graph search algorithms, and numerical
computations, providing us with a rich corpus of workloads
for this study. The workloads also cover a wide range of
multi-GPU communication patterns [27].

The memory footprint of our workloads range in size from
30 MB to 64 MB. Extremely long simulation times make
it impractical for us to simulate a larger memory footprint.
Using 4KB pages on the dataset sizes we are simulating
provides thousands of pages in total that are resident across
the different devices. This ensures that we can capture the
behavior of page migration faithfully in multi-GPU systems.

V. RESULTS

Next, we present the simulation results of the benefits
of Griffin as compared to the baseline NUMA multi-GPU
systems. We demonstrate how Griffin is able to significantly
reduce the overhead of events such as TLB shootdowns,
as well as improve the overall occupancy across multiple
GPUs. We also show Griffin’s dynamic migration scheme
in action using an example.

Improvement in Occupancy: As we discussed in Sec-
tion II, the baseline NUMA-GPU system suffers from imbal-
ance in terms of page distribution on each GPU. In contrast,
we can see from Figure 8 that Griffin is able to resolve

9



Abbv. Application Benchmark Suite Access Pattern Memory Size

BFS Breadth First Search SHOC Random 32 MB
BS Bitonic Sort AMDAPPSDK Random 36 MB
FIR Finite Impulse Resp. Hetero-Mark Adjacent 64 MB
FLW Floyd Warshall AMDAPPSDK Distributed 44 MB
FW Fast Walsh Trans. AMDAPPSDK Adjacent 40 MB
KM KMeans Clustering Hetero-Mark Partition 51 MB
MT Matrix Transpose AMDAPPSDK Scatter-Gather 44 MB
PR PageRank Algorithm Hetero-Mark Random 38 MB
SC Simple Convolution AMDAPPSDK Adjacent 41 MB
ST Stencil 2D SHOC Adjacent 33 MB

Table III: Workloads used to evaluate the Griffin design.

BFS BS FIR FLW FW KM MT PR SC ST
Benchmark

0
25
50
75

100

Pe
rc

en
ta

ge

GPU0 GPU1 GPU2 GPU3 Griffin

Figure 8: Occupancy balancing improvement. Left hand
side bar shows the distribution of pages across four GPUs
using the baseline. The right-hand side bar shows the page
distribution across four GPUs using Griffin.

BFS BS FIR FLW FW KM MT PR SC ST
Benchmark

0.0

0.5

1.0

N
or

m
al

iz
ed

 n
um

 
S

ho
ot

do
w

ns

Baseline Griffin

Figure 9: Comparison of the number of TLB shootdowns in
the baseline versus Griffin.

this imbalance with the DFTM mechanism, achieving a near
equal split of pages across all the GPUs without having to
do any runtime load balancing.

TLB Shootdowns: TLB shootdowns and pipeline flushing
can negatively impact the performance of a system. While
Griffin produces additional TLB shootdowns on the GPU
due to inter-GPU migrations, the total number of shootdowns
is much lower than the baseline NUMA-GPU system, as
shown in Figure 9. This shows that the CPMS can effectively
batch page migrations and avoid the overhead of costly
shootdowns on both the CPU and GPUs.

Dynamic Inter-GPU Migration Decision with DPC:
Figure 10 shows Griffin’s DPC mechanism in action when
running the Simple Convolution benchmark for the most
frequently accessed page. The page is primarily accessed by
GPU 3 and sparingly by GPU 4. Initially the page migrates
from CPU to GPU 4. This is an example that the first-touch
mechanism cannot assign the page to GPU3 even though it
accesses the page most frequently. Griffin on the other hand

2 3 4 5 6 7 8
Time (x 0.1ms)

0

0.5

1.0

1.5

Ac
ce

ss
 p

er
 C

yc
le

GPU1 GPU2 GPU3 GPU4 Page Location

1
2
3
4

GP
U 

ID

Figure 10: Distribution of accesses to a page in the SC
benchmark.

