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In this article, we describe how to ease memory management between a Central Processing Unit (CPU)
and one or multiple discrete Graphic Processing Units (GPUs) by architecting a novel hardware-based
Unified Memory Hierarchy (UMH). Adopting UMH, a GPU accesses the CPU memory only if it does not find
its required data in the directories associated with its high-bandwidth memory, or the NMOESI coherency
protocol limits the access to that data. Using UMH with NMOESI improves performance of a CPU-multiGPU
system by at least 1.92× in comparison to alternative software-based approaches. It also allows the CPU to
access GPUs modified data by at least 13× faster.
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1. INTRODUCTION

In a growing number of platforms, accelerators are being leveraged to increase the per-
formance of the applications and, at the same time, reduce energy and cost [Hameed
et al. 2010]. Graphic Processing Units (GPUs) have become the accelerator of choice,
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given their ability to process thousands of concurrent threads in a wide range of appli-
cations [Harrison and Waldron 2007; Vijaykumar et al. 2015; Harish and Narayanan
2007; Stuart and Owens 2011].

The class of applications that are currently best suited to run on a GPU are highly
scalable and tend to have a large degree of data-level and task-level parallelism. As
the size of the data sets and number of processing steps present in these applications
continue to increase, we will quickly outgrow the computing resources provided by a
single GPU. Efficient coupling of multiple discrete GPU devices is an attractive plat-
form for processing large data sets, especially to the High-Performance Computing
(HPC) community. A multi-GPU system can provide substantial time savings by pro-
viding higher processing throughput and enabling more flexible management of system
resources such as memory bandwidth. Previous work [Schaa and Kaeli 2009; Kim et al.
2011; Nere et al. 2011] has shown that we can significantly improve the throughput of
HPC applications when combining multiple GPUs, and, therefore, there has been an
increased focus on how best to utilize and program multiple GPUs to address this trend
in a range of applications [Kim et al. 2014a; Al-Saber and Kulkarni 2015; Cabezas et al.
2015; Mohanty and Cole 2007].

The major GPU vendors, NVIDIA and AMD, have also heavily invested in bundling
multiple discrete GPUs into a unified system. There are many devices commercially
available that utilize dual GPU devices. Among the most commercialized designs are
NVIDIA Tesla Dual GPU Kepler K80 [NVIDIA 2015b], which includes two identical
Tesla GK210 GPUs connected to each other through an on-board Peripheral Com-
ponent Interconnect (PCI) switch, and AMD Radeon R9 295X2, which marries two
AMD Radeon R9 Series GPUs on one card using Hypertransport link technology (a
direct point-to-point link, similar to NVLink) [AMD 2014a]. Finally, Super Micro Inc.
has introduced SuperWorkstation [SuperMicro 2016], which utilizes four GPUs. These
GPUs are connected to each other through the PCIe 3.0 of the workstation itself but are
managed (for load-balancing and multitasking) through NVDIA’s multi-GPU Maximus
Technology [NVIDIA 2012].

In comparison to single-GPU architectures, multi-GPU architectures introduce new
challenges. One of them is efficient data sharing and memory management between
multiple GPUs. Given our vision to enable multiple GPUs to collaboratively execute
the same application, the GPUs should be able to share the data required by that
application. One common approach used to simplify access to application data and
improve the performance is to provide a shared address space across the host (CPU)
and devices (GPUs). One of the first moves toward memory unification was NVIDIA’s
Unified Virtual Addressing [NVIDIA 2015a]. This solution provides explicit Application
Program Interface (API) function calls, cudaHostAlloc and cudaMemCpy, that allow the
user to manage data allocated on either the CPU or the GPU(s). As shown in Figure 1(a),
using cudaHostAlloc, the user can pin data used by the GPU to the host (CPU) memory
(we will refer to the CPU’s memory as host memory throughout the rest of this article).
Any GPU access to that data is performed using a zero-copy operation [Harris 2013].
This means the L2 cache units in the GPU can directly read/write a single cache line
from/to the host memory without involving the GPU’s main memory.

One major drawback of this approach is the underutilization of the GPU’s high
memory bandwidth. In zero-copy, accesses are made to the host memory. This is while
today’s GPUs have a large memory space and can provide bandwidth that is much
higher than the bandwidth present on host memory [Agarwal et al. 2015] (i.e., High-
Bandwidth Memory (HBM) interface, targeted for GPUs, provides more than 100GB/s
bandwidth per Dynamic Random-Access Memory (DRAM) stack, with multiple stacks
integrated per chip [AMD 2015b]). Another drawback of zero-copy is the use of pinned
pages to keep the data used by the GPU in the host memory until the end of the
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Fig. 1. Current approaches used to manage memory for GPU applications.

GPU kernel execution. This constrains the amount of physical memory available to the
operating system.

As an alternative, CUDA’s cudaMemCpy API function call allows the user to explic-
itly copy data from the host memory to the GPU memory, as shown in Figure 1(b). Using
this memcpy approach, the GPU program can leverage the high-bandwidth memory
provided on a GPU. Also, memory pages are not required to remain pinned in the
host memory. However, a copy of the application’s entire address space is performed
between the CPU memory and the GPU memory (transfers between devices are usu-
ally at the granularity of OS pages [Lake 2014]), which takes a long time to complete.
Until the data copy is finished, kernel execution is stalled on the GPU. While it is
possible in some cases to overlap kernel execution and data transfers through soft-
ware (using multiple contexts or streams), it still comes with the cost of some added
programming complexity. Finally, similarly to zero-copy, this approach also relies on
the user to manage the data copies explicitly, thereby further increasing programming
complexity.

Delivering an efficient memory management system for a multi-GPU platform is a
challenge, especially if management is the responsibility of the programmer. To remove
this burden, NVIDIA introduced Unified Memory (UM) [Harris 2013], which enhances
the Unified Virtual Address by using the CUDA runtime to transfer data between
the host and devices in a user-transparent fashion. However, it has been shown that
Unified Memory can sometimes degrade the performance of applications when both the
CPU and the GPU share data during program execution. These performance issues are
reported by Li et al. [2015] and Pai [2014] for the NVIDIA CUDA 6 runtime, and the
same performance issues are present in CUDA 7. Of the multiple runtime inefficiencies
reported, the following are the most serious.

First, Unified Memory does not check whether the GPU actually needs all the allo-
cated variables that are being transferred from the CPU/host memory, resulting in a
number of unneeded memory transfers. Second, the current software-based UM mech-
anism presently does not support multiple GPUs. Data is allocated on only one device
at the time of allocation, even if multiple CPU or GPU devices are available [Negrut
2014; NVIDIA 2015a], leading to slower memory operations and performance degra-
dation. Third, software UM always assumes that the GPU data is modified [Pai 2014].
This means that on every synchronization between the CPU and the GPU, all the GPU
data need to be copied from the GPU memory to the CPU memory, even if the same data
is available on the CPU side. This also leads to redundant data transfers. A software
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UM implementation relies heavily on synchronization to provide coherency between
the CPU and the GPU, and, as a result, many redundant data transfers are performed
only to provide coherency. This is another challenge present in systems that employ
one or more GPU devices.

