
BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

NONLINEAR ROBUST CODES AND THEIR

APPLICATIONS FOR DESIGN OF RELIABLE AND

SECURE DEVICES

by

ZHEN WANG

B.S., M.S., Zhejiang University, 2006

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2011

UMI Number: 3463278

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3463278
Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Approved by

First Reader /yvx&rKL Ok (\ DV> X
Mark G. Karpovskjh PhD
Professor of Electrical and Computer Engineering

Second Reader

Ws Ajay Joshi,
Assistant Professor of Electrical and Computer Engineering

Third Reader

Ari Trachtenberg, PhD
Associate Professor of Electrical and Computer Engineering

Fourth Reader

Lev Levitin, PhD
Professor of Electrical and Computer Engineering

Acknowledgments

First of all, I would like to thank my advisor, Professor Mark Karpovsky for his

instructions during the past four and half years. He turned me into a self-motivated,

disciplined person capable of communicating with people and conducting research

efficiently and independently using his patience, enthusiasm and unique vision and

intuitive for research. Without his help, the completion of this dissertation would

never become possible.

I would like to thank my co-advisor, Professor Ajay Joshi. Because of him, I

started to pay more attention to practical industry applications of my theoretical

works. I am also graceful to Professor Ajay Joshi for his helpful opinions of job

hunting and his understanding and patience during my graduate study.

I would like to thank Professor Lev Levitin and Professor Ari Trachtenberg for

spending time reading my dissertation and providing their invaluable suggestions

and opinions. I also appreciate the help and guidance from Professor Berk Sunar

in Worcester Polytechnic Institute. Several of my published papers are based on

discussions with Professor Sunar.

I thank all stuff in the ECE department in Boston University. Thank you for

providing me such a great environment with all necessary tools, computing resources,

etc so that I can concentrate on the research.

Finally, I would like to thank my family for their continuous support of my life and

my study. Thank my girl friend Yili Pan, who made me again an organized person

after feeling lost and confused for several years. It is because of her that I finally

become ready to face whatever challenge there is in my career and my life right now

and in the future.

in

NONLINEAR ROBUST CODES AND THEIR

APPLICATIONS FOR DESIGN OF RELIABLE AND

SECURE DEVICES

(Order No.)

ZHEN WANG

Boston University, College of Engineering, 2011

Major Professor: Mark G. Karpovsky, PhD,
Professor of Electrical and Computer Engineering

ABSTRACT

Linear codes are widely used for error detection and correction in modern digital

systems. These codes concentrate their error detecting and correcting capabilities on

what are considered to be the most probable errors, which are typically errors of a

small multiplicity. The reliability and the security of systems protected by these codes

largely depend on the accuracy of the targeted error model. In many applications

where the error model is hard to predict, the performance of linear codes cannot be

guaranteed.

This work is on the development of special classes of codes - nonlinear robust codes

with a given distance, multilinear codes and algebraic manipulation detection codes

- for the design of secure cryptographic devices resilient to fault injection attacks

and for the build of reliable memories. The primary difference between the proposed

codes and linear codes is that the proposed codes provide nearly equal protection

against all non-zero error patterns. As a result, the reliability and the security of the

IV

protected devices can be guaranteed regardless of the accuracy of the error model.

The advantages of the proposed codes over linear codes will become more significant

if the same non-zero error pattern stays for several clock cycles.

The proposed codes are applied for various reliable and secure applications. The

error detecting and correcting properties, the area, the power and the latency of the

encoder and the decoder for designs based on the proposed codes are estimated and

compared to those for designs based on linear codes. It is shown that adopting the

proposed codes for the protection of modern digital devices can drastically reduce

the number of errors undetected or miscorrected for all codewords thus increasing the

reliability and the security of the system at the cost of a reasonable increase in the

hardware overhead compared to protection mechanisms using linear codes.

v

Contents

1 Introduction 1

2 Definitions, Bounds and Optimality of Nonlinear Robust Codes 6

2.1 Kernels of Codes 7

2.2 Robust Codes and Autocorrelation Functions 8

2.3 Definitions of Robust Codes and Their Variations 10

2.4 Bounds, Optimality and Perfect Robust Codes 13

2.5 Optimality of Systematic Minimum Distance Robust and Partially Ro­

bust Codes 15

2.6 Summary 18

3 Systematic Robust Codes Based on Nonlinear Functions 20

3.1 Optimum Systematic Robust Codes 21

3.2 Modifications of optimum Systematic Robust Codes 24

3.3 Partially Robust Codes 28

3.4 Minimum Distance Partially Robust Codes 30

3.4.1 Vasil'ev Codes and Their Generalizations 30

3.4.2 Phelps Codes and Their Generalizations 33

3.4.3 One Switching Constructions and Their Generalizations 37

3.4.4 Nonlinear Multi-Error Correcting Codes 40

3.5 Summary 44

4 Multilinear Codes 47

vi

4.1 Multilinear Algebraic Codes 48

4.1.1 Constructions Based on Swapping the Redundant Bits 48

4.1.2 Constructions Based on Circular Shifts 50

4.1.3 Randomly Selecting from Non-Overlapping Linear Codes . . . 53

4.1.4 General Analysis of Fault Detecion Ability of Multilinear Codes 55

4.2 Multilinear Arithmetic Codes 57

4.2.1 Linear and Partially Robust Arithmetic Codes 59

4.2.2 [|ar|p, |2x|p] Multilinear Code 65

4.2.3 Multi-modulii Multilinear Code 70

4.3 Summary 74

5 Application of Robust Codes on the Design of Secure Cryptographic

Devices 75

5.1 Fault and Attacker Model 78

5.2 Repeatability of Errors 80

5.3 Robust Protection of the AES Linear Block 83

5.3.1 Hardware Architecture for Robust AES 83

5.3.2 Error Detection Analysis 85

5.4 Robust FSMs Resilient to Advanced Fault Injection Attacks 88

5.4.1 Capabilities and Goals of Attackers when Injecting Faults into

FSMs 90

5.4.2 Secure FSM Architectures 91

5.5 Secure Multipliers Based on Multilinear Arithmetic Codes 101

5.5.1 Hardware Overhead 102

5.5.2 Experimental Results on Comparison of Error and Fault Detec­

tion Capabilities for Linear, Partially Robust and Multilinear

Arithmetic Codes 104

vii

5.6 Summary 109

Algebraic Manipulation Detection Codes and Their Applications 112

6.1 Strongly Secure Cryptographic Devices 112

6.2 Definitions and Bounds for Algebraic Manipulation Detection Codes . 114

6.3 Constructions of AMD Codes 120

6.3.1 Constructions Based on the Generalized Reed-Muller Codes . 121

6.3.2 Constructions Based on Products of Generalized Reed-Muller

Codes 129

6.4 Protection of Normal Base Serial Multipliers in GF(2k) 132

6.4.1 Estimation of the Hardware Overhead for the Protection of

Multipliers in Galois Fields Recommended for Elliptic Curve

Cryptographic Algorithms 135

6.5 Summary 137

Reliable Memories Based on Nonlinear Error Correcting Codes 140

7.1 Design of Memories with Concurrent Error Detection and Correction

by Nonlinear SEC-DED Codes 141

7.1.1 Previous Work 144

7.1.2 Memory Protection Architecture Based on the Extended Ham­

ming Code 145

7.1.3 Memory Protection Architecture Based on the Extended Phelps

Code 147

7.1.4 Memory Protection Architecture Based on the Extended Vasil'ev

Code 155

7.1.5 Comparison of Memory Architectures Based on Extended Ham­

ming Codes, Extended Vasil'ev Codes and Extended Phelps

Codes 163

viii

7.1.6 Further Discussions 166

7.2 Reliable MLC NAND Flash Memories Based on Nonlinear Multi-Error

Correction Codes 167

7.2.1 MLC NAND Flash Memories 170

7.2.2 Error Correcting Algorithms for Nonlinear Multi-Error Correct­

ing Codes 173

7.2.3 Alternatives for the Protection of MLC NAND Flash Memories 183

7.2.4 Hardware Design of the Encoder and the Decoder for Nonlinear

Multi-Error Correcting Codes 187

7.2.5 Area, Latency and Power Consumption 196

7.3 Summary 197

References 200

Curriculum Vitae 212

IX

List of Tables

3.1 Cosets of the (7,4,3) linear Hamming code 36

3.2 Optimality of robust and partially robust codes with respect to bound

(2.14) (r(d, n) is derived from the Hamming bound) 46

4.1 Hardware complexity for the encoder, number of undetectable errors

and maximum conditional error masking probabilities for schemes us­

ing different number of codes from Construction 4.1.1 (n = 39, k = 32) 50

4.2 Comparison of (x, (Px)3) code and Construction 4.1.2 51

4.3 Classification of masked errors for linear arithmetic codes 66

4.4 Number of bad errors in the format of e = (ex, 0) for linear and multi­

linear codes (k = 32) 71

4.5 Number of bad errors when selecting from linear arithmetic codes with

different modulii 73

4.6 Probability of bad errors for linear and multilinear codes 74

5.1 The estimated repeatability of errors for faults injected into signed(2's

complement) and unsigned Wallace tree multipliers 82

5.2 Hardware Overhead of Secure AES Linear Blocks Based on Different

Error Detecting Codes 85

5.3 State Assignment of the FSM for the Montgomery Ladder Algorithm 94

5.4 Qi and Q2 of Secure FSM Architectures for the Montgomery Ladder

Algorithm 100

x

5.5 Structure, Hardware and Power Consumption Overhead of Encoders

and EDN of Different Alternatives 101

5.6 Hardware area overhead for architectures based on linear, multilinear

and partially robust arithmetic codes (k = 32, r = 5,p = 31, q = 29) . 105

5.7 Error masking probability distributions for secure multipliers based on

linear, multilinear and partially robust arithmetic codes (k = 32, r =

5,p = 31,g = 29) 106

5.8 Fault masking probabilties when both the original multiplier and the

predictor are affected (k = 32, r = 5,p = 31, q = 29) 107

5.9 Fault masking probabilties when only the original device is affected

(jfc = 32,r = 5,p = 31,g = 29) 108

6.1 Hardware complexity for parallel and digit-serial Massey-Omura mul­

tipliers 135

6.2 Estimation of the total area overhead of the predictor and EDN for

digit-serial multipliers in GF(2k) protected by codes generated by The­

orem 6.3.1 139

7.1 Selected coset leaders and coset vectors 150

7.2 Detection and correction kernels for the (39,32,4) extended Hamming

code, the (39,32,4) extended Vasil'ev code with Ud = 6, Qmc = 0.5 and

the (39,32,4) extended Phelps code with Ud = 27, Qmc = ^ 163

7.3 Number of undetectable and miscorrected errors with multiplicities

less or equal to six for the (39,32,4) extended Hamming code, the

(39,32,4) extended Vasil'ev code with u^ — 6, Qmc = 0.5 and the

(39,32,4) extended Phelps code with ud = 27, Qmc = i 164

xi

7.4 Latency, area overhead and power consumption for the encoders for

(39,32,4) SEC-DED codes (Voltage = 1.1 V, Temperature = 25 C) . 166

7.5 Latency, area overhead and power consumption for the decoders for

(39,32,4) SEC-DED codes (Voltage = 1.1 V, Temperature = 25 C) . 166

7.6 The output of the decoder for linear codes that can correct up to t errors 173

7.7 Comparison of six 5-bit error correcting codes for the protection of

MLC NAND flash memories 185

7.8 Comparison of the area, the latency and the power consumption of dif­

ferent alternatives that can correct up to 5-bit errors for the protection

of MLC NAND flash memories 199

xii

List of Figures

2-1 Definition of R-robust codes 11

4-1 Error detection properties of circularly shifting and randomly selecting

(7,4) Hamming code 52

4-2 Comparison of fault masking probability after t clock cycles 58

5-1 Fault-injection into a single gate 81

5-2 General Architecture of Secure Devices Based on Error Detecting Codes 84

5-3 Error Distributions for Codes with k = 8 86

5-4 Probability of Missing Faults for Different Length of Input Sequences-

Linear Parity, Robust Parity, L+R Parity (k = 32, r = 6) 86

5-5 Probability of Missing Faults for Different Length of Input Sequences-

Hamming, gen.Vasil'ev, (x, (Px)3) where k = 32 87

5-6 Secure FSM Architectures Based on Systematic Error Detection Codes 92

5-7 State Transition Diagram of the FSM for the Montgomery Ladder Al­

gorithm (Sunar et al., 2007a) 94

5-8 Secure FSM Architectures Based on Multi-code Techniques 96

5-9 Hardware architectures for multipliers protected by (a) linear arith­

metic codes, (b) [\x\p, \2x\p] multilinear codes and (c) Multi-modulii

multilinear codes 102

6-1 General architecture of a device protected by a (k,m,r) AMD code . 133

xiii

6-2 Predictor for serial Massey-Omura multiplier in GF(2k) protected by

codes with 6 = 1 generated by Theorem 6.3.1 134

6-3 Predictor for serial Massey-Omura multiplier in GF(2k) protected by

codes with t = 1 based on Theorem 6.3.1 135

7-1 General Memory Architecture with ECC 146

7-2 The decoder architecture for the (39,32,4) extended Phelps code . . . 151

7-3 Kernels of (39,32,4) extended Vasil'ev codes as a function of "a" . . 161

7-4 The decoder architecture for the (39,32,4) extended Vasil'ev code . . 162

7-5 Threshold voltage distribution for a MLC storing 2 bits (Chen et al.,

2008) 171

7-6 The architecture of the encoder for the (8281,8201,11) nonlinear 5-

error-correcting code 188

7-7 The syndrome computation block with a parallelism level of q for BCH

codes 191

7-8 Strength-reduced Chien search architecture with a parallelism level of q 192

7-9 Decoder architecture for the proposed (8281,8201,11) nonlinear 5-

error-correcting code 193

xiv

List of Abbreviations

AES Advanced Encryption Standard
AMD Algebraic Manipulation Detection Codes
APN Almost Perfect Nonlinear
BCH Bose-Chaudhuri-Hocquenghem Codes
DFA Differential Fault Analysis
DRAM Dynamic Random Access Memory
EDN Error Detection Network
FSM Finite State Machine
GRM Generalized Reed-Muller Codes
MLC Multi-Level Cell
SEU Single Event Upset
MBU Multiple-Bit Upset
RS Reed-Solomon Codes
SEC-DED Sinlge-Error-Correcting, Double-Error-Detecting
SLC Single-Level Cell
SRAM Static Random Access Memory
TMR Triple Modular Redundancy

xv

List of Notat ions

d Hamming distance
k Number of information bits
r Number of redundant bits
ri Number of linear redundant bits
rjv Number of nonlinear redundant bits
M Number of codewords M = \C\
C Error control code
Xc Characteristic function of C
c A codeword
e Error vector
c Distorted codeword
GF{qn) Finite field
/ Encoding function of systematic code
fL Encoding function for linear redundant bits
fN Encoding function for nonlinear redundant bits
Pf Nonlinearity of the function /
Kd Detection Kernel
Kc Correction Kernel
ojd Dimension of the detection kernel.
Q(e) Error masking probability of e
Q(y, e) Error masking probability of e for given information bits y
||e| | Hamming weight of e
\e\p Mod p operation
© Componentwise addition of q-Biy vectors

xvi

1

Chapter 1

Introduction

Classical linear error detecting codes are designed for channels with specific error dis­

tributions. These codes concentrate their error detecting and correcting capabilities

on what are considered to be the most probable errors, which are typically errors of

a small multiplicity. However, in many environments and for many applications the

assumptions that make the traditional methods efficient cannot be guaranteed, where

the error distributions can be non-stationary or difficult to predict. In these situa­

tions, the reliability and the security of systems protected by linear error detecting

codes cannot be guaranteed.

For example, the security of modern cryptosystems is threatened by side-channel

attacks such as the timing analysis attacks (Kocher, 1996), the power analysis attacks

(Kocher et al., 1999) and the fault injection attacks (Bar-El et al., 2006). Unlike

other forms of side-channel attacks, fault based attacks are often active and hence

adaptive. Due to the adaptive nature and the vast arsenal of fault injection methods

and techniques available to the attacker, the model of errors injected by the attacker

is impossible to predict. Any secure cryptographic devices based on linear error

detecting codes can be easily compromised by injecting errors that are known to be

undetectable by the used codes.

Continuous scaling of device features and performance causes an increased prob­

ability of errors and makes devices more susceptible to single-event-upsets (SEU),

which complicates the analysis of the resulting error models. The increase of the

2

MBU rate in deep submicron technologies deteriorates the situation even further. In

65nm triple-well SRAMs with a thin cell architecture, for instance, the rate of multi-

bit errors caused by neutron induced SEU increases by a factor of ten compared to

that in 90nm technologies nearly 55% of the errors due to neutron radiation were

multi-bit errors (Georgakos et al., 2007). Moreover, due to the ubiquitous use of mo­

bile computers, the environments in which devices operate and communicate change

frequently and often drastically, which can cause non-stationary error distributions.

Making an assumption about the error distributions in such cases can result in a poor

reliability of the system due to the possibly incorrect error models.

Classical linear codes are also not suitable for lazy channels where faults have a

high probability to manifest as the same nonzero error pattern for several clock cycles.

Errors with a high laziness (probability that the error repeats) can occur in many

hardware implementations. Faults in linear networks consisting of only XOR gates

or fanout-free logic implementations will often result in internal faults manifesting

themselves as repeating errors at the outputs of the devices. Failures in interconnect

networks such as buses can also result in repeating errors. For such devices a single

fault has a very high probability of manifesting itself in a constant error pattern

regardless of the data it distorts.

Errors with high laziness can also occur in channels where an adversary is the

cause of the malfunctions. Due to the limitation of the fault injection methodologies,

the attacker cannot inject faults at each clock cycle (slow fault-injection mechanisms).

Once faults are injected and an error is generated, the faults in most cases stay for

several clock cycles before new faults can be injected and tend to manifest themselves

as the same error patterns at the output of the device.

Repeating errors can be problematic for classical linear error detecting codes.

When an error is not detected by one of the codeword, it will never be detected by

3

the code and the protected device will function erroneously without providing any

detection of possible malfunctions.

To provide solutions to the limitation of classical linear error detecting codes,

this work developed and analyzed three new families of error detecting codes - robust

codes, multilinear codes and strongly secure algebraic manipulation detection (AMD)

codes. These codes reduce or eliminate undetectable errors and provide nearly equal

protection against all error patterns. As a result, the reliability and the security of the

protected devices can be guaranteed regardless of the accuracy of the error models.

The first part of the dissertation describes the constructions of robust codes, mul­

tilinear codes and AMD codes and conducts theoretical analysis of the error detecting

capabilities and the optimality of these codes. The definitions and bounds for robust

codes are shown in Chapter 2. The constructions of robust codes based on nonlinear

functions are presented in Chapter 3. Multilinear algebraic and arithmetic codes are

described in Chapter 4.

The second part of the dissertation applies robust codes and multilinear codes

for various reliable and secure applications. In Chapter 5, secure AES blocks, secure

FSMs and secure multipliers resilient to fault injection attacks are built using the

proposed codes. To protect cryptographic devices against the most advanced attack­

ers, AMD are proposed in Chapter 6. In Chapter 7, minimum distance robust codes

and partially robust codes are used for error detection and/or corrections in memories

such as SRAMs, MLC NAND flashes, etc. All the designs are modeled in Verilog and

synthesized in Cadence RTL design compiler. The overhead and the error detecting

capabilities for designs based on different error detecting codes are analyzed and com­

pared. The simulation results indicate that adopting robust and multilinear codes for

applications such as secure cryptographic devices and reliable memory systems can

results in much better reliability and security at the cost of a reasonable increase of

4

the hardware overhead compared to systems based on linear error detecting codes.

Summary of Contributions

In Chapter 2, different bounds for robust codes, systematic robust codes and minimum

distance robust and partially robust codes are developed. A relationship between the

worst case error masking probability and the nonlinearity of the encoding function

is established. In Chapter 3, a number of optimal constructions of robust codes and

their variations based on nonlinear functions are proposed. Existing constructions of

perfect nonlinear Hamming codes such as Vasil'ev constructions and Phelps construc­

tions are generalized to generate nonlinear error correcting codes with any length and

any Hamming distance. The definitions and bounds for robust codes and partially

robust codes were co-developed with Konrad Kulikowski. All the results related to

minimum distance robust and partially robust codes were proposed by the author of

the dissertation in (Wang et al., 2010a).

Variations of robust codes based on nonlinear functions are applied for the pro­

tection of AES linear blocks in Chapter 5. Related works have been published in

(Karpovsky et al., 2007; Kulikowski et al., 2008b; Kulikowski et al., 2008c; Karpovsky

et al., 2008a; Akdemir et al., 2011). The error correcting algorithms for minimum

distance robust and partially robust codes are described in Chapter 7. These codes

have been used for protecting SRAMs against single event upset (SEU) and multiple-

bit upset (MBU) in (Wang et al., 2009c; Wang et al., 2010a) and for multi-bit error

correcting for MLC NAND flash memories in (Wang et al., 2010b; Wang et al., 2011b).

Constructions of both algebraic and arithmetic multilinear codes are proposed in

Chapter 4. Multilinear codes are adopted for the build of secure FSMs and secure

multipliers resistant to fault injection attacks in Chapter 5. Related publications

include (Wang et a l , 2009b; Wang et al., 2009a; Wang and Karpovsky, 2010; Wang

5

et al., 2011c).

Bounds and constructions of algebraic manipulation detection codes for cryptogra­

phy applications are developed in Chapter 6. It is shown that these codes are related

to classical error detecting codes such as the Generalized Reed-Muller codes and the

extended Reed-Solomon codes. These codes are used for the protection of Galois field

multipliers for elliptic curve cryptography devices in (Wang and Karpovsky, 2011;

Karpovsky and Wang, 2011).

The author of the dissertation also contributed in the design of synchronous and

asynchronous power balanced gates (Kulikowski et al., 2008d; Kulikowski et al.,

2008a); and in the analysis of the influence of nano-scale technologies (e.g. Carbon

Nonotube Field-Effect Transistors (CNTFETs)) on the reliability of modern digital

devices (Wang et al., 2011a).

6

Chapter 2

Definitions, Bounds and Optimality of

Nonlinear Robust Codes

Classical error detecting codes concentrate their error detection and correction capa­

bilities on a specific type of errors (e.g. errors with small multiplicities). These codes

are characterized by three parameters - the length of the code (n), the number of

codewords (M) and the Hamming distance (d). For these codes the design criterion

is usually to maximize one of the three parameters while the other two are given.

The optimality of classical error detecting codes is well studied in the community. A

number of different bounds, e.g. Hamming bound, Plotking bound, Johnson bound,

Linear programming bound, etc (MacWilliams and Sloane, 1998), have been proved

and used to compare different codes in the past several decades. The best classi­

cal error detecting codes are those meeting at least one of the known bounds in the

literature.

Nonlinear robust codes (Kulikowski et a l , 2008b) are designed to provide nearly

equal protection against all error patterns. Besides n, M and d, these codes are also

characterized by the worst case error masking probability and the size of the detection

(correction) kernel. A perfect robust code should have the smallest detection kernel

and minimize the worst case error masking probability given all the other parameters.

In this Chapter, we start by defining the detection and the correction kernels of

a code. Then the definitions of robust codes and their variations are presented. We

7

propose several bounds for robust codes, systematic robust codes and robust codes

with minimum distance larger than 1. Several optimum constructions of robust codes

and their variations meeting these bounds can be found in Chapter 3.

2.1 Kernels of Codes

Throughout the chapter we denote by "©" the component-wise addition and "•" the

component-wise multiplication in a Galois field GF(qn). We denote by (n, k, d) a code

of length n, dimension k and minimum distance d. Most of the results are presented

for binary codes (q = 2). These results can be easily generalized for q = ps, where p

is a prime.

Definition 2.1.1 (Kernels of the code) For any error correcting code C C GF(2n),

the detection kernel Kd is the set of errors that are masked by all codewords.

Kd = {e\e®ceC,VceC}. (2.1)

It is easy to show that Kd is a linear subspace of C. (Let us denote the dimension of

Kd by u)d.) If C is linear, Kd = C.

Denote by A the error correction algorithm for code C. Denote by E the set of

errors that A attempts to correct. The correction kernel Kc is defined as follows:

Kc = {e\e (£E,\/ce C, Be e E, A(e © c) = A(e © c)}. (2.2)

Example 2.1.1 (Kernels of Linear Hamming Codes) A (n, n— \log2(n+l)], 3)

linear Hamming code C C GF(2n) has minimum distance 3 and is able to correct all

single bit errors. Denote by H the parity check matrix ofC. An error e is undetectable

if and only if e is a codeword (He = 0,). Thereby the detection kernel Kd of a Hamming

code is C itself. For single error correcting codes E = {e| ||e|| = 1}, where ||e|| is

the multiplicity of the error. A multi-bit error e, ||e|| > 1 will be miscorrected if and

only if it has the same syndrome as some single bit error. So the correction kernel

of Hamming code is {e\He = He^}, where e\ is an error vector of Hamming weight

one and He is the matrix multiplication in binary field. Obviously, Kd and Kc are

disjoint. For perfect linear Hamming code, Kd \J Kc \J E = GF(2n).

8

The main characteristic of traditional linear error detecting codes is that they

concentrate their error detecting power on a small subset of errors which are assumed

to be the most likely to occur. Typically, such codes concentrate their error detecting

power on errors of a small multiplicity. They are designed to guarantee detection of all

errors with a multiplicity less than d. Error detection beyond the minimum distance

of the code is typically not a part of the design criteria and can be unpredictable

and ineffective. While for some classes of errors the codes provide 100% protection,

for a very large class of errors linear codes offer no protection for all messages. For

any linear systematic error detecting code of length n and dimension k there are 2k

undetectable errors. Linear codes have the largest detection kernel Kd (the set of

undetectable errors) of any class of systematic codes with the same n and k.

2.2 Robust Codes and Autocorrelation Functions

Autocorrelations of logic functions are powerful tools for the analysis and synthesis of

digital hardware (Karpovsky et al., 2008b). These functions are analogous to the clas­

sical correlation functions employed extensively in telecommunications (Degtyaryov

and Slyozkin, 2001; Sherman, 1956), theory of stochastic proceses (Lange, 1967) and

are strongly connected to discrete transforms such as Walsh and Vilenkin-Chrestenson

transforms (Karpovsky et al., 2008b). We first review some basic definitions of auto­

correlation functions.

Definition 2.2.1 (Autocorrelation Function) For a function f : GF{qk) —>

GF(qr), the autocorrelation Bf(e) of f is defined as

<zfc-i

*/(<0 =] £ / (*) / (* ©«0. (2-3)

where e G GF(qk), J2 are integer additions and © is addition in GF(qk).

9

It is clear from (2.3) that Bf(e) is a convolution-type transform of the original

function / , with the addition of the variable x by e performed in GF(qk).

Autocorrelation functions can be expressed in terms of double Vilenkin-Chrestenson

transforms (Karpovsky et al., 2008b).

Theorem 2.2.1 (Karpovsky et al, 2008b) For f : GF(qk) ->• GF(qr), denote by Sf

its Vilenkin-Chrestenson transform and Sj1 the inverse Vilenkin-Chrestenson trans­

form. Then

Bf(e) = qkS(S)S))(e), (2.4)

where S} is the complex conjugate of Sf.

Theorem 2.2.1 is a direct analogue to the Wiener-Khinchin theorem in classical

Fourier analysis, and for q = 2 is called dydaic Wiener-Khinchin theorem. It enables

us to use fast algorithms for calculation of spectral transforms to compute autocorre­

lation functions and simplify our analysis of the error detection ability of codes using

spectral methods. These fast algorithms can be found in (Karpovsky et al., 2008b).

Definition 2.2.2 (Characteristic Function) The characteristic function of a code

C C GF(qn), is a function Xc • GF(qn) -»• {0,1} defined as

*M = { k %%c <2-5>

Characteristic functions of codes are all Boolean functions. Their autocorrelations

can be caculated as:
9 n - l

#xc (e)=]CxcOr)x c (z©e) . (2.6)

We will refer to BXc(e) as the autocorrelation of a code C. From (2.6), we have

BXc(0) = \C\. Nonzero error e is masked for message x €E C if and only if Xc(%) =

Xc(x © e) = 1. Thus BXc(e), e ^ 0 is the number of codewords that will mask a given

10

error e. Assuming that codewords are equiprobable, the error masking probability

Q(e) for a fixed error e and a code C can be defined as

W) " 5 X c (o) - |C| ' (2 ' 7)

, which is the fraction of codewords that mask a given error e.

2.3 Definitions of Robust Codes and Their Variations

Definition 2.3.1 The code C is robust iff maxe^0Q(e) < 1, or equivalently the

detection kernel of the code contains only the zero vector Kd = {0}.

For a robust code the error masking probability is bounded for nonzero errors.

The worst case error masking probability of a robust code is determined by its auto­

correlation function.

Definition 2.3.2 A code C C GF(2n) is a R-robust code iff the autocorrelation of

the characteristic function of the code, BXc(e) is bounded by R for any e ^ 0.

2 n - l

R= max \{x\x G C,x®e G C} | = max Y^ Xc{x)Xc{x ©e). (2.8)
0^eeGF(2") 0#e€GF(2») ^

x=0

A graphic depiction of the definition of a robust code is shown in Figure 2-1.

Let C C GF(2n), and Ce be the set of all codewords of C shifted by an element

e € GF{2n). The code C is R-robust if for any 0 ^ e G GF(2n), the size of the

intersection of the two sets C and Ce is upperbounded by R.

The above defined robust codes have beneficial properties when worst case error

masking probability of the codes is considered. By definition of an .R-robust code there

are at most R codewords which can mask any fixed error e. The worst case error

masking probability for a R-robust code with M codewords is at most R/M, assuming

all codewords are equi-probable. Thereby, robust codes have a predictable behaviour

11

c^.-
{
i

\

*" -~~ -

C-C+e

A

~— ""

R=\CnC\

Figure 2-1: Definition of R-robust codes

in the presence of unpredictable error distributions as the worst case probability of

masking of any error is bounded.

Most robust codes do not have a minimum distance larger than one and do not

guarantee 100% detection probability for any subset of errors. A possible variant of

the robust codes is to include a minimum distance into the design criteria.

Definition 2.3.3 Let \\e\\ denote the multiplicity of an error e. A robust code where

Q(e) = 0 for all \\e\\ < d, e ^ 0 is a d-minimum distance robust code.

Example 2.3.1 Consider a 4-bit one hot code C = {0001, 0010,0100,1000}. It is

easy to verify that for every nonzero error e G GF(24), there are at most two c G C

satisfying c © e G C. Thereby, Q{e) = l{c|ceCjffegC^ < 0.5, \Kd\ = {0} and C is

robust. Moreover, for any single bit error e, there is no c G C satisfying c © e G C.

The code C is a 2-minimum distance robust code.

Minimum distance robust codes are robust codes with a minimum distance larger

than one. Since these codes are robust they have no undetectable errors and the

worst case error masking probability is bounded by maxe^0<3(e) < 1. However,

unlike traditional robust codes they also provide a guaranteed 100% probability of

detection of errors of small multiplicities (||e|| < d). These codes can be useful for

providing the highest protection against the most likely or most dangerous threat

while maintaining a detection guarantee in case of an unexpected behavior.

12

For some applications the error characteristics of robust codes can be considered

too pessimistic. Partially robust codes and minimum distance partially robust codes

(see Definition 2.3.4) allow for a tradeoff among robustness, decoding complexity

and overheard, which fill the gap between the optimistic linear codes and pessimistic

robust codes.