BFS BS FIR FLW FW KM MT PR SC ST
Benchmark

1.0

1.5

2.0

Sp
ee

du
p

Flush Drain

Figure 11: Performance comparison of using Grif-
fin+Flushing vs. Griffin+ACUD.

migrates the page to GPU 3 in a short time. Later in the
execution (≈0.2ms), GPU 3 stops accessing the page and
there are more accesses from GPU 1. The black dotted line
shows that our proposed mechanism is able to detect this
change in page access behavior and respond appropriately
by migrating the page to GPU 1. As the access count from
GPU 4 start to grow (≈0.46ms), Griffin detects this change
and migrates the page to GPU 4. There is a slight delay
in the time when the access pattern changes, especially
when Griffin migrates a page, as is evident from the black
dotted line. This is because Griffin’s migration is reactive
rather than predictive. A page is not migrated until the DPC
recognizes that migration is beneficial. We leave predictive
approaches for inter-GPU migration as future work.

ACUD: Figure 11 shows performance difference when
using Griffin with our proposed ACUD approach vs a
system that employs Griffin with pipeline flushing. The
performance difference is quite significant for majority of
the benchmarks as the cost of flushing the GPU pipeline can

10



BFS BS FIR FLW FW KM MT PR SC ST
Benchmark

1.0
1.1
1.2

Sp
ee

du
p 1.64 2.9 2.14

Baseline Griffin

Figure 12: Speedup of Griffin versus the Baseline design.

BFS BS FIR FLW FW KM MT PR SC ST
Benchmark

1.0

1.2

1.4

S
pe

ed
up 1.58 2.05 2.93 2.55

Baseline Griffin

Figure 13: Speedup of Griffin versus the Baseline design
with a higher bandwidth interconnect.

be very high. Some benchmarks benefit less from ACUD
because sometimes ACUD might still take a long time to
drain a GPU. This happens if there are a large number of
pages selected for migration and there are ongoing memory
transactions on that page from the GPU which is about to be
drained. However, it is clear that ACUD always outperforms
a system that relies on GPU pipeline flushing for inter-GPU
migration.

Overall Speedup: Figure 12 presents the performance
benefits of Griffin using the hyperparameters shown in
Table I, which we have experimentally determined to be
the best set of parameters for our current multi-GPU con-
figuration. We can clearly observe that Griffin significantly
outperforms the NUMA-GPU system in a majority of the
applications evaluated. Griffin is able to achieve a speedup
of 1.37× (geometric mean). Griffin is able to achieve the
speedup because of programmer-transparent migration of
pages to the GPU by moving the page to the most appropri-
ate GPU and with low cost. The highest speedup is observed
for the Matrix-Transpose benchmark, which achieves a 2.9×
improvement compared to the baseline. Apart from the
benefits of runtime inter-GPU migration, we observe that this
application benefits highly from Griffin’s DFTM mechanism
since most of the pages are not accessed multiple times
and Griffin prevents the costly page migrations that lack
locality from occurring in the first place. PageRank is the
only benchmark where we observe a slowdown when using
Griffin as compared to the baseline system. This is mostly
because Griffin is not able to migrate the pages to the correct
locations. For this application, the access patterns to sparse
matrices can be very random and irregular, which makes it
difficult to exploit inter-GPU migration effectively.

Some modern multi-GPU systems [3], [4] also employ
much higher bandwidth interconnects such as NVLink.

These high bandwidth interconnects enable fast remote data
access. However, even with such high bandwidth intercon-
nects, having an efficient inter-GPU page migration mecha-
nism is beneficial. From Figure 13 we observe that Griffin
still outperforms the baseline design when switching to an
interconnect with higher bandwidth. The performance is in
fact much better when using a high bandwidth interconnect,
especially in benchmarks such as BFS, KM and PR where
we observe much improved performance as compared to
a system with lower bandwidth. This improvement is due
to the fact that Griffin is able to make better use of the
higher bandwidth interconnects, which is a result of Griffin’s
improved page placement.

