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ABSTRACT
While both Chip MultiProcessors (CMPs) and Graphics Pro-
cessing Units (GPUs) are many-core systems, they exhibit
different memory access patterns. CMPs execute threads
in parallel, where threads communicate and synchronize
through the memory hierarchy (without any coalescing).
GPUs on the other hand execute a large number of inde-
pendent thread blocks and their accesses to memory are
frequent and coalesced, resulting in a completely different
access pattern.

NoC designs for GPUs have not been extensively explored.
In this paper, we first evaluate several NoC designs for GPUs
to determine the most power/performance efficient NoCs.
To improve NoC energy efficiency, we explore an asymmetric
NoC design tailored for a GPU’s memory access pattern,
providing one network for L1-to-L2 communication and a
second for L2-to-L1 traffic. Our analysis shows that an
asymmetric multi-network Cmesh provides the most energy-
efficient communication fabric for our target GPU system.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: In-
terconnections (subsystems)—physical structures, topology ;
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures—Single-Instruction Stream, Multiple-Data Pro-
cessors (SIMD)

1. INTRODUCTION
Graphics Processing Units (GPUs) have been used for

general purpose computation for more than a decade [16].
GPU computing has made it possible to exploit massive de-
grees of parallelism. GPU programming frameworks, such as
OpenCL [21], support parallelism in GPUs by dividing an ap-
plication workload into groups of threads (work-groups) that
can be independently executed on separate GPU processing
elements, known as Compute Units (CUs). General-purpose
applications that exhibit parallel behavior can use GPUs
effectively. This has encouraged researchers to use GPUs to
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explore larger data sets [8,11] and pursue a range of challeng-
ing problems in various domains (e.g., chemical-physics [13]
and genetics [7]).

The programming model of GPUs involves the loading
of a workgroup from memory to a CU through the GPU-
to-memory network and the network-on-chip (NoC). The
workload will be processed in a single-instruction-multiple-
thread (SIMT) fashion, and then written back to the memory
through the two networks. Depending on the scale of the
workload, these steps will be repeated iteratively until the
processing of the work-groups in the workload are complete.

With the expected increase in the number of CUs (with
each new generation of GPU systems) and the growth in size
of dataset, we need to increase NoC bandwidth to be able to
support this execution model. This increase in bandwidth will
correspondingly increase the static power (due to an increase
in the number of channels) and the dynamic power (due to
the increase in channel utilization running larger workloads).
Hence, we need to explore NoC designs that provide energy-
efficient communication to optimize the energy efficiency of
the overall GPU system.

In this paper, we investigate the design of an energy-
efficient NoC that is tailored for GPUs and their underlying
programming model. To explore the design space of NoC
designs for GPUs, we target a contemporary AMD Southern
Islands GPU architecture [3] and choose applications with
a range of workload intensities from the AMD SDK bench-
mark suite [1]. We first compare various electrical NoCs,
using performance and power metrics, to identify the best
topologies for our target GPU system. We present an analy-
sis of the traffic patterns resulting from executing multiple
data-parallel applications on the evaluated NoCs. Leveraging
our analysis considering both performance and power met-
rics, we propose an asymmetric NoC design that can achieve
comparable performance at reduced power consumption.

2. TARGET SYSTEM AND EVALUATION
METHODOLOGY

2.1 AMD Southern Islands GPUs
In this paper, we consider the AMD Radeon HD 7970

architecture from AMD’s Southern Islands family as our
target system. This GPU system is tailored to provide
general purpose computing. It is manufactured in 28 nm
technology. The CUs are clocked at 925 MHz [3]. Table 1
provides the details of the AMD Radeon HD 7970 GPU
architecture.

The Radeon HD 7970 has 32 CUs. Each CU is able



to execute one independent block of threads (i.e., a work-
group) at a time. Work-groups consist of multiple wave-
fronts (consisting of 64 threads or work-items). Each CU can
execute an entire wave-front in 4 cycles. Each wave-front
can start execution on the SIMD pipelines of the compute
unit. Execution begins as soon as data becomes available in
the memory hierarchy.