Definition 2.3.4 A (n, k, d) code with a detection kernel smaller than 2k is a par­

tially robust code. If the code also has a minimum distance greater than one it is

referred to as a minimum distance partially robust code.

Example 2.3.2 The code C = {(x,p(x),f{x))} where x G GF(232), / : GF(232) -+

GF{2) is a perfect nonlinear function defined by f(x = (xi,X2,...,xs2)) = X\X2 ©

£30:4 © ... © a:3i:E32 and p(x) is the linear parity function of x, is a d = 2 minimum

distance robust error detecting code. For this code Q(e) = 0 when \\e\\ = 1 and

Q(e) < 0.5 when \\e\\ > 1 (see Section 3.4-4)-

Partially robust codes reduce the number of undetectable errors while preserving

some structures of linear codes which can be exploited to build efficient prediction

hardware that generates redundant bits of a message. Like linear codes, partially

robust codes still have undetectable errors (hence they are not completely robust).

The number of undetectable errors is reduced by many orders of magnitude compared

to that of the linear codes. For practical partially robust constructions, the number

of undetectable errors can be reduced from 2k to 2k~r compared to a linear (n, k, d)

code (Karpovsky and Taubin, 2004). The error masking probability of errors outside

the detection kernel is upper bounded by

Qmc = max Q(e). (2.9)
{e\e£Kd}

These errors will be ultimately detected assuming the error stays long enough and

affects a number of different codewords.

13

2.4 Bounds, Optimality and Perfect Robust Codes

Based on the above definitions of the robust codes it is possible to derive the following

main property for an R-robust code.

Property 2.4.1 If the code C is R-robust then in the multiset Sc = {XJ ®Xi\xi, Xj G

C, Xi T̂ Xj}, any element appears at most R times.

Robust codes are optimum if they have the maximum number of codewords M

for a given R and and length n. From Property 2.4.1, a relation on R, n and M of

the code can be established.

M2-M < R(2n - 1). (2.10)

Definition 2.4.1 (Perfect Robust Code) A R-robust code with n bits and M

codewords satisfying M2 — M = R(2n — 1) is perfect.

It has been shown that perfect robust codes in binary field, which are the most

important and practical for hardware design, exist only for even length and have

the following parameters: n = 2s, M = 22s~1 ± 28"1, R = 22s~2 ± 2S _ 1 (Beth et a l ,

1999). These codes can be constructed using the method presented in (Karpovsky

and Nagvajara, 1989). Systematic codes, which are often more practical for many

applications due to their seperation of data and check bits, cannot be perfect.

Theorem 2.4.1 (Karpovsky et al, 2008a) For any systematic R-robust code with

length n and k information bits, there are at least 2n~k elements in GF(2n) which

cannot be expressed as differences of two codewords.

Proof For any systematic codeword x = (x\,x2 = /(a?i)) an error e = (ei,e2) is

masked iff f(x\ © ei) = x2 © e2. An error e = (ei = 0, e2 ^ 0) is never masked

since f(xi) = x2 © e2 only iff e2 = 0. An error that is never masked cannot be

expressed as a difference of two codewords. Hence elements from GF(2n) of the form

14

x = (0, x2 G GF(2r)), where r = n — k cannot be expressed as a difference of two

codewords. •

Corollary 2.4.1 There are no perfect systematic robust codes.

When perfect robust codes are not available, the best possible codes which maxi­

mize M for a given n and R are referred to as optimum robust codes.

Definition 2.4.2 (Optimum Robust code) Robust codes which have the maxi­

mum possible number of codewords M for a given length n and robustness R with

respect to (2.10) are called optimum. For optimum codes adding any additional

codewords would violate bound (2.10) and

M2-M < R(2n -1)<M2 + M. (2.11)

Example 2.4.1 Consider the following binary code C = {000,001,010,100} where

n = 3. The mutiset Sc of all different pairs of codeword differences of the code is

Sc = {001,001,010,010,100,100,

011,011,101,101,110,110}.

Any nonzero element of GF(23) appears at most two times in the multiset Sc, hence

the code is 2-robust.

The code is not perfect since equality does not hold for (2.10). The code, however

is an optimum (3,4,2) Robust code. No other code can exist with the same n and R

that has more codewords since 5 codewords would violate condition (2.10).

From Theorem 2.4.1, there are 2n~k errors which will never be masked by any

(n, k) systematic code. Thereby a more strict bound can be derived for systematic

codes. In this case we have

M2-M < R(2n - 2n~k). (2.12)

15

The best systematic codes with respect to M for given n and R should satisfy the

equality in (2.12). These codes are also optimum regarding to 2.4.2.

2.5 Optimality of Systematic Minimum Distance Robust and

Partially Robust Codes

The bounds presented in the last section do not depend on the distance of the code,

thus are not precise for minimum distance robust codes. In this section, we present

an exact upper bound for the size of the systematic minimum distance robust and

partially robust codes in terms of Qmc, n, k, d and the dimension of the detection

kernel ud.

The redundant bits of a systematic code are generated by an encoding function

/ : GF(2k) —> GF(2r),r = n — k. In order to simplify the analysis, we distinguish

between the encoding functions for linear and nonlinear redundant bits. Denote by r^

and Tiv the number of linear and nonlinear redundant bits respectively, r = rL + rN.

We represent a codeword c of a systematic code in the following format.

c=(x,fL(x),fN(x)), (2.13)

where fL : GF(2k) —> GF{2TL) is the encoding function for linear redundant bits

which can be implemented using only XOR gates, / # • GF(2k) ->• GF{2TN) is the

encoding function for nonlinear redundant bits which cannot be implemented using

only XOR gates.

Theorem 2.5.1 Denote by r(d,n) the smallest possible number of redundant bits for

a systematic code with minimum Hamming distance d and length n. For any (n, k, d)

code C,

2k < Qmc(2
n - 2k2r^d'n) + (2fc - 2Wd)2rjv) + 2"d, (2.14)

where ud is the dimension of the detection kernel of C and Qmc = max{e|e£xd} Q{e)-

16

Proof Let e = (ei, e2,63) be the error vector, where e\ G GF(2k), e2 G GF(2TL), e3 G

GF{2TN). We divide the errors into two classes as stated below.

1. e2 ^ fi(ei). These errors will be detected by the linear redundant bits of the

code and are never masked. The number of errors in this class is 2k(2rL~1)2rN.

2. e2 = / i (e i) . In this case an error e = (ei,e2,e3) is masked by a codeword

c = (xi, x2, rr3) iff there exists another codeword d = (x'^x^, x'3) such that

X\ © Xn —— e\;

fN{x\) © /AT(Z'2) = e3.

Equivalently, fN(xi © ei) © /jv(aJi) = e3. Errors in this class can be further

divided into two classes.

(a) If e G Kd, it will be masked by all codewords of the code. The number of

errors in this class is 2Ud.

(b) If we can find an error d = (e\,e'2,d^) in Kd such that e\ = e[,e2 =

d2, es ^ e3, e will always be detected. The number of errors in this class is

2"d(2r" - 1).

(c) All the other errors will be masked by no more than 2kQmc codewords.

According to the above analysis, we have

2k < Qmc(2
n-2k(2rL-l)2rN-2Wd2rN) + 2Wd

< Qmc(2" - 2k2r(d'n) + (2k - 2Wd)2rjv) + Td.

The function r(d, n) can be estimated using existing bounds for error control codes

that are extensively studied in the community. For example, the Hamming bound

17

and the Singleton bound (MacWilliams and Sloane, 1998). When r(d,n) is derived

from the Hamming bound, (2.14) is equivalent to

2 / \
2k < Qmc(2n -2kY2 I ") + (2fc - Vd)2rN) + 2"d. (2.15)

Definition 2.5.1 A systematic minimum distance robust or partially robust code

(n,k,d) satisfying the equality in (2.14) is perfect.

For the design of systematic minimum distance robust and partially robust codes,

the best codes should have the maximum k given all the other parameters. When

perfect codes are not available, the codes with maximum possible k when other pa­

rameters are fixed are called optimum systematic minimum distance robust

(partially robust) codes.

Definition 2.5.2 A (n,k,d) code which has the maximum possible k for given n,

Qmc, Ud and d with respect to (2.14) is called optimum. For optimum codes increas­

ing k will violate bound (2.14).

Remark 2.5.1 The optimality of minimum distance robust and partially robust codes

that achieve the equality in bound (2.14) are twofold. First, it is perfect in a sense

that it has the minimum number of redundant bits among all codes with distance d and

length n. Second, it is perfect in a sense that it achieves the highest possible robustness

with a given number of nonlinear redundant bits r^. To be perfect in terms of bound

(2.14), the following two conditions must be satisfied.

1. The total number of redundant bits r = rx, + rN = r(d, n);

2. /AT(^) is a perfect nonlinear function.

The nonlinearity of a function fx : GF(2k) —>• GF(2TN) can be measured using

derivatives Daf^{x) — /Ar(o;ffia)©/jv(a:). The nonlinearity can be defined by ((Carlet

and Ding, 2004))

KN)Pr{DafN{x) = b), (2.16)

18

where Pr(E) denotes the probability of occurrence of event E. The smaller the value

of PfN, the higher the corresponding nonlinearity of f^. fa is a perfect nonlinear

function when PfN = 2~TN.

Example 2.5.1 1. The nonlinear function fN : GF(22st) -¥ GF(2t) defined by

fN(x) = x\ • x2 © x3 • X4 © • • • © x2s-i • x2s, where xt G GF(2t), 1 < i < 2s and

• is the multiplication in GF(2t) is a perfect nonlinear function with PfN = 2~l

(Carlet and Ding, 2004).

2. Let }N{X) : GF{2n) -» GF(2n) be a nonlinear function defined by /AT(^) = x3,

where x3 is the cubing operation in GF(2n). For every a,b G GF(2n),a ^ 0,

there are at most two x satisfying DafN(x) = b. Thereby PfN = 2~n+1. fN

is not a perfect nonlinear function because PfN > 2~TN. However, it has the

smallest possible PfN among functions mapping GF(2n) to itself and is called

almost perfect nonlinear (APN) (Carlet and Ding, 2004)-

3. For and (n, k, d) linear systematic code C, let x be the information bits of the

codeword and H = [P\I] be the r x n parity check matrix in standard form,

where I is the r x r identity matrix. The encoding function /z,(:r) = Px is

linear and has PfL = 1.

More constructions of perfect and almost perfect nonlinear functions can be found

in (Carlet and Ding, 2004).

2.6 Summary

Robust codes are designed to provide nearly equal protection against all error pat­

terns. The worst case error masking probability Q(e) of the code is determined by the

maximum value of its autocorrelation function. The best robust codes should have

no undetectable errors (Kd = {0}) and minimize the worst case error masking prob­

ability (Q(e) is minimized among all codes with the same length and the same size).

Variations of robust codes, e.g. partially robust codes, minimum distance robust

19

and partially robust codes, are proposed for different applications and for tradeoffs

between the hardware overhead and the reliability and security of the systems.

Several bounds for robust codes and their variations are presented. The definitions

of perfect and optimum robust codes are described. Perfect robust codes can only be

non-systematic and exist for very limited sets of parameters. Several constructions of

optimum systematic robust codes and minimum distance partially robust codes will

be shown in Chapter 3.

The definitions and bounds for robust codes and partially robust codes were co-

developed with Konrad Kulikowski. All the results related to minimum distance

robust and partially robust codes were proposed by the author of the dissertation in

(Wang et al., 2010a).

20

Chapter 3

Systematic Robust Codes Based on

Nonlinear Functions

In Chapter 2, we showed that perfect robust codes can only be nonsystematic codes.

These codes correspond to well studied combinatorial structures known as difference

sets and symmetric designs (Jungnickel and Pott, 1999). Despite the extensive re­

search of the combinatorial structures it is still not known in the general case for

what parameters such difference sets and hence perfect robust codes exist, and we

note that the perfect robust codes based on the known difference sets have a high

complexity of decoding (detecting for a given x whether x G C or x G" C). A good

summary of existing difference sets can be found in (Beth et al., 1999).

Systematic codes cannot be perfect. However, since the information bits and the

redundant bits are separated, systematic codes usually have much lower encoding

and decoding complexity thus are more practical for hardware design. There is a

strong relationship between robust codes, nonlinearity, and nonlinear functions since

all robust codes are nonlinear. The worst case error masking probability of systematic

robust codes is determined by the nonlinearity of the encoding function of the codes.

In this Chapter, the constructions of several optimum systematic robust codes and

minimum distance partially robust codes based on nonlinear encoding functions will

be presented. These codes find applications in different areas such as the design of

secure cryptographic devices resilient to advanced fault injection attacks (Chapter 5),

21

the build of multi-bit error tolerant reliable memory systems (Chapter 7), the error

detection in lazy channels (Karpovsky et al., 2007), etc .

3.1 Optimum Systematic Robust Codes

We first review some basic definitions and properties of nonlinearity, a good survey

of nonlinear functions can be found in (Carlet and Ding, 2004).

Let / be a function that maps elements from GF{2k) to GF(2r).

f : GF(2k) -» GF{2r) : a -> 6 = f{a). (3.1)

The nonlinearity of the function can be measured by using derivatives Daf(x) =

f(x<£>a)& f(x). Let

Pf = max max Pr(Daf(x) = b), (3.2)

where Pr(E) denotes the fraction of cases when E occurs. The smaller the value of

Pf, the higher the corresponding nonlinearity of / . For linear functions Pf = 1.

Definition 3.1.1 A function f : GF(2k) —> GF(2r) has perfect nonlinearity if

Pf = 2~r.

The parameters of systematic codes depend on nonlinearity of the encoding func­

tions as shown by the next theorem.

Theorem 3.1.1 (Kulikowski et al., 2008b) Let f be a function with nonlinearity

Pf that maps GF(2k) to GF(2r) where k > r, the set of vectors resulting from the

concatenation of X\,x2 : (xi,x2 = f(xi)) where X\ G GF(2k) and x2 G GF(2T) forms

a (k + r, k) robust systematic codes with R = Pf2k.

Proof The error e = (eue2), (ex G GF(2k),e2 G GF(2r)) will be masked iff f(xx ©

ei) © f(xi) = e2, x\ G GF(2k), which is exactly when Deif(xi) = e2. •

22

It is easy to verify that if the encoding function / is a perfect nonlinear function,

systematic codes constructed as in Theorem 3.1.1 satisfy the equality in (2.12). These

codes have flat total autocorrelation functions and have the maximum M for a given

n and R. They are also optimum with respect to Definition 2.4.2.

Corollary 3.1.1 A systematic robust code C = {(xi,x2 = f(xi))\xi G GF(2k),x2 G

GF(2r)} is optimum if the encoding function f is a perfect nonlinear function.

Proof From Theorem 3.1.1 and Definition 3.1.1, if / is a perfect nonlinear function,

the resulting code is a (k + r, k) robust code with R = 2k~r. The optimality of the

code can be verified by using Definition 2.4.2. •

Remark 3.1.1 The nonlinearity of the encoding function f for systematic codes cor­

responds to the worst case error masking probability of the codes. We have:

Pf = max Q(e) = max Q(e).
e=(ei,e2),ei^0 eeGF(2k+r)

where ea G GF(2k),e2 G GF(2r).

The following two constructions are examples of optimum robust codes based on

perfect nonlinear functions.

Construction 3.1.1 (Quadratic Systematic Code) Letx = (x\,x2, • • • ,x2s,x2s+i),

Xi G GF(2r), s > 1. A vector x G GF(2(2s+1)r) belongs to the code iff

xi • x2 © x3 • x4 © • • • © x2s-i • x2s = rr2s+i (3.3)

The resulting code is a ((2s + l)r, 2sr) optimum robust code with R = 2^2s~^r.

Proof The encoding function f(xi,x2,..., x2s) = xi - x2 ©£3 • x4 © • • • © x2s-\ • x2s is

a perfect nonlinear function with Pf = l / 2 r (Carlet and Ding, 2004). From Theorem

3.1.1 the resulting code is R = 22sr J2T = 2(2s -1) r robust code. •

23

Example 3.1.1 (Robust Parity)Methods based on linear parity check codes are of­

ten used for on-line error detection in combinational circuits (Lala, 2001). The linear

1-parity codes can detect all errors of odd multiplicities but offer no protection for er­

rors of even multiplicities. For devices and environments where the error distributions

are unknown or non stationary the linear 1-parity codes can result in unpredictable

behavior in the presence of errors.

As an alternative to the linear parity codes, the quadratic systematic robust codes

defined in Construction 3.1.1 can be used. Taking r = 1, q = 2 the encoding function

becomes bent function (Carlet and Ding, 2004) and the resulting (2s + 1,2s) robust

systematic code with R = 22 s _ 1 (robust parity code) has the same redundancy as the

linear parity codes. Unlike their linear counterparts, robust parity codes can detect

any error with a probability of at least | .

Applications of binary quadratic systematic codes for designing of memories with

self-detection, for data transmission in noisy channel and for data verification can be

found in (Karpovsky et al., 2007).

Perfect nonlinear functons, exist only for very limited sets of parameters. For the

case of binary codes, there are no perfect nonlinear functions from GF{2k) to GF(2k)

(Carlet and Ding, 2004; Yuan et al., 2006). Functions with optimum nonlinearity in

this case are called almost perfect nonlinear (APN) functions (Maxwell, 2005), which

have Pf = 2~k+1. When / are APN functions in the binary field, the robust codes

construted as in Theorem 3.1.1 have R = 2. These codes are not optimum.

Construction 3.1.2 (Robust Duplication Code) Letx = (xi,x2),Xi,x2 G GF(2r).

The robust duplication code C contains all vectors x G GF(22r) which satisfy x\ = x2

where all the computations are in GF(2r). The code is a 2-robust code with n = 2r

and M = 2r.

Robust duplication codes can be a viable alternative to standard duplication tech­

niques. Application of binary robust duplication codes to memories with self-error-

detection and comparison between standard and robust duplication techniques can

be found in (Karpovsky et al., 2007).

24

3.2 Modifications of optimum Systematic Robust Codes

New optimum codes can be constructed by modifying the old. We begin this section

by introducing two modifications for systematic robust codes based on adding new

codewords or deleting redundant bits.

Construction 3.2.1 (Augmented Code) Let C be a (n,k) systematic R-robust

code defined by the encoding function f. The augmented code C^ = C U { (0 , /3)\/3 ^

f{O),0 G GF(2n~k)} where 0 is the all-zeros vector in GF(2k), is a (R + 2)-robust

code with M = 2k + 2n~k - 1.

Proof In the multiset <S{(o,/8//(o))} °f vector differences of the set {(0,/? ^ / (0))}

, each element is in the form (0,/3),/3 ^ /(0),/3 G GF{2n~k) and appears exactly

2n~k _ 2 t i m e s pvom the Proof of Theorem 2.4.1 (0,/3) £" SC- Thereby the two

multisets are disjoint. In the multiset of differences of vectors of C and the additional

vectors each element can appear at most two times. Hence, multiset of the augmented

code C^ contains each element in the form (0, f3) exactly 2n~k times and all other

elements at most R + 2 times. •

Remark 3.2.1 Augmenting is only useful for codes with relatively large R. For aug­

mented quadratic systematic codes, n = (2s+l)r, M = 22sr+2r—1 and R = 2(2s~1)r+2.

When s = 1, these codes are optimum.

Construction 3.2.2 (Punctured Code) Let C be a (n, k) systematic R-robust

code. Denote by C* the punctured code obtained by deleting p < (n — k) check bits

from each codeword of C. C* is a (n — p, k) robust code with R*p < 2PR.

To prove the result we start with a Lemma.

Lemma 3.2.1 Let f : GF(2k) —> GF(2r) be a function with nonlinearity Pf. The

punctured function f* : GF(2k) —> GF(2r~l) formed by deleting one bit from the

output of f has a nonlinearity of Pf* < 2Pf. If f is a perfect nonlinear function then

so is /*.

25

Proof The nonlinearity of the function / is defined as

Pf = max max Pr(Daf(x) = b) (3.4)
' 0?aeGF(2k) beGFV)

, where Daf(x) = f(x@a)(Bf(x). Deleting one bit from the output of the function /

will cause inputs which were previously mapped to outputs differing in the deleted bit

to be remapped to the same output. Hence the derivatives of these elements which

only differed in the deleted digit will be equal. The nonlinearity of /* is therefore

Pf* = max max 2Pr(Daf(x) = (i,j)), (3.5)
1 0?aeGF{2«)ieGF(2r-i) V aJ V ' W " ' V '

where (i,j) is the concanetantion of i G GF(2 r _ 1) and j G GF(2). Since Pr(Daf(x) =

(i,j)) < Pf f° r a n y ° a n d (i,j) we have Pf* < 2Pf.

When / : GF(2k) ->• GF(2r) is a perfect nonlinear function, Pf = 2~r and

Pf* < 2~r+1. Since for a functions which maps GF(2k) —>> GF(2r~1), the nonlinearity

is lowerbounded by 2 _ r + 1 , Pf* = 2~r+1 and /* is perfect nonlinear. •

The proof of Construction 3.2.2 easily follows from the above Lemma. Obviously,

the resulting code will have the same length and the same number of codewords as

the original code but worse robustness R as shown in Lemma 3.2.1.

Corollary 3.2.1 Punctured robust codes formed by deleting p < n — k check symbols

from optimum systematic robust codes based on perfect nonlinear functions are also

optimum.

Proof The proof directly follows from Construction 3.2.2. •

Punctured robust codes are still systematic codes. They are optimum as long as

the encoding function of the original code is a perfect nonlinear function. Augmented

robust codes, on the other hand, are not systematic codes. It is relatively difficult to

26

implement encoding and decoding for these codes. Augmented quadratic systematic

code is an example of optimum nonsystematic robust codes.

We next show two modification methods based on the properties of autocorrelation

functions that can generate new perfect robust codes from old ones.

Let f(x) : GF{2n) -> {0,1} be a boolean valued function and Y?x=o f(x) = M-

Let / = 1 + / (mod 2) be the inversion of / . Then

B?(e) = 2n-2M + Bf(e). (3.6)

If / is the characteristic function Xc(x) of a code C G GF(2n), f will be the

characteristic function xc(x) of C, which is the complement code of C containing all

vectors in GF(2n) that do not belong to C. Thus we have:

Corollary 3.2.2 Let C be a R-robust code of length n which has M codewords. Then

its complement code C is a robust code of length n which has 2n — M codewords. The

robustness of C is 2n — 2M + R. Moreover, C is perfect if and only if C is perfect.

Proof Recall that the robustness of the code C is

R = maxeeGF{2n)je¥:0BXc(e), (3.7)

where Xc1S the characteristic function of the code. Denote by R the robustness of C.

From theorem 3.2 we have:

R = max By (e)
eeGF(2n),e^0 *c

max (2n - 2M + BXc(e))
eGGF(2"),e^0 *

= 2n-2M+ max Bx(e)
e€GF(2"),e^0 *

= 2n-2M + R

27

Obviously, C will have "flat" autocorrelation if and only if C does. •

We next give an example of modifications which do not generate codes with new

parameters but only change the structure of the code. This method is due to the fact

that autocorrelation functions are invariant to the affine transformation of variables.

Theorem 3.2.1 (Karpovsky et al., 2008b) Let f : GF(2k) -» GF(2r) and a =

(cry) a binary matrix (i,j = 0,l,--- ,k — 1), \a\ ^ 0 (\a\ denotes the determinant of

a), r is a binary vector of length k. Denote by 4>(x) = f(a <g> x © T), where <g> is the

matrix multiplication and "©" is the componentwise addition over GF{2). Then

B(j){x) = Bf{a®x). (3.8)

If / = Xc(x) is the characteristic funciton of a code C G GF(2n) with code­

words x = (xi,x2,- • • ,xn), the by the above theorem the affine transformations of

(xi,x2,--- , xn) do not change the "value distribution" of the autocorrelation and

thus do not change R. Thereby we have

Corollary 3.2.3 Let x = (xi,x2,--- ,xn) be the codewords of a R-robust code of

length n and size M, a be a n x n nonsingular matrix and r be a vector of length k

over GF(q). The new code constructed by applying an affine transformation a<g>x(BT

to x is still a R-robust code of the same length and the same size.

Although not able to generate codes with new parameters, the above modification

method enbles us to find codes that are easier to implement in hardware.

Example 3.2.1 Consider an optimum systematic robust codes with n = 5,M = 24

and R = 23 defined by the following encoding function

x\x2 © x2x3 © xiXz © ^3^4 = x5, Xi G GF(2). (3.9)

To implement this code in hardware, we need 4 2-input AND gates and 3 2-input

XOR gates for the encoder. Let a be

28

1 0 1 0 0 \
0 1 0 0 0 \
0 0 1 0 0 .
1 0 1 1 0 /
0 0 0 0 1 /

After applying the linear transformation a®x to x, the encoding function becomes

X\X2 © X3X4 = xs,Xi G GF{2), which is more organized and easier to implement.

Compared with the original code, only two 2-input AND gates and one 2-input XOR

gates are needed for the encoder, which cuts down the hardware redundancy by more

than 50 %. The new code is a quadratic systematic code and has exactly the parameters

as the old one.

3.3 Partially Robust Codes

Robust codes have a higher complexity of encoding and decoding than classical linear

codes. The quadratic systematic codes with n = (2s + l)r, k = 2sr and R = 2(2s-1) r

in binary field from Construction 3.1.1 require s r-bit multipliers and s — 1 r-bit

componentwise additions. Assuming a r-bit multiplier requires r2 two-input gates the

encoder for these systematic quadratic code can be implemented with sr2 + r(s — 1)

2-input gates.

As a tradeoff between robustness and the hardware overhead for computational

devices, partially robust codes were introduced in (Karpovsky and Taubin, 2004).

These codes combine linear and nonlinear mappings to decrease the hardware over­

head associated with generation of check bits. The encoding of systematic partially

robust code is performed first by using a linear function to compute the redundant

check r check symbols followed by nonlinear transformation. The use of the linear

code as the first step in the encoding process typically results in hardware savings in

the encoder or predictor since the nonlinear function needs to only be computed based

on the output of the linear block, which has length r that is much shorter than n.

The application of the nonlinear transformation reduces the number of undetectable

29

errors thus increasing the robustness of the linear codes.

Construction 3.3.1 (Partially Robust Codes (Kulikowski et al., 2008b))

Let f : GF(2r) - • GF(2r) be a nonlinear function with Pf < 1 and let H : GF(2k) ->

GF(2r) , r < k be a linear onto function. All vectors in the form (x,f(H(x))) form

a partially robust code in GF(2k+r). The set of undetectable errors is a 2k~r subspace

ofGF(2k+r), 2k — 2k~r errors are detected with probability 1, and remaining 2k+r — 2k

errors are detected with probability at least 1 — Pf.

Proof Error e = (ei, e2), ex G GF(2k), e2 G GF(2r) is masked if and only if

f(H(x © e i)) = f(H(x)) © e2, (3.10)

or A

f(H(x) © H(ex)) = f(H(x)) © e2. (3.11)

If H(ei) = e2 = 0, (3.11) is always satisfied and the error will be masked with proba­

bility 1. Since if is a linear onto function, the number of errors e = (ei, e2) (including

0) satisfying H(e\) = e2 = 0 is 2k~r and these errors form ak—r dimensional subspace

of GF(2k+r).

If H{e\) = 0, e2 7̂ 0, then (3.11) will never be satisfied. These errors will be

detected with probability 1. The number of these errors is 2k — 2k~r.

If H(ei) ^ 0, from (3.2), we know that given e = (ei,e2) there are at most P/2 r

values of H(x) satisfying (3.11). Because H is a linear onto function, for each value

of H(x), there are 2k~r possible solutions for x. Thereby errors in this class will be

masked no more than Pf 2r-2k~r = Pf2k times. They will be detected with probability

at least l - ^ - = l-Pf. •

Example 3.3.1 The code C = {(x, {Px)3)} where x G GF(232), P is a 32 by 6

encoding matrix of a shortened (38,32) Hamming code, and the cubing operation is

over GF(26), is a binary partially robust code with Ud = 26 and maxe^xd Q(e) = 2 - 5 .

C has the same number of redundant bits as the (38,32) shortened Hamming codes but

much less undetectable errors. (For the (38,32) shortened Hamming code, Ud = 32.)

30

The number of undetectable errors is reduced from 2k to 2k~r compared to the

linear code with the same redundancy. The combination of a linear functions simplifies

the prediction complexity for devices with linear or partially linear functions.

Application of partially robust codes for error detection in memories have been

discussed in (Karpovsky et al., 2007). Partially robust codes with k = 128 and r = 32

have been used in (Karpovsky et al., 2004) for design of private key security devices

based on Advanced Encryption Standard (AES) resistent to fault injection attacks.

Implementation of this approach resulted in about 80% hardware overhead.

3.4 Minimum Distance Partially Robust Codes

For applications where the error model may be imprecise but errors with small mul­

tiplicities are more probable; or applications where not only error detecting but also

error correcting is required, the distance of the code should be larger than 1. In

this case minimum distance robust and partially robust codes can be a promising

alternative to linear error correcting codes.

3.4.1 Vasil'ev Codes and Their Generalizations

Many known constructions of nonlinear codes are minimum distance partially robust

codes. They have a minimum distance larger than one and have much fewer unde­

tectable errors than linear codes. Such codes can even be perfect with respect to the

classical Hamming bound (MacWilliams and Sloane, 1998). The first perfect nonlin­

ear Hamming code was constructed by Vasil'ev in (Vasil'ev, 1962) and was generalized

by Mollard in (Mollard, 1986). We first review the basic construction of the Vasil'ev

code.

Theorem 3.4.1 (Vasil'ev Code(Vasil'ev, 1962)) For u G GF(2m), let p(u) be

the linear parity check ofu. Let V be a perfect not necessarily linear Hamming code of

length m = 2r—1 with ky = m—r information bits. Let f : V —»• {0,1} be an arbitrary

31

nonlinear mapping such that /(O) = 0,0 G GF{2m) and f{v) © f(v) ^ f{v © v) for

some v,v G V. The code C defined by

C = {(u, u © v,p(u) © f(v))\u G GF(2m), v G V} (3.12)

is a perfect nonlinear Hamming code.

Corollary 3.4.1 Vasil'ev code is a (2m + 1,2m — r, 3) partially robust code with

Ud = m and Qmc = Pf where Pf is the nonlinearity of f. The code is perfect with

respect to bound (2.14)-

Proof Let H be the check matrix of V. An error e = (ei,e2,ez) where e\,e2 G

GF(2m) and e3 G GF{2) is masked if and only if H(ex © e2) = 0 and f(v © ex © e2) ©

/ (f) ©p(ei) © e3 = 0. The errors can be divided into four classes as follows.

1. ei = e2 and p{e\) — e3, the error will always be masked. The number of errors

in this class is 2m;

2. ei = e2 but p(e{) ^ e3, the error will always be detected. There are 2m errors

belonging to this class;

3. H(e\ © e2) = 0 but e\ ^ e2, the error masking probability depends on the

nonlinear function / ; In the worst case, a specific error will be masked by

Pf x \C\ codewords. The number of errors in this class is 2 m + 1 (2 m _ r — 1);

4. H[e.\ © e2) 7̂ 0. The error in this class will always be detected. The number of

errors is 2m + 1(2m - 2^m-^)M

Vasil'ev codes are perfect single error correcting codes and have the same parame­

ters as linear Hamming codes. The basic construction of Vasil'ev code can be further

generalized as follows. The following Theorem can be proved in a similar way to the

proof for Theorem 3.4.1 and Corollary 3.4.1.

