
Hardware Acceleration for DBMS Machine
Learning Scoring: Is It Worth the Overheads?

Zahra Azad∗, Rathijit Sen†, Kwanghyun Park†, Ajay Joshi∗
∗Boston University, †Microsoft Gray Systems Lab

{zazad, joshi}@bu.edu, {rathijit.sen, kwanghyun.park}@microsoft.com

Abstract—Query processing for data analytics with machine
learning scoring involves executing heterogeneous operations in
a pipelined fashion. Hardware acceleration is one approach to
improve the pipeline performance and free up processor re-
sources by offloading computations to the accelerators. However,
the performance benefits of accelerators can be limited by the
compute and data offloading overheads. Although prior works
have studied acceleration opportunities, including with accelera-
tors for machine learning operations, an end-to-end application
performance analysis has not been well studied, particularly for
data analytics and model scoring pipelines.

In this paper, we study speedups and overheads of using PCIe-
based hardware accelerators in such pipelines. In particular, we
analyze the effectiveness of using GPUs and FPGAs to accelerate
scoring for random forest, a popular machine learning model,
on tabular input data obtained from Microsoft SQL Server. We
observe that the offloading decision as well as the choice of the
optimal hardware backend should depend at least on the model
complexity (e.g., number of features and tree depth), the scoring
data size, and the overheads associated with data movement
and invocation of the pipeline stages. We also highlight potential
future research explorations based on our findings.

I. INTRODUCTION

Over the past decade, the demands of data processing
workloads have increased rapidly and the amount of data
generated has increased exponentially [1]. Big Data analytics
organizes and extracts the valued information from this rapidly
growing datasets and has a significant impact on so many dif-
ferent applications such as scientific explorations, healthcare,
governance, finance and business analytics, and web analysis
[1]. The algorithms for Big Data analytics are getting more
complex with higher computational demands, driven by the
success of machine learning (ML) models and applications.

An important platform to extract and analyze valuable
information from Big Data is a database management sys-
tem (DBMS) optimized for analytical data processing [2]–
[6]. Enterprise DBMSs already support ML services [7]–[9],
and we expect the trend of integration and co-evolution of
traditional query processing and ML workloads to continue in
future [4], [5]. This enables ML applications to leverage the
well-established capabilities of DBMS to efficiently manage
and control access to large amounts of critical data that are
already stored in the DBMS, and it removes the need for
users to maintain separate coherent copies of large datasets
for traditional query processing and ML applications.

In this paper, we focus on analytic query processing with
ML model scoring on Microsoft SQL Server by using its ca-

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU FPGA FPGA FPGA

GPU FPGA FPGA FPGA

GPU FPGA FPGA FPGA

Model Complexity

D
at

a 
Si

ze

Fig. 1: The best-performing hardware for scoring a random
forest model depends on the model complexity and data size.

pability of executing user Python code [10]. In this application
environment, users submit Transact-SQL (T-SQL) queries that
include scoring of ML models where both models and data are
stored in the database. Query processing involves executing a
pipeline that includes invocation of a Python process, copying
data, scoring a model, and returning the results.

DBMS ML operations are significantly more compute-
intensive than the traditional relational operations, especially
with ML over large datasets [11], [12]. Specialized hard-
wares such as Graph Processing Units (GPUs) and Field-
Programmable Gate Arrays (FPGAs) can help accelerate the
analytics and ML scoring pipelines by handling the computa-
tional demands of ML algorithms and also free up processor
cores for other work. The architectural flexibility of FPGAs
allows the design of very deep pipelines to handle compute
intensive workloads [13]–[20], [21], [22], [2], [3], [6].

However, it turns out that sometimes using an accelerator
is not efficient and the best accelerator to use at other times
depends on the data size and model characteristics. Figure 1
shows the best-performing hardware backend — CPU (no
accelerator offload), GPU, and FPGA — for the ML scoring
operations of a random forest model, for different combina-
tions of the size of the scoring dataset, dataset features, and
model complexity. Since both data and models depend on
the particular user query presented at run time, a scheduler
that aims for the best performance would need to make the
accelerator offloading decisions dynamically.

Furthermore, as we will show later (Section IV), the sit-
uation changes dramatically when the end-to-end pipeline
and application performance is taken into account. While
accelerators are still useful, additional overheads associated
with data copy and invocation of pipeline stages cause the
region of interest for using accelerators to shift towards larger



data sizes and ML models with more complex computations.
Thus, to fully understand the effectiveness of using accel-

erators to speed up DBMS ML scoring pipelines, we need to
consider the big picture and include the latencies of all the
tasks involved such as pre-processing of input data, extracting
the ML model information, transferring input data and models
to accelerators, accelerator setup/configuration, signaling task
completion, returning results, and post-processing the results.
This end-to-end aspect has been largely overlooked in prior
works [13]–[20], [23] that have focused mainly on the FPGA
compute capacity and the speedup of the offloaded task.

The main contributions of our work are the following.

1) An end-to-end performance analysis of the DBMS ML
scoring pipeline to find sources of performance bottle-
necks and inform future research on mitigating those
challenges. Based on our observations, even for compute
intensive models and a large number of records, the end-
to-end performance is limited by the non-scoring stages
in DBMS ML scoring pipelines; The ML scoring time
is in order of milliseconds but the time of non-scoring
stages are in order of microseconds (Section IV).

2) An in-depth study of the accelerator offloading overheads.
This analysis helps find the achieved overall performance
speedup for ML scoring and decide on when offloading
a task to an accelerator is beneficial. Figure 1 shows that
in the case of small number of records and less compute
intensive models, the optimal decision is keeping the
ML scoring on the CPU to avoid the high accelerator
offloading cost (a wrong decision to offload to an ac-
celerator can increase the latency by 10× (Section IV))
. However, as the model complexity or the size of the
scoring dataset increases, offloading ML scoring to an
accelerator becomes the optimal choice (a wrong decision
to not offload to an accelerator can result in 70× lower
throughput (Section IV)).

3) Offloading the ML scoring stage of the DBMS ML
scoring pipeline to different platforms and comparing the
overall performance numbers to find the best-performing
hardware accelerator (FPGA and GPU) based on the
number of records and model complexity. We found that
as the number of records, dataset features, and model
sizes increase, it is a better option to offload the scoring
to the FPGA. For example, for a random forest model
with 128 trees each 10 level deep, with 1 million records
for a dataset with large number of features, while the
GPU has 16.5× higher throughput than that of the CPU,
the FPGA throughput is up to 4.2× more than that of
the GPU (and 69.7× that of the CPU). However, for the
same number of records, but with a smaller model (1 tree
with 10 level) and a dataset with less number of features,
the GPU outperforms, with a throughput of 2.3× more
than that of the FPGA (Sections IV-C2 and IV-C3).