Hardware Cost: We evaluate the hardware costs of
different components of Griffin. Griffin’s DFTM requires
an extra bit in the page table for each page to mark that
it has been accessed once. Once this bit is set, it will
remain unchanged until the page is removed from physical
memory. The CPMS mechanism of our proposed design
does not require any hardware additions, except software-
level data structures to orchestrate and batch page migrations
among devices. For the DPC mechanism, we require an
access count monitor for each Shader Engine (one for every
9 CUs in our design). The access count monitor design
basically intercepts memory requests from the CU to the
TLB and stores associated metadata. The table consists of
100 metadata entries, with each entry storing the page ID
that requires 36 bits, and the 8-bit access count. Each GPU
has 4 tables (since there are 4 Shader Engines), resulting in
a total storage of 2200 bytes for each GPU. For ACUD, we
augment the CU’s to enable selective draining when pages
are migrated. The CU already keeps a buffer for in-flight
memory accesses, since it must keep track of the pending
memory requests. We add additional logic for each CU in the
form of a 64-bit comparator, as well as arithmetic shifting
logic that scans this buffer for pending memory requests
and identifies pages under migration. Since the CU does not
know the page size being used, the request from the driver
provides this information and the CU uses the arithmetic
shifting logic to calculate the page size.

VI. RELATED WORK

A. Multi-GPU NUMA Studies

Improving the performance of multi-GPU NUMA systems
has recently attracted the attention of many researchers [10],
[1], [2], [7], [8]. Prior work [10] has focused on dedicating
or allocating extra hardware in the form of caches to address
remote access bottlenecks. Scaling such solutions is however
challenging. To the best of our knowledge, no previous
work on multi-GPU memory systems focuses on solving
or improving the performance of demand paging on multi-
GPU systems, which is equally important as reducing the
remote access bottleneck. Also, in contrast to our work,
all of the above work focuses on migrating a page once,

11



thereby preventing other GPUs in the system to reap the
benefits of local accesses to a page. We believe Griffin
can also be integrated with previously proposed approaches
such as CARVE [10] that focuses on dedicating DRAM
space to cache remote data. We leave study of integrated
mechanisms for future work. Kim et al. [28] propose CODA,
a mechanism which uses a mixture of compiler and runtime
techniques to improve the page distribution mechanism
across multiple GPUs. Prior work [10] has also considered
how to classify pages into two broad categories based
on sharing behavior: Read-Shared and Read/Write Shared.
However, to the best of our knowledge, we are the first to
introduce a novel page classification scheme that is designed
to improve runtime decisions for inter-GPU page migration.

B. Runtime Page Migration

Prior work has also studied mechanisms to improve the
performance of page migration approaches on CPU systems,
as well as emerging heterogeneous memories such as 3D
XPoint. Dashti et al. [29] propose Carrefour which is a
system that tries to improve the NUMA performance of
CPU systems using methods such as interleaving, page
replication and page migration using profiling approaches.
Agarwal et al. [30] propose Thermostat, a mechanism to
migrate pages between heterogeneous memories at runtime
based on detecting hot and cold pages. Their approach
also relies on page table entry (PTE) invalidations and
sampling pages using the Badger Trap tool. Such frequent
PTE invalidations can be costly on GPUs, as forcing a
TLB miss will stall an entire warp on a GPU leading
to low utilization. Dynamic page placement has also been
studied by Wilson et al. [31] for CPU-based NUMA systems.
Chandra et al. [32] proposed mechanisms to improve the
performance for DASH CC-NUMA systems. None of these
approaches work well on GPU systems since the cost of
page collapses can be very high and runtime software-based
page profiling can be expensive on a GPU. Improving page
migration performance on a tiered heterogeneous memory
system has also been explored [33]. This work focused more
on improving transparent migration of huge pages using OS
level modifications that can be integrated with Griffin to
improve its overall performance. We plan to explore this
integration in our future work.

C. Address Translation on GPU

Pichai et al. [34] and Power et al. [35] propose the initial
designs to enable virtual memory support on GPUs. Vesley
et al. [36] characterize the performance impact of address
translation on GPUs, which is non-negligible and can be
high for some applications. Previous works [16], [37] also
focused on IOMMU enhancements to improve the perfor-
mance of applications executing on a single GPU. These
approaches can be combined with Griffin to achieve better
performance. In such approaches the scheduling mechanisms

proposed in [16], [37] can work collaboratively with Griffin
to handle memory requests issued to the IOMMU from a
single GPU as well as multiple GPUs. Jaleel et al. [38]
propose a mechanism for increasing the TLB reach for GPUs
by caching translations in the GPU LLC and DRAM. Such
mechanisms can be integrated with Griffin to reduce the
penalty of TLB misses which in turn has the potential to
improve performance. Zheng et al [23] propose a novel
mechanism to hide the page fault latency on a GPU through
CU pipeline modifications and prefetching schemes. Their
mechanism can be integrated into Griffin and work alongside
the ACUD mechanism. In such systems, ACUD can take
care of reducing the cost of pipeline flushes on the GPU
where the page is being migrated, whereas their mechanism
can help to reduce the penalty of a page fault on the GPU
that triggered the page fault request.