32

Theorem 3.4.2 (Generalized Vasil'ev Code) For u G GF(2a), let p(u) be the

linear parity check ofu. Let V be a (m,ky,3) not necessarily linear Hamming code

with r — m—ky redundant bits, without loss of generality, assume that the first ky bits

in any codeword ofV are information bits. Denote by v = (y, z), y G GF(2kv),z G

GF(2r) the codewords ofV. Select f : GF(2kv) —»• GF(2) to be an arbitrary mapping

such that /(O) = 0 and f{y) © f(y) ^ f(y © y) for some y, y G GF(2kv). The code

C defined by

C = {(u, (u, 0) © v,p(u) © /(</))}, (3.13)

where u G GF(2 a) ,0 G GF(2m _ a) ,0 < a < m,v G V is a (a + m + l , a + kv,3)

code with Ud = a and Qmc = Pf- C is optimum with respect to bound (2.14)- Adding

one more overall linear parity bit to C will result in a nonlinear SEC-DED code with

the same u>d and Qmc as C and minimum distance four, which we call the extended

Vasil'ev code.

The significance of Theorem 3.4.2 is twofold. First, it can generate robust SEC-

DED codes of arbitrary lengths. These codes have the same number of redundant bits

as the best linear SEC-DED codes in terms of the number of redundant bits but much

smaller number of undetectable multi-bit errors and are more suitable for applications

where the MBU rate is high. Second, it allows a tradeoff between robustness and

hardware overhead. Generally speaking, smaller a results in increased robustness of

the code but requires more hardware for the encoder. By carefully selecting a and m,

we can construct codes for situations that have different requirements for robustness

and the hardware overhead.

Example 3.4.1 1. Let a = 16 and V be a (21,16,3) shortened Hamming code.

Select f to be the same nonrepetitive quadratic function as in Example 3.4-5.

The extended Vasil'ev code constructed by adding one more overall parity bit to

the generalized Vasil'ev construction described in Theorem 3.4-2 is a (39,32,4)

partially robust code with Qmc = 0.5 and ud = 16.

2. Alternatively let a = 6 and V be a (31,26,3) perfect Hamming code. In this case

we can construct a (39,32,4) partially robust code with Qmc = 0.5 and ujd = 6

at the price of larger hardware overhead for the encoder.

33

3. For applications where hardware overhead is more critical, we can select a =

18 and V to be a (19,14,3) shortened Hamming code. The resulting partially

robust code will have Ud = 18, which is the biggest of the 3 discussed variants.

However, the hardware overhead for the encoder of this implementation will be

the smallest.

3.4.2 Phelps Codes and Their Generalizations

We next review the basic construction of Phelps Codes that was proposed in

(Phelps, 1983), analyze its detection kernel and conditional error masking proper­

ties and generalize the construction.

Theorem 3.4.3 (Phelps Code (Phelps, 1983)) Let C,B be two perfect lin­

ear Hamming codes of length n = 2m — 1. Let {C = Co,C\,C2,- • • ,Cn}, {B =

BQ,BUB2, • • • , Bn} be two partitions ofGF{2n) with \C\ = \d\ = \B\ = \Bt\ = 2n~m

such that the minimum distance between any two vectors in the same coset Ci (Bi)

is three. Let a be any permutation of GF(2m) such that a(0) = 0. Represent each

coset Ci (Bi) by a m-bit vector which is called the coset vector of Ci (Bi). Denote

by [x] G GF(2m) the coset vector of the coset that x belongs to. The coset vector can

always be selected in such a way that [x] ®[y] = [x@y], x,y G GF(2n). Define the

extended Phelps code C as follows:

(c,p(c),b,p(b)) G C if and only if a([c]) = [b],

where p : GF(2n) —> GF(2) is the linear parity function. Deleting any coordinate of

C will result in a perfect nonlinear Hamming code with d = 3 and length 2m+1 — 1

which is called Phelps code.

Corollary 3.4.2 Let Pa be the nonlinearity of a. Phelps code is a

(2m + 1 - 1,2m+1 - m - 2,3)

perfect nonlinear Hamming code with Qmc — Pa and Ud = 2m+1 — 2m — 2, which is

optimum with respect to bound (2.14)- The extended Phelps code has d = 4 and the

same Qmc and ud as the Phelps code.

34

Proof We first analyze the error masking properties for the extended Phelps code C

constructed in Theorem 3.4.3. The codewords of C can be written in the following

format:

C = (x1,X2,Xs,X4),

where xux3 G GF(2n),x2 = p(xi) G GF(2),x4 = p(x3) G GF{2) and [x3] = a([xi]).

Denote by e = (ei, e2, e3, e4) the error vector, ex G GF(2n), e2 G GF(2), e3 G GF(2n),

e± G GF(2). If e2 7̂ p(ei) or e4 7̂ p(e3), the error will never be masked. If e2 = p(e{)

and e4 = p(e3), the error e will be masked by a codeword c = (xi,x2,x3,x^) if and

only if

[x3] = a([xi]);

[z3©e3] = a ([x i0e i]) .

The errors can be further divided into the following classes.

-• — /~i „ s- r> m i . _ 1 „ ST. _ 1 . _ i J . _ j - i . _ j . _ 1 _. ^TN _

1. e\ t 0 , e 3 t JD. x i i toi x i a n u x i q5 c i ueiung, i u t i i c &amc I;<JOCL. X3 emu. 0-3 KV 03

belong to the same coset. In this case the above two equations are always

satisfied. Errors in this class form the detection kernel of C and will be masked

by all codewords. The number of these errors is 22m -2r™-2.

2. ei G C, e3 G" B. In this case x\ and X\ © e\ belong to the same coset. x3 and

x3 © e3 belong to different cosets. Errors in this class will never be masked.

3. e\ G" C, e3 G B. Similar to the last case, errors in this class will never be

masked.

4. e\ G" C, e3 G" 5 . The error masking equations are equivalent to:

a([xi] © [ei]) © a[xi] = [e3]. (3.14)

35

a is a nonlinear function from GF(2m) to GF(2m) with nonlinearity Pa. The

number of [xi] satisfying the above equation is no more than Pa x 2m. There are

at most Pa x 2 2 n _ m codewords that mask the error e = (ex, e2, e3, e4). Thereby

the error will be masked by a probability no larger than Pa.

Without loss of generality, we assume that the parity check bit X4 is deleted for all

codewords. The resulting code is a perfect nonlinear Hamming code with minimum

distance 3. It is easy to show that this code has the same Qmc and Ud as C and is

optimum with respect to bound (2.14). •

Remark 3.4.1 1. Codes C and B do not have to be linear Hamming codes. Gen­

erally speaking, Ud of the Phelps code is equal to the sum of the dimension of

Kd for C and B.

2. To optimize Qmc, Pa should be as small as possible. The best nonlinear function

with the smallest Pa from GF(2m) to GF(2m) has Pa = 2~m+1 and is called

almost perfect nonlinear function (Carlet and Ding, 2004). One example is x3

(Maxwell, 2005), which is based on the cube operation in GF(2m).

Example 3.4.2 Let C = B be a (7,4,3) perfect linear Hamming code defined by the

parity check matrix
(1001011 \

H = 0101110 .
\ 0010111 J

GF(27) can be partitioned into 8 cosets of the perfect Hamming code as it is shown in

Table 3.1. The coset vectors [x] G GF(23) are assigned in such a way that [x] © [y] =

[x®y],x,y e GF(27). For example, suppose x = 0000001 and y = 0010000. We have

[x] = 001, [y] = 111 and [x®y] = [0010001]. Since H(x ®y) = 100 = hlt where hx is

the first column of H, x®y G C7 and [x®y] = 110 = [x] © [y\.

Let ot([x\) = [x]3 with Pa — 2~r+1 = \ (Example 2.5.1). According to Corollary

3.4-2, the resulting Phelps code has Ud = 23 + 1 — 2 x 3 — 2 = 8 and Qmc = Pa = \.

Theorem 3.4.3 can be further generalized to generate partially robust codes with

Hamming distance three and four for any given length.

36

Table 3.1: Cosets of the (7,4,3) linear Hamming code

Co = C (Bo =
Cx (Bx)
C 2 (B2)
C3 (B3)
C4 (B4)
C5 (B5)
Ce (-Be)
Ci (Bj)

--B)
Coset Leader x

0000000
0000001
0000010
0000100
0001000
0010000
0100000
1000000

Coset Vector \x
000
001
010
100
101
111
011
110

Theorem 3.4.4 (Generalized Phelps Code) Let C be a (rai,A;i,3) linear code

and B be a (n2,k2,3) linear code. Without loss of generality, assume that r2 =

n2 — k2 > rx = nx — kx. Let {Co = C, Cx, • • • , C2n_x} be a partition of GF(2ni) and

{Bo = B, Bx, • • • , B2r2_x} be a partition of GF(2n2), where \Q\ = 2kl, 0 < i < 2ri - 1

and \Bi\ = 2fc2,0 < i < 2V2 — 1. Represent each coset Ci by a rx-bit coset vector and

each coset Bi by a r2-bit coset vector. The coset vector can always be selected in such

a way that [x] © [y] — [x (By], where x,y are vectors in the same field and [x] is the

coset vector of the coset that x belongs to. Let a be any permutation of GF(2Vl) such

that a(0) — 0. Define C as

(c,p(c),b,p(b)) G C if and only if(0,a([c])) = [6],

where c G GF(2ni), b G GF(2n2) and p is the linear parity function. C is a (nx +

n2 + 2, nx + &2,4) partially robust code with Qmc = Pa and Ud = kx + k2. Deleting

any coordinate from every codeword of C will result in a partially robust code with

minimum distance three and the same value of Qmc and u>d as C.

Theorem 3.4.4 can be proved in a similar way to Theorem 3.4.3 and Corollary

3.4.2.

Example 3.4.3 Let C be a (15,10,3) linear code whose parity check matrix is:

(
100001001011001
010000100101100
001001011001111
000100101100111
000010010110011

37

Let B be a (22,17,3) shortened Hamming code whose parity check matrix is:

C
1000010010110011111000
0100001001011001111100
0010010110011111000110
0001001011001111100011
0000100101100111110001

Let a([x\) = [x]3 with Pa = ^, where [x] G GF(25). Construct C as described

in Theorem 3.4-4- Then C is a (39,32,4) partially robust code with uid = 27 and

O = P = —
Q£mc • a x6'

3.4.3 One Switching Constructions and Their Generalizations

Vasil'ev codes and Phelps codes usually have u>d > 1. Another important construction

is the switching construction, which can generate nonlinear codes with Ud = 1.

We first review the basic switching constructions presented by T. Etzion and A. Vardy

in (Etzion and Vardy, 1994).

Theorem 3.4.5 (The Switching Code (Etzion and Vardy, 1994)) LetC be a

perfect linear Hamming code of length n = 2r — 1. Refer to the codewords of Hamming

weight three as triples. Denote by Ti the subspace spanned by the triples that have

one at the ith bit. Let {C © e*} be a translate of C, where e\ G GF(2n) and has one

at position i and zero elsewhere. Assume {Ti © z) G C for some z G C. A switch is

a process of replacing the coset {% © z} with the coset {Ti © z © e*}. The resulting

one switching code C defined by

C' = {C\(Ti®z)}{j{Ti®z®e*} (3.15)

for some i G {1,2, • • • , n} is a perfect nonlinear Hamming code of length n = 2r — 1.

Corollary 3.4.3 The one switching code C is a partially robust code with Ud =

2 r _ 1 —1. In addition, 22r~1~r—22r _ 1 errors are masked with probability \—2~2r + 1 + r

and 22r~1~r — 2T~ _ 1 errors are masked with probability 2~2T + 1 + r . The code is

optimum with respect to bound (2.14)-

Proof Without loss of generality, we assume that 2 = 0. C is constructed by

38

replacing Ti with the coset {Ti © e*}. The errors can be divided into four classes as

stated below.

1. e G Ti. Since Ti is a linear subspace, we have

c®ee{Ti® e*} iff c G {% © e*};

c®ee{C\Ti}iSce{C\Ti}.

Hence c©e G C for every c E C. Errors in this class form the detection kernel

of the code and will always be masked. The dimension of Ti is f̂̂ (Phelps and
n - l

Levan, 1995). Thereby the number of errors in this class is 2 2) 2 r - 1 - l

2. e G {C\Ti}. If c G {Ti®e}, c © e G T{ and the error will be detected. If

c G {Ti © e*}, c © e G {T{ © e* © e}, again the error will be detected. All the

other codewords cE C',c G" {Tj ©e}, c ^ {Ti ©e*} will mask the error. Thereby

errors in this class will be masked by a probability I v , ' *' = 1 — 2 -2^ +1+r .

The number of errors in this class is \C\ — |Tj|.

3. e G {{C\Ti} © e*i}. If c G {2* © e*}, c®ee {C\Ti} and the error will be

masked. If c G {Tj © e © e*}, c © e G {Tt © e-}. The error will be masked. For

all the other codewords the error will be detected. Thereby errors in this class

will be masked by a probability 2 r^ = 2_ 2 r 1 + 1 + r . The number of errors in this

class is \C\ - \Ti\.

4. Errors that do not belong to the above three cases will always be detected. •

Example 3.4.4 Let C be a (15,11,3) perfect linear Hamming code with the following

parity check matrix
/ 100010011010111

„ f 010011010111100
H - 001001101011110

V 000100110101111

39

There are ^^ = 7 codewords of Hamming weight three with the first bit equal to one,

which are
100100000000001,
100000000001100,
101000001000000,
100000010100000, .
100000100000010,
100001000010000,
110010000000000.

Tx is the subspace spanned by the above 7 codewords. The dimension ofTx is seven.

Construct C by replacing Tx with {Tx © e\}, where e\ has one at the first bit and

zero elsewhere. C is a prefect nonlinear Hamming code with u>d = 7. There are

211 — 27 errors that are masked by probability | and 211 — 27 errors that are masked

by probability | .

Another generalization of Theorem 3.4.5 was shown in (Phelps and Levan, 1995),

which indicated that perfect nonlinear Hamming codes with ud = 1 could be con­

structed by switching linear Hamming codes for multiple times.

Theorem 3.4.6 (Phelps and Levan, 1995) Let C be a linear Hamming code of length

n = 2r — 1,r > 4, there exists Zi,\ < i < r such that the code

k k

C = {C\({jTi © Zi)} \J{\jTi ®Zi® e*} (3.16)
i= l i= l

is a perfect nonlinear code with cod = 1.

To end the section we summarize the optimality of different robust and partially

robust codes with respect to bound (2.14) in Table 3.2 for the case when r(d,n) is

derived from the Hamming bound. The best candidates for protecting memories in

channels with high MBU rate or laziness are generalized Vasil'ev codes and generalized

Phelps codes. One switching code is better than linear Hamming code but worse than

the above two candidates due to its larger Qmc. We note that the multiple switching

construction (Theorem 3.4.6) can generate robust codes with ud = 1. However, its

high encoding and decoding complexities and high Qmc make the code not a viable

alternative for memory protection.

40

3.4.4 Nonlinear Multi-Error Correcting Codes

The Hamming distance is 3 for all minimum distance partially robust codes presented

in the last section. These codes can only be used to correct single bit errors. In this

section, two constructions of nonlinear multi-error correcting codes will be described.

The codes presented in this section can correct not only multi-bit errors but also

multi-digit errors in GF(p).

Multi-Error Correcting Codes Based on Concatenations

The first construction of nonlinear multi-error correcting codes is based on the idea

of concatenating linear and nonlinear redundant digits.

Theorem 3.4.7 Let f : GF(pk) —¥ GF(pVn) be a nonlinear function with nonlinear­

ity Pf. Let V = {(z,(f>(z))} be a linear systematic code with Hamming distance d,

where z G GF(pk+Vn) and <j>(z) : GF(pk+rn) -4 GF(pn) is the encoding function. The

code defined by

{(y,f(y),t(z))}, (3.17)

where y G GF(pk), f(y) G GF(prn), z = (y, f(y)) G GF(pk+rn) and <j)(z) G GF(pr') is

a robust error correcting code with Hamming distance d and Kd = {0}. Any nonzero

error will be detected with a probability of at least 1 — Pf.

Proof Let e = (ex,e2,e3) be the error vector, where ex G GF(pk),e2 G GF(prn) and

e3 G GF(pn). The error masking equations can be written as:

/ (y © c 1) = / (y) 0 e 2 ; (3.18)

4>(z + (ex,e2)) = <l>(z) + e3. (3.19)

1. If ex = 0 and e2,e3 are not both 0, at least one of the equations shown above

will not be satisfied. The error will always be detected.

2. If ex 7̂ 0, from the definition of nonlinear functions, there are at most Pfpk

41

solutions of y for (3.18). Thereby, the error will be masked with a probability

of at most Pf. •

The resulting code C in Theorem 3.4.7 has the same Hamming distance d and the

same error correcting capability t as the linear systematic code V.

Example 3.4.5 (Shortened BCH Code) Let C be a (44,32,5) shortened BCH

code, where x G GF(232). Let f : GF(232) -» GF(2) be a perfect nonlinear function

defined by f(x = (xx, x2, ••-,x32)) = Xx • x2 © x3 • x4 © ... © x3l • x32 (Karpovsky et al,

2008b). Then the code C = {(x,Px,f(x))} is a robust code with minimum distance

5. For this code, ojd = 0, Q(e) = 0 when ||e|| < 5 and Q(e) < 0.5 when \\e\\ > 5.

Multi-Error Correcting Generalized Vasil'ev Codes

In Section 3.4.1, we generalized Vasil'ev constructions to generate Hamming codes

with distance 3 and arbitrary length n. The presented codes required the same

number of redundant digits as linear (shortened) Hamming codes. In this section,

Vasil'ev constructions will be further generalized to construct p-ary codes with any

given distance d and dimension k.

Theorem 3.4.8 Let qx = ph and q2 = ph, h > h > 1- Let V be a (nx, kx,d) qx-ary

code and U = {(u, uP)} be a (n2, k2, d') q2-ary code, where u G GF(qk2), k2 < nx, r2 =

n2 — k2,d'>d—\ and P is a k2xr2 encoding matrix in GF(q2) (the last r2 columns

of the generator matrix of the code in standard form). Let f : GF(qkl) —»• GF(q1
2) be

an arbitrary mapping such that / (0) ,0 G GF(q1
1) is equal to zero and f(y) © f(y') 7̂

f(y © y') for some y,y' G GF(qkl), where © is the digit-wise addition in GF(p). Let

u = (ux,u2,---uk2), where Ui G GF(q2). Let fi(u) = ((«i,0), (u2,0), • • • ,(«fc2,0)),

where 0 G GF(ph~l2), (uu0) G GF(qx) and f3(u) G GF(qk2). Denote by vk the

information bits of v G V. The code defined by

C = {(«, OS(ti),0) ®v,uP® / K)) } , 0 G GF(q?-k2) (3.20)

is a (hnx + l2n2,lxkx + hk2,d) p-ary partially robust code with \Kd\ = pl2k2. The

remaining errors are detected with a probability of at least 1 — Pf, where Pf is the

42

nonlinearity of f. Consider elements of U in GF(q2) and elements of V in GF(qx)

as equivalent digits. The codeword of C has nx + n2 digits and C has the same digit

error correcting capability as V.

Proof Let c = (u, (f3(u), 0) © v, uP © f(vk)), d = (u1, (/3(u'), 0) © v', u'P ® f(v'k)) be

two codewords of C. The Hamming distance between c and d is

\\c®c'\\ = \\U®U'\\ + \\(I3(U),0)®V®(I3(U'),0)®V'\\

+ \\uP®f(vk)®u'P®f(v'k)\\

> \\v®v'\\.

1. If v 7̂ v', \\c ® d\\ > d because the Hamming distance of V is d.

2. If v = v', \\c © d\\ = 2 x ||w © it'll + \\uP © uP'H > d because the Hamming

distance of U = {(u, uP)} is at least d — 1.

Thereby, the Hamming distance of C is d. We say that an error e is masked by a

codeword c if e ® c = d £ C. Let H be the parity check matrix of V. An error

e = (ei,e2,e3) where ex G GF(qk2),e2 G GF(q11) and e3 G GF(q%) is masked if and

only if H((P(ex), 0) © e2) is zero and f(vk) ® f(vk) ® exP © e3 = 0, where vk is the

information part of v = v ® (/3(ei), 0) © e2 and 0 G GF(q^1~k2). The errors can be

divided into four classes as follows.

1. (P(ex), 0) = e2 and exP = e3. The error will always be masked. The number of

errors in this class is q2
2;

2. (f3(ex),0) = e2 but e iP 7̂ e3. The error will always be detected. There are

q2
2 — q2

2 errors belonging to this class;

3. H((/3(ex),0) ® e2) is zero but (/3(e)i,0) 7̂ e2. The error masking probability

depends on the nonlinear function / . In the worst case, a specific error will be

masked by Pf x |C| codewords. The number of errors in this class is q^2 (qkl — 1);

43

4. H((/3(ex),0) © e2) is not zero. The error will always be detected. The number

of errors is q2
2(qT ~ Qx1)- •

Remark 3.4.2 Binary Vasil'ev code presented in (Vasil'ev, 1962) is a special case

where <?i = (?2 = 2, {(u, Pu)} is a linear parity code with minimum distance two and

V is a perfect Hamming code.

Some nonlinear multi-error correcting codes as good as linear codes in terms of

the number of redundant digits for the same distance and length can be generated

based on the above construction.

Example 3.4.6 In (MacWilliams and Sloane, 1998), it was shown that the largest

possible k for binary codes with n = 63 and d = 5 is 52. Let V be a (63,52,5) binary

code (qx = 2). Let {(u,uP)} be a (4,1,4) binary repetition code that contains only

2 codewords 0000 and 1111 (q2 = 2). Select f to be a quadratic perfect nonlinear

function / = sx • s2 © s3 • S4 © • • • © S13 • S14 with Pf = | where Sj G GF(23) and • is

the multiplication in GF(23). A (67,53,5) partially robust nonlinear BCH code can

be constructed as described in Theorem 3.4-8. This code has Hamming distance five

and only one undetectable nonzero error and has the same number of redundant bits

as linear BCH codes. All the other errors are detectable with a probability of at least

0.875.

Theorem 3.4.8 can also generate nonbinary multi-error correcting codes that are

as good as linear codes in terms of the number of redundant digits.

Example 3.4.7 In general, a nonbinary BCH code with Hamming distance d in

GF(q) has length n = qm — 1 and dimension k = qm — 1 — (d— l)m. Let n — 49, q = 7

and d = 5. The corresponding nonbinary BCH code is constructed by shortening the

BCH code with m — 3 and k = 73 — 13. The number of redundant digits is 12. Let

V be a (48,40,5) nonbinary BCH code in GF(7) (m = 2), U be a (5,1,5) repeti­

tion code in GF(7) and f be a perfect nonlinear function from GF(740) to GF(74).

The resulting nonlinear nonbinary BCH code constructed as in Theorem 3.4-8 has the

same number of redundant digits as the linear BCH codes in GF(7). Only 7 errors

are undetectable (including the all-zero error vector). All other errors are detected

with a probability of at least 1 — 7~4.

44

3.5 Summary

Robust codes can be constructed based on nonlinear functions. The worst case error

masking probability of robust codes is determined by the nonlinearity of the encod­

ing function. The best robust codes have no undetectable errors and minimize the

worst case error masking probability among all codes with the same parameters. Per­

fect robust codes exist for very limited parameters and can only be non-systematic.

Systematic robust codes cannot be perfect. The best systematic codes are called op­

timum systematic codes. The encoding functions of these codes are perfect nonlinear

functions.

Robust codes usually have high encoding and decoding complexity. To achieve a

tradeoff between the robustness and the overhead, partially robust codes are proposed

in (Karpovsky and Taubin, 2004). Partially robust codes still have undetectable er­

rors. But the number of these errors is largely reduced compared to linear codes. Ro­

bust and partially robust codes have been used for the protection of AES (Karpovsky

et al., 2004; Kulikowski et al., 2008b), the build of reliable memories (Karpovsky

et al., 2007), the error detection in lazy channels (Karpovsky et al., 2008a) and the

check point verification (Karpovsky et al., 2008a).

To provide a fully protection against errors with small multiplicities and meanwhile

maintain nearly equal protection against other errors, minimum distance robust and

partially robust codes, e.g. generalized Vasil'ev codes, generalized Phelps codes, etc,

are presented. These codes can be as good as the best known linear error detecting

codes in terms of the Hamming distance and has much less undetectable errors.

Minimum distance robust and partially robust codes with a Hamming distance at

least 3 can be used for error correcting. Nonlinear single-bit error correcting codes

were used in (Wang et al., 2009c) for the protection of SRAMs. Nonlinear multi-error

correcting codes were used in (Wang et al., 2010b) to build reliable MLC NAND

45

Flash memories.

Constructions of robust and partially robust codes were co-developed with Konrad

Kulikowski. Constructions of minimum distance robust and partially robust codes

generalized from Vasil'ev codes, Phelps codes, etc were proposed by the author of the

dissertation in (Wang et al., 2009c; Wang et al., 2010a; Wang et al., 2010b)

Table 3.2: Optimality of robust and partially robust codes with respect to bound (2.14) (r(d,n) is
derived from the Hamming bound)

Vasil'ev Codes (Theorem 3.4.1)
Generalized Vasil'ev Code (Theorem 3.4.2)

Phelps Code (Theorem 3.4.3)
Generalized Extended Phelps Code (Example 3.4.3)

One Switching Code (Theorem 3.4.5)
(x, (Px)3) (Karpovsky and Taubin, 2004)

Quadratic Systematic Code^2' (Karpovsky et al., 2007)
Robust Hamming Code^J (Kulikowski et al., 2008b)

n
2 r - l

a + m + 1
2 r - l

39
2 r - l
k + r

(2s + l)r
2r

k Wrf

2 r - l - r 2 r - 1 - l
a + ky

2r - 1 - r
32

a
2r -2r

28

V m c
0.5
0.5
Pa

1
4

2r - l - r2
r~l - 11 - 2~2r i + 1 + r

k
2sr

2r-l-r

k — r
0
0

2 - r + l
2-r

0.5

d
3
3
3
4
3

1,2W
1
3

rjv
1
1

r - 1
6
1
r
r
1

Perfect Optimum
V
-
-

-

-

-

-

-

-

V
A/

-

y/

-

V
V

[1]: The distance of the code depends on r.
[2]: The codeword of the quadratic systematic code is in the format of (xx,x2, • • • x2s, x2s+x), where Xi G GF(2r), 1 < i < 2s + 1
and x2s+i = xx • x2 © x3 • x± © • • • © x2s-x • x2s. • is the multiplication in GF(2r). (Karpovsky et al., 2008b)
[3]: The codeword of the robust Hamming code is in the format of (x, Px, f(x)), where (x, Px) is the codeword of a (2r — 1,2r —
1 — r, 3 perfect linear Hamming code and / : GF(2k) —> GF(2) is a nonlinear function. When / is a perfect nonlinear function,
Qmc = 0.5.

47

Chapter 4

Multilinear Codes

Generally speaking, the computation of nonlinear functions cannot be easily sim­

plified. As a result, robust codes based on nonlinear functions usually have a high

encoding and decoding complexity. Partially robust codes were proposed in (Kar­

povsky and Taubin, 2004) as an alternative to robust codes to achieve a tradeoff

between the robustness and the hardware overhead. However, partially robust codes

still require the computation of nonlinear functions. Secure cryptographic devices

based on partially robust codes may still have a large hardware overhead. For exam­

ple, in (Kulikowski et al., 2008b), it was shown that using partially robust codes to

protect the linear portion of AES requires an area overhead of more than 300%.

In this Chapter, we present a novel error detection technique based on the idea

of randomly selecting a code from multiple linear codes for each encoding and the

corresponding decoding operation. The resulting codes are called multilinear codes.

These codes have similar error detection capabilities to robust codes while requiring

much less hardware overhead due to the fact that no nonlinear operations are needed

for the encoder and decoder.

Algebraic multilinear codes have been used in (Wang and Karpovsky, 2010) for

the build of robust FSMs for resilient to advanced fault injection attacks. Arithmetic

multilinear codes have been used in (Wang et al., 2009b) for the design of secure

multipliers.

48

4.1 Multilinear Algebraic Codes

For the remainder of this Chapter we denote by {Ci, 1 <i < 1,1 > 2} the set of linear

codes, where I is the number of different codes in the set. We first propose several

methods of constructing linear algebraic codes Cj,2 < i < I from Cx in such a way

that randomly selecting Ci, 1 < i < I have much less or even no undectable errors.

For the randomization a standard low-rate true random number generator is used,

which is available in most cryptographic devices.

4.1.1 Constructions Based on Swapping the Redundant Bits

Construction 4.1.1 Let Cx be a (n,k) linear code with Hamming distance larger

than 2. Ci,2 < i < 1,1 = k is constructed by swapping the first and the UH information

bits ofCx- If we randomly select Ci, 1 < i < I = k to encode the original messages with

equal probability, the only undetectable error is the codeword of Cx with all l's in the

information part. Errors that have the same value for the first k—1 information bits

will be masked with probability k-^, which is the maximum conditional error masking

probability.

Proof Undetectable errors are codewords that belong to all of the I = k linear codes

Cx,C2,- • • , Ci. Because the Hamming distance of Cx is larger than 2, the intersection

of these codes contains only the vector (also a codeword) with all l's information bits

and the vector with all O's information bits. Errors which have the same value for the

first k — 1 information bits belong to k — 1 linear codes. So it will be masked with

probability ^ if we select the codes with equal probability. Obviously, this is the

maximum conditional error masking probability. •

When implemented in hardware, the overhead of Construction 4.1.1 may be exces­

sive. To reduce the hardware overhead, we can use only 1,2 < I < k linear codes.

Generally speaking, when we randomly select 1,2 < I < k linear codes to encode the

messages, the number of undetectable errors is 2k~l+1 (including the all O's vector).

49

The maximum error masking probability for all conditionally detectable errors is ^ p .

The simplest case is to use only Cx and C2 to encode the messages, where C2 is built

by swapping the first and the second information bits of Cx- This method requires

only 2 more 2 : 1 multiplexer for the encoder while the number of undetectable er­

rors is reduced by 50% compared with the method using only Cx- All conditionally

detectable errors will be detected with probability 0.5.

Another variation of Construction 4.1.1 is to swap the redundant bits instead of

the information bits of C\. Suppose d, 2 < i < r is constructed by swapping the first

and the ith redundant bits of C\. Assume that all 2r binary vectors are possible for

the redundant part of C\. If we randomly select 1,2 < I < r linear codes to encode

the original messages with equal probability, the number of undetectable errors is

2k~l+l. The maximum error masking probability for conditionally detectable errors is

^ p . For this variation the smallest possible number of undetectable errors is 2k~r+l

which is larger than that can be achieved by swapping information bits due to the

fact that only r different codes can be constructed.

Example 4.1.1 We compare the hardware complexity for the encoder and the number

of undetectable errors for the architectures that utilize different numbers of linear

codes constructed by swapping information bits of the original code. Let Cx be a

(39,32) Hsiao code (Hsiao, 1970) whose parity check matrix is in the standard form

H = [I,P], where I is a 7 x 7 identity matrix and P is a 7 x 32 predictor matrix

defined as follows. Ci, 2 < i < 32 is constructed by swapping the first and the ith

information bits of Cx

11111111000000100001001010000011
00001001111111110010010010000100
00010000000100001111111100110110

P = 00100010001001011000000011111111
01100101010010010000111101101000
10000110100011101111100000001000

L 11011000111100000100000101010001

The hardware complexity for the encoder, the number of undetectable errors and

the maximum error masking probability of conditionally detectable errors for four

50

Table 4 .1 : Hardware complexity for the encoder, number of unde­
tectable errors and maximum conditional error masking probabilities
for schemes using different number of codes from Construction 4.1.1
(n = 39,k = 32)

Number of Codes

1
2
4
8

Number ot Gates

70
77
96
153

Number of Unde­
tectable Errors
2 32
231
2!<U

22b

Maximum conditional er­
ror masking probability
-
0.5
0.75
0.875

schemes are shown in Table 4-1- The first column is the number of codes we randomly

select to encode the messages. Row 1 corresponds to the case when only Cx is used.