Each CU is equipped with a Load-Data-Share (LDS) unit
as local memory. CUs are connected individually to the
global memory hierarchy through two cache units; a L1
vector data cache (vL1) unit and a read-only L1 scalar data
cache (sL1) unit. The global memory hierarchy also consists
of L2 cache units. Each L2 cache unit is coupled with only
one memory controller that can access a unique memory
address range. This distribution of address ranges across the
L2 banks reduces the load on any single memory controller,
while exploiting spatial locality [3]. We explore the design
space of a NoC that connects the scalar and vector L1 data
cache units to L2 cache banks.

There are two types of messages that is transmitted be-
tween the L1 and L2 cache units in the memory hierarchy.
The first type is an 8-byte control message. This control mes-
sage contains information specific to cache requests (reads,
writes, invalidation, etc.), and the address of the destination
cache unit. The second type is a 72-byte message, which
includes an 8-byte control message and a 64-byte cache line.
For any channel with a bandwidth smaller than 72 bytes, the
control message will be transferred in a separate cycle first,
and the cache line is packeted and transferred immediately
in the following cycles. For example, if we use a 32-byte
channel to transmit a 72-byte message, then we will use the
first cycle to transmit the 8-byte control message, and then
the next 2 cycles to transmit the 64-byte cache line.

2.2 Evaluation Methodology
To evaluate the NoC for a GPU system, we used the

Multi2sim 4.2 simulation framework [22]. We evaluated
the crossbar, mesh, concentrated mesh (Cmesh), butterfly,
concentrated crossbar, and Clos topologies. Our NoC designs
utilize state-of-the-art single-cycle routers, with the extra
required lookahead signals embedded in the 8-byte control
messages (see Section 2.1), which are transferred to the cache
units [20]. The routers in the designs operate at 1 GHz
frequency.

Table 2 provides the set of applications used in our eval-
uation. These applications are taken from the AMD APP
SDK [1]. The benchmarks represent a wide range of workload
sizes, bandwidth demands, and memory intensities (URNG is
a compute-intensive application, CONV and DCT have very
large workloads and high memory intensity. FWT includes
irregular access patterns).

The power of the NoC is estimated using a detailed transistor-

Table 1: AMD Radeon HD 7970 GPU specification.

Processor Cores Memory System

Fabrication process 28nm Size of L1 Vector Cache 16K
Clock Frequency 925 Size of L1 Scalar Cache 16K
Compute Units 32 L2 Caches/Mem. Cntrls. 6
MSHR per Compute Unit 16 Block Size 64B
SIMD Width 16 Size of L2 Cache 128K
Threads per Core 256 Memory Page Size 4K
Wavefront Size 64 LDS Size 64K

Table 2: Workloads from the AMD APP SDK.

Abbreviation Application

CONV Simple Convolution
DCT Discrete Cosine Transforms

DWTHAAR One-dimensional Haar Wavelet Transform
FWSHALL Floyd-Warshall Shortest Path Calculation

FWT Fast Walsh Transfrom
HIST Histogram

MATMUL Matrix Multiplication
MT Matrix Transpose
RED Reduction
RG Recursive Gaussian Filter

SOBEL Sobel Edge Detection Algorithm
URNG Uniform Random Noise Generator

level circuit modeling, the physical layout, the flow control
mechanism and network traffic workloads. The wires in the
crossbar, butterfly and clos topologies are designed to be
implemented in the global metal layers using pipelining and
repeater insertion in 28 nm Predictive Technology Models [2].
All of inter-router channels in all of the mesh-based topolo-
gies are implemented in the semi-global metal layers using
standard repeater wires. The power dissipated in the SRAM
array and crossbar of the routers is calculated by adapting
the methodology described in [15] and [24], respectively.

