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Summary—Neural networks can be used as function ap-
proximators to improve the energy efficiency, performance,
and fault-tolerance of traditional computer architectures.
To maximize these improvements the granularity of the
function must be as large as possible. This work-in-
progress abstract explores the lower limits of neural net-
work function approximation by replacing individual float-
ing point multiplications with multilayer perceptron neural
networks. We show that this fine-grained approximation
technique provides application dependent output accuracy
for multiple applications in the PARSEC benchmark suite
across varying network topologies.

I. INTRODUCTION

Neural networks are commonly employed to perform
tasks (e.g. object recognition) that are difficult to for-
mulate using traditional computational methods. Recent
work has demonstrated the extensibility of neural net-
works to approximate more traditional computing tasks.
For example, neural networks have been used to approx-
imate functions in high-level computing languages im-
parting power, performance, and/or fault-tolerant benefits
without sacrificing substantial accuracy. Esmaeilzadeh
et al. have achieved power and performance benefits
by approximating regions of frequently accessed code
in applications (e.g. Sobel filters in an edge detection
application) with multilayer perceptron (MLP) neural
networks [1]. Temam has shown that CMOS-based hard-
ware implementations of neural networks implementing
machine learning applications are inherently robust to
CMOS-specific hardware faults [2]. Chen et al. have
shown that a selected subset of the Recognition, Min-
ing, and Synthesis (RMS) applications in the PARSEC
benchmark suite [3] can be approximated using neural
networks of varying types and topologies while preserv-
ing application accuracy [4].

We present a work-in-progress exploration of the
lower limit of the granularity of functions that can be
approximated with neural networks. We demonstrate the
use of neural networks to approximate individual floating
point multiplications in a subset of the applications in
the PARSEC benchmark suite. Reasonable application
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output accuracy is maintained. For clarity, we refer to
an application without neural network function approx-
imators as “traditional” and an application with neural
network function approximators as “neuralized.”

II. APPROACH

As a case study, we replaced all floating point
multiplications in three applications of the PARSEC
benchmark suite (blackscholes, bodytrack, and
swaptions) with MLP neural networks. These net-
works were implemented with and trained offline using
the Fast Artificial Neural Network (FANN) library [5].

A. Training

Due to the intrinsic difficulties associated with training
a network to accurately approximate values that span
several orders of magnitude (as is the case with floating
point numbers), we first trained an MLP network to per-
form floating point multiplication on range (−1, 1). The
network was trained on a data sweep from (−1, 1) with a
step size of 0.1 and validated every 1000 training epochs
using a validation dataset comprised of a data sweep
over the same range, (−1, 1), with a smaller step size of
0.01. In total, five networks with 3-7 hidden nodes were
trained to approximate multiplication while minimizing
mean squared error. Floating point multiplication inputs
were scaled up or down, depending on their magnitude,
to lie on range (−1, 1) and then fed to the MLP network.
MLP outputs were scaled by the inverse product of their
input scalings. For example, to compute 50× 0.04 = 2,
the inputs were scaled by 1/100 and 10, respectively. The
output was scaled by 100/10. The use of this scaling
procedure allowed the network to achieve low error
relative to the magnitude of its output and circumvented
the difficult task of training an MLP on inputs and
outputs over the full range of floating point numbers. An
equally effective scaling method could be implemented
by directly operating on mantissas to reduce overhead
due to power of 10 scaling. This scaling procedure is
extensible to other functions so long as the nature of
the function is known and the scaling procedure can be
identified.
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Fig. 1: Percentage of neuralized outputs within a tolerance of traditional outputs shown for two-layer MLP networks implementing floating
point multiplication with 3-7 hidden nodes. An output of 100% has all outputs within tolerance of the traditional outputs.

B. Testing

Three applications in the PARSEC benchmark suite
(blackscholes, bodytrack, and swaptions)
were neuralized by manually replacing multiplications in
each application’s source code with function calls to one
of our trained MLP networks. The accuracy of the final
output of each neuralized application was then evaluated
with respect to its traditional counterpart.

III. RESULTS

Figure 1 shows the percentage of accurate outputs
for blackscholes, bodytrack, and swaptions
using neuralized multiplications implemented on MLP
networks with 3-7 hidden nodes. An accurate outputs is
one that lies within a tolerance of its corresponding tradi-
tional output. Increasing the number of hidden nodes de-
creases neural network mean squared error and increases
the accuracy of blackscholes and swaptions.
Bodytrack shows robustness to the network topology
used. One multiplication in the swaptions application
was not neuralized due to the necessity that its output
be bounded on range (0, 1). Additionally, only multipli-
cations visible in benchmark source code (not those in
libraries) were neuralized.

IV. DISCUSSION

The choice of performing floating point multiplica-
tions using this neuralized approach is driven by the fact
that floating point multiplications are not generally used
in critical control flow or memory indexing operations
where erroneous outputs are tantamount to application
and/or system failure. The abundance of floating point
neuralization candidates at small function granularities
provides an easier path to the neuralization of generic
applications. This bottom-up approach does, however,

require potentially difficult user or compiler driven iden-
tification and vetting of neuralization candidates. The ne-
cessity of such an identification process is evidenced by
the range of accuracies exhibited for different neuralized
applications using different network topologies.

These results imply that there exists a soft lower bound
on the granularity of functions suitable for neuralization.
Nevertheless, a neuralized application executed with an
MLP trained floating point unit designed using present
day CMOS techniques requires more time and energy
to run than using traditional hardware. Emerging tech-
nologies (e.g. memristors) may allow for the energy
efficient implementation of hardware neural networks
making fine-grained function neuralization practical. Al-
ternatively, increasing the granularity of the approxi-
mated function from one operation to a large group of
operations can yield appreciable power and performance
benefits [1]. However, since application accuracy is not
catastrophically compromised by neuralization at the
granularity of floating point units, this work demon-
strates an alternative bottom-up starting point for full
application approximation. Automatic identification and
neuralization of applications remains an open problem.
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