70 2-input gates and inverters are required to build the encoder. When randomly

select 2 linear codes, we only need 7 extra gates and the number of undetectable errors

is reduced by 50% compared with the case when only a single linear code is used.

Increasing the number of codes can further decrease the number of undetectable errors.

However, this is at the cost of larger hardware overhead and worse conditional error

masking probability.

4.1.2 Constructions Based on Circular Shifts

Another simple way to construct Q , 2 < i < I from Cx is to circularly shift the

redundant bits of Cx as outlined below.

Construction 4.1.2 Let Cx be a (n, k) linear code with r = n—k < k redundant bits.

Denote by H = [I\P] the parity check matrix ofCx, where I is arxr identity matrix

and P is a r x k predictor matrix. Assume that the rank of P is r. Construct C2

by circularly shifting the redundant part of Cx by 1 bit. If we randomly select Cx and

C2 to encode the original messages with equal probability, the number of undetectable

errors is 2k~r+1. In addition, there are 2k+1 — 2k~r+2 errors which will be detected

with probability 0.5.

Proof Denote by x = (xly x2, • • • , xn) the codeword of a (n, k) linear code and assume

that the first r bits are redundant bits. If (xx, x2, • • • ,xr, xr+1, • • • , xn) belongs to both

Cx and C2, then from the construction method of C2 we know that (x2,x3,- •• ,xr,

Xx,xr+1, • • • ,xn) also belongs to C2. Hence the sum (xx ® x2,x2 ® x3, • • • ,xr ®

51

xx, 0, • • • , 0) is another codeword of C2. Because the information part is all O's, the re­

dundant part should also be all O's. Thereby Xx®x2 = 0, x2®x3 = 0, • • • , xr®xx = 0.

So Xx = x2 = • • • = xr G {0,1}. Given the assumption that the rank of the predictor

matrix P is r, all 2r values are possible for the redundant part of the code. There

are 2k~r codewords that can generate each value of the redundant part. Hence the

number of undetectable errors is equal to the size of the intersection of the two code

which is 2k~r+1. •

Example 4.1.2 (x, (Px)3) is a partially robust code, where x e GF(2k), P is a

r x k matrix in GF(2), Px G GF(2r) and y3(y = Px) is a cube operation in Galois

Field GF(2r) (Karpovsky and Taubin, 2004)- The number of undetectable errors of

(x, (Px)3) code is 2k~r. All conditionally detectable errors are masked with probability

2~r+1. Compared with (x, (Px)3) code, Construction 4-1-2 has nearly the same number

of undetectable errors but requires much less hardware overhead to implement. As an

illustrative example, Table 4-% compares the hardware overhead for the encoder, the

number of undetectable errors as well as the maximum conditional error masking

probability for these two codes when n = 39, k = 32. P is selected to be the same

matrix as in Example 4-1-1- Only 95 2-input gates and inverters are required for the

encoder of circularly shifting method while (x, (Px)) needs 514. The gap will become

even larger when r increases.

Table 4.2: Comparison of (x, (Px)3) code and Construction 4.1.2
Codes

(x, (Px)6)
Construction 4.1.2

JN umber of Gates

514
95

Number of Unde­
tectable Errors
2'25

2'26

Maximum conditional er­
ror masking probability
2 -o
0.5

Construction 4.1.2 can be further improved to reduce the maximum conditional

error masking probability. Let Cx be a (n, k) linear code. Assume that we can find m

numbers Sj, 1 < i < m < r = n — k, such that Si, 1 < i < m and r are mutually prime.

C j , 2 < z < m - r - l i s constructed by circularly shifting the redundant part of Cx by

Si-x bits. If we randomly select Q , 1 < i < ra+1 to encode the original messages with

52

g 2000

Si
C
2 1400
f= 1200

£ 200
E

20 40

Error
10O 120 140

Figure 4-1: Error detection properties of circularly shifting and ran­
domly selecting (7,4) Hamming code

equal probability, the number of undetectable errors is 2k~r+1, assuming the rank of

the predictor matrix of Cx is r. In addition, (m + 1) • (2k — 2fc~r+1) errors will be

detected with probability —^.

When r is prime, Sj can be any integer in the range of [l ,r — 1]. In this case the

maximum conditional error masking probability is K

Example 4.1.3 Let Cx be a (7,4) linear perfect Hamming code, r = n — k = 3 is

prime. Construct Ci, 2 < i < 3 by circularly shifting the redundant part of Cx byi — 1

bits. Figure 4-1 shows the error masking properties for all 27 — 1 nonzero errors. For

each error we encode 2000 randomly selected messages. A Ci is randomly chosen to

encode each of the message. As we can see from Figure 4ml, 2k~r+l = 4 errors are

undetectable (including the all O's vector). All the conditionally detectable errors are

masked by about 660 codewords, which means they are masked with probability ^ = 5-

The more codes we randomly select from, the better the error detection ability we

can achieve. Randomly selecting from more codes can result in either a decrease of

the number of undetectable errors (Example 4.1.1) or a smaller maximum conditional

error masking probability (Example 4.1.3). On the other hand, randomly selecting

more linear codes means more complicated encoding and decoding strategies which

may result in larger hardware overhead. An apparent question is how to randomly

53

select codes to optimize either the number of undetectable errors or the maximum

conditional error masking probability. If we randomly select from I different linear

codes, the best conditional error masking probability is y which can be achieved when

there are no errors belonging to more than one code except for the undetectable errors.

The conditions for minimizing the number of undetectable errors when randomly

selecting I < [kJ + 1 linear codes is derived in the next section.

4.1.3 Randomly Selecting from Non-Overlapping Linear Codes

It is easy to show that the smallest possible dimension of the intersection of / < [k J + 1

different (n, k) linear codes is k — (I — l)r, where r = n — k is the number of redundant

bits. For linear codes, every single redundant bit can be written as a seperate function

of the information bits. Denote by foj the encoding function for the ith code to

generate the fth redundant bit, where l < i < / , l < j < r . The errors belonging

to the intersection of all I linear codes should satisfy the following equations: fxj =

f2,j = ••• = fi,j or equivalently fxj ® f2j = 0, fxj ® f3j = 0 • • • fxj ® fij = 0 where

j = 1,2,... , r. There are in total (I — l) r equations and k unknowns (information

bits of the code). The smallest possible dimension of the intersection is k — (I — l)r

which can be achieved when all these (/ — l)r equations are linearly independent. We

next give a construction which can optimize the number of undetectable errors for

any given / < |jfj + 1-

Construction 4.1.3 Suppose we want to construct I < [k\ + 1 linear systematic

codes such that the dimension of the intersection of these codes is minimum. Denote

by Hi the parity check matrix of the ith linear code. Without loss of generality, assume

that the first r bits of any codeword are the redundant bits and the parity check matrices

are in standard form Hi = [Ir \ Pi], where Ir is a r x r identity matrix and Pi is a

54

r x k predictor matrix. Given Px, Pi 2 < i < I can be constructed as follows.

P2 = Pi 0 [/ r , Or,fc_P]

P3 = Px © [Or,r, ir>0r|jfc_2r]

Pi = Pi © [0r,(J-2)r)/r>0r,(fc-(J-l)r)]

to/iere Ir is a r x r identity matrix and 0* j is ai x j all zero matrix.

Example 4.1.4 /n #ws example, we construct two [10,5] linear systematic codes such

that the intersection of these two codes contains only the O's vector. We select the

first code Cx to be a shortened Hamming code with the following parity check matrix.

Hx =

1000010101
0100011111
0010011011
0001000111

L 0000100101

According to Construction 4-1-3, the parity check matrix of the second code can be

computed as follows:

Ho

1000010101
0100011111
0010011011
0001000111
0000100101

+

0000010000
0000001000
0000000100
0000000010
0000000001

It is easy to verify that the dimension of the intersection is k — r = 0. The only vector

belonging to both codes is the all O's vector.

In Construction 4.1.3, Pi, 2 < i < I is built by flipping r bits of r columns in

the original predictor matrix Pl: one bit for each column. Generally speaking, this

method cannot guarantee that all the linear codes have the same distance as the

original code Cx- In the above example, the distance of C2 is 2 instead of 3. However,

by carefully selecting the parity check matrix for Cx or adjusting the flipping positions,

it is possible to make the other linear codes have the same distance as C\. For instance,

55

we can construct another (10,5) linear code C2 with the parity check matrix computed

as follows. The minimum distance of C2 becomes 3 in this case while the intersection

of Cx and C2 still contains only the all O's vector.

H*

1000010101
0100011111
0010011011
0001000111
0000100101

+

0000010000
0000000010
0000000100
0000001000
0000000001

4.1.4 General Analysis of Fault Detecion Ability of Multilinear Codes

A big difference between linear codes and the proposed constructions based on ran­

domly selecting multiple linear codes is that our method has conditionally detectable

errors. The detection of errors is message dependent. If the error is masked by one

codeword, it is still possible that it will be detected by a different code at the next

moment. The longer the same error stays, the higher the detection probability is.

Thereby in channels where errors tend to repeat themselves, our method has higher

error detection ability than classical linear codes.

For applications utilizing cryptographic devices, we are more concerned about the

fault detection ability of the code. The same fault may manifest itself as different error

patterns at the output of the devices. When the same fault stays for t consecutive

clock cycles, a general analysis of the fault detection abilities of the proposed method

is shown in the next theorem.

Theorem 4.1.1 Let Cx,C2- • -CL be L different linear (n,k) codes. Assume that

single or multiple faults stay for t = aL + b, a > 0,0 < b < L — 1 consecutive clock

cycles and may manifest themsevles as s different error patterns Ci, 1 < i < s < 2n

with probability p(ei) respectively. (We assume ei may be the all O's vector.) Pj =

]Ce ec i<i<sP(ei)i 1 < j < L is the probability that faults manefest themselves as

errors which are codewords of Cj. Denote by Wt the probability that faults are not

detected after t clock cycles. If we circularly select Cx,C2- • -CL to encode the message

56

at every clock cycle, Wt = rii<i<LPj+ > where H(j — b—1) is the unit step

function. If we randomly select the codes, Wt = (j; X)i=i ^Y-

Proof An error e is masked by a linear code C iff e € C. Wt is equal to the probability

that em e Cm, 1 < m < t, where em is the error vector introduced by the faults and

Cm is the selected code at the mth clock cycle. Thereby Wt = Y[i<m<tP(e™ e Cm).

•

Circularly selecting codes at each clock cycle is not suitable for cryptography appli­

cations because the attackers can circumvent the protection schemes if he knows what

codes are used at each clock cycle. The advantage of circularly selecting, however, is

that every error staying for at least L consecutive clock cycles can be 100% detected

if the intersection of the L codes contains only the all O's vector. When L = 2, all

nonzero errors can be detected after staying for at most two clock cycles as long as Cx

and C2 are non-overlapping and this is very useful for applications related to many

communication channels and some computational channels where errors tend to re­

peat themselves with high probability, e.g. linear computational network consisting

of XOR gates only.

To demomstrate the advantage of the proposed method, we compare the fault

masking probability after t consecutive clock cycles for three error protection schemes

for linear networks. The first one is based on a single (20,15) shortened linear Ham­

ming code. Denote it by C\. The second one utilizes four (20,15) linear codes

Ci, 1 < i < 4 whose intersection contains only the all O's vector. For the construction

of Ci, 2 < i < 4, please refer to Construction 4.1.3. The third method is based on the

(x, (Px)3) partially robust code. We can select P to be the same predictor matrix as

for Cx-

To simplify the analysis. We assume that a stuck at fault occurs in the linear

network. The fault manifests itself as the same nonzero error e at the output of the

57

network with probability 0.5. If e is a codeword of Cx, after t clock cycles the error

will be masked by the shortened Hamming code with probability 1. For method 2, we

randomly select d, 2 < i < 4 with equal probability. If e belongs to the intersection

of 3 codes, it will be masked with probability 0.875* after t clock cycles according

to Theorem 4.1.1. If e only belongs to one code, the error masking probability after

t clock cycles is 0.625*. The partially robust code (x, (Px)3) has 2k~r = 210 unde­

tectable errors. If e is undetectable by (x, (Px)3), it will be masked with probability

1 regardless of t. If e is conditionally detectable by (x, (Px)3), the error masking

probability after t clock cycles is (0.5 + 0.5 • 2_r+1)*.

Figure 4-2 plots the fault masking probabilities after 10 clock cycles for the three

alternatives. As expected, when considering the worst case fault masking probabili­

ties, linear code is much worse than the other two. The fault will be masked no matter

how many clock cycles it stays if it manifests as a codeword of the linear code. The

method based on multilinear codes is much better than that based on single linear

code. The performance of multilinear codes also depends on how the fault manifests

itself. The less codes the manifested error belongs to, the better the fault detection

ability is. One disadvantage of (x, (Px)3) code is that it still has undetectalbe er­

rors. Even if the manifested error is conditionally detectable by (x, (Px)3), the fault

masking probability is only a bit smaller than the best fault masking probability of

multilinear codes. Given the fact that (x, (Px)3) code requires much more hardware

overhead to implement, we claim multilinear codes are more promising alternatives

in practice.

4.2 Multilinear Arithmetic Codes

In this section, two constructions of multilinear arithmetic codes will be presented.

Different from the widely used non-systematic AN codes (Rao and Garcia, 1971), the

58

Linear

MulLinearCyc

MulLinearRar

- - Robust

1 2 3 4 5 6 7 8 9 10

t

Figure 4-2: Comparison of fault masking probability after t clock
cycles

codewords of systematic arithmetic codes contain two parts: the information part

and the redundant part. Any codeword c can be written in the format of (x, y), x G

Z2k, y e Z2r, where k is the number of information bits, r is the number of redundant

bits and Z2k is the additive group of integers {0,1, • • • , 2k — 1}. Faults in arithmetic

devices usually manifest as arithmetic errors at the output of the device. We denote

by e = (ex,ey) the error vector and c = (\x + ex\2k, \y + ey|2r) the distorted codeword

in which ex G Z2k, ey G Z2r, + is the arithmetic addition and | • \p is the modulo p

operation.

Let C = {(x, y)},x G GF(2k),y G GF(2r) be an arithmetic code. An error

e = (ex, ey) is masked by a codeword c = (x, y) G C if c = (\x + ex\2k, \y + ey\2r) also

belongs to C. Given an error e, the error masking probability Q(e) is calculated as

follows:

Q(e)_ W£igpa, (4.!)
where \C\ is the size of C. If an error is masked by all codewords of the code,

Q(e) = 1 and the error is called undetectable. If 0 < Q(e) < 1, the error is

called conditionally detectable. Different from algebraic codes, arithmetic codes

.*=:

. Q
CC

Si
o
o.
O)
c
. *
CO
CO

E
I—

o V—

I I 1

0.8

0.6

0.4

0.2

0

59

rarely have undetectable errors. To illustrate the advantage of multilinear arithmetic

codes, we compare the number and the probability of bad errors - errors e with

Q(e) > 0.5 - for linear arithmetic codes and the proposed multilinear arithmetic

codes. (This definition of bad errors was also used in (Kulikowski et al., 2008b).)

Since bad errors are the most difficult to detect, we will show that the transition from

linear to multilinear arithmetic codes results in a drastic reduction of the number of

bad errors and an improvement of the error detection ability of the code (see Section

4.2.1).

Remark 4.2.1 Estimations of numbers of bad errors presented in this paper can be

easily generalized to the case when bad errors e are defined as errors with Q(e) > f3

for any /3 > 0.

4.2.1 Linear and Partially Robust Arithmetic Codes

We first analyze the error detection properties of linear arithmetic codes.

Theorem 4.2.1 (Linear Arithmetic Codes) Let C be a linear arithmetic code

defined by

C = {(x,y)\x G Z2k,y = f(x) G Z2r}, (4.2)

in which f(x) = |a;|p, p is an integer (not a power of 2) and | • |p represents the modulo

p reduction operation. Denote by e — (ex,ey) an additive error, ex G Z2k,ey G Z2r,

r = [log2p]. The distorted codeword is c = c + e = (\x + ex\2k, \y + ey\2r), c G C. As

•^ —»• 0, the number of bad errors converges to

2-(2k-2k(Hp_x-Hi^)-'2^-), (4.3)

where Hn = X)ILi ^ represents the n-th harmonic number. For large p the difference

Hp-x — i/[£j converges to In 2. In this case the probability of bad errors converges to

0.3 • 2~r+1 as $ -> 0.

If no errors occur to the redundant part of the code (ey = 0), the number of bad

errors e = (ex, 0) is upper bounded by 2 • \^-r-\ and is lower bounded by 2 • [-—J. As

£• —> 0, the probability of bad errors in the format of e= (ex, 0) converges to p _ 1 .

60

Proof To simplify the analysis, we divide the errors into two classes according to the

value of x + ex.

1. x + ex < 2k, we have \x + ex\2k = x + ex, f(x + ex) = \x + ex\p.

(a) \x\p + ey < p, then ||:r|p + ey\2r = \x\p + ey. An error (ex, ey) is masked if

and only if l^ + e l̂p = Ixlp + ej,. Or equivalently \ex\p = ey. For a codeword

x to mask a given error (ex, ey), the following conditions must be satisfied:

x + ex < 2k, (4.4)

\x\P + ey<p, (4.5)

|ex|p = ey. (4.6)

From (4.5) and (4.6) we have \x\p < p— \ex\p. For any given \x\p < p— \ex\p,

the number of x satisfying (4.4) is upper bounded by |"2 ~ e i] . Thereby for

a given error (ex,ey), the total number of codewords that mask the error

is upper bounded by |"2 ~ex] • (p — \ex\p). For bad errors the error masking

probability is larger or equal to 0.5. Thus

2 - * . r * Z ^ l . (p _ | C x | p) > 0 . 5 . (4.7)

As Tp —> 0, the asymptotic error masking probability can be estimated by

removing the ceiling function. Thereby (4.7) can be re-written as follows:

2 - f c - ^ — ^ - (p - | e : c | p) > 0 . 5 . (4.8)

Thereby,

e, < ^ ' (" - ' • l * W . (4.9)
P \&X \p

61

We know that ex > 0, so

0 < | e a ; | p < L | j . (4.10)

The total number of ex satisfying (4.9) and (4.10) is upper bounded by

(For simplicity, let i = \ex\p.)

g (1 . 2 ^ «)
^ - ^ D p - l V '
i=0 * *

and is lower bounded by

i=0 * r

So the number of bad errors in this class is upper bounded by (4.11) and

is lower bounded by (4.12).

(b) p < \x\p + ey < 2r, errors in this class will never be masked because the

redundant part of a distorted codeword is an invalid value.

(c) |a;|p-r-ey > 2r, then IMp-l-e^r = \x\p + ey — 2r. An error (ex,ey) is masked

if and only if \x + ex\p = \x\p + ey — 2r. Or equivalently le^p = \ey — 2r\p.

It is easy to show that ey — 2r G [—p + 1, —1], so \ey — 2r\p = p + ey — 2r.

For a codeword x to mask a given error (ex,ey), the following conditions

must be satisfied:

x + ex<2k, (4.13)

\x\P + ey>2r, (4.14)

\ex\p = ey+p-2r. (4.15)

From (4.14) and (4.15) we have \x\p > p — \ex\p. For a certain value of

62

\x\p > p — \ex\p, the number of x satisfying (4.13) is upper bounded by

|"2 ~ex]. Thereby for a given error (ex, ey), the total number of codewords

that mask the error is upper bounded by \2 ~e*~\ • \ex\p. For bad errors the

error masking probability is larger or equal to 0.5. Thus

2-* . \H-Z^-\ . \ex\p > 0.5. (4.16)

As -^ —> 0, the error masking probability can be estimated by removing

the ceiling function. Thereby (4.16) can be re-written as follows:

(4.17)

So

Because ex > 0,

2-* • t_J?L • \ex\p > 0.5.

ex< T\--2k-1-(2\ex\p-p)
\ex\p

Wp>r|i-

(4.18)

(4.19)

The total number of ex satisfying (4.18) and (4.19) is upper bounded by

(For simplicity, let i = |ex|p.)

g(I.2^-rt+l)> (42Q)
P I

21 rfi

and is lower bounded by

^ . 1 2k'1(2i-p)
Di • 7 " - D- (4-21) p I

2 ' rfi

So the number of bad errors in this class is upper bounded by (4.20) and

is lower bounded by (4.21).

63

From the above analysis, the total number of bad errors for the case when

x + ex < 2k is upper bounded by 2k + p — 2k Y^lh-, 7 — -— and is lower
*—12' P

bounded by 2* - p - 2* E C ^ l 7
r,k-l

2. x + ex > 2k, we have \x + ex\2k = x + ex - 2k, f(x + ex) = \x + ex — 2k\p.

Following the same analysis, we can show that the number of bad errors in this

class is also upper bounded by 2k + p — 2k Y^rzi \ ~ 2~p~
 anc* lower bounded

ly2*-p-2*ECr ,fl7-27 i-

Thereby for linear arithmetic codes, an upperbound of the number of bad errors is

P - 1 I o f c - l

2-(2k
+p-2kY,\-—-)

= 2-(2k+p-2k(Hp-x-Hl,i)-'^-).

Similarly, a lowerbound of the number of bad errors is

2-(2k-p-2k(Hp-x-H^)-2^-).

As ^ —> 0, the number of bad errors converges to (4.3).

If no errors occur to the redundant part of the code, ey = 0. For the case when

x + ex < 2k, a codeword x mask an error e = (ex, ey = 0) if and only if le^p = ey = 0.

It is easy to prove that the number of errors in this class is upper bounded by \-—]

and is lower bounded by [-—J. Similarly, when x + ex > 2k, the number of bad

errors in the format of (ex,0) is also upper bounded by \2-p—~\ and is lower bounded

by [_-—J. So the total number of bad errors occurring to the information part of the

code is between 2 • L^—J and 2 • [^ l i] . •

For linear arithmetic codes, the number of bad errors in the format of e = (ex, 0)

decreases as p increases. When p > 2k~1, there are very few bad errors in the format

64

of e = (ex,0). However, the total number of bad errors is still very large for linear

arithmetic codes.

In general, the hardware overhead for the encoder of the code is mostly affected

by the number of redundant bits r = ("log2p\. The smallest fraction of bad errors for

linear arithmetic code is of the order of 2~r. The only way to reduce the fraction is

to increase the number of redundant bits, which is costly in terms of the hardware

overhead. To reduce the number of bad errors while maintaining the number of

redundant bits, partially robust codes based on nonlinear functions were proposed in

(Gaubatz et a l , 2006; Kulikowski et al., 2008b).

Construction 4.2.1 (Gaubatz et al, 2006; Kulikowski et al, 2008b) Letx G GF(2k),

p be a prime number larger than 2 and r = \log2p]. Denote by \-\p the modulo p re­

duction operation. The arithmetic code C composed of all vectors (x, |a;2|p), in which

\x2\p G GF(2r), is a partially robust arithmetic code.

Partially robust (x, \x2\p) codes have nearly no bad errors and can provide better

protection of cryptographic devices than linear arithmetic codes assuming a slow

fault-injection mechanism (Kulikowski et al., 2008b). However, (x, \x2\p) codes rely

on nonlinear squaring operations and have larger overhead than linear arithmetic

codes. Moreover, (x, \x2\p) codes have worse detection capabilities of errors in the

format of e = (ex, 0) (Chapter 5).

We next propose two constructions of multilinear arithmetic codes based on the

idea of randomly selecting among multiple linear arithmetic codes for each encoding

and the corresponding decoding operation. For each multiplication, one randomly

selected code is used to generate the redundant bits and decode the possibly distorted

outputs of the multiplier and the predictor. For different multiplications, different

codes may be used.

Intuitively, when we randomly select among multiple codes, even if an error is

missed by one of the codes, it may still be detected by other codes. Suppose we

65

randomly select among L codes with equal probabilities. Let Pi(e), 1 < i < L be the

probability that an error e is masked by the ith code. It is easy to show that the

average probability that the error e is masked when we randomly select one out of

these L codes with the same probability can be computed as

L

P(e) = 5>(e) /L (4.22)
i=i

With different error detecting properties, the L codes will have different distribu­

tion of error masking probabilities Pi(e), 1 < i < L. When randomly selecting among

them, even if some Pi(e) are larger than 0.5 (For single arithmetic codes, the error

is bad.), it is highly probable that the average error masking probability p(e) will

still be smaller than 0.5 due to the fact that other other codes can detect the error

with a high probability. Specifically, when we randomly select from two codes, the

only possible bad errors are errors masked by both of the codes or errors masked by

one code with probability one. Obviously, this constrain will drastically reduce the

number of bad errors.

The multilinear codes proposed in the left part of this section have similar number

of bad errors to (x, \x2\p) partially robust codes. One construction will result in a

hardware overhead close to architectures based on linear arithmetic codes. The other

construction will have much better error detection capabilities of errors in the format

of e = (ex, 0) than linear and partially robust arithmetic codes.

4.2.2 [|x|p, |2x|p] Multilinear Code

Theorem 4.2.2 Let Cx,C2 be two arithmetic systematic codes defined by

d = {(x,y)\x G Z2k,y = f{(x) G Z2r},i e {1,2},

where fx(x) = |a;|p, f2(x) = \2x\p. Denote by e = (ex,ey) the arithmetic errors and

c = c + e = (\x + ex\2k, \y + ey\2r) the distorted codeword, where ex G Z2k,ey G Z2r

66

and r = [log2 p] is the number of redundant bits. If we randomly select Cx and C2

to encode the original messages with equal probability, the total number of bad errors

is upper bounded by 2 • I2-!—] and is lower bounded by 2 - [-—J. As -^ —^ 0, the

probability of bad errors for [\x\p, \2x\p] multilinear codes converges to 2~rp~1. The

probability of bad errors in the format of (ex, 0) converges to p _ 1 .

Proof A non-zero error e is masked by a linear arithmetic code when one of the four

cases shown in Table 4.3 is satisfied. (Please refer to the proof of Theorem 4.2.1 for

more details.) When we randomly select Cx and C2 with equal probability, an error

Table 4.3: Classification of masked errors for linear arithmetic codes
Casel

x + ex < 2fe

fi(x) + ey <p

Case2
x + ex < 2k

fi(x) + ey>2r

fi(ex) = ey+p-2r

Case3
x + ex > 2k

fi(x) + ey<p
Jl\fix ") = €y

Case4
x + ex > 2k

fi(x) + ey>2r

fi(ex-2
k) = ev+p-2r

e = (ex, ey) is bad if only it is masked by both of the codes or it is masked by one

code with probability 1. More specifically, e is bad if and only if the total number of

codewords in Cx and C2 that mask e is larger or equal to 2k.

1. For a given error e, when Cx is in Casel (i.e. x+ex < 2k, fx(x)+ey < p, fi(ex) =

ey) or Case2 and C2 is in Case3 or Case4, the total number of codewords masking

the error e is less than 2k. So there are no bad errors in this class. Similarly,

when Cx is in Case3 or Case4 and C2 is in Casel or Case2, there are no bad

errors.

2. Cx is in Casel and C2 is in Case2. For Cx, \x\p + ey < p, the possible number of

|x|p is p — ey. For C2, \2x\p + ey > 2r, the possible number of |:r|p is p — 2r + ey.

For each possible value of |a;|p, the number of x masking the error is upper

bounded by [2 ~ex~\. It is easy to prove that the total number of x masking the

error is less than 2k. So there are no bad errors in this class. Similarly we can

prove that for the following three cases there are also no bad errors.

67

(a) Cx is in Case2, C2 is in Casel;

(b) Cx is in Case3, C2 is in Case4;

(c) Cx is in Case4, C2 is in Case3.

3. When Cx and C2 both belong to Case2, x + ex < 2k, we have Iz-f-e^fc = x + ex,

\x\p + ey > 2r and |2a;|p + ey > 2r. In this case ||x|p -f- ey\2r = \x\p + ey — 2r,

\\2x\p + ey\2r = \2x\p + ey — 2r. For Cx, an error (ex, ey) is missed if and only if

\x + ex\p = \x\p + ey - 2r => \ex\p = \ey - 2r\p. (4.23)

For C2, an error (ex, ey) is missed if and only if

|2 • (x + ex)\p = \2x\p + ey-2
r=> \2ex\p = \ey - 2r\p- (4.24)

From (4.23) and (4.24) we have |ex |p = \ey — 2r\p = ey+p — 2r = 0. For an error

to be masked by both of the codes, the following conditions must be satisfied:

x + ex < 2k, (4.25)

\x\p + ey> 2r, (4.26)

\2x\p + ey> 2r, (4.27)

|ea;|p = e J / + p - 2 r = 0. (4.28)

From (4.28), ey = 2r — p =>• \x\p + ey < 2r, \2x\p + ey < 2r. So no errors in this

case will be masked by both of the codes. Errors in this class are all non-bad

errors. Similarly, when Cx and C2 both belong to Case4, there are no bad errors.

4. When Cx and C2 both belong to Casel, x + ex < 2k, we have |a;-I-ê 12*= = x + ex,

fi(x + ex) = l^ + e^lp, f2(x + ex) = \2-(x + ex)\p. Izlp-r-e^ < p and \2x\p + ey <p.

In this case ||:r|p + ey\2r = \x\p + ey, \\2x\p + ey\2r = \2x\p + ey. For Cx, an error

68

(ex, ey) is missed if and only if

\x + ex\p = \x\p + ey =̂ - |6x|p = ey. y±.ZM)

For C2, an error (ex, ey) is missed if and only if

|2 • (x + ex)\p = |2x|p + ey =• |2es |p = ey. (4.30)

From (4.29) and (4.30) we have |ex|p = ey — 0. For a codeword x to mask a

given error (ex,ey), the following conditions must be satisfied:

x + ex < 2k, (4.31)

\x\P + ey<p, (4.32)

|2x|p + ey < p, (4.33)

|ea!|p = ey = 0. (4.34)

When (4.34) is satisfied, (4.32) and (4.33) are also satisfied. For each (ex,ey)

such that |ex |p = ey = 0, the total number of codewords in Cx and C2 that mask

the error is 2 • (2k — ex). For bad errors this number should be larger or equal

to 2k. Thus

2 • (2k - ex) > 2k (4.35)

=> ex < 2k~x (4.36)

From (4.34) and (4.36), the number of non-zero bad errors is upper bounded by

l2-^-] and is lower bounded by [-—J. Similarly, when Cx and C2 both belong

to Case3, the number of bad errors is upper bounded by \-—] and is lower

bounded by [2-p—\ •

69

So the total number of bad errors is between 2 • l"2-̂ —] and 2 • [^-—\ - •

The number of bad errors for [|x|p, |2:r|p] multilinear codes is much smaller than

that for the linear arithmetic codes (see (4.3)). All bad errors are in the format of

e = (ex,0). The security level of systems protected by the [|:r|p, |2x|p] codes can

be further increased by implementing a merged design of the original device and the

encoder generating redundant bits of the output of the protected device. In that case,

the injected faults will have high probability to affect not only the original device but

also the encoder that generates the redundant bits of the code. The probability of

errors in the format of e = (ex,0) will be efficiently reduced. As a result, the error

detection capabilities and the security level of the system will be increased.

If the original device and the encoder are separated and the attacker is able to

inject faults only in the original device, [|a:|p, |2x|p] multilinear codes do not have any

advantages over linear arithmetic codes in terms of the error detecting capability. In

this case, the system should be protected using multi-modulii multilinear codes shown

below.