The rest of the paper is structured as follows. We briefly
describe our analytics and model scoring pipeline in Section II.
In Section III we discuss the GPU and FPGA accelerators

that we considered for our study, along with an overview
of the offloading overheads. We present and analyze our
experimental results in Section IV and discuss related work
in Section V.

II. ML SCORING IN SQL SERVER WITH PYTHON

In this work, we focus on ML model scoring in SQL Server
using its capability of executing users’ Python scripts that
in turn can use other libraries or utilities that implement the
scoring functionality.

Figure 2 shows the high-level architecture of the analytics
and scoring pipeline. Users submit analytic queries that invoke
custom Python scripts that score ML models, an example of
which is included in Figure 3, to SQL Server. SQL Server
launches an external Python process to execute the script
that involves pre-processing, scoring, post-processing, and
returning of results. The scoring can happen either on the CPU
(Ê), or on a PCIe-attached hardware accelerator (Ë).

Figure 3 shows an example query that invokes a stored
procedure containing a user-supplied Python script that scores
an ONNX model to classify iris flowers. The invoking query
specifies the model and dataset to use, both of which are
obtained from database tables. The models are stored in
serialized binary form, in either an off-the-shelf [24], [25]
or custom format. Pre-processing for ML scoring involves
deserializing the model, extracting features and getting the data
ready for the scoring engine. Other steps include setting up the
environment for scoring. The prediction results are saved as a
Pandas DataFrame and returned to DBMS.

Users can score any ML model with SQL Server by
invoking custom Python scripts. For this study, we focus on
tree ensemble models and in particular, on the random forest
model, which is one of the top models being used in a wide
range of classification and regression applications [26].

Figure 4a illustrates an example decision tree model that
consists of decision nodes and leaf nodes. Each decision node
in a decision tree of a random forest represents a decision
rule, consisting of a comparison attribute and a comparison
value (threshold), to choose either the left or right node in the
next level. Each leaf node represents a scoring outcome. The
parameters of all decision trees in the forest are learned from
the training phase. These parameters include the comparison
attributes, comparison values of each decision node, and the
class labels of each leaf node. During scoring, an example
input traverses all trees from the root to a leaf node according
to the criteria of decision nodes. In the case of random
forest regressor, the final outcome is an average of each
tree’s prediction, and for a random forest classifier, each tree’s
classification is combined into a final classification through a
majority vote mechanism.

III. HARDWARE ACCELERATION

We now present an overview of the PCIe-based GPU and
FPGA accelerators that we considered for our study and
discuss the overheads of offloading ML model scoring to them.

2



Model Scoring

PCIe 
Interface

Hardware Accelerators

GPU/FPGA

Pre-processed Model/Data

Scoring Results

Scoring 
Input Data

Scoring 
Output Data

Model/Data 
Pre-processing

Data 
Post-processing

Model/Data Post-processed Scoring Results

Host Processes

2

1 CPU Model 
Scoring

Inference query

DBMS Process

External Python Process

Fig. 2: High-level architecture of ML scoring, using CPUs or
hardware accelerators, in SQL Server with Python.

CREATE OR ALTER PROCEDURE predict_iris (@model_id int, @input_query nvarchar(max))
AS
BEGIN
DECLARE @model_binary varbinary(max) = (select Data from models where id = @model_id);
EXECUTE sp_execute_external_script
@language = N'Python'
, @script = N'
import onnxruntime as rt
import pandas as pd
sess_opts = rt.SessionOptions()
sess = rt.InferenceSession(model)

features = ["SepalLengthCm" ,"SepalWidthCm", "PetalLengthCm", "PetalWidthCm"]
inputs = data[features].values[:,:].astype("float32")
inputs = {sess.get_inputs()[0].name: inputs[:,0:4]}

nn_output=sess.run(None,inputs)

OutputDataSet=pd.DataFrame(nn_output[0])
',
@input_data_1=@input_query,
@input_data_1_name = N'data’,
@params = N'@model varbinary(max)',
@model = @model_binary

WITH RESULT SETS (("classid" bigint))
END;
GO

EXEC predict_iris 1,'select * from iris_data'

Retrieve model

Import libraries

Setup inference session

Bind parameters

Return results

Score model

Extract
features, 
prepare 
input data

Query that calls stored procedure

Specify model and input data set

Fig. 3: Example T-SQL query that invokes a stored procedure
to score an ONNX model to classify Iris flowers.

Decision Node

Decision Node Decision Node

Decision NodeLeaf Node Leaf Node Leaf Node

Leaf Node Leaf Node

Sub-Tree

(a) An Example of Decision Tree

Decision Node

Decision Node Decision Node

Decision NodeLeaf Node Leaf Node Leaf Node

Leaf Node Leaf Node

Sub-Tree

Left Node ID Right Node ID Feature Index ThresholdDecision Node

-1 Class ID -1 -1Leaf Node

(b) Decision Tree Nodes Memory Layout

Fig. 4: Decision Tree

A. GPU Accelerator

GPU is a highly parallel multi-core processor that can
efficiently perform compute intensive tasks (e.g., ML training
and scoring) on large blocks of data. We use two high
performance GPU ML libraries, RAPIDS and Hummingbird,
to accelerate random forest model scoring on the GPUs.

RAPIDS is a suite of open source libraries that is designed
based on different data science libraries and workflows to
accelerate ML workloads [27]. Its main components are:
(1) cuDF: used to perform data processing tasks (Pandas like
API [28]) (2) cuML: used to create GPU-accelerated ML
models (Scikit-learn like API) (3) cuGraph: used to perform
graphic tasks (Graph-Theory API). cuDF provides a Pandas-
like API for dataframe manipulation, so when using RAPIDS
for ML scoring, we need to convert the input dataframe
to a cuDF dataframe. The cuDF dataframe is fed into a

cuML model for scoring. Scoring of random forest models in
RAPIDS involves recursively traversing decision tree nodes
based on the condition evaluated at each node. Tree layouts
in a forest are optimized to improve memory performance,
but the strategy is less effective at higher tree depths due to
control divergence across trees [29].

Hummingbird [30] uses a different approach — it converts
traditional ML models (e.g., decision tree, random forest,
and gradient boost models) into tensor computations that can
be offloaded to GPUs for acceleration using popular neural
network frameworks. It parallelly evaluates multiple nodes and
paths in the tree, e.g., using matrix multiplications, instead of
doing a traditional sequential traversal, but may do redundant
computations in the process.

B. FPGA Accelerator

FPGAs consist of a fabric of programmable logic blocks,
specialized resources such as digital signal processors (DSPs),
and a collection of small on-chip SRAM arrays (referred to
as block RAMs) that can be connected via programmable
multiplexers to implement arbitrary logic, computation, and
memory. FPGA-based accelerator implementations can use
very deep and custom data processing pipelines, so they can
perform ML operations with higher efficiency compared to
fixed architectures such as CPUs or GPUs [13]–[21].