These inefficiencies in user-based memory management (zero-copy and memcpy) or
the software-based Unified Memory are not limited to frameworks based on CUDA.
Starting from version 2.0, OpenCL also provides Shared Virtual Memory to allow
pointer sharing between the host program and the kernel, allowing for similar zero-
copy and memcpy memory management. Similarly to software-based UM, in the current
version of OpenCL driver, memory copy is still used as the synchronization mechanism.
HSA, which is utilized by the latest commercial GPUs by AMD, features a Unified
Memory Space to improve programmability by allowing the GPU to use memory spaces
allocated by the malloc or new functions/methods. However, the merit of avoiding data
copies is only applicable to fused CPU-GPU devices, and redundant data copies are
still being performed by the underlying HSA runtime (and, consequently, the device
drivers) on discrete GPUs [Sun et al. 2016].

In this article, we present a novel hardware-based approach to manage UM that is
precisely designed to avoid these redundant data transfers. Our design establishes a
hierarchical structure between the CPU and one or more GPUs, treating the GPU’s
main memory banks as cache units. This is very similar to how traditional single-
GPU systems execute their programs. In traditional systems with one GPU, the host
program offloads the compute to that GPU. Similarly, in our system the Scalable Kernel
Execution (SKE) runtime [Kim et al. 2014a] provides the view of a single virtual GPU
from many GPUs in the system and offloads the compute workload to many GPUs.
Also, as a single GPU has the guarantee that it can find its data in the global memory,
our hierarchical design also guarantees that our multiple GPUs can find their required
data in this memory hierarchy. The worst-case scenario is that the data is in the host
memory, the last level of the hierarchy.

This unique vision for memory management provides a single logical view of memory
between the CPU and GPU devices as well. Our proposed approach, named Unified
Memory Hierarchy (UMH), introduces hardware to carry out the actual copy, transpar-
ent to the user. This hierarchy is constructed by introducing Stacked Memory Directo-
ries (SMDs) for each GPU’s memory bank. Our SMD design can redirect accesses to the
memory where the data reside, whether the address is in the main memory of the GPU
or the host memory. The SMDs can also maintain coherency information of the data
that are stored in GPU memory. This hierarchical view avoids redundant transfers by
limiting the number of transfers from the CPU to the GPU memory to only those cache
lines that are requested by the GPU. The transferred data are cached in GPU memory
for the GPU to use in the future. Similarly, we need a more efficient mechanism to
give the CPU coherent access to the data that are computed by the GPU. Coherent
access is supported by incorporating a Host Memory Directory (HMD) component in
each controller in the host memory. The HMD tracks the addresses accessed by the
GPUs and, jointly with SMDs, can ensure the coherency of the host memory shared
between one or more GPUs and the CPU.

To further support coherency, we leverage the NMOESI coherence protocol [Schaa
2014; Ubal and Kaeli 2015], originally designed for Accelerated Processing Units (APUs
or fused system). NMOESI provides coherence between a CPU and a GPU that are on
the same die, reducing synchronization costs between devices. Using NMOESI along-
side our Unified Memory Hierarchy, a synchronization operation results in a transfer
of modified data by the GPU devices (unlike the software-based UM mechanism imple-
mented by the CUDA runtime), while unmodified data are not needlessly copied back
again to the CPU.
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Fig. 2. Logical view of the interconnects between the CPU and the GPU and their associated memories.

The contributions of this work include the following:

—We perform a thorough study of the limitations of the zero-copy and memcpy ap-
proaches, considering systems with multiple GPUs and the SKE [Kim et al. 2014a].

—We describe a novel hierarchical unified memory architecture for systems that uti-
lize any number of GPU devices. Our UMH keeps the memory management process
transparent to the programmer, while reducing the number of redundant data trans-
fers as compared to software UM.

—We explore the benefits of our new memory hierarchy while leveraging the NMOESI
coherence protocol to support coherency and fast synchronization between a CPU
and multiple discrete GPU devices. We modify NMOESI to explore the benefits of
variable sized sub-blocks in different levels of the memory hierarchy, allowing our
system to achieve better performance with little additional cost.

2. TARGET SYSTEM AND EVALUATION FRAMEWORK

We consider an x86-based architecture for the CPU [Shanley 2010] and AMD’s South-
ern Islands architecture as our baseline GPU device. We believe that our design and
evaluation are transferable to many other CPU and GPU architectures. The targeted
GPU for our evaluation is the AMD Radeon HD 7850, which has 16 compute units
(CUs) clocked at 800MHz [AMD 2014b]. The HD 7850 is designed for general-purpose
computing [AMD 2012].

The Radeon HD 7850’s CUs can execute 256 threads from one workgroup at a time.
CUs are equipped with L1 caches that are connected to four L2 caches using a crossbar
network. The application address space is interleaved across the L2 units, addressable
on a cache line granularity [AMD 2012], and each L2 unit is connected to a separate
main memory controller.

We use three-diminsional- (3D) stacked DRAM memories for the main memory of
the GPU architecture. 3D-stacked DRAM memory is used in the design of AMD’s next-
generation high-performance memory. We have associated each memory controller of
our target GPU with a single-stacked DRAM. We leverage stacked DRAM memo-
ries, since it is evident that GPU technology (and Field-Programmable Gate Arrays
(FPGAs)) are moving toward this direction [AMD 2015a; Dorsey 2010; Gupta 2015].
Figure 2 provides a logical view of the interconnections between the CPU and one
GPU and their corresponding memories. Our designs and analysis are inspired by the
HBM technology [AMD 2015a; Standard 2013] but are also applicable to packetized
die-stacked memory interfaces (e.g., Hybrid Memory Cubes—see Section 5). Two dif-
ferent interconnection technologies, PCIe [Lawley 2014] and NVLink [NVIDIA 2014],
are considered in this work.

We use Multi2Sim 4.2 simulator [Ubal et al. 2012] as part of our evaluation frame-
work. We modified Multi2Sim to model the SKE runtime workgroup scheduler proposed
by Kim et al. [2014a] for OpenCL applications. The SKE scheduler allows multiple dis-
crete GPUs to be viewed as a single virtual GPU by the host program. We have also
extended Multi2Sim to implement our proposed unified memory hierarchy between
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Table I. Workloads from the AMD APP SDK (The Number in Parentheses Indicates
the Input Argument to the Benchmark)

Abbreviation Application Access Pattern Access Locality
BSch Black Scholes (2097152) Streaming Spatial (store)
DCT Discrete Cosine Transforms (1024×1024) Streaming Spatial (load/store)
DH 1D Haar Wavelet Transform (2097152) Streaming Spatial (load/store)
FW Floyd-Warshall (256) Memory Intensive Irregular, Mostly sparse

(Temporal/Spatial regions)
FWT Fast Walsh Transfrom (262144) Compute Intensive Irregular, Sparse
Hist Histogram(2048×2048) Streaming Spatial (load)
MM Matrix Multiplication (1024×1024×1024) Memory Intensive Temporal/Spatial
MT Matrix Transpose (1024×1024) Streaming Spatial (load), Temporal

(store)
MTw Mersenne Twister (131072×4) Streaming Spatial (load/store)
RD Reduction (2097152) Streaming Spatial (load/store)
RS Radius Sort (2097152) Memory Intensive,

Iterative
Temporal/Spatial

(load/store)
SC Simple Convolution (512×512) Memory Intensive Temporal/Spatial (load),

Spatial (store)
SF Sobel Filter (1024×768×3) Iterative Spatial, Temporal via

iteration (load/store)
SLA Scan Large Arrays (2097152) Streaming Spatial (load/store)

the CPU and multiple GPU devices. Additionally, Multi2Sim is enhanced to model the
main memory system of the CPU and the GPU devices. This is accomplished by mod-
eling the components of the memory system, that is, controller, channels, and stacked
DRAMs (banks). The NMOESI protocol is also extended to support varying block sizes
in one memory hierarchy. We evaluate applications from the AMD-APP SDK bench-
mark suite [AMD 2016] (see Table I). This suite covers a wide spectrum of memory
access patterns, optimized to AMD’s Southern Islands GPUs.