A more general case of Theorem 4.2.2 is to randomly select from L < p — 1 codes

defined by Ci = {x,fi(x)} where fi(x) = \ix\p, 1 < i < p. However, it is easy to

show that increasing the number of codes from which we randomly select a code for

encoding and decoding will not reduce the number of bad errors in this situation.

We next present a construction based on using multiple modulii. The resulting

codes will be different from [|a:|p, |2a;|p] codes in the following two aspects.

• They have much less bad errors in the format of e = (ex, 0);

• Increasing the number of codes from which we randomly select a code for en­

coding and decoding will further reduce the number of bad errors.

70

4.2.3 Multi-modulii Multilinear Code

Theorem 4.2.3 Let Cx,C2 be two systematic arithmetic codes defined by

d = {(x,y)\x G Z2k,y = fc(x) G Z2r},i G {1,2},

in which fx(x) = \x\p, f2(x) = \x\q where p,q are co-prime numbers (not a power of

2) and r = max([log2p], riog2 o])• V we randomly select Ci with equal probability to

encode the original messages, the number of bad errors in the format ofe = (e^O) is

upper bounded by
ofc—1 ofc

2 (^ 1 + £-1), (4-37)
pq pq

and is lower bounded by
ofc—1 ofc

S2(L——J + L-J)- (4-38)
* pq pq

When pq « 2k, the probability of bad errors in the format of (ex,0) converges to

3p-1q~1.

Proof Since ey = 0, we have |:r|p + ey < p and \x\q + ey < q. For each linear code,

errors are masked if and only if one of the following two conditions are satisfied (see

the proof of Theorem 4.2.1).

Casel : x + ex <2k, fi(ex) = 0.

Case2 : x + ex > 2k, fi(ex - 2k) = 0.

If we randomly select Ci with equal probability, an error e = (ex,0) is masked by a

probability at least 0.5 if and only if the total number of codewords belonging to Ci

which mask the error is larger or equal to 2k. For a given non-zero error e = (ex, 0),

there are three possible situations as stated below.

1. Both d belong to Casel, |ex|p = \ex\q = 0. The total number of codewords

belonging to Q which mask the error e is 2 • (2k — ex). Hence the error is bad if

and only if ex < 2k~1. Since |ex|p = |ex |g = 0, the number of bad errors in this

71

class is upper bounded by \-—] and is lower bounded by [-—J (ex = 2k 1

does not satisfy |ex |p = 0 and \ex\q = 0).

2. Both Ci belong to Case2, following similar analysis we can prove that the num­

ber of bad errors in this class is upper bounded by f-—] and is lower bounded

by L^J-

3. When Q belong to different cases, it is easy to prove that as long as e = (ex, 0)

satisfies |ex|p = 0, \ex\q = |2fe|g or le l̂p = |2fc|p, le^g = 0, the total number

of codewords masking the error is always 2k. Hence the error is always bad.

The number of bad errors in this class is upper bounded by 2|~—] and is lower

bounded by 2 | £ j .

Remark 4.2.2 When randomly selecting from two codes, experimental results show

that the total number of bad errors e = (ex,ey) for the multi-modulii codes is compa­

rable to that of [\x\p, \2x\p] multilinear codes and is much smaller than that of linear

arithmetic codes. The idea of using multiple residues as the redundant part of the

code has already been presented in (Rao and Garcia, 1971). With two residues, the

codeword was in the format of (x, \x\p, \x\q). We want to emphasize that our construc­

tion is different from multi-residue codes proposed in (Rao and Garcia, 1971) since at

each clock cycle our code has only one residue for the redundant part. Instead of us­

ing multiple residues simultaneously, we use only one for each encoding and decoding

operation and randomly select the modulus for different operations.

Table 4.4: Number of bad errors in the format of e = (ex, 0) for linear
and multilinear codes (k = 32)

1 P = i>
Linear Arithmetic |8.6 x 108

x p, 2x\p multilinear codes p.6 x 108

Multi-modulii codes (L = 2) |8.6 x 108

^ = 2 4 1
1.8 x 10'
1.8 x 10Y

2.2 x 10b

p = 563
7.6 x 106

7.6 x 10b

4.1 x 104

p = 883
4.9 x 10b

4.9 x 10b

1.7 x 104

p = 1237
3.5 x 10b

3.5 x 10b

8.5 x 103

p = 2767
1.6 x 10e

1.6 x 10°
1.7 x 103

Multi-modulii codes have much less bad errors in the format of e = (ex,0) than

linear and [\x\p, \2x\p] multilinear arithmetic codes (see (4.37)). Table 4.4 shows the

72

estimated number of bad errors in this class for all three constructions. The number

of information bits of the codes in the Table is k = 32. For multi-modulii codes, p

corresponds to the larger modulii. The other modulii is selected to be the largest

possible prime number less than p, e.g. when p = 241, the other modulii is 239. As

p increases, the number of bad errors for multi-modulii codes decreases much faster

than for the other two alternatives. When p = 2767(r = 12), the multi-modulii code

has only 1.7 x 103 bad errors in the format of (ex, 0) while the other two codes have

about 1.6 x 106.

These characteristics of multi-modulii codes are beneficial in many different sit­

uations. For example, when the attacker can identify and inject faults only to the

original device, or the encoder of the code is only a small part of the cryptographic

system and is separated from the original device so that most of the injected single

(or even double) faults affect only the original device, errors will be in the format of

e = (ex, 0). In this case, systems protected by multi-modulii codes will have a higher

security level than architectures based on other alternatives. Systems with different

error rates for the original device and the predictor generating the redundant bits

y = f(x) can also benefit from this characteristic of multi-modulii codes. Design

based on multi-voltage regions is proposed to reduce the total power consumption of

the system (Khursheed et al., 2009). In the region with the smaller voltage level, cir­

cuits are more vulnerable to soft errors and are more probable to have errors caused

by problems such as timing violations (Roberts et al., 2005). As a result, the error

rate for circuits in this region will be higher. If the original device operates at a lower

voltage level than the predictor, multi-modulii codes can provide better protections

due to the fact that they have higher detection capabilities of errors in the format of

e = (ex,0).

73

Different from [|rr|p, |2x|p] codes, for multi-modulii codes increasing the number of

codes from which we randomly select a code for encoding and decoding can further

reduce the total number of bad errors. Table 4.5 shows the simulation results for a

8-bit multipliers protected by multi-modulii codes with different number of modulii.

The second line corresponds to the case when a single linear arithmetic code is used.

When we randomly select from multiple linear arithmetic codes with four different

modulii, the number of bad errors in the format of e = (ex,0) is only 13, which is

more than 100 times better than architectures based on linear arithmetic codes.

Table 4.5: Number of bad errors when selecting from linear arithmetic
codes with different modulii

Modulii
Pi = 31

P l = 3i ,p2 = 2y
P l = 31,p2 = 29,p3 = 23

p1 = 31,p2 = '29,p3 = 23,P4 = 19

Bad Errors
47857
1781
1651
133

Bad Errors e = (ex, 0)
2113
249
180
13

Remark 4.2.3 From Table 4-5, when we randomly select from two linear arithmetic

codes with different modulii, the number of bad errors in the format of e = (ex, 0) is a

little bit larger than the result given by (4-37). This is because when using arithmetic

codes to protect multipliers, the output of the multiplier, hence the information bits of

the arithmetic codes, is not uniformly distributed. Moreover, some combinations of

information bits in Z2k may never occur at the output of a multiplier whose operands

are | bits. However, simulation results show that in this situation multilinear codes

still largely over-perform linear arithmetic codes and all the advantages of multilinear

codes are preserved.

Table 4.6 summarizes the probability of bad errors of linear and multilinear

arithmetic codes. The hardware design of secure multiplier architectures based on

[\x\p, \2x\p] and multi-modulii codes as well as linear and (x, \x2\p) codes will be pre­

sented in Chapter 5.

file:///2x/p

74

Table 4.6: Probability of bad errors for linear and mu
Probability of

Bad errors
Bad errors e = (ex, 0)

Linear Arithmetic Codes
« 0.3 • 2 ~ r + 1

x p, 2x p codes
« 2~rp~1

« p _ 1

tilinear codes
Multi-modulii codes
« 2 _ r p _ 1 * (9 S3 p)

« 3p~lq~l

Based on experimental results.

4.3 Summary

In this Chapter, we present constructions of both algebraic and arithmetic multilinear

codes. The basic idea of multilinear codes is to randomly select from a given set of

linear codes for each encoding and the corresponding decoding operation. Even if an

error e cannot be detected by one of the linear codes, the chance that the multilinear

code will miss this error can still be very small due to the fact that the error can be

detected by other codes with high probabilities.

Compared to robust and partially robust codes, multilinear codes achieve sim­

ilar error detection capabilities at much reduced cost due to their linearity. The

performance of multilinear codes does not depend on the distribution of the spatial

multiplicities of errors and improves as the errors last for more than one clock cycle.

75

Chapter 5

Application of Robust Codes on the

Design of Secure Cryptographic Devices

Cryptographic devices are widely used in applications like ATM cards and commer­

cial electronics. These devices are vulnerable to side-channel attacks such as timing-

analysis attacks (Kocher, 1996), power-analysis attacks (Kocher et al., 1999) and

fault-injection attacks (Skorobogatov and Anderson, 2003; Bar-El et al., 2006). Due

to their active and adaptive nature, fault-based attacks are one of the most powerful

types of side-channel attacks. Since a fault attack was demonstrated by Boneh et

al. in (Boneh et al., 2001), numerous papers have been published proposing a vari­

ety of fault attacks on both public-key and private-key cryptographic devices. One

of the most efficient fault-injection attacks on AES-128, for example, requires only

two faulty ciphertexts to retrieve all 128 bits of the secret key (Piret and Quisquater,

2003). Without proper protection against fault-injection attacks, the security of cryp­

tographic devices can never be guaranteed.

In (Maistri and Leveugle, 1982; Maistri et al., 2007), a solution based on time

redundancy by means of a double-data-rate (DDR) computation template was pre­

sented. Each computation is conducted twice and the results are compared to detect

injected faults. Both clock edges were exploited to control the computation flow for

the purpose of improving the throughput of the system. In (Moore et al., 2002; Ku­

likowski et al., 2008e), the authors investigated the usage of dual-rail encoding for the

76

protection of cryptographic devices against different types of side-channel attacks in

asynchronous circuits.

The most commonly used fault detection technique is concurrent error detection

(CED) which employs circuit level coding techniques, e.g. parity schemes, modu­

lar redundancy, etc. to produce and verify check digits after each computation. In

(Bertoni et al., 2003), a secure AES architecture based on linear parity codes was

proposed. The method can detect all errors of odd multiplicities with reasonable

hardware overhead. In (Gaubatz and Sunar, 2006), an approach to fault tolerant

public key cryptography based on redundant arithmetic in finite rings were presented.

The method is closely related to cyclic binary and arithmetic codes. In (Karri et al.,

2002), the authors proposed a CED technique that exploits the inverse relationships

existing between encryption and decryption at various levels. A decryption is imme­

diately conducted to verify the correctness of the encryption operation. A lightweight

concurrent fault detection scheme for the S-box of AES was proposed in (Kermani and

Reyhani-Masoleh, 2008). The structure of the S-box is divided into blocks and the

predicted parities for these blocks are obtained and used for the fault detection. Var­

ious fault attack countermeasures were compared in terms of the hardware overhead

and the the fault detection capabilities in (Malkin et al., 2006).

Most of the proposed error detecting codes are linear codes like parity codes, Ham­

ming codes and AN codes. Protection architectures based on linear codes concentrate

their error detecting abilities on errors with small multiplicities or errors of particular

types, e.g. errors with odd multiplicities or byte errors. However, in the presence of

unanticipated types of errors linear codes can provide little protection. Linear parity

codes, for example, can detect no errors with even multiplicities.

In (Bousselam et al., 2010), the author compared several concurrent fault detec­

tion schemes for advanced encryption standard based on linear codes. The simulation

77

results showed the error detecting capabilities of systems protected by linear codes

largely depend on the error profiles at the output of the device due to the injected

faults. The spectrum of available fault injection methods and the adaptive nature of

an attacker suggests that it would be possible to bypass such protection by injecting

a class of faults or errors which the cryptographic device does not anticipate. Con­

sidering even only inexpensive non-invasive or semi-invasive fault attacks, there is a

wide spectrum of the types of faults and injection methods an attacker has at his

disposal (Bar-El et al., 2006).

In this Chapter, we propose robust codes and multilinear codes as solutions to the

limitation of linear error detecting codes for the protection of cryptographic devices

against malicious fault injection attacks. Instead of concentrating the error detecting

abilities on particular types of errors, these codes provide nearly equal protection

against all error patterns, thus eliminate the weakness of linear codes which can be

exploited by attackers to mount successful fault attacks. Moreover, the detection of

errors for robust codes and multilinear codes are message-dependent. If the same

error stays for more than one clock cycle, even if the injected fault manifests as an

error that cannot be detected at the current clock cycle, it is still possible that the

error will be detected at the next clock cycle when a new message arrives. Thereby,

the advantage of robust codes and multilinear codes will be more significant for lazy

channels where errors have high probabilities to repeat themselves for several clock

cycles.

As case studies, we present the design of secure AES linear blocks using robust

codes and partially robust codes, the construction of FSMs resilient to advanced

fault injection attacks based on multilinear algebraic codes, and the design of robust

multipliers (widely used as sub-blocks in public-key cryptosystems) using multilinear

arithmetic codes. The error detection capability of architectures based on the pro-

78

posed codes was simulated and compared to architectures based on linear codes. All

the designs were modeled in Verilog and synthesized in RTL design compiler. The

overhead of different alternatives are estimated.

5.1 Fault and Attacker Model

Fault attacks can be performed in many different ways. The most investigated mech­

anisms of fault injections in the cryptography communities include introducing vari­

ations in power supplies (Canivet et al., 2010; Schmidt and Herbst, 2008; Kim and

Quisquater, 2007; Barenghi et al., 2009), perturbing the silicon of the chip using white

light or laser guns (light attacks) (Skorobogatov and Anderson, 2003; Monnet et al.,

2006; Schmidt and Hutter, 2007; Canivet et a l , 2010; Trichina and Korkikyan, 2010;

Skorobogatov, 2010) and generating eddy current on the surface of the chip using

magnetic field (electromagnetic attacks) (Samyde et al., 2002; Schmidt and Hutter,

2007), etc.

Fault attacks can be classified according to the capabilities of the attackers to

control the parameters of the injected faults such as timing, locations, the type of

the faults and the error patterns (Bar-El et al., 2006; Trichina and Korkikyan, 2010).

With the vast arsenal of fault injection methods and techniques available to the

attacker, the type of faults and the error patterns appearing as manifestations of the

injected faults at the outputs of the device-under-attack is hard to model and predict.

In (Barenghi et al., 2009), for example, the author showed that the number of faults

can be controlled by reducing the supply voltage to a certain level. However, as the

technology moves into deep-micro realm, it becomes harder and harder for the attacker

to control the specific error patterns at the output of the device (Skorobogatov, 2010).

Moreover, to the best of our knowledge, all the known fault injection mechanisms

can only provide a limited spatial and timing resolution. For instance, the affected

79

die area due to a laser gun shot, which is one of the most powerful fault injection

methods, is determined by the device technologies and the focus area of the laser

beam (Skorobogatov, 2010). The time between two consecutive shot of the laser gun

is affected by the speed of recharging and the delay between the trigger signal and

the shot (Trichina and Korkikyan, 2010).

As in most papers on protecting the cryptographic devices, e.g. see (Kulikowski

et al., 2008b; Malkin et al., 2006; Akdemir et al., 2011), we assume that counter-

measures are implemented in the cryptographic device preventing the attackers from

tampering with the clock signal (Bar-El et al., 2006) and the error detecting net­

work (EDN). We further assume that a low-rate true random number generator (e.g.

(Vasyltsov et al., 2008)) is available. In fact, most cryptographic devices incorpo­

rate a true random number generator by default for key initialization, random pad

computation, challenge generation etc (Sunar et al., 2007b).

We assume a strong attacker model in which an attacker knows everything about

the hardware architecture of the device including the codes used to detect errors.

Specifically, the attackers may be able to inject faults which only affect the original

device (but not the redundant portion used for error detection). We assume that

the attacker cannot fully control the manifestation of injected faults as error patterns

at the output of the device. However, as opposed to previous works on protecting

cryptographic devices based on linear error detecting codes, e.g. parity codes or

duplication codes, we do not impose any limitations on error patterns such as the

number of distorted bits at the output of the protected device. The manifested error

patterns are determined by factors such as the number of affected gates, input patterns

to the device, etc. We further assume that the attacker cannot change the faults at

each clock cycle (slow fault-injection mechanisms). Once faults are injected and

an error is generated, the faults stay for several clock cycles before new faults can be

80

injected and tend to manifest themselves as the same error patterns at the output

of the device. This is the case for several well known fault-injection methodologies

mentioned in the last paragraph. We call this kind of channels where errors have high

probabilities to repeat themselves for several consecutive clock cycles lazy channels

or channels with memory. Multiple fault injections may also result in the same

errors. For example, the author in (Trichina and Korkikyan, 2010) showed that two

shots of a laser gun fired in rapid succession on a 32-bit ARM processor produces the

same errors. The reason is that the fault locations cannot be adjusted in a short time

due to the inflexible laser bench.

As it will be shown in the following sections, the advantages of robust codes and

multilinear codes in terms of error detection capabilities are two-fold. First, they

are better than linear codes in a sense that they have a much smaller number of

undetectable errors (or bad errors for protecting arithmetic devices). Second, these

codes have much higher error detection probabilities than linear codes for lazy chan­

nels hence they will effectively prevent the attacker from implementing a successful

fault-induction attack under the aforementioned strong attacker model.

5.2 Repeatability of Errors

To support the statement that slow fault-injection methodologies may result in re­

peating errors, we conducted fault-injection simulations in C + + for unsigned and

signed (2's complement) Wallace tree multipliers.

Multipliers based on Wallace trees (Wallace, 1964) are commonly used in various

applications due to their faster speed compared to other alternatives. In general, the

propagation delay of a n-bit Wallace tree multiplier is on the order of 0(log(n)) in

terms of logic gates. When combined with the Booth encoding technique, Wallace tree

multipliers can be used for 2's complement multiplications. The gate level netlists for

81

both signed and unsigned Wallace tree multipliers are modeled in C++ . In order to

inject faults into the device, we insert a multiplexer at the output of every logic gate

as shown in Figure 5-1. To simplify the analysis, we assume that the injected faults

are either stuck-at-0 or stuck-at-1 faults. When fault-enable is asserted, faulty-output

is selected and the observed output of the gate is determined by the internal fault

model. We further assume that the attackers are able to inject multiple faults into

the devices and the injected fault (or faults) may affect more than one logic gate.

Ten thousands of simulations have been performed for every fixed number of affected

gates. For each simulation, locations of the affected gates are randomly picked up

and one million input operand pairs to the multipliers are randomly generated.

The injected faults may or may not manifest as non-zero arithmetic error patterns

at the output of the multiplier. The error is in the format of e = (ex,ey),ex G

GF(2k), ey G GF(2r), where k is the number of information bits and r is the number of

redundant bits. The probability of manifestation increases as more gates are affected.

We also note that when only 1 gate is affected and the fault manifests, it will always

manifest as the same non-zero error pattern at the output of the multiplier. Moreover,

it is highly probable that the manifested non-zero error pattern is in the format of ±2 l ,

where i is an integer (single errors). As the number of the affected gates increases,

fault enable

faultyjDutput
•

Figure 5-1: Fault-injection into a single gate

/

6

82

Table 5.1: The estimated repeatability of errors for faults injected
into signed(2's complement) and unsigned Wallace tree multipliers

Type of the Multipliers

16-bit Unsigned
32-bit Unsigned

16-bit Signed
32-bit Signed

r

1
0.5430
0.5174
0.3127
0.2730

Lhe number of faulty gates
2

0.3166
0.2967
0.1904
0.1811

3
0.2520
0.2301
0.1313
0.1197

0.1857
0.1624
0.0839
0.0721

b
0.1323
0.1110
0.0516
0.0418

both the number of possible error patterns and the average multiplicity of errors will

increase.

For fixed faults, the error pattern e = (ex, ey) observed at the output of the

multiplier may vary for different input pairs. Assume that every multiplication takes

one clock cycle to finish. Let et be the observed error pattern at the tth clock cycle.

The repeatability of errors can be defined by the following equation.

PR = P(et+1 = et,et^0). (5.1)

Table 5.1 shows the average repeatability of errors when up to 5 logic gates are

affected by the injected faults for 16-bit and 32-bit signed and unsigned Wallace tree

multipliers. For the 16-bit unsigned Wallace tree multiplier, the average repeatability

of errors is higher than 0.5 when only one gate is affected. The repeatability of

errors decreases as the number of affected gates increases. The signed Wallace tree

multipliers based on the Booth encoding technique has smaller repeatability of errors

compared to the unsigned Wallace tree multipliers. We also note that longer operand

size will result in smaller error repeatability for both signed and unsigned Wallace

tree multipliers. However, it should be noted that even when 5 gates are affected

the repeatability of errors for the 32-bit signed Wallace tree multiplier is still around

0.05, which can be sufficient for robust and multilinear arithmetic codes to increase

their error detection capabilities.

83

Remark 5.2.1 For secure applications, robust and multilinear arithmetic codes can

benefit from design for repeatibilities. The circuit can be designed and synthesized

in such a way that the repeatability of errors is high. In this case, the error detection

capabilities of robust and multilinear arithmetic codes can be drastically increased.

Thereby, the security level of the system protected by these codes will be much higher.

For example, reducing the average fanout of gates can result in a smaller number of

possible error patterns once the fault is fixed. As a result, the repeatability of errors

will increase, assuming a similar probability of fault manifestation. We also note that

for linear networks consisting of only XOR gates, PR = 1 assuming a simple stuck-at

fault model.

5.3 Robust Protection of the AES Linear Block

The Advanced Encryption Standard (AES) is one of the most used symmetric key al­

gorithms and has been the target of numerous fault injection based attack campaigns.

As in most private key algorithms, AES involves bitwise operations over small fields

and the algebraic error model is most often observed and used in analysis. We use a

sub-circuit of a typical round of encryption and compare architectures based on linear

codes and robust codes presented in Chapter 3.

5.3.1 Hardware Architecture for Robust AES

The datapath of a typical round of AES-128 consists of four main transformations:

SubBytes, ShiftRows, MixColumns and AddRoundKey. The SubBytes transforma­

tion involves two operations, inversion in GF(28) followed by a linear affine transform.

All of the transformations are defined for at most 32-bit operands and the 128-bit

datapath of a round of AES can be divided into four independent and identical 32-bit

data streams. For the test circuits we used the linear transformations of a 32-bit

wide portion of a typical round of AES. The circuit consists of one MixColumns

transformation and four affine transformations. It is completely linear and can be

84

implemented with 217 XOR gates.

We compare six different protection methods : linear parity, robust parity (Ex­

ample 3.1.1), linear+robust parity(Example 2.3.2), partially robust (x, (Px)3) code

(Example 3.3.1), Hamming code and a partially minimum distance robust code based

on Vasil'ev code (Example 3.4.1). Each code protects one 32-bit linear block.

Input

Original Device Predictor

s;

EDN

Extended Output

i Error

Figure 5-2: General Architecture of Secure Devices Based on Error
Detecting Codes

The general architecture utilizing error detection codes to protect devices against

fault analysis attacks is shown in Figure 6-1. In addition to the original device,

two extra blocks, the predictor and the error detection network (EDN) are needed.

The extended outputs are codewords of the error detection code. The predictor

predicts the redundant outputs from the inputs of the devices. EDN is used to verify

the integrity of the output data. By selecting an appropriate error detection code

and implementing the corresponding predictor and EDN, the desired level of error

detection capability can be achieved.

The overhead of each of the implementations are summarized in Table 1. The table

lists the number of two-input gates required for each implementation and the overhead

compared to the unprotected implementation. The linear parity requires very little

overhead due to the parity preserving nature of the linear operations. For this sub-

85

Table 5.2: Hardware Overhead of Secure AES Linear Blocks Based
on Different Error Detecting Codes

linear parity
robust parity (Example 3.1.1)

min. dist. robust (Example 2.3.2)
Hamming

gen. Vasil'ev (Example 3.4.1)
{x, (Fx)3)(Example 3.3.1)

predictor
31
185
196
253
292
432

EDN
32
32
64
80
116
266

overhead (%)
30%
100%
120%
153%
188%
322%

maxe^0Q{e)
1

0.5
0.5
1

0.5
2-&

dim(Kd)
32
0
0

32
6

26

circuit of AES, the parity of the inputs is equal to the parity of the outputs which

results in a compact parity predictor and a 30% gate count overhead. The robust

parity code requires the prediction of a nonlinear function of the output and has a

larger area overhead. The implementation which combines the the linear and robust

parity into one implementation requires slightly more hardware in the predictor and

32 more gates in the EDN compared to robust parity. The implementations based on

Hamming codes, generalized Vasil'ev codes and (x, (Px)3) codes require much larger

overhead due to the fact that more redundant bits need to be predicted. The overhead

of the scheme utilizing generalized Vasil'ev code is slightly higher than Hamming

implementation because it needs to compute one nonlinear redundant bit. Finally,

the scheme based on (x, (Px)3) code requires more than 300% hardware overhead

because the predictor and EDN needs to implement a cube operation in GF(26) in

addition to the matrix multiplication in GF(2).

5.3.2 Error Detection Analysis

To illustrate the error detection characteristics of robust codes and their variants we

first show results of exhaustive simulations comparing the error detection ability of

codes with smaller dimensions.

Figure 5-3 shows the percentage of errors e that are masked as a function of the

the error masking probability Q(e) where the number of information bits is k = 8.

Linear parity code has the largest portion of undetectable errors (50 %). For robust

86

Robust Parity
Linear Parity
L+R Parity
Generalized Vasil'ev

Figure 5-3: Error Distributions for Codes with k = 8

parity code, all errors are detectable with a probability of at least 0.5. The code with

both linear and robust parity bits can detect 50% errors with probability 1 and all the

others with probability 0.5. Generalized Vasil'ev code, (x, (Px)3) code and Hamming

code have Hamming distance 3 and can detect all single and double errors which are

most probable in practice. The first two have much smaller portion of undetectable

errors than Hamming code due to their robustness. For generalized Vasil'ev code

nearly 90% of errors are always detectable, (x, (Px)3) code can detect only 50%

errors with probability one, but it can detect another 45% errors with probability

0.875.

0.7

§0.6
li­
ra 0.5

2
(o 0.4

°0.3

XI

I 0.1

°0 2 4 6 8
Number of Observed Outputs

Figure 5-4: Probability of Missing Faults for Different Length of Input
Sequences-Linear Parity, Robust Parity, L+R Parity (k = 32, r = 6)

* X
* ^ k

* ' • ' ^

* '"' ^̂ ^̂ -* ^^ * ^̂
V

•,
•. '':
\ '•>

•, '•:

—Linear Parity
Robust Parity

— L+R Parity

*'•,.
::;::;

87

0.7
W

3 0.6
CO

li­
ra 0.5

l o . 4

^ 0 . 3
J?

£0.2

I 0.1

°0 2 4 6 8
Number of Observed Outputs

Figure 5-5: Probability of Missing Faults for Different Length of Input
Sequences-Hamming, gen.Vasil'ev, (x, (Px)3) where k = 32

The experimental results of fault simulations for the linear sub-circuit of AES

protected with the above six different codes are shown in Figure 5-4 and Figure 5-5.

Single stuck-at faults were injected into the original and predictor portions of the

corresponding six designs. Due to the linear function of the AES sub-circuit the

faults tend to manifest themselves as repeating errors at the outputs. It is shown

in (Karpovsky et al., 2007) that robust codes have better detection characteristics

in channels where errors have a high laziness or probability of repeating themselves.

Thereby, robust and minimum distance robust codes are expected to have better

performance when faults stay for several consecutive operations.

For each of the architectures the probability of not detecting a fault at least once

decreases as more outputs are observed. Due to the large kernels of the linear parity

and Hamming codes and the structure of the circuit based on these codes, about 30%

of single faults result in errors which are undetectable. As shown in the Figures, the

probability of not detecting a fault at least once after eight messages approaches 30%

for both architectures.

Robust codes have no undetectable errors and partially robust codes reduce the

number of undetectable errors over linear codes. For the robust and partially robust

codes the probability of not detecting a fault at least once after several messages is

'*-''''- X

• ^ ^ " 1 ,

*. '•:
* , ' ' H i .

* . ""Hi.
• , " " H i , ,

—Hamming

(x,(Px)3)
•••Vasilev

•

88

much smaller than linear codes.

We note that protection methods aiming at only increasing the Hamming distance

of codes do not bring big improvement for the error detection probabilities as com­

pared with schemes based on codes with distance 1 or 2. The architecture based on

Hamming code is only a little bit better than that based on linear parity code and

is much worse than the one based on robust parity code in terms of fault masking

probability when several consecutive outputs are observed. The reason is that most

of single stuck-at faults will result in single errors or affect an odd number of output

bits, which can be detected by linear parity code. If faults do manifest themselves as

errors with high multiplicities, Hamming codes still do not have benefits due to the

large number of undetectable errors and the disadvantage of detecting repeating er­

rors compared with robust codes or partially robust codes. Thereby, we claim that to

further increase the fault detection capability, robust codes and partially robust codes

with minimum distances are better choices than linear codes with higher Hamming

distances.

5.4 Robust FSMs Resilient to Advanced Fault Injection At­

tacks

Most of the current research on protecting cryptographic devices against fault injec­

tion attacks target at the data path of the system. On the contrary, few papers have

been published on protecting the control circuit (e.g. FSM, pipeline) of the device. In

(Sunar et al., 2007a), the author showed that by injecting faults into the FSM of the

cryptographic device implementing the Montgomery ladder algorithm, the attacker

can still reveal the secret key of the system even if the data path is properly pro­

tected. Thereby, the security of the FSMs should also be considered when designing

cryptosystems resistant to fault injection attacks.

89

The design of reliable FSM architectures tolerant to naturally introduced errors

(e.g. soft errors) are well studied in the community (Rochet et al., 1993; Krasniewski,

2008; Baranov et al., 2009). Most of these reliable FSM architectures are based on

linear codes (e.g. TMR, parity prediction) and assume a specific error model where

errors with small multiplicities are more probable. They cannot provide a guaranteed

level of protection against fault injection attacks under strong attacker models since

errors introduced by an attacker can be unpredictable.

Robust codes presented in Chapter 3 can provide equal protection against all

error patterns thus eliminate the possible weakness that can be used by the attacker

to break the security of the system. However, the advantage of robust codes lies on

the assumption that all codewords are equi-probable. For FSMs only some of the

codewords correspond to valid states. Moreover, in most of the cases the probability

of valid states is not uniformly distributed. Due to these two inherent characteristics

of FSMs, protection architectures based on single robust codes cannot be directly

applied to build secure FSMs.

As a solution for the protection of FSMs against strong attackers, the authors in

(Hammouri et al., 2009) proposed to use fingerprints generated by physically unclon-

able functions (PUFs) to verify the transition of the FSM when it is in operation.

However, the architecture can only be applied to known-path state machines where

the state transitions do not depend on the external inputs. In (Akdemir et al., 2009),

a secure FSM architecture based on nonlinear functions and randomized maskings

was proposed. While interesting and efficient as a countermeasure against strong

attackers, the method requires a high hardware overhead.

In this section, we propose to use multi-code techniques presented in Chapter 4 to

protect FSMs against fault injection attacks. The proposed architectures can provide

a guaranteed level of security under strong attacker models and require less hardware

90

overhead than other existing secure FSM architectures described in the literature.