There is a large degree of parallelism in random forest
scoring algorithm that can be exploited in the hardware
implementations of a random forest scoring accelerator, to
improve the ML scoring performance. The existing parallelism
is between input samples, different trees in the forest, and
levels of each tree. This causes a high demand for concurrent
memory accesses to read tree parameters in a forest. This
can be well addressed by the abundant of available memory
resources on an FPGA.

To offload random forest scoring to an FPGA-based accel-
erator, we first need to extract the model parameters and send
them to the accelerator to be stored in the FPGA’s memory.

3



IO Unit

Majority Voting

Result Memory
IO Unit

Processing 
Element

Processing 
Element

Processing 
Element

... Tree
Memory

Read Input

Read Tree Node

Evaluate

Read Leaf/
Compute Next
Node Pointer

Records

Fig. 5: Inference Engine Architecture

We consider a specific memory layout for each decision and
leaf node in the forest as shown in Figure 4b. Each node
is represented with four features. First feature of each node
defines the node type, a negative value indicates a leaf node,
otherwise it is a decision node. If the node is a decision node,
then the four features are left node, right node, comparison
attribute, and comparison value. Although the only feature
required for a leaf node is the output class id, we keep the same
memory format for the leaf node to ease the FPGA memory
indexing. As the model gets more complex, the number of
nodes in the forest increases, and the FPGA memory resources
becomes the limiting factor in an FPGA implementation of a
random forest inference engine.

Figure 5 shows our proposed random forest inference engine
architecture. The inference engine includes 128 processing
elements, each processing one of the trees in the forest up to
depth 10. The number of processing elements and tree depth
that can be processed on the FPGA are limited by the available
amount of BRAM and the number of tree nodes that can be
stored on the FPGA. Our memory layout assumes a full binary
tree with no missing nodes. As a result, each tree consumes a
memory footprint equaling 210 words. If the number of trees
is greater than 128, we need to call the inference engine
multiple times to process all the trees, and may need to
store part of the model in FPGA memory, resulting in lower
performance. However, note that the default parameter for the
number of trees in popular ML frameworks such as Scikit-
learn [31] and MADlib [32] is 100. Also, prior works [33] have
shown that for different low-density and high-density datasets,
model accuracy is hard to improve significantly (below 1%)
by increasing the numbers of trees beyond 64.

Our current implementation does not support processing
trees with more than 10 levels, they need to be processed
by the CPU. An extension to our current design can send
the results of processing 10 levels of trees back to the CPU’s
memory so that the rest of the operation, evaluating levels
from depth 10 onward, be done on the CPU.

Before starting the ML scoring, all the model information
(tree nodes) are transferred into the tree memory of each
processing element. Once the outcomes of all trees are ready,
they are passed to the majority voting unit to decide the final

Host Accelerator

Interface

Time (s)

Option 1

Option 2

CH

O O
L L

CA

Fig. 6: Accelerator Offload Overhead

outcome. The output class for each input record is stored into
the result memory. Once all the input records are processed,
the contents of the result memory are transferred back to the
CPU through the I/O interface (i.e., PCIe interface). To process
multiple inputs, we do not need a separate input transfer phase;
our system architecture supports multi-threaded ML scoring
contexts with custom PCIe interface and queue managements
[34]. We can spawn as many threads as required to process
all the input records. Threads are one cycle apart, each thread
(input sample) calls the ML scoring engine one cycle after the
previous thread. This way we can handle millions of scorings
in parallel.

C. Accelerator Offload Overheads

Figure 6 shows two different example hardware backends
for running an ML model scoring operation. In Option 1,
the entire application is run on the host CPU and CH is the
time to complete the scoring on the CPU. In Option 2, the
scoring is offloaded to a hardware accelerator. The difference
between these two options is that in the case of Option 1, all
the data required for scoring is already available in the host
(CPU) memory, while in the case of Option 2, the host CPU
needs to explicitly transfer the input data and the model to
the hardware accelerator’s memory and copy back the results.
O indicates the host offload overhead (the time spent on
configuring the accelerator and setting up the communication
link), L is the data transfer overhead, and CA is the time taken
by the accelerator. Although typically CA < CH , we need to
also include the offloading overheads to determine the overall
model scoring time (also see Section IV-B), which itself is a
part of the end-to-end query time (details in Section IV-D).

IV. EVALUATION

In this section we describe our experimental setup, followed
by a discussion of the overall model scoring time of FPGAs,
and a comparison of the overall scoring time for different
backends—FPGA, CPU, and GPU. We then discuss the break-
down of the overall end-to-end latency for a T-SQL query for
different backends.

A. Experimental Setup

We used two datasets with different number of data features:
1) IRIS [35], which is a multi-class classification dataset with
4 features, 3 classes, and 150 data samples. The IRIS dataset
by itself is small, and so we generated 1M data samples by
replicating the original samples; 2) HIGGS [36], which is a
binary classification dataset with 28 features and 11M data
samples. We used a subset of HIGGS dataset for both training

4



and test. For CPU experiments, we used up to 52 threads on
a dual-socket Intel Xeon Platinum 8171M processor with 26
cores (52 threads) per socket running at 2.6 GHz. For FPGA
experiments we used Intel Stratix 10 GX 2800 on this machine.
For GPU experiments, we used NVIDIA Tesla P100 available
in an Azure NC6s v2-series Virtual Machine.

We used both Scikit-learn [31] and ONNX [24] models
for CPU experiments. All the ONNX models are created by
converting models from Scikit-learn into ONNX using sklearn-
onnx toolkit [37]. For GPU experiments, we used NVIDIA
RAPIDS [27] and Microsoft Hummingbird [38] libraries.
For our FPGA experiments we implemented random forest
inference engine and mapped it to the FPGA implementation,
we extract the ONNX model information and transfer it to the
tree memories on the FPGA through PCIe 3.0 x16. The FPGA
design is clocked at 250 MHz and is programmed only once
for all the experiments with different tree ensemble structures.

B. Overall Model Scoring Time on FPGA

The overall model scoring time on FPGA is the round-
trip latency corresponding to Python code → FPGA scoring
→ Python code, and includes the main time components
described below. We focus on the FPGA-based accelerator as
an example; use of other accelerator substrates would also
include similar components.

1) Input transfer: the time spent on transferring the re-
quired data for scoring to the FPGA. This data includes
model information and the records. In our implemen-
tation, there is an overlap between record transfer and
scoring operation. Hence, input transfer time is only
the time spent on transferring the model information to
the processing elements’ tree memory. (L component in
Figure 6b)

2) FPGA setup: the time CPU spends to set up the FPGA
connection and call the inference engine (O component
in Figure 6b).

3) Scoring: the scoring time on the FPGA, i.e., the compu-
tation time (CA component in Figure 6b).