3. MEMORY MANAGEMENT USING UNIFIED MEMORY HIERARCHY

As described in Section 1, in user-level memory management approaches (i.e., zero-
copy and memcpy), the GPU chip uses the off-chip interconnect to retrieve data from
the memory of another device. The memcpy approach performs transfers with higher
latency versus zero-copy and blocks the kernel until data transfer through the intercon-
nection medium is complete. Furthermore, the user is responsible for synchronizing the
data between the host and device memory. This synchronization requires an additional
memory copy operation.

The Unified Memory model, as presented by NVIDIA, performs the management
through the graphics driver and CUDA runtime libraries [Harris 2013], transparent
to the user. With NVIDIA UM, the data are always allocated in the memory of an
active GPU. Therefore, unlike memcpy, there is no initial memory copy to move the
data from the host memory to GPU memory. The use of Unified Memory also enables
the CPU to make changes to the data. The problem with the current software-based
implementation is the large number of redundant memory copies between the host
memory and GPU memory. Pai [2014] and Li et al. [2015] studied this issue using
multiple micro-benchmarks.

An example is described in more detail in Figure 3. Three sets of redundant data
copies are identified in this example. The first redundant transfer is from the GPU
to host memory in order to initialize a data structure, z, which is 160 pages in size.
However, if z has already been allocated in host memory, then this memory transfer
was not required. The second transfer copies the initialized z to GPU memory again,
even though this value is not needed by the GPU kernel. The last redundant transfer is
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Fig. 3. The timeline of a CUDA application on a CPU-GPU system, managed by software-based UM.

Fig. 4. Block diagram showing our Unified Memory Hierarchy design with SMDs, using four GPU devices.

the final transfer of z from GPU memory to host memory, even though z was initialized
by the CPU in the host memory and never used by the GPU. The main drawbacks
of using software-based UM include: (1) the significant number of redundant memory
copies and (2) lack of support for CPU-multiGPU systems (i.e., systems with a single
CPU and multiple discrete GPU devices).

Here, we offer a hardware solution that can better manage memory in the system.
Our hardware-based UMH approach extends the typical memory hierarchy of a GPU
device (which consists of L1s, L2s, and GPU memory) by adding an additional level.
We treat the GPU’s main memory as another level of cache for the host memory, as
shown in Figure 4. By adopting this design, a request from the L2 will first interrogate
GPU memory. If the GPU memory does not hold the data (equivalent to a cache miss),
then the request is redirected to the host memory, which holds the entire dataset at the
start of the application. The requested data are then sent back to the GPU memory,
where it resides to serve any future accesses. With this solution, the hardware can
keep track of the data in the system and can carry out transfers between the CPU and
GPU memories.

By caching the requested data in the GPU memory, applications (e.g., MM, RS, and
SC—see Table I) can benefit from the temporal locality. Also if GPU memory receives
multiple consecutive cache lines with each request (we consider the practicality of a
larger transfer granularity between devices in Section 5), then a number of applica-
tions (e.g., DCT, DH, Hist) can potentially benefit from spatial locality present. This
also reduces the number of requests to the host memory. This reduction in the number
of requests applies to all GPU devices in a CPU-multiGPU system. This is impor-
tant, especially since each request will traverse the interconnect, which, if shared, can
degrade overall system performance.

Our novel UMH solution pairs a SMD component with each memory controller of the
GPU, which (1) intercepts load and store requests to the GPU memory, (2) issues a data
request in case a miss occurs in the GPU memory, and, most importantly, (3) stores
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coherency related information to maintain coherency between a CPU and multiple GPU
devices in the system. Figure 4 shows how SMDs are interconnected in a system with
four GPUs. Our hardware UMH can resolve the issues observed in the software-based
unified memory. First, the data are always allocated in host memory, so initialization
of the data by the CPU comes for free. Second, UMH allows multiple GPUs to use
the host memory as their shared main memory, so it is easy to leverage the UMH in
systems with multiple GPU devices. This is not currently supported by software-based
UM. Third, UMH supports the implementation of directory-based coherence protocols,
which also leads to a significant reduction in coherency traffic between devices.

3.1. Alternative Memory Management Approaches for CPU-multiGPU Systems

We evaluate our design with two alternative solutions. As stated earlier, there are no
user-transparent UM solutions for multiGPU systems, and the following solutions are
only alternatives for multi-GPU systems, but only if users manually change their host
program using API calls.

3.1.1. ZeroCopy Approach for Multi-GPU Systems. Considering the zero-copy operations
described in Section 1, a request from an L2 cache in a GPU can traverse the PCIe bus
(or other interconnects) to the host memory to retrieve the data instead of acquiring
the data from the memory of the GPU. This can overwhelm the bandwidth of the host
memory, while the high bandwidth of GPU memory can remain under-utilized. In a
system that has multiple GPUs, there can be even a larger demand for data stored
in the host memory because all of the L2 caches on every GPU are only accessing the
host memory for data. This may lead to saturation of the host memory’s bandwidth
and result in high interconnect latency (multiple GPUs will compete to read data from
host memory).

3.1.2. MemCpy Approach for Multi-GPU System. An alternative solution that will effec-
tively utilize the high-bandwidth memory of the GPU in CPU-multiGPU systems is to
explicitly allocate separate data ranges of the application’s address space on separate
GPUs using memcpy software API calls. This means no two GPUs have the same data
in their memories. By distributing data evenly across the memories of multiple GPUs,
we can allow the GPU to access some of the required data through its high-bandwidth
memory. However, if the GPU requires the data that are present in another GPU’s
memory, it will need to issue a zero-copy request to that GPU. This solution was ex-
amined by Kim et al. [2014a]. We compare this memcpy approach for CPU-multiGPU
systems with our UMH approach in Section 6.

3.2. Unified Memory Hierarchy and Paging

Our UMH design has been specifically tailored to ease memory management between
a CPU and one or more GPU devices by sharing a unified address space. To support
a virtual unified address space in a multi-GPU system, we have to consider a virtual-
to-physical translation mechanism within the memory hierarchy. Fortunately, current
state-of-the-art GPUs already account for the virtual-to-physical translation.

AMD and Intel [Boudier and Sellers 2011; Abramson et al. 2006] leverage an In-
put/Output Memory Management Unit (IOMMU) that contains large Translation
Look-aside Buffers (TLBs) and Page Table Walkers (PTWs) for address translation.
The IOMMU is placed along side the memory controller. The main advantage of virtu-
ally addressed GPU caches is that performing an address translation is not necessary
until a cache miss occurs. Nonetheless, this scheme has many issues related to address
synonyms and homonyms that lead to significant performance degradation [Kim et al.
1995]. Alternatively, Pichai et al. [2014] propose dedicating a single 128-entry four-port
TLB with non-blocking and PTW scheduling logic for each CU. Power et al. [2014] also
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propose to use a TLB for each CU, while using a shared page walk cache and a shared
PTW between the CUs.

Our UMH design can fit perfectly with either case. An address received by the SMDs
indexes into addresses that are already translated from virtual to physical addresses,
and, hence, the UMH design can leverage the programmability benefits of virtual
memory with no additional cost.

As mentioned earlier, the SMD and HMD are the main components in our UMH
design. The main design decisions for implementing SMD and HMD involve creating
solutions that minimize the required storage for the tag and coherency information.
However, we need to identify, beforehand, what the information is that needs to be
stored for UMH in the these directories. In the next section, we describe the concept
of coherency in a CPU-multiGPU system and briefly introduce the coherence protocol
utilized by our UMH, identifying the amount of information we need to store in the
UMH directories.