5.4.1 Capabilities and Goals of Attackers when Injecting Faults into FSMs

We assume that the attacker knows the detailed implementation of the secure FSM

architectures. To reveal the secret information of the system, the attacker tries to

force the FSM into a faulty but valid state by injecting faults into system registers or

combinational networks resulting in additive errors in the system registers. Denote by

x the content of a system register and e the error vector introduced by the attacker,

the distorted content is x = x ® e, where ® is the bit-wise XOR operation.

We further assume that the attacker cannot first read the contents from the reg­

isters and then decide how the faults will be injected during the same clock cycle.

However, the attacker may be able to inject any specific error pattern. (Note that

this is a stronger attacker model than the one presented in Section 5.1.) Moreover,

the attacker may know the next state of the FSMs before he injects faults. This is

probable for some known-path FSMs where the state transitions are not dependent

upon the external inputs (Hammouri et al., 2009).

To conduct a more comprehensive comparison of different alternatives, we analyze

their error detection capabilities for three different attacker models.

A l (Weak Attacker) : The attacker injects random errors with uniform distribu­

tion.

A2 (Strong Attacker) : The attacker has high spatial fault injection resolution

and is able to inject any specific error patterns. But he does not know the next

state of the FSM before he injects faults.

A3 (Strongest Attacker) : The attacker has high spatial and temporal fault in­

jection resolution. He knows the next state before he injects faults and is able

to introduce any specific error patterns.

91

We further notice that the attacker may have different goals of conducting fault

injection attacks.

G l : Force the FSM into an arbitrary faulty(but valid) state.

G2: Force the FSM into a certain faulty state as desired by the attacker.

We denote by Qx and Q2 the probability that the attack is successful for the above

two situations respectively. The performance of the protection architectures will be

evaluated by computing Qx and Q2 under all the three attacker models.

5.4.2 Secure FSM Architectures

Throughout the rest of the Section, we denote by (n, k) a binary systematic code with

length n and dimension k. Let S be the set of binary vectors representing the valid

states of the FSM and s an element in S. For situation G2, let s' be the certain state

that the attacker wants to force the FSM into. Let p(s) be the probability that the

next state of the FSM is s, assuming the external inputs are uniformly distributed.

(When treating FSMs as Markov chains, p(s) is the stationary distribution of the

chain.) We will only present the protection architectures for the computation of the

next state functions. The computation of the output functions can be protected using

similar techniques.

Architectures Based on Linear Codes

Figure 5-6 shows the general secure FSM architecture based on a (n, k) systematic

code C, which consists of two registers and three combinational networks. The NSL

block computes the next state vector based on the current state and the external

inputs. The predictor computes the redundant bits v £ GF(2r) of the code, where

r = n — k. The state register stores the next state vector s G GF(2k). The check-bit

register stores the redundant bits v. The non-distorted outputs of the two registers

92

In

NSL

""JET

Predictor

""^

State Reg Check-bit Reg

X p©».

EDN ERR

Figure 5-6: Secure FSM Architectures Based on Systematic Error
Detection Codes

compose a codeword of C. Denote by es and ev the additive errors occurring to the

state vectors and the redundant bits respectively. At the beginning of each clock

cycle, the error detection network (EDN) will verify whether (s ® es,v ® ev) is a

codeword of C and s ® es is a valid state vector. If either of the two verifications is

failed, errors are detected and ERR will be asserted.

Although architectures based on linear codes can provide a satisfactory protec­

tion against most of the naturally introduced errors, when facing an attacker with

advanced fault injection mechanisms, the security level of the system cannot be guar­

anteed.

Theorem 5.4.1 Let \S\ be the number of valid states of the FSM. Let Ses — {sx G

S\3s2 G S,sx® s2 = es}. For architectures based on any (n, k) linear error detection

code, Qx and Q2 for different attacker models described in Section 5.4-1 are as stated

below, where p(s) is the probability that the next state of the FSM is s.

n, = l§tl n0 = !-?(*') •

Qx = maxes{J2seSes p(s)}, Q2 = maxs^s/{p(s)};

Qi = Q2 = l-

A l

A2

A3

Proof Let H be the parity check matrix of the linear code and e = (es,ev),es ^

0 G GF(2k) the error introduced by the attacker. Let s be the correct output of

93

the NSL block (stored in the state register). The attack is partially successful iff

He = 0 G GF(2r) and s ® es is a valid state. The attack is successful iff He = 0 and

S \jp €•$ ^— S *

A l : The probability that s ® es, es ^ 0 is a valid state is ^-^-- For each es, there is

only one ev satisfying He = 0. Thereby Qx = -^-- For a given s ^ s', there is

only one e = (es, ev) satisfying s®es = s' and He = 0. Hence Q2 = l~%„ '.

A2: If the attacker is able to inject specific error patterns, he can select the error

which is most likely to be missed. Such an error satisfies that e = (es,ev) is

a codeword and J2seS p(s) is maximized. When this error is injected, Qx =

m a x e s { ^ s e S p(s)}- In order to force the FSM into a certain faulty state s',

the attacker has to introduce an error es = s ® s', s ^ s'. Us maximizes p(s)

among the rest of the valid states except s', Q2 = maxs^s/{p(s)}.

A3: Given the fact that the attacker knows the next state s and can inject any specific

error pattern es, he can simply inject the error es = s®s', thus Qi = Q2 = 1-B

We next present an example of utilizing linear codes for the protection of the FSM

for the Montgomery ladder algorithm, which is widely used in RSA and elliptic curve

cryptosystems. The state transition diagram of the Montgomery ladder algorithm is

shown in Figure 5-7. The algorithm is for the computation of y = xbmodN, where

x is the original message and b is the m-bit secret key of the cryptosystems. After

loading x and b into system registers, the FSM takes m clock cycles to finish the

computation. A possible attack scenario was presented in (Sunar et al., 2007a).

The authors showed that by forcing the FSM into the DataRead state before all the

computation is completed, b can be easily revealed one bit per time. (Fore more

details about the Montgomery ladder algorithm and the attack scenario, please refer

to (Sunar et a l , 2007a; Joye and Yen, 2003)).

94

f Count <0

\ V St»uare V (Multiplyy [Load2 \>
count >6 N*. v A \ y \ y

Lojdb

Figure 5-7: State Transition Diagram of the FSM for the Montgomery
Ladder Algorithm (Sunar et al., 2007a)

The state assignment for the FSM is shown in Table 5.3.

S = {001,010,011,100,101,110, 111}.

Se„ can be derived from the definition in Theorem 5.4.1, e.g.

Soox = {010,011,100,101,110, 111}.

Assuming a public key size of 17-bit for RSA (m = 17), p(s) is shown in the last

column of Table 5.3.

Example 5.4.1 The FSM for the Montgomery ladder algorithm can be protected

using a (6,3) linear Hamming code whose parity check matrix is

H =
100101
010110
001011

To reveal the secret key b of the cryptosystem, the attacker tries to force the FSM

Table 5.3: State Assignment of the FSM for the Montgomery Ladder
Algorithm

Valid State
Idle
Init

Loadl
Load2

Multiply
Square

DataRead

State Vector
001
010
011
100
101
110
111

p(s)
1/39
1/39
1/39
1/39
17/39
17/39
1/39

95

into state 111 (DataRead) before the computation is completed. Thereby s' = 111.

Given the state assignment in Table 5.3, maxs^s/{p(s)} = 17/39 = 0.4359 (s can

be either 101 or llOj. n i ax e s {^ s G 5 p(s)} = 38/39 = 0.9744. es can be any vector

in {001,010,011,100, 111}. Qx and Q2 under different attacker models are shown in

Table 5-4- Under attacker models A2 and A3, Qx is close to 1 and Q2 is at least

0.4359. Obviously, FSM protection architectures based on single linear codes cannot

provide enough protection in these situations.

Remark 5.4.1 • We note that for the above FSM some mis-transitions of the states

may not reveal secret information of the cryptosystem. However, to compare different

alternatives for more general situations, we still use the definition of Qx and Q2 given

in Section 5.4-1-

• Since m clock cycles are required to finish the computation after x and b are loaded,

an extra counter is needed to store the number of passed clock cycles (see Count in

Figure 5- 7). This counter should be protected using similar techniques presented in

this paper.

From Theorem 5.4.1 it is clear that for FSM protection architectures based on

single linear codes, Qx and Q2 do not depend on the code type. When the attacker

can only inject random errors (Al) , Qx and Q2 are affected by n and p(s). When the

attacker is able to inject specific error patterns (A2), Qx and Q2 are affected by p(s)

and Ses- In general, to achieve a higher security level of FSMs, max.Sl^S2{p(sx)—p(s2)}

should be as small as possible. If the attacker also knows the next sate of the FSM

(A3), any protection architectures based on single linear codes stand no chance.

In the next section, we will show a possible solution for the protection of FSMs

against strong attackers, which is based on multi-code techniques.

Architectures Based on Multi-Code Techniques

The general secure FSM architecture based on multi-code techniques is shown in

Figure 5.4.2. At each clock cycle, a selection signal R G GF(2TL) is generated by a

(pseudo) random number generator, which is integrated in most of the cryptographic

96

In

7T
NSL

>W

i.rr
Predictor

c
State R c g j ,Check-bitReg

25" «©«, ^ *®* r

Sel Reg

- - i - -
EDN

I ERR

Figure 5-8: Secure FSM Architectures Based on Multi-code Tech­
niques

devices. Based on the value of R, the predictor selects a code from L,L < 2TL different

codes to encode the next state vector s. R is stored in a separate register and is used

to verify s at the beginning of the next clock cycle.

Remark 5.4.2 As in most papers on protecting the cryptographic devices, e.g. see

(Kulikowski et al, 2008b; Malkin et al, 2006; Akdemir et al, 2011), we assume that

countermeasures are implemented in the cryptographic devices to prevent the attacker

from tampering with the clock signals or the random number generators.

Given a set of linear codes, if the intersection of any two of these codes contains

only the all-zero vector, we say that these codes are non-overlapping. The next

theorem shows that by randomly selecting one code from a set of non-overlapping

linear codes for each encoding and decoding operation, we can effectively reduce the

chance for the attacker to conduct a successful fault injection attack.

Theorem 5.4.2 Let Cx,C2, • • • ,CL be L different (n,k) linear codes satisfying Cx H

C-, = 0 G GF(2n),i ^ j,l < i,j < L < 2rL. Let R G GF(2rL) be the randomly

generated selection signal with uniform distribution and CR G GF(2TL) be the additive

error in the register storing the value of R. Let F be the set of all valid selection

signals, \T\ = L. Assume that for every nonzero eR, there is at most one pair of R, R'

satisfying R,R' G T,R® R! = eR. If we randomly select C% for each encoding and

decoding operation, Qx and Q2 for different attacker models are as stated below.

Ai. n - H\s\-i) n _ L(i-P(s')).

97

A2: Qx = j;maxeA52sesesP(s)}>
Q2 = i m a x s ^ { p (s) } ;

A3: Qx = Q2 = \.

Proof Denote by Hi the parity check matrix of the ith linear code. Let (es,ev) be

the error injected to the codeword and eR be the error injected to the register storing

the selection signal R. Gl is achieved iff HR9(,R(S ® es,v ® ev) = 0 and s ® es is a

valid state, es ^ 0. G2 is achieved iff HReeR(s ® es, v ® ev) = 0 and s ® es = s'.

A l : The probability that e®es is a valid state is ^ F ^ . The probability that s®es =

s',es 7̂ 0 is 1~^feS'. For each es, there are L pairs of eR and ev satisfying

HR(BeR(s ®es,v® ev) = 0. Thereby, Qx = ^ h i l , <?2 = %^)]-

A2: The maximum probability that s ® es is a valid state for a given es is

max{ V p(s)}.
seses

The maximum probability that s ® es = s' is maxs^s>{p(s)}. If e^ = 0, Qx =

•£ maxes{X}sese p(s)}, Q2 = |;niaxs^s/{p(s)}. If eR 7̂ 0, under the assumption

of Theorem 5.4.2, there exists only one R' G T such that R® R' = e^. Rewrite

i7j into the standard form Hi = (/, Pi), where / is the r xr identity matrix and

Pi is the r x k encoding matrix of Ci. Suppose e = (es, ev) converts an encoded

state s in CR into another encoded state s' in CR>. Then ev = (PR®PR>)s®PR>es.

(The same e = (es,e„) can also convert s' in CR> back into s in CR). For each

e = (es, ev), there is at most one s satisfying the above equation. If the attacker

inject nonzero eR, it is easy to show that Qx and Q2 will be no larger than

the case when e« = 0. Thereby, in this situation Qx = j maxes XLese £*(s)'

Q2 = £maxs^s/{p(s)},

A3 : In the last situation, following similar analysis we can show that Qx = Q2 = r-

98

Remark 5.4.3 T is a 2-robust code (Chapter 2), i.e. each nonzero error is masked

by at most two codewords of the code.

Compared to the architectures based on single linear codes, architectures based

on multilinear codes reduce Qx and Q2 by a factor of L under attacker models A2

and A3 thus largely increase the security level of the system.

Several constructions of non-overlapping multilinear algebraic codes have been

presented in Chapter 4.

Example 5.4.2 In this example, we use four non-overlapping (6,3) linear codes

Ci,l <i < 4 to protect the FSM for the Montgomery ladder algorithm. Let

Pi =
101
110
Oil

, P 2 = Pi e
100
010
001

P3 = PI®
010
001
no

, PA = Pi e
001
101
111

be the encoding matrices of the codes. It is easy to verify that P y , l < i,j < 4

has rank 3 and the intersection of any two of these codes contains only the all-zero

vector. Let ri = 3 and 001,010,100,011 be the selection signal for Ci, 1 < i < 4

respectively. (T — {001,010,100,011}.) For every eR ^ 0, there is at most one pair

of R,R' G r satisfying R® R' = eR. Given the state assignment in Table 5.3, if

we randomly select Ci for every encoding and decoding operation, Qx and Q2 under

different attacker models are shown in Table 5.4- Compared to Example 5.4-1, the

described method can reduce Qx and Q2 by a factor of four under attacker models

A2 and A3 . A higher security level can be achieved by randomly selecting from more

linear codes (increase k and r if necessary).

Similar multi-code techniques can also be applied to nonlinear robust codes. We

next describe a secure FSM architecture based on mult i robust codes, which has

highly regular structures for the encoder and the decoder and results in comparable

hardware overhead to architectures based on multilinear codes. The error detection

99

capability of the proposed architecture will be analyzed and compared to other alter­

natives.

Theorem 5.4.3 Let Ci = {(s,v)\s • v = i - 1}, 1 < * < 2k, where s,v G GF(2fe)

and • is the multiplication in GF(2k). Assume that 0 G GF(2k) is not a valid state

(0 & S). If we randomly select Ci, 1 < i < 2k for each encoding and decoding operation

(L = 2k), Qx and Q2 under different attacker models are as stated below.

Al: Qx = Iffci, Q2 = i # ;
A2: Qx = 2 rmax e s {^ s € 5 e s p(s)} ,

Q2 = 2\maxs^s>{p(s)};

A3: Qi = Q2 = £ .

Proof An error e = (es,ev) will be missed iff (s ® es) • (v ® ev) = R® eR. Since

v = —, s 7̂ 0, the above equation can be re-written as ev-s
2®(es-ev®eR)-s®es-R = 0.

A l : The probability that es ® s is a valid state is -4pr-. The probability that es ® s =

s',s 7̂ s' is ^ - p ^ . For each e = (es,e„), there is only one eR satisfying the

above equation. Thereby Qx = -^Or- Q2 = ~22h •

A2: The maximum probability that s ® es is a valid state for a given es in this

case is max e s{^] s e S p(s)}- The maximum probability that s ® es — s' is

maxs^s '{p(s)}. For any fixed es 7̂ 0, ev and e^, there is only one R for each

s satisfying the error masking equation. Hence Qx = 2^m a xe s{]C s €s P(s)}-

Q2 = ^max s^ s /{p(s)}.

A3: Following similar analysis we can show that Qx and Q2 are at most •2\. •

For a given number of redundant bits r = k, the architecture based on Theorem

5.4.3 has the maximum L thus can minimize Qx and Q2 under attacker models A2

and A3. The encoder of the proposed multirobust codes mainly contains an inverse

operation and a multiplication in GF(2k). The EDN of the multirobust codes requires

only one multiplication in GF(2k). Architectures based on Theorem 5.4.3 require

100

less overhead than other existing secure FSM architectures utilizing nonlinear robust

codes. (For instance, the architecture proposed in (Akdemir et al., 2009) requires at

least 4 cubings and 2 multiplications in GF(2k)).

Example 5.4.3 The FSM of the Montgomery ladder algorithm can also be protected

using eight (6.3) non-overlapping nonlinear codes as described in Theorem 5.4-3. We

still use the state assignment in Table 5.3. (Note that the all-zero vector is not a valid

state.) If we randomly select from Ci = {(s,u)|s • v = i — 1},1 < i < 8 for every

encoding and decoding operation, Qx and Q2 will be reduced by a factor of 8 under

attacker models A2 and A3 compared to architectures based on linear codes (Table

5.4)- Similar to protection methods based on multilinear codes, higher security level

can be achieved by randomly selecting from a larger set of codes (increase k and r).

Table 5.4: Qx and Q2 of Secure FSM Architectures for the Mont-
gomery Ladder Algorithm

attacker models

Al

A2

A3

Code
Linear (Exp. 5.4.1)

Multilinear (Exp. 5.4.2)
Multirobust (Exp. 5.4.3)

Linear (Exp. 5.4.1)
Multilinear (Exp. 5.4.2)
Multirobust (Exp. 5.4.3)

Linear (Exp. 5.4.1)
Multilinear (Exp. 5.4.2)
Multirobust (Exp. 5.4.3)

Qi
0.0938
0.0469
0.0938
0.9744
0.2436
0.1218

1
0.2500
0.125

Q2
0.0152
0.0076
0.0938
0.4359
0.1090
0.0545

1
0.2500
0.125

The error detection capabilities of different secure FSM architectures (Example

5.4.1, 5.4.2, 5.4.3) for the Montgomery ladder algorithm are shown in Table 5.4.

All the data are verified via simulation in MATLAB. When the attacker is able to

inject specific error patterns (attacker models A2 and A3), architectures based on

multilinear codes and multirobust codes can reduce Qx and Q2 by a factor of L

and 2k respectively compared to architectures based on single linear codes (in our

case L = 4, 2k = 8). Thereby, under the assumption of a strong attacker model,

the proposed methods can provide a guaranteed level of security which cannot be

achieved using architectures based on single linear codes.

101

Table 5.5: Structure, Hardware and Power Consumption Overhead of
Encoders and EDN of Different Alternatives

code

Linear
Multilinear
Multirobust

Structure
Linear

V
V
—

Nonlinear
—
—

V

Overhead
Hardware

44.37%
129.0%
119.5%

Power
37.66%
94.13%
133.57%

To estimate the overhead, the three designs were modeled in VERILOG, synthe­

sized using Cadence RTL Compiler and placed & routed using Cadence Encounter

based on Nangate 45nm open cell library (Nangate, 2011). The structure and the

overhead of the encoder and EDN of different alternatives are shown in Table 5.5. All

the structures are linear except for the encoder and EDN of architectures based on

multirobust codes. Generally speaking, the implementation of nonlinear operations

requires more hardware overhead than the implementation of linear operations. How­

ever, due to the regular structure of the codes, the secure FSM architecture based

on multirobust codes has comparable hardware overhead to architectures based on

multilinear codes for small k. For the proposed architectures based on multi-code

techniques, the security level of the system can be increased by increasing L and k.

When k = 32, Qx and Q2 for architectures based on multirobust codes can be as

small as 2 - 3 2 .

5.5 Secure Multipliers Based on Multilinear Arithmetic Codes

The multiplier is a basic block in many public key cryptographic devices. Due to

its arithmetic nature of the operations, arithmetic error model is most often used

for such devices. We assume that faults manifest as additive arithmetic errors at

the output of the multiplier and the predictor 1. The error is in the format of e =

xThe term predictor is used in this context to refer to the circuit that computes the redundant
bits of the output of the operation directly from the inputs. In our case the predictor computes the
redundant bits of the multiplication result.

102

(ex, ey), ex G Z2k,ey G Z2r, where k is the number of information bits, r is the number

of redundant bits and Z2k is the additive group of integers {0,1, • • • ,2k — 1}. In this

section, we analyze and compare the hardware overhead, the number of bad errors

(see Section 4.2) and the fault detection capabilities for architectures protected by

linear, multilinear (see Section 4.2.1) and robust arithmetic codes (Kulikowski et al.,

2008b).

5.5.1 Hardware Overhead

The general architecture of multipliers protected by block codes contains three parts:

the original multiplier, the predictor that generates the redundant bits of the code and

the error detection network (EDN). The detailed architectures for secure multipliers

protected by linear and multilinear arithmetic codes are shown in Figure 5-9. For

the architecture based on (x, \x2\p) partially robust arithmetic codes, please refer to

(Kulikowski et a l , 2008b).

Figure 5-9: Hardware architectures for multipliers protected by (a)
linear arithmetic codes, (b) [\x\p, \2x\p] multilinear codes and (c) Multi-
modulii multilinear codes

The predictor for the linear arithmetic codes contains one multiplier in Zp. Ex­

cept for the r-bit comparator, the only operation implemented in the error detection

network is a modulo p operation. The hardware overhead mainly comes from the

103

r-bit modulo p multiplier (r = [log2(p)]), whose complexity is of the order of 0(r2),

and the modulo p operation in EDN, whose complexity is O(k). (k is the number of

information bits).

Compared with architectures based on linear arithmetic codes, the architecture

utilizing [|:r|p, |2:r|p] multilinear codes only needs one extra r-bit multiplexer and one

extra multiply-by-2 operation in Zp for both the predictor and the EDN. Multiply-

by-2 operation is equal to shifting the operands by 1 bit, which is trivial in terms

of the hardware overhead. We assume that the complexity of a r-bit multiplexer is

in general of the order of 0(r). Thereby this architecture has comparable hardware

overhead to the one for linear arithmetic codes.

The protection architecture based on multi-modulii multilinear codes needs one

more multiplier in Zq for the predictor. When p « 2k, which is often the case

in real life, q should be selected as the largest prime number that is smaller than

p if we want to minimize the number of bad errors. A multiplier in Zq will have

about the same hardware complexity as the multiplier in Zp and this will double

the overhead for the predictor. However, we claim that a merged design of the two

multipliers for the predictor should be implemented. First, from the security point

of view, separate redundant data path may be used by attackers to derive the secret

information of the devices, e.g. the attacker can inject faults into one redundant path

of the device which will never influence the other. A merged design can effectively

solve the problem because most of the faults injected into the redundant part of the

device will affect the generation of both \x\p and \x\q. Second, the hardware overhead

for the predictor will be reduced if we merge the design of the two multipliers. A

more aggressive approach is to design the original multiplier and the predictor of the

code together as discussed in Section 4.2.1.

Remark 5.5.1 There is a tradeoff between the error detection capabilities and the

104

hardware overhead when we select p and q. Specialized p and q can significantly

reduce the hardware complexity of the modulo operation, e.g. using Mersenne primes

(Tahir et al, 1995).

To compare the hardware area overhead, we modeled 16-bit Wallace tree multipli­

ers protected by linear, partially robust and multilinear codes in Verilog and synthe­

sized them in RTL design compiler using Nangate 45nm technology (Nangate, 2011).

The area comparison was based on synthesized results. The results are shown in Table

5.6. We selected p to be 31. For multi-modulii multilinear codes, q was selected to be

29. The percentage overhead was computed by dividing the estimated gate area of the

predictor and EDN by the estimated area of the Wallace tree multiplier. As expected,

secure multipliers based on [\x\p, |2a;|p] codes have similar overhead to architectures

based on linear arithmetic codes. Architectures based on multi-modulii codes require

the largest overhead, which is around 50%. The benefit of these codes is that they

have the best error detection capabilities against errors in the format of e = (e^O).

In Section 5.5.2, we will show that this characteristics of multi-modulii codes will

make them the best alternative against fault-injection attacks when the design of the

predictor is separated from the original multiplier. Moreover, the hardware overhead

of architectures based on multi-modulii codes will be drastically reduced if we select

q to be a Mersenne prime. In fact, 50% overhead is still much smaller than overheads

for architectures based on robust arithmetic codes, which is around 200% — 400%

(Gaubatz et a l , 2006; Kulikowski et al., 2008b).

5.5.2 Experimental Results on Comparison of Error and Fault Detection

Capabilities for Linear, Partially Robust and Multilinear Arith­

metic Codes

To demonstrate the advantages of multilinear codes and partially robust codes over

linear codes for building secure multipliers against fault-injection attacks, we con-

105

Table 5.6: Hardware area overhead for architectures based on linear,
multilinear and partially robust arithmetic codes (k = 32, r = 5,p =
31,g = 29)

Code
Linear Arithmetic Codes

x p, 2x p Multilinear Codes
Multi-modulii Multilinear Codes

(x, x'z p) Partially Robust Arithmetic Codes

Predictor
9.76%
10.37%
16.14%
14.60%

EDN
10.68%
11.75%
37.57%
14.71%

Total
20.44%
22.12%
53.71%
29.31%

ducted simulations to analyze and compare the number of bad errors and the fault

detection capabilities of the four alternatives presented in the last section. For all the

simulations, we assumed the operands of the multipliers are 16 bits. Each code has

32 information bits (k = 32). p and q were selected to be 31 and 29 respectively.

Number of Bad Errors

In this simulation, we randomly generate 5000 non-zero errors e = (ex,ey). For

each e, we randomly select one million messages in Z232 and encode them using

linear, [\x\p, |2a;|p], multi-modulii and (x, \x2\p) partially robust arithmetic codes. The

distorted codewords c = (x,y) = (\x + ex\2k, \y + ey\2r) are decoded by the error

detection network. The number of codewords masking each error is recorded. The

distribution of error masking probabilities of the 5000 non-zero errors is shown in

Table 5.7. Most of the errors are masked with a probability of less than 10% for all

the alternatives. Linear arithmetic codes have 149 bad errors which are masked by a

probability of at least 0.5. The numbers of bad errors for [\x\p, |2a;|p], multi-modulii

and (x, \x2\p) codes are similar and are much smaller than that of the linear arithmetic

codes, which can result in better fault detection capabilities assuming repeating errors

as a result of a slow fault-injection mechanism (fault stays for several consecutive clock

cycles). Compared to multilinear codes, (x, \x2\p) codes have much less errors that are

masked by a probability of more than 10%. However, we will show later in this section

106

that (x, \x2\p) codes actually have the worst error detection capabilities of errors in

the format of e = (ex, 0) and is only suitable for designs where the multiplier and the

predictor are synthesized together. Moreover, (x, \x2\p) codes have larger overhead

than [|rc|p, |2:r|p] multilinear codes. The disadvantage of overhead for (x, \x2\p) will

become more significant as k increases.

Table 5.7: Error masking probability distributions for secure multipli­
ers based on linear, multilinear and partially robust arithmetic codes
(fc = 32,r = 5,p = 31,g = 29)
Code
linear

[I-^IPI *X p\

Multi-modulii
(x, \x p)

< 1 0 %
4656
4492
4444
4996

10% - 20%
59
182
196
0

20% - 30% 30% - 40% 40% - 50%
51
142
140
0

46
107
118
0

39
74
97
0

> 50% (Bad Errors)
149 (29.8%)
3 (0.06%)
5 (0.1%)

4 (0.08%)

Fault Detection Capabilities When Both the Multiplier and the Predictor

are Affected by Faults

Suppose both the original multiplier and the predictor are affected by the injected

faults, which manifest as a non-zero error e = (ex,ey) at the output of the device.

Assume that each multiplication is completed in one clock cycle and the same error e

stays for T consecutive clock cycles (slow fault-injection mechanism). If e is detected

at least once among the T clock cycles, we say that e is detected. Otherwise e is

masked. In this simulation, we randomly select 10 millions possible error patterns

e and assume that e may stay up to 3 clock cycles. The average error masking

probabilities of e for the four presented alternatives are shown in Table 5.8. All

codes have similar error detection capabilities when e stays for only one clock cycle.

However, when T = 2, the error masking probabilities of [\x\p, |2a;|p] and multi-modulii

codes are already nearly half of that of linear arithmetic codes. As T increases,

the advantage of [|a;|p, |2a;|p] and multi-modulii codes become more significant. As

107

expected, when both the original multiplier and the predictor are affected by the

injected faults, (x, \x2\p) codes have the best error and fault detection capabilities

among the four alternatives.

Fault-Injection Simulations For the Case When Only the Original Multi­
plier is Affected by Faults

Suppose the design of the multiplier and the predictor is separated and the attacker

injects faults only to the original multiplier. In order to analyze the fault detection

capabilities, we conducted gate-level fault-injection simulations in C + + on 16-bit

secure Wallace tree multipliers protected by different alternatives. The gate level

netlist is derived from Verilog models. Each gate may have stuck-at-0 or stuck-at-1

faults. We assume that 2 to 4 gates (2 < N < 4) may be affected by the injected faults

and the faults stay for up to 3 consecutive clock cycles (T < 3). At each clock cycle, a

new pair of operands are randomly generated and multiplied. If the manifested error

is detected for at least one clock cycle, we say that the fault is detected.

Table 5.8: Fault masking probabilties when both the original multi­
plier and the predictor are affected (fc = 32,r = 5,p = 31,g = 29)

T
T = l
T=2
T=3

Linear
3.12%
1.81%
1.25%

*** pi ^i,*-J p

3.12%
0.95%
0.38%

Multi-modulii
3.12%
0.95%
0.35%

\X, x p)

3.12%
0.10%
0.003%

* T is the number of clock cycles that a fault stays.

Table 5.9 summarizes the fault masking probabilities for all combinations of N and

T. When a certain number N of gates are affected (N is fixed), larger T will result

in smaller fault masking probabilities. When T — 1, the fault masking probabilities

increase as N increases. However, when T > 2, the fault masking probabilities will

drop as N increases. This is because for larger N, errors are more probable to manifest

as different non-zero errors at the output of the device. For smaller AT, it is more

108

likely that even if the fault stays for several consecutive clock cycles, it only manifests

in one clock cycle. In this case, the fault detection capabilities will not increase.

Table 5.9: Fault masking probabilties when only the original device
is affected (k = 32, r = 5,p = 31, q = 29)

T
1
2
3

Linear
N=2
2.7%
1.0%
0.34%

N=3
3.5%
0.78%
0.16%

N=4
3.5%
0.47%
0.06%

N=2
2.7%
1.0%

0.34%

X p } £tJC\-p

N=3
3.5%
0.78%
0.16

N=4
3.5%

0.47%
% 0.06%

Multi-modulii
N=2
1.6%
0.5%

N=3
2.4%

b.43%
0.14% 0.07%

N=4
2.8%
0.29%
0.03%

(x, X p)

N=2
5.7%
2.1%

N=3
6.5%
1.5%

0.71% 0.31%

N=4
6.5%
1.0%
0.14%

* T is the number of clock cycles that a fault stays. N is the number of gates that a fault affects.

When only the original multiplier is affected, multi-modulii codes have the best

error detection capabilities. When T = 2, the fault masking probabilities of multi-

modulii codes are nearly half of the fault masking probabilities of linear and [\x\p, \2x\p]

arithmetic codes with the same N. The advantage of multi-modulii codes becomes

larger as T increases.

Linear arithmetic codes and [\x\p, \2x]]p codes have the same error detection ca­

pabilities for errors in the format of e = (e^O). The reason is when ey = 0, the

error masking equations for (x, \x\p) and (x, \2x\p) codes are \ex\p = 0, \2ex\p = 0 and

\ex — 2k\p = 0, \2(ex — 2k)\p = 0 depending on the ranges of x+ex. Obviously, \ex\p = 0

is equivalently to \2ex\p = 0 and \ex — 2k\p = 0 is equivalent to \2(ex — 2fc)|p = 0.