3. SYMMETRIC NOC DESIGNS FOR GPUS
In this section we explore the trade-offs associated with

various NoC topologies that can be used for interconnection
between the cache units in the GPU memory hierarchy. We
analyze a crossbar, a mesh, a concentrated mesh (Cmesh), a
Butterfly, a concentrated crossbar, and a Clos network (see
Figure 1), to cover the entire spectrum from high-diameter,
low-radix networks, to low-diameter, high-radix networks at
the other end. Table 3 includes the key architecture param-
eters of these NoC topologies. The bisectional bandwidth
is matched across all topologies for a fair comparison of
performance of network topologies.

The first topology considered is the well-known global
crossbar. The global crossbar is generally considered to be the
most efficient network topology in terms of programmability.
A 46 × 46 global crossbar is considered to provide all-to-
all connectivity between the 40 L1 (8 scalar and 32 vector)
cache units and 6 L2 cache units. A crossbar provides non-
blocking connectivity between each pair of nodes, but the
crossbar design is very challenging to layout. Since a crossbar
requires a large number of global buses across the length of
the chip, this can lead to significant power consumption in the
wires. Crossbars also require global arbitration, which can
add significant latency and power dissipation. We place the
arbiter in the center of the chip to minimize the arbitration
overhead [18].

Figure 1(a) shows a 2D 8 × 5 mesh network. In Southern
Island GPUs, each CU is connected to a single vector cache
unit and a group of four CUs share a single scalar unit.
The number of nodes along each dimension of the mesh is
chosen based on this adjacency of the cache units. The
diagonal placement [19] is considered for the L2 cache banks
to minimize the average packet latency and request-response
variance. The mesh design utilizes the X-Y routing and
distributed flow control [23]. The high hop count in the
mesh, however, results in long latencies and high energy
consumption in both routers and channels.

The hop count of a mesh network could be reduced if



Figure 1: Topologies of the NoCs evalutated for the 32-CU GPU: (a) a 2D 8x5 mesh, (b) a concentrated mesh (Cmesh)
with 5x and 6x concentration, (c) a 6-ary, 3-stage, Clos network with 8 intermediate routers, (d) a concentrated tri-state global
crossbar (C-crossbar), (e) a 6-ary 4-fly butterfly. In all of our figures: dots = routers, triangles = tristate buffers. In (a) and
(b) inter-dot lines = bi-direction channels. In (c), (d) and (e) inter-dot lines = uni-directional channels. In (c), (d) and (e) the
source and destination nodes are separated for the clarity, otherwise the number of cache units are the same as (a) and (b). In
(c) nodes are connected to the concentration switch by bi-directional channels.

Table 3: Network Configuration - Networks are sized to support two types of messages that create the GPU traffic. NC =
number of channels, bC = bits/channel, NBC = number of bisection channels, NR = number of routers, H = number of hops
along data path, TR = router latency, TGR = average latency of global connections (if used), TC = channel latency, TTC

= latency from cache units to the concentration switch, TS = serialization latency, T0 = zero-load latency. Both types of
messages are considered in the latency calculations. The latency values are separated by ”,”.

Channels Routers Latency

Topology NC bC NBC NBC · bC NR Common Radix H TR TGR(avg) TC TTC TS T0

Butterfly 48 32 × 8 8 2048 32 2 × 2 4 1 n/a 1 1, 3 0, 2 9, 19
Clos 128 8 × 8 64 4096 24 8 × 8 3 1 2 n/a 1, 9 0, 8 8, 36

C-crossbar 8 32 × 8 8 2048 16 8 × 8 3 1 4 n/a 1, 3 0,2 8, 15
Cmesh 18 72 × 8 4 2304 8 9 × 9 1 – 5 1 n/a 1 1 0 3 – 11

Crossbar 46 8 × 8 46 2944 1 46 × 46 1 n/a 4 n/a 0 0,8 5, 13
Mesh 146 32 × 8 10 2560 40 5 × 5 2 – 12 1 n/a 1 0 0,2 5 – 51

concentration is used to combine the traffic of multiple cache
units at one router and reduce the diameter of the network [6].
This reduces load imbalance across the channels without
increasing wiring complexity. Figure 1(b) illustrates a Cmesh
for the GPU architecture. Here four neighboring CUs in the
AMD Radeon 7970 HD GPU layout are concentrated on a
single concentration switch [17].