D. Methods to reduce TLB shootdowns

Mechanisms to reduce the cost of TLB shootdowns on
CPUs, and emerging heterogeneous memory systems, have
attracted significant attention over the last decade [39],
[40], [41], [42], [43], [44]. This is due to the rising cost
of TLB shootdowns, especially as core counts continue
to scale and heterogeneous memory makes its way into
mainstream systems. Previous work by Agarwal et al. [11]
have studied on mechanisms to reduce the occurrence of
TLB shootdowns on a CPU-GPU system. Reducing the cost
for translation coherence [44] on virtualized systems has also
been studied. Romanescu et al. [40] propose a hardware
translation coherence protocol for CPU systems In contrast,
our work is more concerned with reducing the number of
TLB shootdowns on multi-GPU systems, which none of the
above prior studies have addressed.

VII. CONCLUSION

Given the rampant growth of data in emerging applica-
tions, multi-GPU servers will become the norm and will be
tasked with performance critical applications. As a result,
efficient methods to mitigate the NUMA performance bottle-
necks of multi-GPU systems will be more and more critical.
Programming a multi-GPU system can be challenging given
that data placement may not be known apriori. Therefore,
improving the performance of unified memory using novel
architectural and software solutions is going to be a key en-
abler to achieve higher performance in multi-GPU systems.

In this work, we have observed that multi-GPU systems
can suffer from imbalance across GPUs, as well as the
overhead associated with page migrations. We found that
enabling intelligent inter-GPU page migration is going to
be extremely important for future multi-GPU systems to
achieve scalable performance. One of the biggest challenges
is how/when to perform pipeline flushes, cache flushes and
TLB shootdowns.

12



Griffin is a hardware-software solution to enable such
low cost inter-GPU page migration and resolve imbalances
across GPUs. Griffin is comprised of four major compo-
nents: 1) Delayed First-Touch Migration (DFTM), 2) Co-
operative Page Migration Scheduling (CPMS), 3) Dynamic
Page Classification (DPC) and 4) Asynchronous Compute
Unit Draining (ACUD). These four elements work in har-
mony to achieve a geometric mean speedup of 1.37× and
a peak speedup of 2.9× speedup when compared against
current NUMA-based multi-GPU systems. Griffin is able
to achieve near perfect load balancing across the multi-
GPU system, as well as reduce the cost of TLB shootdowns
significantly. Griffin’s DPC and CPMS mechanisms enable
inter-GPU migration based on runtime profiles to ensure
a GPU can satisfy most of its accesses locally. Griffin’s
ACUD component makes inter-GPU migration more prac-
tical, versus current migration mechanisms that rely on
pipeline flushing. DFTM ensures that pages are distributed
evenly across GPUs and also ensures that pages that are not
used more than once are not migrated from the CPU. To
further improve upon the performance of Griffin, we plan
to consider new components that can predict page accesses
by other GPUs and speculatively migrate pages, as well as
incorporate page splitting approaches [12], [22].

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive
feedback. This work was supported in part by NSF CNS-
1525412, NSF CNS-1525474, MINECO TIN2016-78799-P,
NRF-2015M3C4A7065647, NRF-2017R1A2B4011457, and
AMD.

REFERENCES

[1] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi,
O. Villa, A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU:
Multi-chip-module GPUs for continued performance scalabil-
ity,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 2, pp. 320–332, 2017.

[2] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi,
A. Jaleel, A. Ramirez, and D. Nellans, “Beyond the socket:
NUMA-aware GPUs,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture,
pp. 123–135, ACM, 2017.

[3] N. A. Gawande, J. A. Daily, C. Siegel, N. R. Tallent,
and A. Vishnu, “Scaling deep learning workloads: Nvidia
dgx-1/pascal and intel knights landing,” Future Generation
Computer Systems, 2018.