Thereby, e = (e^O) is masked by [\x\p, |2x|p] codes if and only if it is masked by

linear arithmetic codes.

(x, \x2\p) codes have the worst error detection capabilities for errors in the format

of e = (ex, 0) among the four alternatives. When ey = 0, the error masking equation

for (x, \x2\p) is \2exx + el\p = 0 and \2(ex-2
k) + (ex-2

k)2\p = 0 for different ranges of

x+ex. When \ex\ = 0 or \ex-2% = 0, \2exx + e2
x\p = 0 or \2(ex-2

k) + (ex-2
k)\ = 0

is always true. But the inverse statement is incorrect. Thereby, (x, \x2\p) will mask

more errors in the format of e = (ex, 0) than linear and [|a;|p, |2x|p] arithmetic codes.

109

Selection of Arithmetic Codes for Secure Multipliers

From the above analysis, linear arithmetic codes have a lot of bad errors - errors

masked with a probability of at least 0.5 - which may compromise the security level

of the system. \\x\p, |2a;|p], multi-modulii and (x, \x2\p) codes have a smaller number of

bad errors than linear arithmetic codes (Table 4.6 and 5.7). [|x|p, |2x|p] and (x, \x2\p)

are more suitable for designs where the original multipliers and the predictors are

synthesized together, (x, \x2\p) have better fault and error detection capabilities while

[\x\p, |2a;|p] require less hardware overhead. The selection of these two codes depends

on specific applications. When the designs of the multiplier and the predictor are

separated and only the multiplier is affected by the injected faults, [|rr|p, \2x\p] and

(x, \x2\p) are no better than linear arithmetic codes. In this case, we should select

multi-modulii codes which have the best detection capabilities against errors in the

format of e = (ex, 0).

5.6 Summary

In this Chapter we presented three case studies of using robust and multilinear codes

to build secure cryptographic devices resilient to fault injection attacks.

The first case study is the protection of the AES linear block using robust codes,

partially robust codes and minimum distance robust and partially robust codes. The

comparison of different protection methods shows that there is a large difference in

the hardware overhead depending on the robustness of the architecture. The more

robust the architecture is, the more hardware overhead is necessary. While robust

protection can be implemented efficiently for some highly nonlinear circuits such

as SBoxes, fully robust architectures for more general circuits require an overhead of

more than 100%. Partially robust codes that preserve some linear structures allow for

a better minimization of the predictor and have an overhead of the order of 40%-75%.

110

Robust architectures do offer an advantage against an unpredictable fault attacker

since the number of undetectable is greatly reduced with the nonlinear encoding.

It is important to emphasize that in terms of the number of undetectable errors,

linear architecture cannot reach the protection of the robust architectures regardless

of the number of redundant bits and the hardware overhead added to the device. For

attacks where faults of low multiplicities are known to be most likely, robust codes

and partially robust codes with minimum distances resulted in better fault detection

than linear codes with even higher Hamming distances.

The second case study is the design of robust FSMs based on multilinear algebraic

codes. We proved that if the attacker is able to inject specific error patterns, randomly

selecting among L codes for each encoding and decoding operation can reduce the

chance for the attacker to conduct a successful attack by a factor of L compared to

architectures based on linear codes. The proposed techniques were utilized to protect

the FSM of the Montgomery ladder algorithm, which can reduce the chance for the

attacker to conduct a successful attack by a factor of up to 8 assuming k = r = 3.

The hardware overheads of the proposed architectures are 120% — 130% and are less

than other secure FSM architectures (Sunar et al., 2007a) based on nonlinear codes

which are resistant to strong attackers. The security level of systems protected by

multi-code techniques can be further improved by increasing L.

The last case study is related to secure multipliers - a commonly used block in

public-key cryptographic devices - using multilinear arithmetic codes. The hardware

overhead and the error and fault detection capabilities of secure multipliers based on

multilinear codes are analyzed and compared to those based on linear and partially

robust arithmetic codes. Simulation results show that multilinear and partially robust

arithmetic codes have smaller number of bad errors (errors masked by a probability of

at least 0.5) and can provide better protection than linear arithmetic codes assuming

I l l

a slow fault-injection mechanism. The proposed codes do not imply any limitations

on the types of errors at the output of the protected device, e.g. the multiplicities of

the errors do not have to be small. [|:r|p, |2a;|p] codes have similar overhead to linear

arithmetic codes with the same number of redundant bits, (x, \x2 \p) and multi-modulii

codes have slightly higher overhead than linear arithmetic codes. But the overhead

is at most around 50% and is much smaller than the overhead of architectures based

on robust arithmetic codes, which is around 200% — 400%. If the designs of the

predictor and the original multiplier are separated and the injected faults affect only

the multiplier, multi-modulii code is the best alternative. In this case, the fault

masking probability of architectures based on multi-modulii codes is almost twice

smaller than architectures based on the other codes when the fault stays for only one

clock cycle. The advantage of multi-modulii codes will become even more significant

as the fault and the resulting error pattern stays longer. If the faults affect both the

multiplier and the predictor, (x, \x2\p) codes have the best fault detection capabilities.

[|a;|p, |2:r|p] code has similar performance to multi-modulii codes and require the least

hardware overhead among multilinear and partially robust arithmetic codes. The

selection of codes depends on specific applications.

112

Chapter 6

Algebraic Manipulation Detection Codes
and Their Applications

Countermeasures against fault injection attacks based on error detecting codes as­

sume that the attacker cannot simultaneously control the fault-free outputs of a

device-under-attack and the non-zero error patterns. For advanced attackers who

are able to control both of the above two aspects, traditional protections can be eas­

ily compromised. In this Chapter, we propose optimal algebraic manipulation

detection (AMD) codes based on the nonlinear encoding functions and the true

random number generator. The proposed codes can provide a guaranteed high error

detecting probability even if the attacker can fully control the fault-free outputs of

a device-under-attack as well as the non-zero error patterns. As a case study, we

present the protection architectures based on AMD codes for multipliers in Galois

fields used for the elliptic curve cryptography. The results show that the proposed

architecture can provide a very low error masking probability at the cost of a rea­

sonable area overhead. The protected multiplier has no latency penalty when the

predictor is pipelined.

6.1 Strongly Secure Cryptographic Devices

Robust codes (Kulikowski et al., 2008b; Wang et al., 2010a) are designed to provide a

guaranteed level of detection against all error types and classes, assuming the attacker

113

cannot control the fault-free outputs of the cryptographic devices. These codes can

be easily compromised when the above assumption is not valid.

Example 6.1.1 Suppose the 32-bit device is protected by a robust duplication code

C = {y, f(y)}, where y, f(y) G GF(232), f(y) = y3 and all operations are in GF(232).

It is easy to prove that any non-zero error e will be masked by at most two codewords

(Karpovsky and Taubin, 2004), i-e- for anV non-zero error e = (ey,ef) there exist at

most two vectors yi,y2 G GF(232) such that (yi®ey)
3 = y\®ej and (y2®ey)

3 = y3®ej.

Assume that an attacker cannot control the fault-free outputs y during attacks and the

outputs of the original device are uniformly distributed, then the probability that the

attacker conducts a successful attack ((e = (e/,e/)) is not detected) is at most 2~31.

If an attacker has the ability to control the inputs of the device (hence the fault-free

outputs) and can inject arbitrary error patterns at the output, let (v, y) be an input-

output pair, i.e. y is the output of the device when the input to the device is v. Then

the attacker can easily derive an error pattern e* = (e*, e^), e*, e*j G GF(232), e* ^ 0

that will be masked by y, i.e. (y ® e*)3 ® y3 ® e* = 0. During the attack, the attacker

can simply input v to the device and inject the corresponding e* = (e*,e*f) at the

output of the device. In this case, the attack will always be successful.

The above example assumes an advanced attacker model, where the attacker

knows every detail of the cryptographic device including the error detecting code

used to protect the device. The attacker can select specific inputs to the device dur­

ing fault injection attacks. Moreover, the attacker is also able to inject any specific

error pattern at the output of the device. In this case, the attacker has full control of

not only the nonzero error e = (ey, e/), but also the fault-free output y and the faulty

output y = y ® ey. Under this attacker model, all previous protection architectures

based on error detecting codes will not be sufficient. An architecture that can still

provide a guaranteed fault detection probability under the above attacker model is

called strongly secure cryptographic architecture. Correspondingly, a coding

technique that can be used to build strongly secure cryptographic devices is called

algebraic manipulation detection code (AMD) (Dodis et al., 2006).

114

The constructions of AMD codes presented in this Chapter are based on introduc­

ing randomness into the information bits of the code. We describe the architecture

of strongly secure cryptographic devices protected by these codes. In the described

architecture, the redundant bits of the code are determined not only by the output y

of the original device but also by the random data x generated by a true random num­

ber generator, which is incorporated into most cryptographic devices by default for

key initialization, random pad computation, challenge generation, etc (Sunar et al.,

2007b). We assume that both the original cryptographic devices and the true random

number generator may be attacked. The attacker is able to distort x by injecting a

specific additive error ex (x = x ® ex). We will show that under the most advanced

attacker model described in this Section, the cryptographic devices protected by the

presented AMD codes can still have a high error (fault) detecting probability.

6.2 Definitions and Bounds for Algebraic Manipulation De­

tection Codes

Throughout the Chapter we denote by © the addition in GF(q),q = 2r. All the

results presented in the Chapter can be easily generalized to the case where q = pr

(p is a prime).

A code V with codewords (y,x,f(y,x)), where y G GF(2k),x G GF(2m) and

f(y,x) G GF(2r), will be referred to as a (k,m,r) code. We will assume that y is a

fc-bit information, x is an m-bit uniformly distributed random vector (generated by a

random number generator) and f(y, x) is an r-bit redundant portion of the message

(y,x,f(y,x)).

Definition 6.2.1 (Security Kernel) For any (k,m,r) error detecting code V with

the encoding function f(y,x), where y G GF(2k),x G GF(2m) and f(y,x) G GF(2r),

the security kernel K$ is the set of errors e = (ey,ex,ef),ey G GF(2k),ex G

GF(2m),ef e GF(2r), for which there exits y such that f(y®ey,x®ex)®f(y,x) = ef

115

is satisfied for all x.

Ks = {e\3y, f(y © ey, x © ex) ® f(y, x) = e,, \/x}. (6.1)

Non-zero errors e in the security kernel can be used by an advanced attacker to

bypass the protection based on the error detecting code. For the case of commu­

nication channels we assume that an attacker can select any A;-bit vector y as the

information bits of a message (y, x, f(y, x)) and any error e = (ey, ex, ef) that distorts

the message. For the case of computation channels, we assume the attacker can inject

faults that manifest as e G Ks at the output of the device and select y for which e is

always masked. Under the above attacker model for communication or computation

channels, the attacker can always mount a successful attack. Thereby an AMD code

that can provide a guaranteed error detecting probability under the above strong at­

tacker model should have no errors in the security kernel except for the all zero vector

in GF(2n), where n = k + m + r is the length of the code.

Definition 6.2.2 A (k, m, r) error detecting code is called Algebraic Manipulation

Detection (AMD) code iff Ks = {0}, where 0 is the all zero vector in GF(2n),

n = k + m + r.

AMD codes V = {(y, x,f(y, x))} have no undetectable errors no matter how the

attacker select e = (ey, ex, ef) and y. AMD codes for the case m = r and k = br were

introduced in (Dodis et al., 2006) and were used in (Cramer et al., 2008) for robust

secret sharing schemes and for robust fuzzy extractors.

For the (k, m, r) AMD code V, denote by Qv(y, e) the probability of missing an

error e once y is fixed. Then Qv(y,e) can be computed as the fraction of random

vectors x such that e is masked.

Qv(y,e) = 2-m\{x\(y,x,f(y,x))eV,(y®ey,x®ex,f(y,x)®ef)eV}\. (6.2)

116

For a (k,m,r) AMD code V = {(y,x,f(y,x)), y G GF(2k), x G GF(2m),

f(y, x) G GF(2r)}, for any given y* G GF(2k) and e* = (ej, e*, e*f), e*y G GF(2fc), e* G

GF(2m), e) G GF(2r), f(y* ®e*y,x® e*) © e} considered as functions of a; G GF(2m)

should all be different.

Example 6.2.1 Let k — m — tr, y = (yo,yi,--- ,yt-i),yi G GF(2r) be the in­

formation digits and x = (xo,Xx,--- ,xt-x),Xi G GF(2r) be the random digits. Let

f(y, x) = XQ • y0 © Xx • yx © • • • © xt-x • yt-i be the encoding function, where all the

operations are in GF(2r).

It is easy to verify that when ey = 0, for any ex and e/ (ex, e/ are not both 0), there

always exist y such that e = (0, ex, ef), e ^ 0 will not be detected for all x. Thereby,

this code is not a AMD code. In this case, Ks contains all vectors e = (0,ex,ef).

Suppose ey = (eyo, eyi, • • • , e^^), eyi G GF(2r) is always non-zero. Without lost of

generality, let us assume eyo ^ 0. Then the monomial eyo • xo will appear in the error

masking equation f(x © ex, y ® ey) ® f(y, x) © e/ = 0. Since eyo ^ 0, for every e, y

and xo, xx, • • • , xt-i, there is an unique solution for XQ. Thereby the error is masked

with probability 2~T. In this case, Ks = {0} if ey ^ 0.

Let C be a g-ary code (q = 2r) of length 2m . Codewords of C can be represented

as (/(0), /(7°), / (7 1) , • • • , /(72"1"2)), where 7 is a primitive element of GF(2m). (In

the rest of the Chapter, we say f(x) G C if (/(0), / (7 0) , / (7 1) , • • • , / (T 2 " 1 - 2)) €= C.)

Let us define the orbit of f(x) as

Orb(f) = {<p\<p(x) = f{x ® ex) © ef, ex G GF(2m), ef G GF(2r)}. (6.3)

(We assume that any two elements (fi, <fj G Orb(f),i ^ j are different, i.e. (fi(x) and

<Pi(x) are not the same function.)

We note that for any f(x) G C, 1 < \Orb(f)\ < q2m = 2m+r. If \Orb(f)\ = 2m+T,

then for any ex and e/ there exists x such that f(x) ^ f(x ® ex) © e/. Moreover, if

<p(x) <£ Orb(f), then Orb((p) f) Orb(f) = 0.

Definition 6.2.3 We will say that a q-ary (q = 2r) code C of length 2m is a code

with full orbit if for any f(x) G C, \Orb(f)\ = 2m+r and Orb(f) C C.

117

Any g-ary code C of length 2m with full orbit is a union of disjoint orbits of size

o2m. The size of C is a multiple of q2m. We note that codes with full orbit are

nonlinear and for any code C with full orbit, 0 G GF(2m) is not a codeword of C.

Example 6.2.2 Let C be a binary code of length 8 and Hamming distance 2 con­

taining all vectors with an odd number of Vs. Let y = (yo,yi,y2),yi £ GF(2) and

fy(x) = yomXo®yi-Xx®y2-x2®xo-Xx-x2. It is easy to verify that for any y G GF(23),

\Orb(fy)\ = 16. All the codewords in C can be represented as (y?(0), </?(7°), • • • , ^(l6)),

where tp G Orb(fy) for some y G GF(23) and 7 is a primitive element of GF(23).

Thus C is a code with full orbit and \C\ = | Uy€GF(23) Orb(fy)\ = 128.

The optimal AMD code should minimize max^e^o Qv(y,z) among all codes with

the same parameters. Thus, the criterion we use to construct good AMD codes is

min maxQy(y,e) , (6.4)

where V^m^ is the set of all (k, m, r) error detecting codes.

Let Qv = maXj,je^o Qv(y, e) and Q(k, m, r) = minvevfc m r Qv- Denote by dq(2
m, M)

the maximum Hamming distance of a g-ary (g = 2r) code of length 2m with full orbit

containing M codewords. Obviously,

dq(2
m,M)<dq(2

m,M), (6.5)

where dq(2
m, M) is the maximum possible Hamming distance of a g-ary code with

length 2m and M codewords.

We next present a lower bound for Q(k, m, r). The constructions of codes provid­

ing tight upper bounds for Q(k, m, r) can be found in Section 6.3.

Theorem 6.2.1 For any (k,m,r) AMD code, where k is the number of information

bits, m is the number of random bits and r is the number of redundant bits,

Q(k,m,r) = min maxQy(y,e)

> l-2-mdq(2
m,M), (6.6)

118

where dq(2
m,M) is the maximum possible Hamming distance of a (not necessarily

systematic) q-ary code C (q = 2r) with length 2m and M = \C\ = 2k+m+r codewords.

Proof Let V be a (k,m,r) AMD code composed of vectors (y,x,f(y,x)), where

y G GF(2k), x G GF(2m) and f(y, x) G GF(2r). When y is fixed, f(y, x) is a function

of x. Let us denote this function by fy(x). Since V is an AMD code, fy(x ® ex) ® e/

is not the same as fy>(x © e'x) © e'* for any y,y',ex,e'x,ef,e'f, assuming that elements

of at least one of the pairs (y,y'), (ex,e'x) and (ej,e'f) are not equal. Thereby, for

different y, ex and e/, fy(x © ex) © e/ corresponds to 2k+m+r different functions.

Let Cy = Uy£GF(2k)Orb(fy) be a g-ary (g = 2r) code of length 2m with full orbit.

Then |Or&(/„)| = 2m+r, \C\ = 2k+m+r and Qv = maxy^0Q(y,e) = 1 - 2-md(Cv) ,

where d(Cy) is the Hamming distance of Cy By (6.5) and (6.6) we have

Q(k,m,r) = 1 - 2~m max d(Cv)
VeVk,m,r

> l-2-mdq(2
m,M) (6.7)

> l-2-mdq(2
m,M)M

Theorem 6.2.1 shows the relationship between the worst case error masking prob­

ability Qv for an AMD code V and the Hamming distance of the corresponding code

Cv with full orbit. The exact value of dq(2
m, M) is hard to derive. However, the Ham­

ming distance of Cy should not exceed the maximum possible distance for a g-ary

code with length 2m and 2k+m+r codewords, q = 2r. dq(2
m, M) can be estimated by

classical bounds from coding theory such as the Hamming bound, the Johnson bound,

the Singleton bound, the Plotkin bound, etc (MacWilliams and Sloane, 1998).

When dq(2
m,M) is estimated by the Singleton bound, Q(k,m,r) can be written

in a compact form as it is shown in the following Corollary.

119

Corollary 6.2.1 For any (k,m,r) AMD code,

Q(k,m,r)>\^^]2-rn. (6.8)
r

Proof According to the Singleton bound, for any g-ary code with length n and

distance d, \Cy\ < qn~d+1. For the code Cy in the proof of Theorem 6.2.1, n = 2m ,

q = 2r and \CV\ = 2k+m+r. Therefore 2k+m+r < 2r{?m-d+1\ or equivalently d <

2m _ ffc±m-|. T n e n from (g ^ w e n a V e (6.8). •

Optimal (A;, m, r) AMD codes attain the equality in (6.6) and minimize the worst

case error masking probability among all codes with the same parameters.

Definition 6.2.4 A (k,m,r) AMD code V is optimal iff

maxQv(y, e) = 1 - 2~mdq(2
m, M),q = 2r,M = 2k+m+T'.

Example 6.2.3 Let k = m = 3 and r = 1. According to (6.8), Q(3,3,1) > §. Let

V be the code composed of all vectors (y,x,f(y,x)), where y,x G GF(23) and

f(y, x) = x0-xx-x2®x0-yQ®Xx-yx®x2- y2, f(y, x) G GF(2). (6.9)

The error masking equation is f(x ®ex,y® ey) ® f(y, x) = e/, which is a polynomial

of x with degree 2. The function on the left hand side of the error masking equation

corresponds to a codeword of the second order binary Reed-Muller code RM2(2,3)

with 3 variables (MacWilliams and Sloane, 1998). Any codeword of RM2(2,3) has a

Hamming weight of at least 2. Thus the number of solutions for the error masking

equation is upper bounded by 6. V is a AMD code with Qy — §• It follows from (6.8)

that this code is optimal and Q(3,3,1) = 0.75.

Remark 6.2.1 We note that AMD codes V with Qy close to 1 may still be very

useful for channels with memories where errors tend to repeat themselves, e.g. for

the protection of cryptographic hardware against fault injection attacks when errors

have a high probability to repeat for several clock cycles (slow fault injection attacks

and lazy channels). To our best knowledge, this assumption can be true for most of

120

the modern fault injection mechanisms due to their limited timing resolutions (Sko­

robogatov and Anderson, 2003; Schmidt and Hutter, 2007; Skorobogatov, 2010). In

this case a repeating error will be ultimately detected by AMD codes after it distorts

several consecutive messages.

In the next section, we will present several general constructions of AMD codes.

Some of the generated codes are optimal with respect to the lower bounds (6.6) or

(6.8).

6.3 Constructions of AMD Codes

The codewords of a (k,m,r) AMD code V are in the format (y,x,f(y,x)), where

y G GF(2k),x G GF(2m) and f(y,x) G GF(2T). When y is fixed, fy(x) is a function

of a;. In the proof of Theorem 6.2.1, we have shown that the necessary condition

for V to be an AMD code is that fy(x © ex) ffi e/ cannot be the same function as

fy'(x ffi e'x) ffi e'f for any y,y',ex,e'x,ef,e'f, assuming elements in at least one of the

pairs (y,y'), (ex,e'x) and (e/,e'y) are not equal.

To compute Qv(y,e) for the code V, the error masking equation f(x ffi ex,y ffi

ey) ffi f(y, x)®ef = 0 should be evaluated for all 2m possible x G GF(2m).

We will say that an AMD code V = {(y,x,f(y,x))} is based on code Cy if

the error masking polynomial f(y ffi ey,x © ex) ffi f(y,x) ffi e/ is a codeword of Cy

for all y,ex,ey and e/. Let us re-write f(y,x) as f(y,x) = A(x) ffi B(y,x), where

A(x) is independent of y. We next show that by selecting A(x) and B(y, x) based

on different error detecting codes such as the Generalized Reed-Muller codes and the

Reed-Solomon codes, we can construct good (and in many cases optimal) AMD codes

for different k and different Qy = m.axy^Q Qv(y,e) for given m and r.

121

6.3.1 Constructions Based on the Generalized Reed-Muller Codes

Let x = (XQ,XX, • • • ,xt-x),xt G GF(q), q = 2r. A bth order g-ary Generalized Reed-

Muller code GRMq(b,t) (Assmus et a l , 1995) with t variables (1 < b < t(q - 1))

consists of all codewords (/(0), / (7 0) , • • • , / (7 9 ~2)), where f(x) is a polynomial of t

variables x0,Xx, • • -xt-x and 7 is a primitive element of GF(ql). The degree of f(x)

is less or equal to b.

As it is shown in (Assmus et al., 1995), the dimension of GRMq(b,t) is

W o = £(-D' g) (' I!"/') ,t-r. (6.10)

If b = w(g — 1) + v,0 < f < g — 2. Then the distance of GRMq(b,t) is doRMg(b,t) =

(q-v)qt-u~1 (Assmus et al., 1995). Suppose 6 + 2 = a(q- l) + (3 <t(q-l),0<a<

t,0</3<q-2.

Let

A(x)

(0 t J 4 + 2 if a = 0,6 is odd;
0 * l j zo4 + 1 , t > 1 if a = 0,6 is even;

(6.11)

where £; G GF(2r), \i + j\t is the modulo t addition, 0 is the sum and Yl is the

product in GF(2r).

Let
t - i

B(y,x)= 0 y io j i . - j . - i l l^ ' (6-12)
l<jo+j ' i+-+j t - i<fc+l i=0

where yjbji,-J*-i e ^ (2 ' ') , ^ G GF(2r), ^ o ^ i * i s a monomial of z 0 , z i , • • • ,x f - i

122

of a degree between 1 and 6 + 1 and nt=o ^i & A.B(T/, X), where

{ { 4 + 1 , x\+1, ••• , x*+i} if a = 0, b is odd;

{x\+1,x0x
bx,x0x

b
2, • • • ,x0xb

t_x,t > 1} if a = 0, b is even; (6.13)

ixixlrA nj=2 *K|,, 0 < • < * - 1} if a * 0.
It follows from (6.13) that when a = t, AB(y, x) = {xf2 X[.^ xf1,0 < i < t - 1}.
Example 6.3.1 Let r = 3,q = 8,t = 2 and b = 10. ^wce 6 + 2 = 12 = a (g - 1) + 0,

we have a = 1 and (3 = 5. J3y (6.11) and (6.13), we have A(x) = XQ^X ® ̂ o^i an<^

AB(y,x) = {XO^IJ^O^I}- ^ *5 e a s 2 / i o wen/i/ ^/ioi>l(a:©ex)©A(a:)©J5(t/ffiej/,xffiea;)©

£?(?/, x) is always a non-zero polynomial corresponding to a codeword in GRM&(11,2).

AMD codes can be constructed based on A(x), B(y, x) and the Generalized Reed-

Muller codes as shown in the next Theorem.

Theorem 6.3.1 Letf(y,x) = A(x)®B(y,x) be a q-ary polynomial with %0ji ,-jt-i e

GF(q) as coefficients and x G GF(qt) as variables, where 1 < b < t(q — 1) — 2, g = 2r

and A(x), B(y, x) are as shown above. Suppose b + 2 = a(q — 1) + /3 and b + 1 =

u(q- l) + v, 0 < a,u < t,0 < (3,v < g - 2. Assume b + 2 7̂ t(g - 1) - 1. Then the

code V composed of all vectors (y, x, f(y, x)) is an AMD code with m = tr,

k = (kGRMq(b+i,t) -t-l)r

-E(-«'(3C::t-;1 ,)- i-'>" <*">
and

Qv = 1 — d>GRMq{b+i,t)2 m

= 1 - (2r - v)2~(u+1)r. (6.15)

123

Proof An error e is masked by V if and only if f(y ®ey,x® ex) © f(y, x) ® e/ = 0

for all x, which can be re-written as

A(x ffi ex) ffi A(x) ffi B(y ®ey,x® ex) ® B(y, x) © ef = 0. (6-17)

1. If ex = 0 and ey = 0, the error is always detected unless e/ is also 0. If ex = 0 and

ey 7̂ 0, the left hand side of (6.17) is a polynomial of degree from 1 to 6+1, which

corresponds to a codeword of a (6 + \)th order g-ary Generalized Reed-Muller

code. Since doRMq(b+i,t) = (Q ~ v)qt~u~1, there are at most g* — (g — v)qt~u~1

solutions for the error masking equation.

2. If ex 7̂ 0, the left hand side of (6.17) does not contain any monomials of degree

6 + 2 due to the fact that A(x) and A(x © ex) have exactly the same monomials

of degree 6 + 2. Moreover,

(a) If a = 0 and 6 is odd, xb+1 appears in (6.17) iff X{ is distorted, 0 < i < t—1;

(b) If a = 0 and 6 is even, x\+1 appears in (6.17) iff x0 is distorted, x0x
b

appears in (6.17) iff Xi is distorted 1 < i < t — 1;

(c) If a ± 0, since 6 + 2 ^ t(q - 1) - 1, sf zf;2,, 117=2 ^ appears in (6.17)

iff £|j+i|t is distorted, 0 < i < t — 1. (When o; = t, it is equal to say that

xiq~2 Hjzti x<j~l appears in (6.17) if Xi is distorted.)

Thereby, (6.17) always contains monomials of degree 6 + 1 , the left hand side

of the error masking equation again is a codeword in GRMq(b+ l,t). Thus the

number of solutions for the error masking equation is still upper bounded by

qt-(q-v)qt-u~1.

Thus for any fixed y and e, the probability Qy of error masking is upper bounded by

(g* - (g - v)qt-u~1)q-t = 1 - (2r - v)2~^u+1>'.

124

The left hand side of (6.17) contains monomials of a degree from 1 to 6+ 1 except for

the t monomials from AB(y, x). Hence the number of different monomials in B(y, x)

is

fe^^-i-'-D-D'QfUt-^) -1-*- (618)

The number, k, of bits in y is equal to the number of monomials in B(y, x) multiplied

by r, which is

<B-tf(j)c::ii;i')-i-*- (6i9)

Example 4 (Continued) For the code shown in Example 6.3.1, k = 55 x 3 = 165. Since

6 = 10 = u(q — 1) + v, q = 8, we have u = 1 and v = 3. The worst case error masking

probability is Q v = l - 5 x 2 ~ 6 . Thus by (6.8), l - 7 x 2 " 6 < Qy(165,6,3) < l - 5 x 2 ~ 6 .

Corollary 6.3.1 When b = t(q — 1) — 2,g = 2r, codes generated by Theorem 6.3.1

are optimal. We have

Q(2trr - t r - 2r, tr, r) = 1 - 2~tr+l. (6.20)

Proof According to (6.8), Q(2mr - m - 2r, m, r) > 1 - 2~m+1, where m = tr. The

number, k, of information bits for the AMD code V generated by Theorem 6.3.1 is

(qt — t — 2)r. Thus, we have

b+l = t(q-l)-l = (t-l)(q-l) + q-2.

Thereby u = t — 1 and v = q — 2. The worst case error masking probability for V is

Qv = 1 - (2r - (q - 2))2~tr = 1 - 2~tr+1.

The code is optimal with respect to the lower bound (6.8). •

125

Special Case: r = 1

For this case the dimension of a (6+ l)th order binary Reed-Muller code of t variables

is kRM2(b+i,t) — Z)i=o (!) (* = m) (MacWilliams and Sloane, 1998). The distance of

RM2(b+1, t) is dRM2{b+i,t) = 2t~b~1. As a result, the dimension of the resulting AMD

code V constructed by Theorem 6.3.1 is k = Yli^o (*)—£ — 1. The worst case error

masking probability of the code is Qy = 1 — 2-(6+1).

Example 6.3.2 Suppose m = 7 and r = 1. Let 6 = 1 and

6

f(y, x) = X0 • Xx • x2 © x3 • X4 • X5 © XQ • x3 • x6 © ^2 Xi ' Vi- (6.21)
i=0

It is easy to verify that f(y © ey, x ffi ex) ffi f(y, x) ® ef is a polynomial of degree 2,

which is a codeword of RM2(2, 7). The distance of RM2(2,7) is 32. The worst case

error masking probability of the resulting AMD code is Qy = | .

Corollary 6.3.2 When q = 2, the code V generated by Theorem 6.3.1 is a (%2i=o (') —

t — 1, t, 1) AMD code with Qy = 1 — 2~(6+1). The code is optimal when 6 = t — 2.

Proof Corollary 6.3.2 follows from Corollary 6.3.1 with r = 1. •

Special Case: 6 < q — 3

Another special case of Theorem 6.3.1 is the case 6 < g —3. In this case koRMq(b+i,t) =

C+t+1) a n d doRMq(b+i,t) = (Q — b— l)g t _ 1 (Assmus et al., 1995). The dimension of the

resulting AMD code is ((<+^+1) — 1 — t)r. The worst case error masking probability

is (6 + l)2 - r .

Corollary 6.3.3 When b < q — 3, the code V generated by Theorem 6.3.1 is a

(((t+b
t
+1) - 1 - t)r,tr,r) AMD code with Qv = (6+ l)2~ r .