Concentrated crossbars (C-crossbar) and Clos networks
are intermediate points between the conventional high-radix,
low-diameter, crossbar topology and the low-radix, high-
diameter, mesh topology. Figure 1(c) and 1(d) illustrate the
two topologies that utilize the concentration of the neigh-
boring cache units to reduce the required wiring. However,
this leads to high-radix routers. Both designs have lower hop
counts in comparison to mesh topologies, but require longer
point-to-point channels. The Clos network is reconfigurably
non-blocking. Similar to the crossbar, for C-crossbar design,
we pipelined point-to-point channels to improve throughput
and placed the arbiter in the center of the chip.

We also considered a conventional 6-ary 4-fly butterfly in
this study, as shown in Figure 1(e). A conventional butterfly
has no path diversity (and therefore no load-balancing in the
network) as compared to a flattened butterfly [12], but re-
quires low-radix routers. We favor the conventional butterfly

over a flattened butterfly, since one side of each communica-
tion is typically a L2 cache unit. Since the L2 cache units are
partitioned the network load becomes balanced (see Section 4
for more details).

Figure 2 presents a comparison of the various NoC designs
for the targeted GPU architecture in terms of performance,
power and energy-delay-product (EDP) metrics. We nor-
malized the performance of the GPU with different NoCs
for each application using an ideal NoC with a fixed 3-cycle
latency. The 3-cycle latency is the lowest latency we can have
in our design, which is the minimum zero-load latency of
the Cmesh. As shown in Figure 2(a), the mesh, Cmesh and
butterfly NoCs exhibit comparable performance across all
the applications. The highest performance is achieved by a
Cmesh network. On average, the performance of the Cmesh
is 0.71% the ideal network, while the mesh and butterfly
both achieve a performance (on average) equal to 0.69% of
an ideal network.

As mentioned in Section 2, wavefronts of a work-group
that reside in a single CU can start their execution as soon as
their data becomes available through the memory hierarchy.
The latency associated with retrieving the required data will
determine the start of execution of the wavefront. Since L2
caches in the GPU architecture are partitioned, the required



(a) Performance Comparison of various NoC designs
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(b) Power breakdown of various NoC design

(c) Energy-per-Delay Product of various NoC Designs

Figure 2: Evaluation of Performance and Power for
a GPU with various NoC designs using AMD APP
SDK benchmarks. The performance is normalized
to an ideal network with 3-cycle latency.

data for the wavefronts may reside in a number of L2 units
(and not just a single). Any network that combines the traffic
of L1s toward L2s (and vice versa) can hurt the performance
of, not a single, but multiple CUs. Because the mesh, Cmesh,
and butterfly NoCs provide diverse paths between L1s and
individual L2s, they lead to higher utilization of the CU. On
the other hand, the Crossbar, Clos and C-Crossbar, which
at some point combine the traffic to/from the L2s, achieve
lower performance.

Figure 2(b) illustrates the power breakdown of the different
NoC topologies. Among these topologies, Cmesh has the
highest static and dynamic power consumption. The highest
static power can be attributed to the fact that Cmesh has the
widest channel width (72 bytes) and it has high-radix routers.
The power dissipated by the wires in the 72-byte links is the
source of this high power dissipation. At the same time, the
power consumed by the router’s crossbar is large since power

is directly correlated with the flit size, which in this case is
72 bytes. Clos has the lowest performance in comparison
with other topologies (16% of an ideal network – Figure 2(a)),
and hence it exhibits the lowest dynamic power consumption
compared to all other topologies. While Clos uses routers
with the same radix as a C-crossbar, it is designed with the
lowest channel width (8 Bytes). Moreover, in a Clos layout,
we placed all the middle-stage routers together in the center
of the chip to provide shorter global channels, which in turn
results in lower power consumption, as suggested in [10].