4. COHERENCY IN UMH

As stated in the CUDA C programming guide, Unified Memory attempts to optimize
memory performance, but maintaining coherence between global processors (CPU and
GPU) is “its primary requirement, ahead of performance” [NVIDIA 2015a]. Prior eval-
uations of software-based UM have also shown that runtime issues exist due to the
large number of memory transfers (many of which are redundant [Pai 2014]) between
devices, in order to maintain a consistent view of the data.

By equipping each stacked DRAM with an SMD that contains a cache directory, we
can support a directory-based cache coherency protocol. The SMDs become responsible
for tracking the location of each cache line within the GPU memory and maintaining
necessary coherence-related information. Equipping each stacked DRAM with inde-
pendent SMDs allows them to behave as independent cache modules.

Today’s GPU devices consider the notion of non-coherent operations. In these sys-
tems, a store instruction generates a non-coherent access, while an atomic store opera-
tion is coherent. The NMOESI protocol [Schaa 2014; Ubal and Kaeli 2015] additionally
introduces non-coherent states to support non-coherent memory accesses, while using
the M state of the MOESI protocol (a common coherency standard protocol for multi-
core CPU architectures) for coherent store operations. With a non-coherent access to
a cache line from a compute unit, data will transition to the non-coherent state (a
non-exclusive state), which means it is not required to maintain the latest state of the
data, unless it is specifically required for synchronization.

4.1. Leveraging The NMOESI Protocol

In a traditional coherent memory system, load and store operations translate to non-
exclusive and exclusive accesses, respectively. Adding the N-state, a non-coherent store
will be treated as a non-exclusive access, meaning that the non-coherent access gener-
ates the same coherency traffic as a load access and only needs to ensure that no other
cache has the same block in the exclusive state.

The key benefit of supporting non-exclusive memory requests is that we can reduce
the coherence traffic as compared to exclusive requests. An exclusive coherent access
from a compute unit must invalidate all copies of that cache line in the memory hier-
archy. This guarantees that no other compute unit can modify a copy of that block at
the same time. This is while a non-exclusive non-coherent store only updates the copy
of the cache line that is local to the compute unit. Supporting non-exclusive accesses
allows each compute unit to make modifications to the cache line data without having
to send out any coherence update/invalidation to other compute units.

Table II shows the complete set of possible state transitions for NMOESI using
the representation introduced by Martin [2003]. Shaded cells represent the changes
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Table II. State Transitions Defined by the NMOESI Protocol

needed to support the N-state. The left column shows all possible states, the middle
three columns represent actions triggered by processing memory requests, and the
right three columns show requests initiated internally in the memory hierarchy.

The shaded column labeled n-store shows the consequence of a cache line being
updated by a non-coherent store. For this particular operation, a coherence-related
request (read-request) is sent only if the cache block does not exist in the cache (I state).
This is while for store operations, which are exclusive coherent stores, the cache has
to respond with coherence-related messages if the cache line is in one of four states O,
S, I, or N. The first row describes the possible transitions for a block in state N, which
looks very similar to the transitions in the row for state S. The only difference between
these state transitions is that an eviction and a write request initiated for a block in
the N state generates a write-back to the lower-level cache.

One attractive feature of the NMOESI protocol is that it is already a superset of the
MOESI protocol. This means every state of the MOESI protocol (which is generally used
for multicore CPUs) is already covered by the NMOESI protocol. In a multicore CPU,
each cache line in the L1 and L2 caches requires 3 bits to maintain the MOESI states
(five states). Supporting NMOESI on the CPU caches does not require any additional
bits since the 3 bits can cover up to eight states (NMOESI has only six states). From the
NMOESI prospective, there is no difference between CPU and GPU cache units, and
the only thing that matters is the state of the cache blocks within cache units. The state
transitions described in Table II account for all possible NMOESI state transitions of
a cache block, independent of whether the cache block is used by the CPU or the GPU.
This allows our UMH design to be compatible with systems that utilize a multicore
CPU as the host.

NMOESI only focuses on coherency and does not provide any ordering by itself. Pro-
viding an ordering for a CPU-multiGPU system requires additional hardware/software
support. GPUs generally exhibit relaxed consistency, which is easy to support [AMD
2012; Schaa 2014]. The strictest memory model for a multicore CPU in the CPU-
multiGPU system is sequential consistency. Being the superset of the MOESI protocol
has another practical benefit for NMOESI in regards to managing consistency. Any
mechanism that supports consistency together with the MOESI protocol on the CPU
side can also support consistency with NMOESI.

4.1.1. Example of Utilizing NMOESI in a CPU-multiGPU System. Figure 5 presents an ex-
ample of how a system with two GPUs can leverage NMOESI to manage coherency
between devices and the CPU. This example illustrates one of the most commonly used
features of the NMOESI protocol in our work. Other NMOESI features include the fol-
lowing: cooperative execution, non-coherent operations for the CPU, and maintaining
true coherency for the GPU [Schaa 2014]. NMOESI is utilized to support a system with
any number of GPUs, based on our Unified Memory Hierarchy design. In this example,
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Fig. 5. Leveraging NMOESI in CPU-multiGPU system.

all the compute units and cores within the GPU and CPU system request the same
cache line.

As shown in Figure 5(a), CU0 of the GPU0 issues a non-coherent write operation for
the cache line ( ). The request traverses the GPU memory hierarchy down to reach
the appropriate SMD ( ). The SMD intercepts the request and performs a lookup
in its directory. Since the data are not present in the GPU’s memory (and hence in
the directory), the request is forwarded by the SMD to host memory ( ). A second
component, the HMD, resides between the memory controller and the DRAM of the
host memory. The HMD receives the request, locates the requested data, and directs it
to the requesting SMD ( ).

As shown in Figure 5(b-1), when CU31 of GPU1 issues a non-coherent store op-
eration to the same cache line ( ), the request is intercepted by the SMD ( ) and
redirected to the appropriate HMD ( ). The HMD has been updated by the sharers of
the cache line (the SMD of GPU0) in the previous request, so it performs a read re-
quest to the SMD of GPU0 ( ). However, unlike the transitions in the MESI or MOESI
coherence protocols, this transaction only updates the coherence information for the
cache line in the cache units of GPU0 (identical to the same transactions that a load
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access initiates), and the L1 cache of CU0 in GPU0 is not required to provide the latest
data to its L2 cache or SMD or to the requester GPU1 (the data are in non-coherent
state). The L2 cache in GPU0 only responds with an acknowledgment of a receipt of
the update ( ), while the HMD provides the data to CU31 of GPU1 ( ).

In Figure 5(b-1), the HMD device is responsible for providing the data to the re-
questing SMD of GPU1 ( ) during the read (resulting from a non-exclusive write
request). As the number of GPU devices in the design increases, the load on the HMD
devices can increase as well. The HMD devices have to consistently provide the data
to multiple requesting SMDs. While this pressure on the HMD is significantly less
than that for zero-copy, it can still be high. Alternatively, peer-to-peer transfer be-
tween GPU devices can be leveraged (Figure 5(b-2)) to allow the GPU that owns the
data (the cache line is in the E, O, or M states) to provide the data to the requesting
GPU, reducing the load on the HMD. In this case, the request from the SMD of GPU1
to the HMD is forwarded to the SMD of GPU0 ( ). The HMD requests the SMD of
GPU1 to listen for data from GPU0 ( ), and the SMD from GPU0 ultimately provides
the data to the requesting SMD ( ). Upon finishing the data transfer, the SMD from
GPU0 will provide the necessary information to update the sharer field of the HMD,
while the SMD for GPU1 provides the data to upper cache levels ( ). Our analysis
suggests that on a multiGPU system with 4 GPUs, the performance improvement
achieved by peer transfer is 5% on average, in comparison to a system without the peer
transfer.