4) Completion signal: the time overhead of signaling the
task completion from the FPGA back to the CPU through
an interrupt (O component in Figure 6b).

5) Result transfer: the time spent on transferring the results
back to the CPU from the FPGA (L component in Figure
6b).

6) Software overhead: the time CPU spends on calling
different FPGA functions in the software code (O com-
ponent in Figure 6b).

We measured the overall FPGA scoring time for different
combinations of data examples (i.e., from 1 to 1 million
records), model complexities (i.e., 1 tree and 128 trees), and
datasets (IRIS and HIGGS). Figure 7a shows the detailed
breakdown of the model scoring time using FPGA for 1 record,
the different datasets and the different number of trees in the
model. As we can see, by increasing the model complexity,
i.e, number of trees from 1 to 128 or the number of dataset
features (from 4 in IRIS to 28 in HIGGS), the input transfer

(a) 1 record

(b) 1M records

Fig. 7: Overall FPGA model scoring time breakdown as the
number of records changes.

time increases because we need to transfer larger models to
the FPGA. The scoring time also increases for more complex
models and higher record counts. Result transfer time is only
dependent on the number of records, as we get more records
to score, we need to transfer more results back to the CPU
from FPGA. However, FPGA setup, completion signal, and
software overhead remain the same as they are independent
of the model complexity. FPGA setup overhead is less than
completion signal overhead because the former one is done
by setting Control/Status Registers (CSRs) and latter is done
through interrupt. Also we can see that, regardless of model
complexity, for the small number of records, input transfer
time and the software overhead are the dominant components
in the overall model scoring time. Although the scoring itself
is in the order of nanoseconds (ns), the overall time is in
milliseconds (ms) due to the accelerator offloading overheads.

Figure 7b shows the results for 1 million records, the
different datasets, and the different number of trees in the
model. As we increase the number of records from 1 (in
Figure 7a) to 1 million (in Figure 7b), the scoring time (in
the order of tens of milliseconds) dominates the overall FPGA
model scoring time compared to the offloading components. In
fact, FPGA setup, completion signal, and software overheads
stay the same. However, the result transfer time increases as
we need to transfer more number of scoring results back to the
CPU (its increase is trivial compared to scoring time). We can
also see that as the model size grows (1 tree to 128 trees), the
scoring time increases and offloading cost becomes even more
negligible compared to the scoring time and quickly amortizes.

C. Scoring Performance on Different Hardware Backends

In this section, using the latency and throughput of scored
records as the performance metrics we compare three different

5



Color code: CPU GPU FPGA

Number of Trees

N
um

be
r o

f R
ec

or
ds

(a) IRIS

Number of Trees

N
um

be
r o

f R
ec

or
ds

(b) HIGGS

Fig. 8: Speedups of the best-performing hardware over CPU
for model scoring (trees are 10 level deep) for IRIS and
HIGGS dataset. The bottom row (1M, GPU) shows GPU
speedups over CPU for 1M records, for reference.

backends—CPU, GPU, and FPGA for scoring performance.
We compute the throughput metric by dividing the total
number of records over the overall model scoring time on
each hardware backend.

1) Optimal Hardware Backend: In Figure 8, we show the
‘shmoo’ plot for which backend among CPU, GPU, and FPGA
gives us the best performance for a given combination of the
number of trees in the random forest model (X-axis) and the
number of records (Y-axis) for both IRIS and HIGGS dataset.
For each combination we also plot the best achievable speedup
as compared to the CPU. For example, for 1M records and 128
trees, the green cell in the plot for the IRIS dataset indicates
that the FPGA is the best-performing backend and it runs
>54× faster than the CPU. The bottom-most row for IRIS
and HIGGS ‘shmoo’ plots shows the best GPU performance
among GPU-HB and GPU-RAPIDS speedups for 1 million
records and different number of trees as compared to CPU.

Figure 8 shows that offloading ML scoring to an accelerator
is not always the best choice. For a simple model (small
number of trees) or small number of records, i.e., the first
three rows in the tables, we don’t get any performance benefit
from offloading the scoring to an accelerator because the
offloading overhead is the dominant time component in the
overall model scoring time. However, as the model complexity
and/or the number of records increases, by offloading to an
accelerator, we can get >69× speedup in the model scoring
time. Another interesting point to be noted in Figure 8 is that
given that HIGGS has more data features than IRIS dataset and
it generates larger models (more compute-intensive scoring),
even with smaller number of records (1K in HIGGS compared

to 10K in IRIS), offloading to an accelerator is beneficial.
In terms of which accelerator performed better, i.e. GPU vs.

FPGA, we can see that for a random forest with a small model
(single tree), for larger record counts, the GPU can perform
better than the FPGA for IRIS but not for HIGGS. However,
for larger model sizes (tree counts and dataset’s features) and
record counts, the FPGA becomes faster than the GPU for
both IRIS and HIGGS.

In RAPIDS, each thread block on the GPU processes one
data sample, and all threads in a block cooperate in computing
the prediction for that data sample. For each data sample,
the threads load the data sample and the trees are cyclically
distributed among the threads. Each thread computes the
predictions of the trees assigned to it, and returns the predicted
value. At each node in each tree, the result of the condition
evaluation determines the next node to consider in that tree.
Thus, different threads may follow divergent evaluation paths
down the tree, and this may get exacerbated with increasing
model complexity.

Hummingbird, on the other hand, converts decision node
evaluations into tensor computations that are computed in
parallel. An analysis of GPU performance counters with
nvprof profiling tool [39] indicates that the average warp
execution and SM (Streaming Multiprocessor) efficiencies of
most kernels are 100%, or close to that, and much higher than
for some kernels with many invocations in RAPIDS. However,
there were more instructions executed and more L2/DRAM
traffic for Hummingbird. The main contributors to issue stalls
for both were memory dependency (data request), execution
dependency, and other stalls, with memory dependency stalls
usually being the dominant one.

In case of the FPGA, all the required data for scoring (the
model and records) are stored in the FPGA on-chip RAM
(BRAM) upfront, thus there is no additional memory access
overhead. Our FPGA has ∼28.6MB BRAM, whereas our GPU
has 4MB L2 cache on our GPU. For a random forest with 128
trees and dataset with 1M records, the FPGA runs about 7×
(= 54.1/7.5, see Figure 8) and 4.2× (= 69.7/16.5, see Figure 8)
faster than the GPU for IRIS and HIGGS datasets respectively.