Figure 2(c) shows an overall comparison of all the topolo-
gies using the EDP metric, which jointly accounts for changes
in performance and energy. We have normalized the EDP
of each design based on the EDP of the Clos, which has the
highest EDP among all the network topologies which we eval-
uated. As shown in the figure, a butterfly network achieves
the lowest EDP across all the applications (0.10% of the EDP
of the Clos, averaged across all the benchmarks). The mesh
and Cmesh are the next best topologies that exhibit low
EDP, 0.12% and 0.31% the EDP of the Clos, respectively. In
the next section, we propose asymmetric NoC architectures
(designed based on application analysis) and we use the but-
terfly, mesh and Cmesh networks topologies for evaluating
the asymmetric NoCs.

4. ASYMMETRIC NOC DESIGN FOR GPU
In the previous section we compared the use of different

NoC topologies for our target system while running a variety
of the applications. In this section, we analyze the trends in
OpenCL applications and optimize the NoC design based on
the traffic pattern exhibited by these applications.

As mentioned in Section 1, the OpenCL data parallel
programming model achieves scalable performance through
independent execution of work-groups. Applications written
in OpenCL exhibit unique memory access patterns, and hence
the NoC can be designed based on these expected memory
access patterns to maximize the NoC energy efficiency.

The amount of communication between cores (L1-to-L1)
in a GPU is limited. This limited communication includes in-
teraction due to false-sharing (where two cores share different
sub-blocks of the cache-lines), and limited cache coherency
signals (if any), which are enforced by the AMD’s relaxed
consistency model [3, 22]. At the same time, the latency
of L1-to-L2 traffic is typically not critical, as the GPU pro-
gramming model enforces that no other CU should be stalled
awaiting completion of a write-back transfer. Moreover, GPU
workloads exhibit lighter traffic for L1-to-L2 accesses due
to architectural enhancements such as coalescing. Figure 3
breaks down the percentage of different types of commu-
nication between the cache units (L1-to-L1, L1-to-L2, and
L2-to-L1) for our selected applications.

We consider the knowledge of the expected network traffic,
and the results presented in Figure 3, to enhance our NoC
design. As a first step for shaping our proposed topologies, we
consider two separate networks, one for each direction of the
communication, i.e., L1 to L2 and L2 to L1. We consider this
strategy for two reasons: 1) We can improve the performance
of both networks in terms of latency by restricting the traffic
to one direction 2) We can design asymmetric networks
optimized for the direction with heavier load and higher
delay sensitivity.

As a second step, we eliminate the paths between the L1
cache units and replace any L1-to-L1 communication with a



Figure 3: Breakdown of the different types of communications
between cache units.

Figure 4: (a) The L1-to-L2 network for MeshX2, (b) The
L2-to-L1 network for MeshX2. The use of X-Y routing
leads to several unused links. These links were removed to
reduce the static power consumption and switch radices, (c)
The network for both direction in a ButterflyX2. Since the
number of L2s is limited to 6, the design uses two less routers
and wider bisection channels than the conventional butterfly.

L1-to-L2 transfer followed by a L2-to-L1 transfer. While this
slightly increases the traffic between the L1-to-L2 and the
L2-to-L1, it allows us to reduce the power consumption in
the network. This reduction in power is due to lowering of
the number of physical links and router radix. For example,
in the L1-to-L2 network in Cmesh, 5 L1s and one L2 (in 6
out of 8 routers) are connected to each concentration switch
unidirectionally instead of bidirectionally, which leads to a
reduction in the number of wires (32× 8 wires are eliminated
for each. Links also become unidirectional – 1280 wires per
concentration switch). We also see a reduction in the router
radix, from 10 × 10 (or 9 × 9) to 8 × 4 (or 7 × 4).