Figure 5(c) shows how a CPU core can access data that are modified by the GPU
devices. By performing an exclusive store ( ), the state of the cache line changes to
Modified or M. When performing this exclusive operation, a write request ( ) is made
through the hierarchy to the shared host memory. The HMD holds information about
the sharers of the requested address and sends invalidation to these sharers (the
appropriate SMDs of the two GPUs). Each SMD forwards the invalidation request
to the higher-level L1 cache (through L2), which holds the data in the non-coherent
state. Each L1 cache ( ) responds to the invalidation with data through the memory
hierarchy. The data are received from different GPUs and merged ( ) by the HMD using
a byte-mask, which will be discussed later in this section. The data are invalidated in
the cache levels of both GPUs during this process. The HMD forwards the merged data
to the CPU ( ). These data are now coherent and ready for modification by the CPU.
The CPU requires synchronization to have coherent read access to the updated data.
We discuss the possible options for synchronization later in this section.

4.1.2. Merging Using a Byte-Mask. One hardware cost of supporting non-coherence is the
added dirty byte-mask required to combine non-coherent modified blocks. This support
is required for GPU systems since they allow for non-coherent access to data. This
byte-mask is needed since non-coherent data will need to be merged at some point to
provide a coherent view of the data. For multiGPU systems, where multiple GPUs can
have non-coherent access to the same data, this hardware support is necessary as well.
This feature is very typical in GPU design, for instance, the HBM technology features
a multi-purpose bit for each byte of data in the die-stacked memory [Standard 2013]. If
the HBM is used for GPUs, then this bit can be used to store the write data byte-mask.
The alternative purpose of this bit is to store the error correction code. This extra bit
per byte amounts to 12.5% overhead in terms of DRAM memory space.

If such space is not provided, then additional space is required for the byte-mask.
To reduce this space overhead, multiple bytes of data can be represented with a single
dirty byte-mask bit instead of using 1 bit per byte. The tradeoff of working at a coarser
granularity is that smaller or non-aligned accesses cannot be accounted for, and, there-
fore, these accesses must use regular coherent stores (e.g., if each bit in the byte-mask
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represents two bytes, then stores to a single byte must be coherent). The performance
tradeoffs of representing multiple bytes per bit are discussed by Schaa [2014], and it
is shown that 4 bytes per bit is a good tradeoff since the performance degradation of
the entire AMDAPP SDK suite does not exceed 2%. With a 1-bit byte-mask per 4 bytes
of data, the byte-mask memory space overhead for the GPU and the host memories
amounts to 3.12%.

4.2. Reduction in Synchronization Cost

Synchronization between the CPU and the GPU (or multiple GPU devices) is one of
the main requirements of the memory management system. Each memory manage-
ment technique uses a different mechanism to synchronize data between the GPU and
the CPU. A software-based UM uses extensive copies to provide consistency between
the GPU and the CPU devices. This means each synchronization requires the entire
modified dataset to be flushed from the GPU caches to the GPU memory (known as the
Final-Flush) and then copied to the host memory. Additionally, the data that were not
changed by the GPU may also be copied back from GPU memory to the host memory,
even if the host memory has the exact same copy of the data.

In the zero-copy approach (see Section 3.1), the modified data in the cache hierarchy
of each GPU need to be flushed (i.e., Final-Flush) to the host memory directly and do
not require a copy from GPU memory to the host memory. In the memcpy approach
(see Section 3.1), the modified data have to be flushed (i.e., Final-Flush) to the GPU
memory after kernel execution. Then the host application copies the data from the
GPU memory to the host memory. This copy involves specific buffers that are filled
with the modified data of the executing kernel.

In our approach, an easy way to synchronize the CPU and GPU devices is to flush
the modified contents of the GPU memory hierarchy (states M and N) at the final stage
of the kernel execution. Similarly to the method performed by the zero-copy approach,
a final flush pushes the contents of the memory modules to the host memory, so later
they do not require any data copies. The main difference between our UMH approach
and the zero-copy approach is, when using UMH, the contents of the L2 are first flushed
to the DRAM memory of the GPU, and then the modified contents of GPU memory are
flushed to the host memory.

While this method has a lower cost than synchronization with the memcpy and
software UM approaches, it is only comparable to or slightly worse than the zero-
copy approach. However, leveraging both the NMOESI protocol and our UMH allows
for a unique and fast way of enabling concurrency between the GPUs and the CPU,
which avoids flushing and extensive data copying. We name this approach the dynamic
synchronization.

4.2.1. Dynamic Synchronization in UMH. We can leverage compiler assistance with our
UMH design to allow the CPU to dynamically synchronize only the cache lines as-
sociated with the data that it requires at this current instance in order to continue
application execution, instead of copying the application’s entire data space. The com-
piler should be aware of whether the CPU is requesting an address that is non-coherent
(its data are used by the GPU), so it can produce an exclusive access request to this ad-
dress, followed by a load. One possible implementation of the exclusive access request
is to generate a store to this address with a size of zero bytes, which flushes all copies
of the cache lines associated with that address (i.e., that are in state N) from all cache
units and GPU memories within the memory hierarchy of all the GPU devices.

Our CPU-multiGPU hierarchy can greatly benefit from this feature. As we discuss
later in Section 5, we choose to use a granularity larger than a single cache line for data
transfers between the host memory and the GPU memory. We refer to this granularity
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Fig. 6. The flushing mechanisms provided by NMOESI for Unified Memory Hierarchy. (a) A synchronization
is performed before the CPU is allowed to use the computed data by the GPU; (b) a compiler-assisted load
flushes only the single cache line of the computed data that CPU requires; (c) same as (b) but a larger
granularity of the data is flushed from the memory of the GPU devices to the host memory.

as the secondary block size. For every compiler-assisted dynamic synchronization of
a single cache line, a larger secondary cache block is synchronized between the two
devices, allowing the CPU to benefit from spatial locality.

Figure 6 shows how the CPU can retrieve data from the GPU using our unified
memory hierarchy and NMOESI. Figure 6(a) shows the timeline for CPU accesses to
the data, resulting from a flush of all the GPU’s non-coherent data to the host memory.
Figure 6(b) shows an alternative timeline if dynamic synchronization of a single cache
line is used and how CPU accesses lead to flushing of a single cache line from the
hierarchy of the GPU device(s). Figure 6(c) is similar to the timeline for dynamic
synchronization, but the synchronization is performed at a coarser granularity. We
show the benefits of using this approach to reduce the synchronization cost in Section 6.

5. DESIGN OF SMD AND HMD

One responsibility of the SMD is to redirect the requests that are issued from upper
levels of the memory hierarchy (e.g., the GPU’s L2 cache) to the host memory whenever
the GPU’s stacked DRAMs do not hold the requested data. In order to know whether
the requested data are available in the stacked DRAMs, each SMD should be equipped
with a Static Random-Access Memory (SRAM) lookup table. The SMD decodes the
requested address and, based on the tag, locates the row buffer where the data reside.
The SMD maintains tag information for each cache line stored in the stacked DRAM.
Each incoming request is decoded into the three typical cache indexing fields: (1) the
tag, (2) the index, and (3) the offset. The SMD module looks up the cache line stored in
the decoded index. If a cache line is found and the tag matches, then the cache line is
available in the DRAM, so the request is a hit. Otherwise, the request is redirected to
off-chip host memory.