2) Scoring Latency: IRIS: Figure 9 shows the overall
scoring latency (in ms) on CPU, GPU, and FPGA for different
numbers of records and model complexities for the IRIS and
the HIGGS datasets. As we mentioned earlier (Section IV-A),
for CPU experiments, we used both ONNX and Scikit-learn
models with 1 and 52 CPU threads. Figures 9a and 9b show
the scoring time for a random forest model with 1 tree, and 6
and 10 level tree depths, respectively (due to on-chip memory
limitation, the maximum tree depth supported on our FPGA
implementation is 10). Similarly, Figures 9c and 9d show the
scoring time for a random forest with 128 trees, and 6 and 10
level tree depths, respectively. In the case of CPU, for 1 tree
and the number of records less than about 5K (using piecewise
linear interpolation), ONNX has a lower scoring latency than
Scikit-learn, but for a larger number of records, Scikit-learn
has a better performance. The reason is that unlike Scikit-
learn, ONNX is not currently optimized for batch scoring [30].

6



Fig. 9: Scoring latency for models with different tree counts and tree levels for the IRIS and HIGGS datasets running on CPU,
GPU, and FPGA. Here CPU SKLearn = Scikit-learn model running on the CPU with 52 threads, CPU ONNX = ONNX
model running on the CPU with 1 thread, HB/RAPIDS = Hummingbird/RAPIDS model running on the GPU, FPGA = ONNX
model running on the FPGA, CPU ONNX 52th = ONNX model running on the CPU with 52 threads.

Thus, in the rest of our analysis, for each number of records,
we select the model with the best performance for the CPU
to compare with the GPU and FPGA numbers.

Sensitivity to the number of records: Figure 9 shows
that for different models (different number of trees and tree
levels), as expected, by increasing the number of records, the
scoring latency increases, and it affects the choice of the back-
end hardware we should use for scoring. As we can see in
Figures 9a and 9b, with a simple model (only 1 tree with
different number of levels), if we have less than 10K records,
CPU has the lowest latency and is the most suitable hardware
for scoring. However, as the number of records increases over
10K, scoring on FPGA or GPU-HB is faster compared to
CPU. The reason is that, for large number of records, the
scoring time is the dominant element in the overall scoring
time (see Figure 7b), which can be greatly accelerated by
FPGA and GPU-HB due to their massively parallel computing
capabilities and deep computation pipelines. For instance, for
1M records, the FPGA and GPU-HB are up to 2.9× and 6.7×
(also see Figure 8, IRIS, 1 tree, 10 level, ‘1M, GPU’) faster
than the CPU-SKLearn, respectively. In this case, even if the
offloading time is high, the large acceleration in FPGA or
GPU-HB results in a reduction in the scoring latency

Sensitivity to the model complexity: In Figures 9c and 9d,
the model complexity is increased by increasing the number
of trees in the forest (from 1 tree to 128 trees). As we can
see, even for a complex model, for less than 1K records,
CPU is still the best hardware back-end to run scoring for the
small number of records (the same trend as in Figure 9a and
Figure 9b with 1 tree). Similarly, as before, for a larger number

of records, the FPGA and GPU-HB performance is better
than that of the CPU. For example, for 1M records, FPGA
and GPU-HB can perform scoring 54× and 7.5× faster than
CPU-ONNX-52th (also see Figure 8, IRIS, 128 trees, 10 level,
‘1M GPU’), respectively. Note that by increasing the number
of trees to 128, the crossover point (where the FPGA/GPU-
HB performance becomes better than the CPU performance)
in Figures 9c and 9d shifts left to 1K records compared to
10K records in Figures 9a and 9b. This is because for a
more complex model, the scoring task is compute intensive,
and it can be significantly accelerated by FPGA/GPU-HB.
Another important takeaway from comparing Figures 9a – 9d
is that as the model complexity increases, the best-performing
accelerator (FPGA) speedup over the CPU also increases, e.g.,
for 1M records, it increases from 2.9× (1 tree, 6 level) to 54×
(128 trees, 10 level, also see Figure 8, IRIS). This is because
CPU is not as good as FPGA in intensive parallel computing
due to the its limited capacity to extract data-level parallelism.

Broadly, from Figure 9, as the model gets more complex
(more trees and levels) or as the number of records increases,
FPGA scoring is faster than GPU and CPU. As we discussed
earlier, this could be due to the GPU’s high cache misses
and memory traffic [40], [41] and CPU’s limited parallel
computation capacity.

HIGGS: In Figures 9e – 9h, we show the scoring latency
for HIGGS dataset, for random forest models with different
combinations of number of trees (1 and 128 trees) and tree
depths (6 and 10 levels). HIGGS dataset has 28 features and
generates a more complex ML model compared to the IRIS
dataset. There are only two output classes for this dataset, thus

7



the model is a binary classifier and is also supported by GPU
RAPIDS Library. Hence, for HIGGS, we used both RAPIDS
and Hummingbird (HB) libraries for the GPU experiments.

Sensitivity to the dataset features: As we can see in
Figures 9e – 9h, with different number of trees, for smaller
record counts, both FPGA and GPU are slower than the CPU
in terms of the scoring times. However, for larger number of
records, the FPGA and GPU are faster than the CPU, e.g.,
for a combination of 1M records and a forest with 128 trees,
GPU-RAPIDS and FPGA scoring times are about 16.5× and
69.7× (also see Figure 8, HIGGS) faster than CPU-ONNX-
52th, respectively. Also, as in IRIS, by increasing the number
of trees (model complexity) from 1 in Figures 9e and 9f
compared to 128 in Figures 9g and 9h, respectively, the GPU-
RAPIDS/HB and FPGA speedup increases from (6.5×, 8.6×)
to (16.5×, 69.7×). These observations are due to the same
reasons explained for the IRIS dataset.

Although we have seen the same trend in the latency graphs
for both IRIS and HIGGS datasets, in the case of the IRIS
dataset the crossover point is higher for both models with
1 and 128 trees (10K, 1K) compared to HIGGS (5K, 500).
The reason is that a dataset with low number of features such
as IRIS generates simpler/smaller models than a dataset with
more features such as HIGGS. Hence, for a simple model
(such as for IRIS), the speedup we get from accelerators
over the CPU is smaller and the offloading overhead is not
amortized for the small number of records. However, even with
smaller number of records, for a complex model (such as for
HIGGS) the overhead can be amortized because the accelerator
speedup is more significant. Another key observation is that
by increasing the number of dataset features, the amount of
GPU/FPGA speedup grows. For example, for 128 trees and
1M records, FPGA and GPU-RAPIDS/HB speedups are about
69.7× and 16.5× for HIGGS dataset compared to 54× and
7.5× in IRIS dataset (also see Figure 8). This is because the
generated model for HIGGS dataset is more complex than the
one generated for IRIS. So we can accelerate scoring more
significantly on the accelerators compared to the CPU with its
more limited computation capability.