Based on these considerations, we propose using parallel
networks, one for L1-to-L2 communication and one for L2-
to-L1 communication. We eliminate the links that create
paths between the L1 units. The new parallel designs for the
mesh (MeshX2) and the butterfly (ButterflyX2) networks are
shown in Figure 4. The CmeshX2 design uses two parallel
Cmesh networks, similar to the design presented in Section 3,
with the link and router radix reductions, as discussed above.

Table 4: Bisection bandwidth for symmetric and asymmetric
designs of target topologies, i.e., butterfly, mesh, and Cmesh.

L1-to-L2 L2-to-L1 Bisection Bandwidth

Topology bC NBC bC NBC NBC · bC
ButterflyX2-sym 22 × 8 6 22 × 8 6 2112
ButterflyX2-asym 16 × 8 6 22 × 8 6 1824

MeshX2-sym 22 × 8 10 22 × 8 6 2816
MeshX2-asym 16 × 8 10 22 × 8 6 2336
CmeshX2-sym 32 × 8 4 32 × 8 4 2048
CmeshX2-asym 22 × 8 4 32 × 8 4 1728

Based on these modifications, channel widths (see Table 4)
are calculated using the bisection bandwidth criteria for the
same network throughput as used in previous designs. For
each baseline topology, two variations of the NoCs have
been proposed; symmetric and asymmetric. The difference
between these variations is in the channel width. In the sym-
metric designs, channel width of the L1-to-L2 and L2-to-L1
networks are the same. In the asymmetric designs, channels
in the L1-to-L2 networks are chosen to be narrower since,
as explained earlier, the L1-to-L2 communication latency
has minimal effect on the overall system performance. The
traffic in the L1-to-L2 direction is also lighter, as shown in
Figure 3.

Overall we propose and analyze 6 different networks for
the GPUs; MeshX2-sym, MeshX2-asym, ButterflyX2-sym,
ButterflyX2-asym, CmeshX2-sym, and CmeshX2-asym. All
of our proposed designs for mesh and Cmesh (MeshX2-sym,
MeshX2-asym, CmeshX2-sym and CmeshX2-asym) use X-Y
Routing. In the MeshX2-sym and MeshX2-asym designs,
the links in the first and last row are unutilized because
the L2 caches are placed diagonally in the center of the
mesh. An example of the routing is shown in the Figure 4(b).
As can be seen (and generalized), the messages from L2
never use the links in the last (and the first) row of these
mesh-based designs. By removing these links, we reduce
both static power consumption in the NoC and the number
of bisectional links. The Cmesh-based designs (CmeshX2-
sym and CmeshX2-asym) have the same logical organization
as the baseline Cmesh (introduced in Section 3) for both
directions, i.e. L1-to-L2 and L2-to-L1. The L1-to-L2 and L2-
to-L1 networks in a butterfly-based design (ButterflyX2-sym
and ButterflyX2-asym) are slightly different as compared to
the baseline butterfly (introduced in Section 3). Since the
number of L2s is 6, the last stage of the butterfly is modified
(two routers are removed) to accommodate for this variation.

Figure 5 presents the performance of the proposed topolo-
gies, normalized to the respective baseline designs, i.e., but-
terfly, mesh and Cmesh. In Figure 5(a), the performance of
the ButterflyX2-sym and ButterflyX2-asym is compared with
the baseline butterfly NoC, as shown in Section 3. Both the
ButterflyX2-sym and ButterflyX2-asym designs provide sim-
ilar relative performance (92% and 91% as compared to the
Butterfly network, respectively). This is while the asymmet-
ric design (ButterflyX2-asym) has a smaller number of bisec-
tional wires in the layout (as shown in Table 4). Figure 5(b)
compares the performance of our proposed MeshX2-sym
and MeshX2-asym designs with a conventional mesh design.
The MeshX2-sym and MeshX2-asym designs provide similar
performance (93% and 92% relative to the baseline mesh,
respectively) while the L1-to-L2 links are narrower in the
MeshX2-asym. The main reason for this slight performance
loss in both ButterflyX2 and MeshX2 designs (symmetric



(a) Speedup of asymmetric and symmetric Butter-
flyX2 against the baseline butterfly.