The other responsibility of the SMD is to maintain coherence information related
to each cache line in order to maintain the coherency between the CPU and one or
more GPU devices. For the NMOESI protocol, each cache block requires 3 bits to
represent the six states (Non-coherent, Modified, Owned, Exclusive, Shared, or Invalid);
�log2(n+1)� bits are required to identify the owner field, where n is the number of caches
in the upper level); and nadditional bits are required for the sharer field [Ubal and Kaeli
2015; Schaa 2014]. In our target GPU (AMD’s Southern Islands GPU architecture),
each L2 cache is connected to a dedicated memory controller, so each cache line in the
SMD requires a 1-bit owner field and no sharer field.
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Fig. 7. Possible formats for the entries in the SMD. (a) Typically, each 64B cache line requires 36 bits of
associated data, making the required space unmanageable. (b) We implement sub-blocking for a directory-
based coherence protocol. A block of n 64B cache lines only requires 35 bits for the tag and coherence data,
and each of the n cache lines only requires 1 bit to identify whether its owned by the upper level.

Fig. 8. The impact of selecting a larger secondary block-size on area and look-up latency of the SRAM table
for 1GB stacked DRAM.

Given the large size of the stacked DRAM, we can store a very large number of cache
lines in DRAM. For example, a 1GB stacked DRAM can store 16M 64B cache lines.
Since the SMD has to maintain a tag for each stored cache line, the memory required
for storing the tag becomes unmanageable. This is due to the size of the tags in a 64-bit
architecture. The directory for a direct-mapped, inclusive, cache can hold 16M sets. The
size of the tag field, t, is calculated using the following equation: t = 64−s−o− p, where
s is 24 bits, which is the required number of bits to represent the sets, o is the cache-line
offset (6 bits), and p is for the extra 2 bits due to partitioning the memory space among
four separate stacked DRAMs (see Section 4). So the tag is 32 bits long. Figure 7(a)
identifies the information that has to be stored in a single entry of the SMD. The space
required to hold 36 bits per cache line is 72MB for a single 1GB stacked DRAM. This
large amount of data cannot be stored in the SRAM memory, so the alternative is to
determine methods to store the tag alongside the cached data within the row buffers of
the stacked DRAM, which reduces the effective capacity of the stacked DRAM [Jevdjic
et al. 2014; Loh and Hill 2011; Kim et al. 2014b].

Instead of storing each cache line in the SRAM separately, we can combine cache lines
in a larger secondary cache block. This technique is know as sub-blocking [Kadiyala
and Bhuyan 1995]. This allows us to manage memory at a coarser granularity (e.g., a
4KB page), which will reduce both tag overhead and coherence information overhead
significantly. Using this approach, we only need to maintain coherence information
for a secondary cache block. As shown in Figure 7(b), the only information required
within the entry is the secondary cache block tag, and the owner bit per cache line to
identify whether the cache line (sub-block of the secondary cache-block) is owned by
the upper-level L2.

Figure 8 presents the effects of varying the secondary block size on area and latency
of the SMD’s SRAM, as obtained by Cacti in 32nm technology [Shivakumar and Jouppi
2001]. The smaller secondary cache block size requires larger SRAM lookup tables. As
we increase the size of the secondary cache block (and, consequently, the number of
cache lines it contains), the area and lookup latency of the lookup table is reduced.
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Fig. 9. Design space exploration of different secondary cache-block sizes and its impact on the performance
of the CPU-multiGPU system.

Figure 9 presents the impact of different secondary cache block sizes on the execution
time of applications run on a CPU-multiGPU system with four discrete GPUs, with
NVLink connections between devices. As we increase the size of the secondary block
size to 4K, we see a general performance improvement for most of the applications
(as seen in the Geometric Mean (GM) column). The main reason for the performance
improvement is that a larger chunk of data is moved from the slow DDR host memory
to the very fast stacked DRAM of the GPU. Therefore, a large number of accesses
from the GPU to the SMD find their data in this faster memory module due to spatial
locality. However, as we increase the block size from 4KB to 8KB and 16KB, we see
that performance starts to degrade. This is due to the interconnection network latency.
Larger secondary cache blocks take longer to traverse the interconnect between the
CPU and the GPU (i.e., the serialization latency of a 8K page on a link with 16 bytes
per cycle bandwidth is 512 cycles, while a 1K page traverses the same link in 64 cycles).

Outlier applications that suffer from the change in the secondary block size are
Floyd-Warshall (FW) and Fast-Walsh Transform (FWT). Both applications possess poor
scalability (in terms of performance) as we increase the block size since they exhibit
irregular access patterns and lack spatial locality. Increasing the secondary cache block
size just increases the load latency (and interconnect traffic). Applications such as
Matrix Multiplication (MM) and Radix Sort (RS) load data from addresses in memory
that have large strides. So performance is improved as the secondary cache block
becomes large enough (as large as the stride) to effectively prefetch the next required
data.

Based on these results, we set the secondary block size to 4KB. Figure 10 shows the
final design of our SMD component. In this figure, the directory control unit within the
SMD updates the coherency information for the incoming blocks, updates the state of
the sub-blocks based on the coherent requests received by the L2 cache, and redirects
requests to data that do not reside in the stacked DRAM to the lower levels of the
memory hierarchy.

5.1. Page Faults and Eviction from GPU Memory

In our evaluation, we pin GPU data to the host memory so page faults do not lead
to a replacement of the page that is being used by the GPU. However, our design can
handle page faults if the required support is provided. If pinned pages are not utilized,
then the access generated to HMD has to be able to trigger a page table walk in host
memory. We suggest implementing a hardware PTW for the host memory, since (1) a
hardware PTW will deliver better performance than a software version of the same
and (2) a hardware PTW does not need to run OS code (presently, GPUs cannot run
OS code) [Pichai et al. 2014]. So an HMD miss can trigger a page walk in host memory
through the PTW, but miss handling does not require significant hardware support,
since the last level TLB of the CPU device can also trigger page faults. In the case of
a page fault, prior to page replacement, all the secondary cache blocks associated with
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Fig. 10. Design of an SMD component for each
stacked DRAM.

Fig. 11. The size of each HMD and SMD for dif-
ferent stack sizes in a system with two HMDs
and four GPUs.

the replaced page have to be evicted from every GPU in the system and flushed to the
host memory.

While the cost of evicting a secondary cache block (which requires invalidation of
all the cache lines within the cache block) can be identified as a concern, our analysis
suggests that the invalidation of large secondary cache blocks has minimal impact
on performance (no secondary cache block is evicted from the GPU memory until
flush time, if page pinning is employed). The main reason is due to the large size of
GPU memory, which ensures that an eviction does not occur due to a capacity miss.
Additionally, a large number of sets are available through the SMD, which helps to
avoid conflict misses, since secondary cache-blocks are rarely assigned to the same set.