Figures 9e – 9h also show the scoring time when using
RAPIDS with GPU. The latency of the RAPIDS model
running on the GPU (GPU-RAPIDS) is very high for small
number of records. The reason is that GPU-RAPIDS has a
separate data pre-processing step to convert the Numpy array
to a cuDF data frame, which takes about 120 ms for our input
size. Hence, for small number of records and a simple model
(1 tree), where the scoring time is less than the pre-processing
time, GPU-RAPIDS fails to deliver any speedup. However, for
a complex model (128 trees) and more than 700K records, it
performs faster than GPU-HB and gets closer to the FPGA as
the time required for the pre-processing step gets amortized
against the complexity of the model and record size.

3) Scoring Throughput: For small number of records, la-
tency is a good metric for measuring performance, but as the
number of records increases, throughput (number of scorings
per second) becomes an important performance metric for

batch scoring. Figures 10a – 10d show the throughput results
in the units of million scoring per second for IRIS dataset
and different hardware backends. As we can see in Figure 10,
the FPGA/GPU-HB throughput is very low for small number
of records, but this throughput increases with an increase in
the number of records. The main reason for this is that by
increasing the input size, we get higher speedup due to the
high parallel computation capacity of the FPGA/GPU-HB, and
the accelerator offloading cost gets amortized.

Figure 10a and Figure 10b show that for a large number
of records (>10K), the GPU-HB and FPGA have a higher
throughput than the CPU-SKLearn (e.g., 6.7× and 2.9×,
respectively, for 1M records) due to their massive parallel
computing capabilities and speedup over the CPU scoring. As
we increase the number of trees to 128 (see Figure 10c and
Figure 10d), GPU and FPGA throughput grows significantly
over the CPU. As we mentioned earlier, this is because
by increasing model complexity, the scoring task becomes
more compute intensive, which can be well accelerated by
FPGA/GPU over the CPU.

As we increase the number of trees, the FPGA throughput
becomes more than all other hardware backends. As the
model size or records count increases, the amount of required
memory to store the model and records increases, which can
result in increased cache misses and memory traffic for the
GPU [40], [41]. For our FPGA implementation, we only used
the on-chip BRAM and thus avoided the high cost of cache
misses and memory accesses.

Figures 10e – 10h show the scoring throughput in million
scorings per second for the HIGGS dataset. As we can see in
Figures 10e and 10f, both FPGA and GPU-HB throughputs
are very close for a simple model with 1 tree. For the record
count less than 10K, the CPU throughput is also close to FPGA
and GPU-HB throughputs. On the other hand, for a larger
number of records (e.g., 1M), due to the massive parallel com-
puting capabilities of the accelerators, FPGA and GPU-HB
throughputs are 8.6× and 6.5× more than the CPU-SKLearn’s
throughput. Also, as the number of trees in the model in-
creases (see Figure 10g and Figure 10h), FPGA throughput
becomes significantly higher compared to the other hardware
backends. FPGA throughput is about 4.2× (= 69.7/16.5, also
see Figure 8, HIGGS, 128 trees) better than GPU-RAPIDS
throughput which is due to its deep computation pipelines and
low latency BRAM access. With larger models and input sizes,
the increase in data footprints can negatively impact cache
performance on the GPU [40], [41]. GPUs with larger caches
can improve the slopes of the GPU performance curves and
shift the crossover points in Figures 9 and 10. For records more
than 700K, GPU-RAPIDS throughput starts getting better than
GPU-HB. This observation implies that for larger numbers of
records the fixed cost of data pre-processing step in GPU-
RAPIDS gets amortized better than that in GPU-HB.

D. End-to-End Query Time

Figure 11 shows the expected end-to-end time breakdown
for the T-SQL query that includes ML model scoring assuming

8



Fig. 10: Scoring throughput for models with different tree counts and tree levels for the IRIS and HIGGS datasets running
on CPU, GPU, and FPGA. Here CPU SKLearn = Scikit-learn model running on the CPU with 52 threads, CPU ONNX =
ONNX model running on the CPU with 1 thread, HB/RAPIDS = Hummingbird/RAPIDS model running on the GPU, FPGA
= ONNX model running on the FPGA, CPU ONNX 52th = ONNX model running on the CPU with 52 threads.

0

5

10

15

20

25

CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA

1 Tree, 1 Record 128 Trees, 1M Records 1 Tree, 1 Record 128 Trees, 1M Records

Iris Higgs

La
te

n
cy

 (
se

c)

Prep model Prep data Scoring Python invocation Data transfer

Fig. 11: End-to-end T-SQL query latency breakdown, assum-
ing single-threaded CPU execution.

single-threaded CPU execution. The components of the end-
to-end query time are as follows (details in Section II):

• Model pre-processing: this includes time taken for de-
serializing the ML model.

• Data pre-processing: this includes time taken for ex-
tracting features and preparing the input data for scoring.

• Model scoring: this is the overall scoring time on the
FPGA (Section IV-B).

• Python invocation time: this includes time taken for
launching the external Python process.

• Data transfer time: this includes time taken for the
(transparent) copying of data and results from SQL Server
to the external Python process and vice versa.

For all three backends, we observe that for a small model,
i.e., small tree count and small number of records, e.g., random
forest with one tree and one record, the scoring time is very
small and the dominant elements are the Python invocation

and model pre-processing times. However, as the number of
records and model complexities increase, the scoring time be-
comes the dominant component in the case of CPU execution.
Offloading the scoring step to an GPU/FPGA can significantly
decrease the scoring time, and in turn make data transfer time
the dominant time component in the overall query time. For
example, with 1M records of HIGGS dataset, we expect to
see a query speedup of about 2.6×, which is beneficial, but
less than for just the ML scoring part due to data transfer and
other components of the query processing time.

E. Future research
We point out that there are two sets of overheads that affect

the overall T-SQL query time—the hardware backend over-
heads (setup and data movement), and the application/analytics
pipeline overheads. While the former has been considered in
prior works [17], [21], [42], [43], the latter has not been well
studied so far in the context of accelerating end-to-end analyt-
ics and model scoring pipelines. To the best of our knowledge,
this paper is the first to study these overheads (see Figure 11).
There is another difference between the two types of over-
heads: the former includes more intrinsic hardware limits
(e.g., PCIe bandwidth limits), whereas the latter includes more
software-level and customizable overheads in the way that the
pipelines have been set up. A tighter integration of the ML
scoring functionality within the DBMS would reduce a lot of
the application overheads [4], [5], [7], but an external Python
invocation could allow for more customizations including in
the choice of the ML scoring engine and accelerator. Similarly,
the different accelerator integration options—tightly-coupled,
loosely coherent/non-coherent coupled, and decoupled, need

9



to be carefully studied to determine the integration that is
best suited for ML scoring within the DBMS. In addition, the
traditional techniques—pipelining, parallelism, etc., should be
explored when designing the accelerator micro-architecture.
Broadly, any future research on performance models, acceler-
ator development, and scheduling should consider both types
of overheads for optimal system design and operation.