[4] NVIDIA, “NVIDIA DGX-2,” 2018.

[5] AMD, “AMD Multi GPU box,” 2018.

[6] NVIDIA, “NVIDIA Unified Memory,” 2018.

[7] G. Kim, M. Lee, J. Jeong, and J. Kim, “Multi-GPU system de-
sign with memory networks,” in Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium on,
pp. 484–495, IEEE, 2014.

[8] A. K. Ziabari, Y. Sun, Y. Ma, D. Schaa, J. L. Abellán,
R. Ubal, J. Kim, A. Joshi, and D. Kaeli, “UMH: A hardware-
based unified memory hierarchy for systems with multiple
discrete GPUs,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 13, no. 4, p. 35, 2016.

[9] C. Li, R. Ausavarungnirun, C. J. Rossbach, Y. Zhang,
O. Mutlu, Y. Guo, and J. Yang, “A Framework for Memory
Oversubscription Management in Graphics Processing Units,”
in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems.

[10] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans,
and O. Villa, “Combining HW/SW mechanisms to improve
NUMA performance of multi-GPU systems,” in 2018 51st
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pp. 339–351, IEEE, 2018.

[11] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and
T. F. Wenisch, “Unlocking bandwidth for GPUs in CC-
NUMA systems,” in 2015 IEEE 21st International Sympo-
sium on High Performance Computer Architecture (HPCA),
pp. 354–365, IEEE, 2015.

[12] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong,
S. Treadway, Y. Bao, S. Hance, C. McCardwell, V. Zhao,
H. Barclay, A. K. Ziabari, Z. Chen, R. Ubal, J. L. Abellán,
J. Kim, A. Joshi, and D. Kaeli, “MGPUSim: Enabling multi-
GPU Performance Modeling and Optimization,” in Proceed-
ings of the 46th International Symposium on Computer Ar-
chitecture, ISCA ’19, (New York, NY, USA), pp. 197–209,
ACM, 2019.

[13] D. Foley and J. Danskin, “Ultra-performance Pascal GPU and
NVLink interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17,
2017.

[14] AMD, “AMD Radeon Instinct MI60 Accelerator,” 2018.

[15] A. Li, S. L. Song, J. Chen, X. Liu, N. Tallent, and K. Barker,
“Tartan: evaluating modern GPU interconnect via a multi-
GPU benchmark suite,” in 2018 IEEE International Sympo-
sium on Workload Characterization (IISWC), pp. 191–202,
IEEE, 2018.

[16] S. Shin, G. Cox, M. Oskin, G. H. Loh, Y. Solihin, A. Bhat-
tacharjee, and A. Basu, “Scheduling page table walks for
irregular GPU applications,” in Proceedings of the 45th
Annual International Symposium on Computer Architecture,
pp. 180–192, IEEE Press, 2018.

[17] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Poly-
chronopoulos, J. Labarta, and E. Ayguadé, “User-level dy-
namic page migration for multiprogrammed shared-memory
multiprocessors,” in Proceedings 2000 International Confer-
ence on Parallel Processing, pp. 95–103, IEEE, 2000.

[18] J. S. Hunter, “The exponentially weighted moving average,”
Journal of quality technology, vol. 18, no. 4, pp. 203–210,
1986.

[19] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collabo-
rative preemption for multitasking on a shared GPU,” ACM
SIGPLAN Notices, vol. 50, no. 4, pp. 593–606, 2015.

13



[20] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro,
and M. Valero, “Enabling preemptive multiprogramming on
GPUs,” in 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pp. 193–204, IEEE, 2014.

[21] AMD, “AMD Radeon Instinct MI6 Accelerator,” 2018.

[22] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose,
J. Gandhi, C. J. Rossbach, and O. Mutlu, “Mosaic: a GPU
memory manager with application-transparent support for
multiple page sizes,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture,
pp. 136–150, ACM, 2017.

[23] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and
S. W. Keckler, “Towards high performance paged memory
for GPUs,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 345–357,
IEEE, 2016.

[24] AMD, “AMD APP SDK OpenCL Optimization Guide,” 2015.

[25] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee,
C. McCardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a
benchmark suite for CPU-GPU collaborative computing,” in
2016 IEEE International Symposium on Workload Character-
ization (IISWC), pp. 1–10, IEEE, 2016.