5.2. Design of the HMD

The HMD slightly differs from the SMD in the GPUs. HMD is a SRAM-based memory,
similar to the SMD design. It can either be on-board with the host memory or placed
non-intrusively between the host memory and the communication medium intercon-
necting other devices. Unlike SMDs, HMDs require both sharer and owner fields. The
HMD has n bits to track the sharers of the blocks with the secondary block sizes. The n
is the number of SMDs that receive their data from that HMD. For example, if our sys-
tem has two separate memory modules for the host memory, the data are partitioned
between these two memory modules (and two HMDs), so half of the SMDs in the entire
system (two of four of the SMDs on each GPU) are connected to each HMD. The HMD
also requires �log2(n + 1)� bits per secondary cache block to identify which SMD is the
owner of that block. However, no coherency state bits are required for the secondary
cache blocks. More importantly, there are no tag fields for the cache lines in the HMD,
as the data should be physically available in the CPU memory.

Figure 11 shows the required size of the HMD and SMD components (in bytes) for
different stack sizes for a system with four GPUs and two HMDs. As we increase the
size of the stacks, more blocks can be fit in a single stack, so we will need more space
in both the SMDs and HMDs to store the associated data of each block. However, the
increase in size of the HMD is not as significant as in the SMD components due to the
reasons noted above. By adding the HMD to the design of the host memory, now two
accesses are required to the host memory. But since one access is to the SRAM-based
HMD, which has a latency of less than 0.5ns, it does not impact the performance of the
host memory access. This low latency feature of HMD is due to its size, which is much
smaller than SMD.
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5.3. Required Modifications

Our implementation also involves two small modification to the GPU memory system.
First, as shown in Figure 5, the last level cache of the CPU becomes a coherency
point. This means we require a new directory for the LLC to maintain the coherency
information of the data shared by the CPU and GPU devices. However, the size of this
directory is very small (7KB), since the LLC itself is a small memory unit (2MB).

Second, each stacked DRAM caches a larger 4KB secondary cache block from the
host memory. In the case where we choose a smaller interleave factor (e.g., 1K) for
the L2 caches and the memory controllers of the GPU, the same page can be cached
in all four stacked DRAMs, even though the L2 caches will only request 1/4 of cache
lines within that 4KB block. By changing the interleave factor in the L2 and memory
controllers to match the granularity of the secondary cache block, we allow only a single
stacked DRAM to buffer a single secondary cache block. This change is also necessary
to allow all the cache lines within a secondary cache block to have the same tag, which
translates directly to an index in the directory. Our analysis shows that the impact of
using a different interleave factor for the L2 caches is not significant. The performance
degradation for switching from a 64B interleave to 4KB in a system with one GPU is
5.4%, which is compensated by the benefits of the UMH, as presented in the evaluation
section.

5.4. Discussion on SMD Placement

The GPU’s on-chip memory controllers are in charge of issuing DRAM commands to
the stacked DRAM banks. The SMD should communicate with the memory controller
in order to receive requests from other components (i.e., L2 caches, or other devices
in the system) and to send data. So the most convenient placement for the SMD is
on-chip, alongside the memory controller. However, our SMD occupies 7mm2, and so
adding four SMD components to any chip increases the overall area of that chip by
more than 28mm2.

Alternatively, the SMD can be integrated into the base logic die of the stacked DRAM.
The area overhead of including the SMD on the base logic die is not substantial, espe-
cially considering the large area of the logic die (which is approximately the same size
as one DRAM die). There are two types of 3D-stacked memory designs that have been
the most commercially successful, each with their own base logic die layout: (1) a 3D-
stacked memory in 2.5D die-stacking technology, where stacked DRAMs connect to the
chip with DRAM address, command, and data buses through a silicon interposer and
(2) a 3D-stacked memory with a packetized memory interface (such as those provided
on Hybrid Memory Cubes (HMCs)), where the stacked DRAMs can be connected to the
chip via a high-speed signaling channel.

For an HMD-based implementation where an optional base logic die can exist, the
SMD can be placed on this logic die, which is located between the memory controller (on-
chip) and the stacked memory banks. In this case, the memory controller can be aware
of the SMD component and help the SMD with off-chip communication. Alternatively,
the SMD can be equipped with a basic router of its own and use this router to directly
communicate with off-chip components through the silicon interposer. The SMD is
required to intercept DRAM commands from the memory controller and, using the
information stored in its SRAM, issue new DRAM commands. We considered this
approach for our design (Figure 12). We considered the longest possible latency (in
addition to SMD latency itself) for each request from SMD to the memory bank, to
account for these timing differences. Every request from the SMD closes the currently
active row, opens the target row, and performs the read or write operation. Alternatively,
for packetized memory interfaces such as HMC, our SMD can be integrated with the
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Fig. 12. The physical placement of the SMD on HBM.

Table III. Simulation Parameters

GPU specs. GPU Memory CPU-multiGPU UMH System
Clock Frequency 800 Frequency 1200 # of GPUs 1/2/4 PCIe BW 16GB/s
Compute Units 16 Partitions 4 # of SMDs 4/8/16 NVLink BW 80GB/s
SIMD Width 16 DRAM controller FR-FCFS # of HMDs 2 Secondary Block 4KB
Workgroup Size 256 L1-L2 Interconnect Ideal Stack Size 1GB Network size - 1GPU 2 × 2SMD-1HMD
Wavefront Size 64 Memory Bus Width 32B Stack/GPU 4 Network size - 2GPU 2 × 4SMD-1HMD
Fabrication 28nm Capacity 4GB Die-stack Memory GDDR5 Network size - 4GPU 2 × 8SMD-1HMD
L1 cache Size 16KB L2 Cache Size 128KB CPU memory DDR4 Workload Scheduling SKE

built-in memory controller of the stacked DRAM on the logic die and use the built-in
router to communicate with off-chip devices.

6. EVALUATION

In this section, we present our evaluation results and compare our UMH approach
to alternatives in terms of performance, scalability, and the coherence cost. Table III
outlines the simulation parameters considered. In order to evaluate the UMH, zero-
copy, and memcpy approaches (see Section 3.1), we utilize the SKE runtime model to
provide the image of a single virtual GPU for multiple GPUs [Kim et al. 2014a]. Using
SKE, the workgroups from the same application are assigned to multiple GPUs in a
round-robin fashion.

6.1. Performance and Scalability

Figure 13 compares the runtime of the AMDAPP SDK applications on a system with
one, two, and four GPUs. For our UMH design, we support peer-transfers between
the GPUs to further reduce the access overhead on the host memory (see Section 4.1).
For all of the benchmarks, the PCIe connection is clearly a bottleneck. As we move to
a faster peer-to-peer network (e.g., NVLink), we quickly see the benefits of a higher
bandwidth point-to-point interconnect.

6.1.1. Performance. In our analysis, the zero-copy approach for the CPU-multiGPU
system (denoted by ZC) exhibits the lowest performance for almost every application.
This is due to the lower bandwidth of the host memory. The host memory bandwidth
becomes saturated (all the memory requests from the L2 caches of the GPUs are
accessing this memory), making this component a bottleneck during kernel execution.

The memcpy approach for the CPU-multiGPU system leverages the higher band-
width available from the GPU memory. However, there are two issues impacting the
performance of this approach. (1) Copying data to the GPU memory prior to the execu-
tion, and back to the host memory after the execution, hurts the overall performance
and (2) the application data are evenly distributed across the memories of multiple
GPUs, so the L2 caches of one GPU have to constantly access the memory of other
GPUs through the interconnect for the segments of data that reside in those memories.
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Fig. 13. Breakdown of runtime in a system with one, two, and four GPU devices, when using PCIe or NVLink
peer-to-peer connections (P2P) for mem-copy (MC), zero-copy (ZC), or the UMH approach. The results for
each system is normalized to the execution time of application on a system that uses MC and PCIe.