(b) Speedup of asymmetric and symetric MeshX2
against Mesh

(c) Speedup of asymmetric and symetric CmeshX2
against Cmesh

Figure 5: Performance comparison of various parallel designs
against baseline NoCs.

and asymmetric) is due to the lower channel width, which
results in more serialization delay for access to the cache.
However, this performance degradation is compensated by
the reduction in congestion (resulting from using two separate
networks for the L1-to-L2 and the L2-to-L1 communication).

We present the speedup achieved by CmeshX2-sym and
CmeshX2-asym as compared to the baseline Cmesh network
in Figure 5(c). In both of our proposed designs the perfor-
mance is almost equal to the baseline Cmesh network (99%
and 97% of baseline performance), while the channel width
is half of the channel width of the baseline Cmesh. The main
reasons why we can obtain similar performance is due to a
reduction in arbitration latency (CmeshX2 networks have
switches with lower radices, since the connection between
concentration switch and injecting nodes are unidirectional),
and routing the L1-to-L2 and L2-to-L1 traffic on two different
physical networks.

Figure 6 shows a comparison of conventional, symmet-
ric and asymmetric NoCs, in terms of power consumption.
The ButterflyX2-sym and ButterflyX2-asym designs do not
exhibit significant power reduction in comparison to the base-
line butterfly network (18% and 25% power reduction on
average for symmetric and asymmetric design, respectively)
because the reduction in power, due to reduction in channel
width, has been mostly compensated by the increase in the
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Figure 6: Dynamic and Static power breakdown for various
parallel symmetric and asymmetric designs.

number of low-radix routers.
The MeshX2-sym and MeshX2-asym designs dissipate 35%

and 44% less static power than the baseline mesh, respectively.
This is due to the narrower bandwidth and lower channel
counts of our MeshX2 designs, versus the higher component
count of the mesh. While the router count is doubled in the
design, most of these routers have low radices. The total
power savings achieved by the MeshX2-sym and MeshX2-
asym design are 30% and 37% on average in comparison to
baseline mesh, respectively.

The largest power savings are observed when using paral-
lel asymmetric CmeshX2 (CmeshX2-asym) and symmetric
CmeshX2 (CmeshX2-sym). The CmeshX2-asym dissipates
69% less power, in comparison to the baseline concentrated
mesh, while the CmeshX2-asym dissipates 65% lower power.
This significant reduction in power is directly related to the
narrowing of the channel width.

The EDP for each application is calculated based on the
execution time of the application and energy consumed by
this NoC during execution. Even though the proposed NoC
designs have slightly lower performance on average in com-
parison to the baseline designs, they exhibit larger power
savings that result in lower EDP than the baseline topologies.
As shown in Figure 7(a), The ButterflyX2-asym has 7% lower
EDP on average (lowest EDP among the butterfly designs)
as compared to baseline butterfly network In Figure 7(b),
the EDP of the proposed MeshX2 designs (MeshX2-sym and
MeshX2-asym) is compared with the EDP for the baseline
mesh network. We see significant power savings with the
MeshX2-asym, while achieving comparable performance to
the baseline mesh. This leads to a 72% reduction in EDP, as
compared against the baseline. The significant power savings
and comparable performance provided by the CmeshX2-asym



(a) EDP comparison of proposed ButterflyX2-sym
and ButterflyX2-asym against the baseline butterfly.