[26] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The
scalable heterogeneous computing (SHOC) benchmark suite,”
in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, pp. 63–74, ACM,
2010.

[27] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, R. Ubal,
X. Gong, S. Treadway, Y. Bao, V. Zhao, H. Barclay, J. L.
Abellán, J. Kim, A. Joshi, and D. Kaeli, “MGSim+ MG-
Mark: A Framework for Multi-GPU System Research,” arXiv
preprint arXiv:1811.02884, 2018.

[28] H. Kim, R. Hadidi, L. Nai, H. Kim, N. Jayasena, Y. Eckert,
O. Kayiran, and G. Loh, “CODA: Enabling Co-location of
Computation and Data for Multiple GPU Systems,”

[29] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth, “Traffic management: a
holistic approach to memory placement on NUMA systems,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 1,
pp. 381–394, 2013.

[30] N. Agarwal and T. F. Wenisch, “Thermostat: Application-
transparent page management for two-tiered main memory,”
in ACM SIGARCH Computer Architecture News, vol. 45,
pp. 631–644, ACM, 2017.

[31] K. M. Wilson and B. B. Aglietti, “Dynamic page placement
to improve locality in CC-NUMA multiprocessors for TPC-
C,” in Proceedings of the 2001 ACM/IEEE conference on
Supercomputing, pp. 33–33, ACM, 2001.

[32] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosen-
blum, “Scheduling and page migration for multiprocessor
compute servers,” in ACM SIGPLAN Notices, vol. 29, pp. 12–
24, ACM, 1994.

[33] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble
Page Management for Tiered Memory Systems,” in Proceed-
ings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pp. 331–345, ACM, 2019.

[34] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural sup-
port for address translation on GPUs: designing memory man-
agement units for CPU/GPUs with unified address spaces,” in
ACM SIGPLAN Notices, vol. 49, pp. 743–758, ACM, 2014.

[35] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64
address translation for 100s of GPU lanes,” in 2014 IEEE 20th
International Symposium on High Performance Computer
Architecture (HPCA), pp. 568–578, IEEE, 2014.

[36] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattachar-
jee, “Observations and opportunities in architecting shared
virtual memory for heterogeneous systems,” in 2016 IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 161–171, IEEE, 2016.

[37] S. Shin, M. LeBeane, Y. Solihin, and A. Basu,
“Neighborhood-aware address translation for irregular
GPU applications,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
pp. 352–363, IEEE, 2018.

[38] A. Jaleel, E. Ebrahimi, and S. Duncan, “Ducati: High-
performance address translation by extending tlb reach of
gpu-accelerated systems,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 16, no. 1, p. 6, 2019.

[39] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion,
A. Ramirez, A. Mendelson, N. Navarro, A. Cristal, and
O. S. Unsal, “Didi: Mitigating the performance impact of tlb
shootdowns using a shared tlb directory,” in 2011 Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, pp. 340–349, IEEE, 2011.

[40] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy,
“UNified instruction/translation/data (UNITD) coherence:
One protocol to rule them all,” in HPCA-16 2010 The Six-
teenth International Symposium on High-Performance Com-
puter Architecture, pp. 1–12, IEEE, 2010.

[41] M. K. Kumar, S. Maass, S. Kashyap, J. Veselỳ, Z. Yan,
T. Kim, A. Bhattacharjee, and T. Krishna, “LATR: Lazy
translation coherence,” in ACM SIGPLAN Notices, vol. 53,
pp. 651–664, ACM, 2018.

[42] A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh,
“Avoiding TLB shootdowns through self-invalidating TLB
entries,” in 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 273–
287, IEEE, 2017.

[43] B. Pham, D. Hower, A. Bhattacharjee, and T. Cain, “TLB
shootdown mitigation for low-power many-core servers with
L1 virtual caches,” IEEE Computer Architecture Letters,
vol. 17, no. 1, pp. 17–20, 2017.

[44] Z. Yan, J. Veselỳ, G. Cox, and A. Bhattacharjee, “Hard-
ware translation coherence for virtualized systems,” in ACM
SIGARCH Computer Architecture News, vol. 45, pp. 430–443,
ACM, 2017.

14