In contrast, UMH achieves the best performance, using either peer-to-peer or shared
interconnects, because it benefits from the high bandwidth of the GPU memory, and
exploits the spatial and temporal locality of the accessed data. The speedup observed
with UMH is on average 54%, 112%, and 92% better than memcpy (the best alternative)
for systems with one, two, and four GPUs, respectively.

6.1.2. Scalability. As we increase the number of GPUs in the system, the workload is
distributed to more GPUs (and CUs), which leads to less pressure on the L1 and L2
caches of each individual GPU. Therefore, we observe better performance for all three
methods as the number of GPUs increases. Using UMH, a system with four GPUs has
2.3× speedup in comparison to a similar system with one GPU. This speedup is 1.5×
and 1.76× for the zero-copy and the memcpy approaches, respectively. UMH performs
better because the pressure on the host memory is significantly reduced, and the traffic
is distributed across the main memory of multiple GPUs. So as we increase the number
of GPUs, each GPU performs their tasks without encountering memory bottlenecks.
The zero-copy approach enjoys less benefits when increasing the number of GPUs since
the host memory is a bottleneck. Every access from the L2 caches of all the GPUs are
made to the host memory. As we increase the number of GPUs in the system with the
memcpy approach, more requests from a single GPU have to traverse the interconnect
to access memory on another GPU. Therefore, the speedup achieved by the memcpy
method is not as substantial as with the UMH approach.

6.1.3. Outliers. As shown in Figure 13, UMH outperforms all the other methods. How-
ever, in the FW and SC applications, we encounter outliers to this trend. The FW
workload is a memory-intensive application with largely irregular and sparse memory
accesses (they exhibit no clear locality patterns). The zero-copy approach used in a
system with four GPUs outperforms our UMH approach since these requests access
host memory and only retrieve a single 64B cache line. However, when using the UMH
method, each request retrieves 4KB data, while the GPU only uses a single 64B cache
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Fig. 14. The amount of data that is flushed from caches to the GPU memories during Final Flush (FF) and
written back to the host memory. (R) denotes the data structures only read by GPU, and (W) denotes the
data structures that GPU writes into. Software-based UM, memcpy, and zero-copy synchronize the CPU by
performing FF+WR, FF+W, and FF, respectively. UMH performs dynamic synchronization.

line of that data. In this case, the interconnect becomes the bottleneck for the UMH
approach. On the other hand, the SC application possesses high spatial and temporal
locality. But we can only leverage this locality if the same GPU performs the convo-
lution of one strip (512×512 matrix has 32 512×16 strips). With a 16×16 mask, 512
workgroups are required to perform the convolution on a strip. Since we assign the
workgroups to compute units of different GPUs, we effectively load 4KB blocks of data
to the GPU memory such that only a portion of each is used by the compute units from
that GPU.

6.1.4. Coherent Traffic. The amount of coherency information traversing the intercon-
nect between the SMDs and HMDs is insignificant (0.08% on average, with a maximum
of 1.2% coherency traffic for FW, as compared to the amount of the data transfered over
the network) but remains a necessary overhead to make the implementation of the
UMH possible.

6.2. Dynamic Synchronization in UMH

As described in Section 4.2, the UMH can also leverage from the dynamic synchroniza-
tion of the data between the CPU and GPU devices. During dynamic synchronization,
only a single block of data (here a 4KB block) is flushed from the GPU device, and is sent
to the CPU, on its request. This method avoids redundant flushing and the transfer of
the entire address space to the host memory. This allows the CPU to start working on
the computed data as soon as possible. Figure 14 shows the amount of data that are
flushed from the GPU and the amount that are written back to the host memory for the
three approaches: (1) software-based UM (which uses Final-Flush (FF) and writes back
possibly both read and write data (WR) to the host memory), (2) memcpy (which uses
FF and then writes back the write-buffers (W) to the host memory), and (3) zero-copy
(which only uses the FF). However, with UMH on each GPU, a maximum of 4KB is
transferred from the dedicated L2 to the SMD (and associated DRAM stack), and 4KB
from this SMD to the host memory. This means 32KB (4 GPU × 4K+4K) is transferred
from the GPUs to host memory. If we employ write-back L1 caches, then the 16 L1’s
for each GPU have to flush a maximum of 4KB to the L2 as well, increasing the dy-
namic synchronization data to 288KB. UMH speeds up the start of CPU operations on
the GPU’s computed data by at least 13×, 20×, and 24× in comparison to zero-copy,
memcpy, and software-based UM, respectively.

7. RELATED WORK

MultiGPU systems. In previous work, Kim et al. [2013, 2014a] designed a memory
network with a sliced flattened butterfly topology for the interconnect between the
GPUs, while the connection between CPU and the GPUs is maintained through a
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pass-through path. This design supports a no-copy approach, where every access to
the CPU memory goes directly through the network topology to the CPU. While this
network reduces the communication cost between devices, as the authors commented
(and we showed here), there can be significant bandwidth demands on the CPU memory,
making the pass-through path a potential bottleneck.

Coherency Protocols for APU systems. Past work has proposed novel coherency
protocols for APU systems [Power et al. 2013; Sinclair et al. 2015; Komuravelli et al.
2015]. Many of these protocols can be leveraged (with some hardware modifications) to
work with our UMH design (NMOESI was initially designed for APUs). In general, it is
necessary for UMH to have a specific coherence protocol that takes into consideration
the programming model of the GPU, including non-coherent accesses.

Reorganizing GPU memory placement. If the GPU’s stacked DRAMs are placed
at the same level as the CPU memory, then a flat non-uniform memory access (flat-
NUMA) organization can be created to leverage the high bandwidth of the GPU mem-
ory, which will reduce bandwidth contention on the CPU memory [Bolotin et al. 2015].
But coherency can only be maintained with intelligent data migration [Agarwal et al.
2015]. Migrating data between memory units of multiple CPU and GPU devices re-
quires more complex software and will introduce software-based memory management
overhead to the system.

DRAM cache for GPUs. A separate line of research focuses on DRAM caching
in CMPs and servers [Jevdjic et al. 2013, 2014; Loh and Hill 2011; Qureshi and Loh
2012]. Similarly, Kim et al. [2014b, 2014c] proposed the use of GPU memory as a
cache level for CPU memory. Tag Miss Handlers (TMHs) are used for each controller
to fetch data from CPU memory. A page versioning mechanism is used to keep the
copy of the data stored in GPU memory consistent with the data in the CPU memory.
However, due to the lack of directories to maintain coherency, the CPU can only update
data between kernel executions (using a new page version), which prevents CPU-GPU
cooperative execution. In order to ensure the GPU writes are seen by the CPU, the user
can configure the TMHs (via the host program) to update the CPU memory on each
GPU write (write-through), which introduces excessive communication latencies (PCIe
latency is added to each write). This management scheme is also not transparent to
the user.

8. CONCLUSIONS

In this work, we have proposed a bold new vision for memory management in systems
with a CPU and one or more GPU devices. Our design supports seamless data transfer
across all the devices and, at the same time, creates a hierarchical view between
the stacked DRAM of the GPUs and the host memory. This makes it possible for these
discrete devices to have a shared view of a unified memory that is managed by hardware
and allows for coherency between the GPU devices and the CPU.

We realized this design by incorporating multiple memory directory components in
the design of the GPU and the host memories and by leveraging the NMOESI coherence
protocol. We were able to achieve a speedup of at least 13× in terms of synchronization
time between the CPU and all the GPU devices. Additionally, architecting our vision of a
UMH enables us to achieve a speedup of 1.92× and 5.38× (on average) over alternative
memcpy and zero-copy approaches for a system with four discrete GPU devices.
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