V. RELATED WORK

ML training/scoring with FPGA acceleration. There is an
ever growing popularity in using ML algorithms to extract
and process the information from raw data. ML applications
require intensive computations and large memory bandwidth,
but CPUs fail to achieve desired performance due to their
limited resources. As a result, various FPGA-based accel-
eration solutions have been proposed for ML algorithms.
[13]–[20], [44], [45]. FPGAs provide the advantages of high
performance, high energy efficiency and reconfigurability.

Unfortunately, most of these FPGA-based ML accelerator
designs only focus on the computations on the FPGA and the
speedup of the offloaded inference task, and don’t consider the
communication/offloading overheads between the FPGA and
CPU in their performance analysis. In this paper, we look at
the complete picture and analyze the performance considering
all the time components in end-to-end time of the application.

FPGA acceleration of data processing pipeline. Prior
works have explored FPGA utilization to accelerate the
compute-intensive stages of pipelined applications and its
effects on the end-to-end application time. Owaida et al., [21]
integrate FPGA-based inference in the search engine pipeline
to accelerate route scoring stage. They report the end-to-end
route scoring time on CPU and FPGA with time breakdowns
(invocation overhead, data transfer, tree loading, compute,
result transfer). They also discuss the scalability of FPGA-
based ML inference with regard to model complexity (tree
ensemble size) and input request size. The target application
in their paper is different from the one investigated in our
paper. Their measured FPGA time breakdown is also limited
to a single model and dataset dimension, and there is no
comparison with GPU performance.

Catapult [44] exploits FPGA acceleration for Bing web
search ranking application, which is a large datacenter work-
load. In this application, query-specific features are generated
from documents, processed, and then passed to a machine
learned model to determine how relevant the document is to
the query. In that work, the FPGA was used to accelerate
feature generation stage of the pipeline and not scoring.
Brainwave [46] leverages Catapult to accelerate deep neural
networks for real-time scoring. The target application inves-
tigated in our paper is different and we additionally compare
FPGA and CPU performance results with GPU results.

Other prior works [2], [3], [6] extend database engines with
FPGAs to accelerate database operators for analytic queries.
The target application in these papers is the same as the one
studied in our paper. However, they do not measure the end-
to-end application time and also FPGA time breakdown for

different model complexities and dataset dimensions. Also,
there is no comparison with GPU performance. Eryilmaz et
al. [43] study FPGA acceleration of aggregation operators, but
do not consider machine learning applications in their work.

AI tax. Richins et al. [23] emphasize on the need for the
end-to-end performance analysis of AI workloads and discuss
the need to carefully account for the AI tax. They find that
storage and network bandwidth become major bottlenecks
with increasing AI acceleration. Hence, evaluating standalone
AI accelerator without considering the full application environ-
ment is misleading. They report the breakdown of end-to-end
inference time including pre-processing, inference, and post-
processing times. However, they do not report the scoring time
breakdown for different hardware accelerators such as FPGAs
and GPUs. They only emulate an AI accelerator inference
time, by calls to sleep function and dividing sleep times by
the speedup factor, to find the impact of faster AI on the data
center and on the workload as a whole.

VI. CONCLUSION

In this paper, we studied the speedups and overheads for
CPU, GPU and FPGA acceleration of random forest models,
as part of analytic query processing in Microsoft SQL Server
with its external Python process execution capability. The
benefits of offloading ML scoring to accelerators depends on
the hardware backend, model complexity, and data size as
well as on how closely the ML scoring pipeline is integrated
with the DBMS. Broadly, for models with lower complexity
and for smaller data sizes, it is preferable to use the CPU
and not a dedicated accelerator for scoring, while for models
with higher complexity and large data sizes it is better to
use FPGA-based accelerator for ML scoring. Future research
on performance models should account for application and
pipeline overheads, in addition to accelerator overheads, for
forecasting cost-benefit tradeoffs with acceleration.

VII. ACKNOWLEDGMENTS

We thank Blake Pelton and Rajas Karandikar for FPGA
setup and tooling advice, and Matteo Interlandi and Karla Saur
for Hummingbird usage advice. Zahra did this research work
during a summer internship at the Microsoft Gray Systems
Lab (GSL). We thank Carlo Curino, GSL team members, and
anonymous reviewers for their valuable feedback on this work.

REFERENCES

[1] R. Kune, P. K. Konugurthi, A. Agarwal, R. R. Chillarige, and R. Buyya,
“The anatomy of big data computing,” Software: Practice and Experi-
ence, vol. 46, no. 1, pp. 79–105, 2016.

[2] D. Mahajan, J. K. Kim, J. Sacks, A. Ardalan, A. Kumar, and H. Es-
maeilzadeh, “In-RDBMS hardware acceleration of advanced analytics,”
arXiv preprint arXiv:1801.06027, 2018.

[3] D. Sidler, Z. István, M. Owaida, K. Kara, and G. Alonso, “doppiodb:
A hardware accelerated database,” in Proceedings of the 2017 ACM
International Conference on Management of Data, 2017, pp. 1659–1662.

[4] A. Agrawal, R. Chatterjee, C. Curino, A. Floratou, N. Godwal, M. Inter-
landi, A. Jindal, K. Karanasos, S. Krishnan, B. Kroth, J. Leeka, K. Park,
H. Patel, O. Poppe, F. Psallidas, R. Ramakrishnan, A. Roy, K. Saur,
R. Sen, M. Weimer, T. Wright, and Y. Zhu, “Cloudy with high chance
of DBMS: a 10-year prediction for enterprise-grade ML,” in Proceedings
of Conference on Innovative Data Systems Research (CIDR), 2020.

10



[5] K. Karanasos, M. Interlandi, F. Psallidas, R. Sen, K. Park, I. Popivanov,
D. Xin, S. Nakandala, S. Krishnan, M. Weimer, Y. Yu, R. Ramakrish-
nan, and C. Curino, “Extending relational query processing with ML
inference,” in Proceedings of Conference on Innovative Data Systems
Research (CIDR), 2020.

[6] G. Alonso, Z. Istvan, K. Kara, M. Owaida, and D. Sidler, “doppiodb 1.0:
Machine learning inside a relational engine.” IEEE Data Engineering
Bulletin, vol. 42, no. 2, pp. 19–31, 2019.

[7] “Native scoring with PREDICT statement in SQL Server,”
http://docs.microsoft.com/en-us/sql/t-sql/queries/predict-transact-
sql?view=sql-server-2017, 2019.

[8] Redshift ML. [Online]. Available: https://aws.amazon.com/blogs/big-
data/create-train-and-deploy-machine-learning-models-in-amazon-
redshift-using-sql-with-amazon-redshift-ml

[9] Big Query ML. [Online]. Available: https://cloud.google.com/bigquery-
ml/docs

[10] “SQL machine learning documentation,” https://docs.microsoft.com/en-
us/sql/machine-learning/?view=sql-server-ver15.