(b) EDP comparison of proposed MeshX2-sym and
MeshX2-asym against baseline Mesh.

(c) EDP comparison of proposed CmeshX2-sym and
CmeshX2-asym against baseline Cmesh.

Figure 7: Design comparison based on the Energy-Delay
Product metric.

versus the baseline Cmesh results in an 88% reduction in
EDP (see Figure 7(c)).

Figure 8 compares the range of topologies proposed in this
section in terms of EDP. The EDP values are normalized
to the topology with the highest EDP, i.e., Cmesh. Cmesh
also had the highest performance among all topologies that
we evaluated in Section 3. As can be seen, our proposed
CmeshX2-asym design has the lowest EDP among all the
topologies (88% reduction against Cmesh), while it provides
comparable performance as Cmesh (97%). MeshX2-asym
designs are a close second, with a 86% reduction in EDP.
High performance and low power consumption in CmeshX2-
asym and MeshX2-asym designs make them suitable options
for GPUs.

5. RELATED WORK
A large amount of work has been done in the area of

network-on-chip designs for many-core architectures, target-
ing energy-efficient on-chip communication. A broad spec-
trum of network design topologies for on-chip communication
in CMPs has been explored. The NoC designs for CMPs has
matured to the extent that several commercial designs are
now available [23,25]).

The area of on-chip networks on a GPU has not been widely
explored. In [5], the authors evaluate GPU performance

Figure 8: Overall comparison of baseline and proposed de-
signs using the EDP metric.

across different micro-architecture and NoC design choices
using different benchmarks. Our baseline evaluations differ
from their work in the following aspects. In [5], the design
layout is not considered, nor is power estimation. Also their
hypothetical GPU assumed a smaller number of streaming
multiprocessors and a higher number of memory controllers.
This hides the effect of path diversity and congestion in the
network.

The work in [4] exploits the many-to-few traffic patterns ob-
servable in manycore accelerators by alternating full routers
in congested areas of a mesh with half routers that reduce
cost. In [9] the authors propose a 3-D stacked GPU design
using optical on-chip crossbar interconnects and explore the
power consumption implications in throughput-oriented ar-
chitectures. The work in [26] advocates using silicon-photonic
link technology for on-chip communication in state-of-the-art
commerical GPUs and presents an efficient GPU-specific
photonic NoC design. It also examines the scalability of the
NoC design for forward-looking GPUs with 128 compute
units.

In the past, several research papers have suggested the
use of parallel networks and channel slicing to improve the
utilization of the NoC in CMPs [6,14]. The main difference
between these prior studies and our work is that our network
is designed with two uni-directional asymmetric networks,
tailored for the needs of a GPU.

6. CONCLUSION
In this work, we evaluated a number of network-on-chip

designs, comparing power and performance metrics, targeting
the memory subsystem of a contemporary state-of-the-art
GPU architecture.

We first analyzed the memory access patterns of GPU
applications, and used this to motivate the design of a range
of asymmetric NoCs that are specifically tailored for GPUs.
These asymmetric NoC designs use two different NoC archi-
tectures for L1-to-L2 and L2-to-L1 communications. This
strategy reduces contention in the NoC, and in turn, improves
application performance. We compared various asymmetric
NoC designs based on performance, power and EDP metrics.
Our analysis shows that CmeshX2-asym provides compa-
rable performance to the best baseline design, Cmesh, but
consumes 65% lower power. The MeshX2-asym topology also
consumes 37% lower power than the baseline mesh while pro-
viding comparable performance to this topology. Based on
these evaluations we conclude that the CmeshX2-asym and
MeshX2-asym are the most suitable electrical NoC designs
for GPU systems.



For future work, we plan to consider adding a dedicated
NoC for smaller messages (i.e., cache control messages)
and applying run-time power saving techniques on the sub-
networks of CmeshX2-asym to further reduce power con-
sumption and improve energy efficiency of the NoC, and the
system as a whole.
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