[11] “Gartner Report on Analytics,” gartner.com/it/page.jsp?id=1971516.
[12] “SAS Report on Analytics,” sas.com/reg/wp/corp/23876.
[13] M. Owaida, H. Zhang, C. Zhang, and G. Alonso, “Scalable inference of

decision tree ensembles: Flexible design for CPU-FPGA platforms,” in
2017 27th International Conference on Field Programmable Logic and
Applications (FPL), 2017, pp. 1–8.

[14] M. Owaida, A. Kulkarni, and G. Alonso, “Distributed inference over
decision tree ensembles on clusters of FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 12, no. 4, Sep. 2019.

[15] F. Amato, M. Barbareschi, V. Casola, and A. Mazzeo, “An FPGA-based
smart classifier for decision support systems,” in Intelligent Distributed
Computing VII, F. Zavoral, J. J. Jung, and C. Badica, Eds. Cham:
Springer International Publishing, 2014, pp. 289–299.

[16] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Accelerating
a random forest classifier: Multi-core, GP-GPU, or FPGA?” in 2012
IEEE 20th International Symposium on Field-Programmable Custom
Computing Machines, 2012, pp. 232–239.

[17] M. Owaida, H. Zhang, C. Zhang, and G. Alonso, “Scalable inference of
decision tree ensembles: Flexible design for CPU-FPGA platforms,” in
2017 27th International Conference on Field Programmable Logic and
Applications (FPL), 2017, pp. 1–8.

[18] A. Elkanishy, D. T. Rivera, P. M. Furth, A. A. Badawy, Y. Aly, and
C. P. Michael, “FPGA-accelerated decision tree classifier for real-time
supervision of Bluetooth SoC,” in 2019 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), 2019, pp. 1–5.

[19] J. Oberg, K. Eguro, R. Bittner, and A. Forin, “Random decision tree
body part recognition using FPGAs,” in 22nd International Conference
on Field Programmable Logic and Applications (FPL), 2012, pp. 330–
337.

[20] Y. R. Qu and V. K. Prasanna, “Scalable and dynamically updatable
lookup engine for decision-trees on FPGA,” in 2014 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), 2014, pp. 1–6.

[21] M. Owaida, G. Alonso, L. Fogliarini, A. Hock-Koon, and P.-E. Melet,
“Lowering the latency of data processing pipelines through FPGA
based hardware acceleration,” Proceedings of the Very Large Data Base
Endowment, vol. 13, no. 1, p. 71–85, Sep. 2019.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
2017, pp. 1–12.

[23] D. Richins, D. Doshi, M. Blackmore, A. T. Nair, N. Pathapati, A. Patel,
B. Daguman, D. Dobrijalowski, R. Illikkal, K. Long, D. Zimmerman,
and V. J. Reddi, “AI tax: The hidden cost of AI data center applications,”
arXiv preprint arXiv:2007.10571.

[24] J. Bai, F. Lu, K. Zhang et al., “ONNX: Open Neural Network Exchange,”
https://github.com/onnx/onnx, 2019.

[25] “pickle — Python object serialization.” [Online]. Available: https:
//docs.python.org/3/library/pickle.html

[26] F. Psallidas, Y. Zhu, B. Karlas, M. Interlandi, A. Floratou, K. Karanasos,
W. Wu, C. Zhang, S. Krishnan, C. Curino, and M. Weimer, “Data
science through the looking glass and what we found there,” CoRR,
2019. [Online]. Available: http://arxiv.org/abs/1912.09536

[27] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in Python:
Main developments and technology trends in data science, machine

learning, and artificial intelligence,” arXiv preprint arXiv:2002.04803,
2020.

[28] W. McKinney, “Data structures for statistical computing in Python,” in
Proceedings of the 9th Python in Science Conference, S. van der Walt
and J. Millman, Eds., 2010, pp. 51 – 56.

[29] J. Zedlewski, “RAPIDS forest inference library: Predic-
tion at 100 million rows per second,” 2019. [Online].
Available: https://medium.com/rapids-ai/rapids-forest-inference-library-
prediction-at-100-million-rows-per-second-19558890bc35

[30] S. Nakandala, K. Saur, G.-I. Yu, K. Karanasos, C. Curino, M. Weimer,
and M. Interlandi, “A tensor compiler for unified machine learning
prediction serving,” in 14th USENIX Symposium on Operating Systems
Design and Implementation(OSDI), 2020.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar, “The
MADlib analytics library: Or MAD skills, the SQL,” Proceedings of the
Very Large Data Base Endowment, vol. 5, no. 12, p. 1700–1711, Aug.
2012.

[33] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees in
a random forest?” in Proceedings of the 8th International Conference
on Machine Learning and Data Mining in Pattern Recognition, ser.
MLDM’12. Berlin, Heidelberg: Springer-Verlag, 2012, p. 154–168.

[34] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1295–1309.

[35] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[36] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles in
high-energy physics with deep learning,” Nature communications, vol. 5,
no. 1, pp. 1–9, 2014.

[37] sklearn-onnx: Convert your scikit-learn model into onnx. [Online].
Available: http://onnx.ai/sklearn-onnx/

[38] S. Nakandala, K. Saur, G. Yu, K. Karanasos, C. Curino, M. Weimer,
and M. Interland, “Taming model serving complexity, performance and
cost: A compilation to tensor computations approach.”

[39] Nvidia profiling tools. [Online]. Available: https://docs.nvidia.com/cuda/
profiler-users-guide/index.html#nvprof-overview

[40] J. Browne, D. Mhembere, T. M. Tomita, J. T. Vogelstein, and R. Burns,
“Forest packing: Fast parallel, decision forests,” in Proceedings of the
2019 SIAM International Conference on Data Mining, 2019, pp. 46–54.

[41] N. Asadi, J. Lin, and A. P. De Vries, “Runtime optimizations for tree-
based machine learning models,” IEEE transactions on Knowledge and
Data Engineering, vol. 26, no. 9, pp. 2281–2292, 2013.

[42] M. S. B. Altaf and D. A. Wood, “LogCA: A high-level performance
model for hardware accelerators,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17.
Association for Computing Machinery, 2017, p. 375–388.

[43] Z. F. Eryilmaz, A. Kakaraparthy, J. M. Patel, R. Sen, and K. Park,
“FPGA for aggregate processing: The good, the bad, and the ugly,” in
International Conference on Data Engineering (ICDE), 2021.

[44] D. Chiou, “The Microsoft Catapult project,” in 2017 IEEE International
Symposium on Workload Characterization (IISWC), 2017, pp. 124–124.

[45] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Mas-
sengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou,
and D. Burger, “A cloud-scale acceleration architecture,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2016, pp. 1–13.

[46] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-scale
DNN processor for real-time AI,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, ser. ISCA ’18.
IEEE Press, 2018, p. 1–14.

11