Proof By Theorem 6.3.1, k and Qy of the AMD code V can be easily derived from

the parameters of GRMq(b + 1, t), 6 < q - 3, q = 2T. •

126

Example 6.3.3 When 6+1 = t(q— 1) — 3, the dimension of the AMD code generated

by Theorem 6.3.1 is 2tr — 1 — t — i^+2). The worst case error masking probability for

the code is Qy = 1 — 4 x 2~tr. According to (6.8),

y-tr (6.22)

-2r (6.23)

Q((g< - 1 - * - (' + yr,tr,r) > (2* - 1 - (* + 2)) 2 "

Thereby we have

1 - (1 + (* + 2))2-*- < Q((2tr - 1 - t - (* + 2y,tr,r) < 1 - 4 • 2"

For example, for t = 2,

1 _ 7 . 2~2r < Q((22r - 9)r, 2r, r) < 1 - 4 • 2"2r . (6.24)

When 6 = 1 B(y, x) is the quadratic form xo • yo ffi Xx • yx © • • • © xt-x • yt-i, where

all the operations are in GF(2r). If ey 7̂ 0, it is easy to verify that the number of

solutions for (6.17) is upper bounded by g t_1.

Special Case: t = 1 (Dodis et al., 2006; Cramer et al., 2008)

When t = 1 and 6 is odd, A(x) = xb+2 and B(y, x) = x • y0 © x2 • yx © • • • ffi xb • yfa_!.

The code generated by Theorem 6.3.1 coincides with the construction shown in (Dodis

et al., 2006; Cramer et al., 2008).

Corollary 6.3.4 (Dodis et al, 2006; Cramer et al, 2008) When b < q — 3 is an odd

number, the code V composed of all vectors (y,x,f(y,x)), where y G GF(qbt),x G

GF(q),q = 2r and f(y, x) = xb+2 ® x • y0 © x2 • Vl ffi • • • x
b • yb_u f(y, x) G GF(q), is

an optimal (br,r,r) AMD code with Qy = max2/ie^oQv(y, e) = (6+ l)2 _ r . Thereby,

Q(br,r,r) = (b+l)2'r.

Proof For codes generated by Corollary 6.3.4, m = r, k — br and Qy = (6 +

l)2~ r. According to Corollary 6.2.1, Q(k,m,r) > \(k + m) r _ 1 l 2 - m . Thereby we

have Q(6r, r, r) = (6r + r) r - 1 2~ m = (6 + l)2 - r . •

127

Remark 6.3.1 One limitation of Corollary 6.3.4 is that 6 can only be an odd number

when the characteristic of the field GF(q) is 2. Otherwise, A(x®ex) for A(x) = xb+2

and ex 7̂ 0 does not contain any monomial of degree 6 + 1 since (b + l)xb+1 = 0.

The resulting code is not a secure AMD code as pointed out in (Cramer et al, 2008).

When 6 is even, A(x) can be chosen as xb+3. In this case, Qy = (6 + 2)2_ r .

Remark 6.3.2 When t = 1, the left hand side of the error masking equation f(y ffi

ey, x ffi ex) ffi f(y, x) ffi e/ = 0 is a codeword of an extended q-ary Reed-Solomon code,

q = 2r (MacWilliams and Sloane, 1998).

When t > 1, codes V generated by Theorem 6.3.1 may have larger number of

codewords than codes generated by Corollary 6.3.4 (t = 1), assuming the two codes

have the same Qy and the same r.

Example 6.3.4 Suppose r = 16, Qy = 2~u. Then for t = 1 and 6 = 3, for

codes generated by Corollary 6.3.4, the maximum number of codewords is 2br = 248.

When t > 1, the maximum number of codewords for codes generated by Theorem

6.3.1 depends not only on 6 but also on t. When t = 2, for example, the number of

codewords of codes generated by Theorem 6.3.1 can be 2" * j -1 -*)7" = 2192.

For AMD codes generated by Theorem 6.3.1, A; and m are both multiples of r. We

will now present three modification methods, which can largely increase the flexibility

of parameters of the resulting AMD codes.

Theorem 6.3.2 Suppose there exists an (k, m, r) AMD code generated by Theorem

6.3.1 with r >1, m = tr, k = sr and Qy = max^^o Qv(y, e).

1. For the same r,m and r < k < sr, a shortened AMD code with the same Qy

can be constructed by appending O's to y so that (0, y) G GF(2sr) and then apply

the same encoding procedure as for the (sr, tr, r) code.

2. For the same m, k and 1 < r' < r, an AMD code can be constructed by deleting

r — r' redundant bits from each codeword of the original (k,m,r) code. The max­

imum error masking probability of the resulting code will be mm{Qv2r~r ,1} .

128

3. Suppose there exists a (kx,m,rx) AMD code Vx with maxyte^oQy1(y,e) = Qyx

and another (k2, m, r2) AMD code V2 withmax^e^o Qv2(y, e) = Qv2- By comput­

ing the redundant bits of the two codes separately and then concatenating them,

we can construct a (kx + k2, m, rx + r2) AMD code with Qv < max{Qvi, Qv2}-

Proof 1. For codes constructed by Theorem 6.3.1, the error masking equation

f(y®ey,x®ex)®f(y,x)®ef = 0 is a polynomial of degree at most 6 + 1 , where

x0,Xx,--- ,xt-x are variables and y, ey,ex and e/ are coefficients. Obviously,

modifications of coefficients do not change the maximum possible degree of the

polynomial thus do not change the maximum number of solutions for the error

masking equation.

2. For the (sr,tr,r) AMD code with Qy = max.y^Qy(y,e), every fixed ey,ex,ej

and y is masked by no more than Qy2m different x. After deleting r — r'

bits from the values of the function f(y, x), the vectors (y, x) which previously

mapped to f(y, x) that are different in the deleted r — r' bits will now map to

the same value of the redundant bits. Thereby, when r — r' bits are deleted, for

any fixed ey, ex, e/ and y, the error is masked by at most min{Qy2m + r _ r , 2m}

different x.

3. For the concatenated (kx + k2,m,rx + r2) AMD code V, codewords are

(yi, V2, x, fi(yi,x), f2(y2, x)),

where yx G GF(2k^),y2 G GF(2k*),x G GF(2m), fx(yx,x) G GF(2ri) and

f2(V2,x) G GF(2r2). For any y = (yx,y2) and any error e = (eyi.em,ex,eh,eh),

eyi G GF(2k% ey2 G GF(2k*), ex G GF(2m), eh G GF(2r^), eh G GF(2T*),

denote N(y, e) a number of x's satisfying simultaneously the following two error

129

masking equations

fi(yi®eyi,x®ex)®fx(yx,x)®efl=0

f2(y2®ey2,x®ex)®f2(y2,x)®eh=0 ^ - '

Suppose Qyi > Qv2, then by the definition of the error masking probabil­

ity Qy, when ey2 = ex = eh = 0, we have m a x ^ o N(y, e) < 2mQVl =

2mmax{Qy1,Qy2}. Thereby, Qy < 2~mmaxy^o N(y,e) < max{QVl,QV2} •

Concatenation of L copies of a (k, m, r) AMD code constructed by Theorem 6.3.1

generates a (k',m',r') code with k' = Lk,m! = m and r' = Lr. According to the

Singleton bound,

Q(Lk, m, Lr) > rLfc + m- | 2 — . (6.26)
l^r

When 6 < q — 3, from Corollary 6.3.3 we have

Q(Lk,m,Lr)< (6 + l) 2 _ r .

Thus

Lk + m^2_m ^ ^ ^ ^ ^ + r^b<q_3 /6 2 ?)
Lr

Corollary 6.3.5 Let V be an optimal (k, m, r) AMD code with k = sr,m < r and

Qv — ["^±2i]2_m. Then for any L, the (Lk,m,Lr) code V obtained by concatenation

of L copies of V is also optimal.

Proof By part 3 of Theorem 6.3.2, we have Qv> < Qv = T ^ l = (s + l)2 - m . On

another hand by (6.8), we have Qv > [^ t E] 2 - m = \s + g] = (s + l)2~m . •

The concatenation of AMD codes based on GRMq(b+l, 1) is optimal for 6 < g —3

and Q(L6r, r, Lr) = (b + l)2~ r .

6.3.2 Constructions Based on Products of Generalized Reed-Muller Codes

Theorem 6.3.3 Let Cy{,l < i < L be a (bi + l)th order q-ary Generalized Reed-

Muller code defined over ti variables with dimension ki and distance di, q = 2r. Let

130

Vi be an AMD code constructed based on Cyt with the encoding function fi(y,x) =

Ai(x) ffi Bi(y,x) as shown in Theorem 6.3.1. Let A(x) = @f=1 Ai(x) and

L

B(y,x)= 0 yPuP2,...,PLY[Pi, (6.28)
PI,P2,-,PL «=1

where Pi is a polynomial of the U variables in Cylt deg(Pi) < 6 + 1, Pj £ ABi(y,x)

and Yli=x ft is n°t a constant. Then the code V defined by f(y, x) = A(x) ffi B(y, x)

is a (k, m, r) AMD code V with m = r]T)i=i **>

L

*=(n(^-**)- i)r' (6-2g)
i=l

and
L

Qv = l - 2~r ̂ L=iu Yl di. (6.30)
i= l

Proof The error masking polynomial f(y ®ey,x® ex) ® f(y, x) ffi ey is always a non­

zero polynomial, which is a codeword of the product of Cy%, 1 < i < L. The distance

of the product code is FJiLi <k- Hence Qv for the AMD code is Qy = 1 — d2~m =

1 _ 2 - ^ = 1 * ' n f = i ^ - B y (6-13), the number of Pt such that deg(Pi) < 6 + 1 and

Pi $ ABi(y, x) is ki — ti. Thus the number of monomials in B(y, x) is r i i= i (^ — * ») — 1-

(Y[f=x Pi is n ° t a constant.) The dimension of the AMD code V is equal to the number

of monomials in B(y, x) multiplied by r, which is (r i i=i(^ — U) — l) r - ^

In the previous Section we've seen that the error masking equation for codes

generated by Corollary 6.3.4 (special case of Theorem 6.3.1 when t = 1) corresponds to

a codeword from a g-ary extended Reed-Solomon code with length 2m and dimension

6 + 2. When t = 1, the AMD codes generated by Theorem 6.3.3 are based on

the product of L g-ary extended Reed-Solomon codes (PRS) (Santhi, 2007). The

construction and the parameters of AMD codes based on the extended PRS code are

shown in the next Corollary.

131

Corollary 6.3.6 When t = \, AMD codes generated by Theorem 6.3.3 are based on

the extended PRS codes. Suppose each extended Reed-Solomon code has dimension

6 + 2 and length g = 2r, g > 6 + 3. Let

A(x)=xb+2®xb
2
+2®---®xb+2. (6.31)

Let
6 6 L

B(y,x) = Q)---($ySl,...,SLY[xs
i
i,(Sx,---,st)^0. (6.32)

s i = 0 S£,=0 i=l

The resulting AMD code V is a (((b + 1)L — l)r, Lr, r) code with

Qv = maxQv(y, e) = 1 - 2~i>{2r - 6 - 1)L. (6.33)

Proof The Corollary can be easily proved by substituting the parameters of the

extended Reed-Solomon codes into (6.29) and (6.30). •

Example 6.3.5 Let r = 3, L = 2 and 6 = 3. For the AMD code V generated

by Corollary 6.3.6, m = 6 and k = ((6 + 1)L — l)r = 45. Each extended Reed-

Solomon (RS) code has Hamming distance 5. For the extended PRS code, dpRs = 25.

Thereby the worst case error masking probability of the (45,6,3) AMD code is Qy =

l - 2 5 - 2 - 6 = 39-2- 6 .

For codes generated by Corollary 6.3.3, the worst case error masking probability is

Qx = (bx + l)2~ r . For codes generated by Corollary 6.3.6, Q2 = 1 - 2-L r(2 r - 62 - 1)L.

Suppose the two codes have the same r and Qx = Q2-

Let bx + 1 = 2r — u, where u > 2. Then it can be easily proved that

62 + 1 = 2r - 2T(—)i = 2r - 2 (1 - i) r «r . v2 r

As it is illustrated by the following example, when r is large and bx (and 62) is

close to 2r, the number of information bits for codes generated by Corollary 6.3.6 can

be much larger than for codes generated by Corollary 6.3.3.

132

Example 6.3.6 Let r = 8, g = 2r = 256, u = 4 and m = 16. For codes generated by

Corollary 6.3.3, t = 2, bx + 1 = 2r - u = 252, fc = ((*+6
t
1+1) -\-t)r = 32,131 x 8

bits. For codes generated by Corollary 6.3.6, L = 2, 62 + 1 = 2r — 2(-1~L^UL = 224,

k = ((6+1)1, — l)r = 50,175 x 8 bits. These two codes have the same worst case error

masking probability Qv. However, the number of information bits for the AMD code

based on the extended PRS code is much larger than that based on the Generalized

Reed-Muller code.

6.4 Protection of Normal Base Serial Multipliers in GF(2k)

As a case study, in this section we will present architectures based on the proposed

AMD codes for secure multipliers in GF(2k), which are commonly used blocks in cryp­

tographic devices implementing the elliptic curve cryptographic algorithms (SECG,

2000), etc.

The general architecture using AMD codes to protect devices against fault in­

jection attacks is shown in Figure 6-1. In addition to the original device, two extra

blocks, the predictor and the error detecting network (EDN) are needed. The ex­

tended outputs of the fault-free device are codewords of the AMD code. As in most

works discussing the protection of data-path in cryptographic devices (Karpovsky

et al., 2004; Gaubatz et al., 2006), we assume that the EDN is tamper resistant and

cannot be attacked by the attacker. Otherwise, an advanced attacker can easily by­

pass any kind of protection mechanism based on error detecting codes by forcing the

error flag signal Error to be 0 (Figure6-1).

The hardware implementations of multipliers in GF(2k) can be categorized as

parallel multipliers and serial (sequential) multipliers. Compared to parallel multipli­

ers, serial multipliers are more area efficient and are more practical in hardware for

multiplications in a large Galois field especially in small digital devices, e.g. smart

phones. A digit-serial Massey-Omura multiplier can output one digit of the product

133

Input

X^K
Redundant
Hardware

Original Device

y

Predictor ^ RNG

f\ r ExiarjdedOutput V %

EDN

"~ tiError

^ x

Figure 6-1: General architecture of a device protected by a (k,m,r)
AMD code

per clock cycle. Suppose the length of the digit is r-bit and the output of the mul­

tiplier is A;-bit. The multiplication in GF(2k) is completed in \k] clock cycles. The

digit-serial Massey-Omura multiplier (Massey and Omura, 1986) can be implemented

by using r identical combinatorial blocks with cyclically shifted inputs for normal

base multiplication in GF(2k).

We next estimate the area overhead for a digit-serial Massey-Omura multiplier

in GF(2k) protected by AMD codes with 6 = 1 generated by Theorem 6.3.1 and

Corollary 6.3.4 (t = 1 in Theorem 6.3.1).

When 6 = 1 in Theorem 6.3.1,

t - i t-i

f(y, x) = 0 x3 ffi xiVi = 0 Xi(x2 ffi Vi).
i=0 i=0

If ey 7̂ 0, 0 ! l o ^ i can be omitted and f(y,x) can be simplified to be 0 J I O £ J 2 / J .

The structure of the predictor for AMD codes with 6 = 1 for the protection of a

digit-serial multiplier in GF(2k) is shown in Figure 6-2. Xi G GF(2T) is the random

data generated by the true random number generator, yi is the ith component of

the product. When k is not a multiple of r, O's are appended so that all (yi, 0)

belong to GF(2r). In addition to the duplicated digit-serial multiplier in GF(2k), a

r-bit register, an extra parallel multiplier and two adders in GF(2r) are also required.

134

Multiplier in
GF(2k)

Square Operation and Adder
{*• In GF<2'). (Necessary only He,

bed)

Figure 6-2: Predictor for serial Massey-Omura multiplier in GF(2k)
protected by codes with 6 = 1 generated by Theorem 6.3.1

(The square operation can be implemented by cyclically shifting in normal base Galois

fields.) The parallel multiplier in GF(2r) can be implemented as described in

(Reyhani-Masoleh and Hasan, 2002). At every clock cycle, the digit generated by

the digit-serial multiplier in GF(2k) is multiplied by a r-bit random data Xi. The

result is cumulatively added and saved in the r-bit register. After t clock cycles, the

redundant bits will be available in the r-bit register and will be verified by EDN to

detect errors. To reduce the latency of the predictor, an optional pipeline register

can be added between the original digit-serial multiplier in GF(2k) and the parallel

multiplier in GF(2r) as shown by the dotted block in Figure 6-2.

When t = 1 and 6 is odd in Theorem 6.3.1,

6

f(y,x) = xb+2 e02/i- iar
*=i

x(y0 ffix(yx ffi • • • ffix(yb-x ®x2)---))

The structure of the predictor for the resulting AMD codes is shown in Figure

6-3. During the first clock cycle of every multiplication, the output digit yo (O's are

appended if necessary) is added to x2 and then multiplied by x. For each of the

135

\ k

Multiplier in
GF(2k)

X / ir® ~
Oplianal Pipeline I <•«, n\

Register ' . " b '

First Clock Cvtk''

o
\ M Xl.ltlplkr

\ X / GFfl")

-RNG

Figure 6-3: Predictor for serial Massey-Omura multiplier in GF(2k)
protected by codes with t = 1 based on Theorem 6.3.1

Table 6.1: Hardware complexity for parallel and digit-serial Massey-
Omura multipliers

l y p e
Digital-Serial MO(Massey and Omura, 1986)

P. RR-MO(Reyhani-Masoleh and Hasan, 2002)
Parallel RR-MO*

AND
rCN

k'2

k'2

XOR
r(CN - 1)

%(CN+k-2)
k2-l

Latency
TA + \log2CN\Tx

TA+\log2(CN + l)]Tx

TA + (l+\log2(k-l)])Tx
*: Type I ONB generated by irreducible all-one polynomials (AOP) exists(Reyhani-Masoleh and

Hasan, 2002).

following clock cycles, xy% is accumulated added to the contents stored in the r-bit

register. The predictor for AMD codes with t = 1 requires nearly same overhead in

area and latency as the predictor for AMD codes with 6 = 1. A detailed estimation

of the overhead when using the proposed AMD codes for the protection of digit-serial

multipliers in Galois fields recommended for elliptic curve cryptographic algorithms

will be shown in the next section.

6.4.1 Estimation of the Hardware Overhead for the Protection of Mul­
tipliers in Galois Fields Recommended for Elliptic Curve Crypto­
graphic Algorithms

Table 6.1 summarizes the hardware complexity for the reduced redundancy parallel

(Reyhani-Masoleh and Hasan, 2002) (Row 2 and 3) and the digit-serial (Row 1)

Massey-Omura multipliers in GF(2k), where r is the bit-width of the digit, CN is the

136

complexity of the normal base (Reyhani-Masoleh and Hasan, 2002) and TA,TX are

the delays due to one AND gate and one XOR gate respectively. Row 3 corresponds

to the case where there is a Type I optimal normal base in GF(2k) generated by

all-one polynomials (AOP). The overhead of the presented protection architecture is

affected by whether Type I and Type II optimal normal base exists in GF(2k) and

GF(2r). For the existence of Type I and Type II optimal normal base, please refer

to (Gao, 1993).

Table 6.2 shows the overhead of the predictor and EDN of the AMD codes with 6 =

1 or t = 1 generated by Theorem 6.3.1 for multipliers in GF(2239) and GF(2409), which

are among the recommended Galois fields for ecliptic curve cryptographic algorithms

(SECG, 2000). There are two columns for the number of AND and XOR gates for each

type of the multiplier. The left column shows the number of gates that is required to

implement the original multiplier in GF(2k). This multiplier is also duplicated in the

predictor. The right column shows the number of gates that is required to implement

the other parts of the predictor and EDN. To estimate the area overhead, we only

consider multipliers and ignore the adder, the multiplexer in GF(2r) and the r-bit

register in the predictor. We consider the cases where the multiplication in GF(2k)

is completed in 2, 4 or 8 clock cycles. For each case, we select r in such a way that

there is an optimal normal base of Type I in GF(2r) for the purpose of minimizing

the hardware complexity of multipliers in GF(2r). When computing the percentage

overhead of the predictor and EDN, we assume that the area of a XOR gate is about

1.5 times of the area of a AND gate according to the data of the 45nm NANGATE

library (Nangate, 2011).

The area overhead of the predictor and EDN for codes based on based on Theorem

6.3.1 is affected by the number of clock cycles required to complete the multiplication.

Generally speaking, the area overhead decreases as the number of clock cycles needed

137

to finish one multiplication in GF(2k) increases. For the three cases shown in Table

6.2, the overall area overhead for the predictor and EDN is about 110% ~ 160%.

In addition to the area overhead, the protection architectures based on the pro­

posed AMD codes will also increase the latency the multiplier due to the longer critical

path in the predictor. For example, when k = 409 and r = 106, the latency of the

serial reduced-redundancy Massey-Omura multiplier is TA + 9T*. In the predictor

for codes with 6 = 1 shown in Figure 6-2, the critical path contains a digit-serial

multiplier in GF(2409), a parallel multiplier in GF(2106) and a 2-level XOR network,

assuming ey 7̂ 0. Thus the latency of the predictor is 2TA + 19Tx and is twice larger

than the latency of the original multiplier. To reduce the latency, optional pipeline

registers can be added between the duplicated multiplier in GF(2k) and the multiplier

in GF(2r) as shown by the dotted blocks in Figure 6-2. In this case the same latency

as the original multiplier can be achieved for the predictor. Similar strategy can also

be applied for codes with t = 1 (Figure 6-3).

6.5 Summary

(k, m, r) Algebraic manipulation detection (AMD) codes for the case m = r and

k = br were introduced in (Dodis et al., 2006) and were used in (Cramer et al., 2008)

for robust secret sharing scheme and for robust fuzzy extractors. In this Chapter,

we presented the bounds and general constructions of AMD codes based on the gen­

eralized Reed-Muller codes. The proposed codes can provide a guaranteed level of

protection against fault injection attacks even if an attacker can fully control the fault-

free outputs of the device and the non-zero error patterns. The same characteristic

cannot be achieved by any previously proposed protection countermeasures based on

error detecting codes in the literature. As a case study, we present the protection

architectures based on the AMD codes for multipliers in Galois fields recommended

138

for elliptic curve cryptography. The area overhead for the protection architectures is

around 110% — 160%. Moreover, when the predictor is pipelined, the protected mul­

tiplier has no latency penalty and can achieve the same performance as the original

device.

Table 6.2: Estimation of the total area overhead of the predictor and EDN for digit-serial multipliers in
GF(2k) protected by codes generated by Theorem 6.3.1

Cycles

2
4
8

k = 239W
r

130W
60l2l
36W

AND
62010
28620
17172

33800
7200
2592

XOR
61880
28560
17136

33798
7198
2590

Percentage^
154.5%
125.2%
115.1%

Qv
2 1 4 \

9T3UA9T3TJ,/
2 / 6 \
2 / io \

k = 409
r

226l2l
106l2J
52l2l

AND
> 184642

86602
42484

102150
22470
5406

XOR
> 184416

86496
42432

102148
22468
5404

Percentage^3'
155.4%
126.0%
112.8%

Qv
2 t 4 \

9336^95557 2 / 6 \
9T0oA9TT!57
'2 / 10 \
9S3V957;

[1]: There exists an optimal normal base of Type II for GF(2r).

[2]: There exists an optimal normal base of Type I for G F (2 r) .

[3]: We assume that the area of a XOR gate is approximately 1,5 times of the area of the AND gate according to the data of the 45nm NANGATE library (Nangate, 2011).

140

Chapter 7

Reliable Memories Based on Nonlinear

Error Correcting Codes

Linear single-error-correcting, double-error-detecting (SEC-DED) codes widely used

for the design of reliable memories such as SRAMs cannot detect and can miscorrect

many errors with large Hamming weights. This may be a serious disadvantage for

many modern technologies when error distributions are hard to estimate and multi-bit

errors are highly probable.

In the first part of the Chapter, we propose to use nonlinear SEC-DED codes to

replace linear Hamming codes to improve the reliability of memories. The nonlinear

SEC-DED were described in Chapter 3 and were generalized from the existing perfect

nonlinear codes (Vasil'ev codes (Vasil'ev, 1962), Phelps codes (Phelps, 1983) and the

codes based on one switching constructions (Etzion and Vardy, 1994)).

Multi-level cell (MLC) NAND flash memories are popular storage media because

of their power efficiency and large storage density. Conventional reliable MLC NAND

flash memories based on BCH codes or Reed-Solomon (RS) codes have a large number

of undetectable and miscorrected errors. Moreover, standard decoders for BCH and

Reed-Solomon codes cannot be easily modified to correct errors beyond their error

correcting capability t = L^^J > where d is the Hamming distance of the code.

In the second part of the Chapter, we propose to use nonlinear multi-error cor­

recting codes presented in Chapter 3 as alternatives to BCH and Reed-Solomon codes

141

for the protection of MLC NAND flash memories. Our constructions can generate

nonlinear bit-error correcting or nonbinary digit-error correcting codes with close to

zero errors undetected or miscorrected for all codewords. Moreover, codes generated

by the generalized Vasil'ev construction can correct some errors with multiplicities

larger than t without any extra overhead in area, latency and power consumption

compared to schemes where only errors with multiplicity up to t are corrected.

In both parts of the Chapter, the error correcting algorithms for the proposed

nonlinear error correcting codes are shown. The reliability, area, latency and the

power consumption of the encoder and the decoder of architectures based on the

proposed codes are compared to those based on linear codes. The results show that

using the proposed nonlinear error correcting codes for the protection of memories

can largely reduce the number of errors undetected or miscorrected for all codewords

at the cost of a reasonable increase in power and area (15% — 30%) compared to

architectures based on linear code.

7.1 Design of Memories with Concurrent Error Detection

and Correction by Nonlinear SEC-DED Codes

The reliability of memory is a crucial consideration for today's digital devices. For

some designs as much as 70% of the chip area is taken by the embedded memory and

this number is expected to reach 90% by 2011 (Moore, 2007) (Halfhill, 2005). This

large area of the chip is especially vulnerable to single-event-upsets (SEUs) caused

by single, energetic particles like high-energy neutrons and alpha particles. SEU

temporarily alters the state of the devices and results in soft errors. These errors

are non-destructive and appear as unwanted bit flips in memory cells and registers.

Continuing scaling of device features and performance increases the likelihood of

errors, which makes the error models more unpredictable. As the speed of the devices

142

becomes higher the relative size of the clock transition timing window increases and

this makes devices more sensitive to SEU (Johnston, 2000). Similarly, decreased

voltage levels for modern technologies make bit inversions more likely to occur (Eto

et al., 1998).

The dangers of possible errors in memories resulting from SEUs are often mit­

igated with the use of linear single-error-correcting, double-error-detecting (SEC-

DED) codes. These codes have minimum Hamming distance four and are able to

correct all single bit errors and detect all double bit errors. In the presence of multi-

bit errors, however, the reliability of systems utilizing error protection architectures

based on these codes may be questionable. For any linear SEC-DED codes with k

information bits, the number of undetectable multi-bit errors is 2k. In addition to

this, a huge number of multi-bit errors will be miscorrected. In the case where SEU

results in multi-bit distortions with high probability, these codes may not be sufficient

to provide a high reliability. Anomalies of systems caused by multi-bit upsets (MBU)

have already been reported, see e.g. (Swift, 2001; Satoh et al., 2000).

The increase of the MBU rate in deep submicron technologies deteriorates the

situation even further. In 65nm triple-well SRAMs with a thin cell architecture,

the rate of multi-bit errors caused by neutron induced SEU increases by a factor

of ten compared to that in 90nm technologies - nearly 55% of the errors due to

neutron radiation were multi-bit errors (Georgakos et al., 2007). Although there are

mechanisms like bit interleaving (Maiz et al., 2003) that can be used to minimize

the error rate contribution of multi-bit errors, whether it is enough under such high

MBU rate is still unknown. Moreover, the advantage of bit interleaving comes at a

price of more layout constraints, which may result in larger power consumptions and

longer access times. Thereby, memory protection architectures which can provide

better protection against multi-bit errors than that based on classical linear codes are

143

in demand.

Errors that are undetected (miscorrected) by some but not all of the codewords

are called conditionally detectable (miscorrected) errors. Linear codes do not

have conditionally detectable (miscorrected) errors. All errors are either 100% de­

tected (corrected) or not detected (corrected) at all, which is bad for the detection

(correction) of repeating errors, since an error e will always be masked (miscor­

rected) as long as it is masked (miscorrected) for one single message. Repeating errors

can occur in many situations. In (Lisboa et al., 2007), it was shown that transient

faults lasting for more than one clock cycle are possible for new technologies. If a

SEU lasts for several consecutive READ/WRITE cycles, it is possible that different

messages written into the same memory cell are affected by the same error pattern.

Another example of repeating errors is a hard error caused by a permanent fault in

the device that is unrecoverable by re-writing. These errors may repeat themselves

until the memory is replaced. For memories with repeating errors, more powerful

error correcting codes are required.

In this Section we analyze the limitations of existing error correcting architec­

tures for memories and show how nonlinear robust codes can be applied to make

memories more reliable in the presence of unpredictable environments where the er­

ror distributions are unknown or not stationary. We propose several architectures

based on nonlinear SEC-DED partially robust codes, i.e. extended Vasil'ev codes

and extended Phelps codes, for single bit error correction in memories. These codes

have fewer undetectable errors and fewer multi-bit errors which are always miscor­

rected while requiring a latency penalty, hardware overhead and power consumption

comparable to that of the conventional linear SEC-DED codes.

144

7.1.1 Previous Work

Since the basic construction of SEC-DED codes was presented by Hamming in 1950

(Hamming, 1950), a number of modifications have been proposed. In (Hsiao, 1970),

a class of optimal minimum odd-weight-column SEC-DED codes was constructed

for better performance, cost and reliability. To further simplify the encoding and

decoding complexity, the author in (Lala, 2003) proposed a coding technique requir­

ing less ones in the parity check matrix than the code presented in (Hsiao, 1970).

In (Bhattacharryya and Nandi, 1997), a hardware efficient method was proposed to

construct SEC-DED-AUED systematic codes that can also detect all unidirectional

errors. For protecting byte oriented memories, SEC-DED-SBD codes were proposed

in (Reddy, 1978), (Chen, 1983) and (Dunning, 1985). These codes are known as

single-error-correcting, double-error detecting, single-byte-error-detecting codes and

are able to detect all single byte errors. SEC-DED-SBD codes that are also able to

correct any odd number of erroneous bits per byte were proposed in (Penzo et al.,

1995). To enhance the error correction capability of SEC-DED codes, the author in

(Dutta and Touba, 2007) constructed single-error-correcting, double-error-detecting,

double-adjacent-error-correcting (SEC-DED-DAEC) code by selectively avoiding cer­

tain types of linear dependencies in the parity check matrix. These codes use the same

number of check bits and the similar overhead to other known SEC-DED codes and

have the advantage that it can correct all adjacent double errors. In (Chen, 1996),

the author constructed single-byte-error-correcting, double-byte-error-detecting codes

(SBC-DBD), which can provide complete single byte error correction capabilities. In

(Lala, 1978), double-error-correcting and triple-error-detecting code was proposed to

correct all double bit errors. The well known Reed-Solomon code, as another exam­

ple, was utilized in Hubble Space Telescope to protect 16 Mbit DRAMs manufactured

by IBM (Whitaker et al., 1991).

145

All the codes mentioned above are linear codes. They concentrate their error

detection and correction capabilities on a specific type of errors (e.g. errors with

small multiplicities or belonging to the same byte). The reliability of the memory

systems based on these codes can not be guaranteed when the MBU rate is high.

Some memory protection architectures based on nonlinear codes have also been

proposed in the community. In (Bose, 1984), efficient single error correcting and

d(d > 2)-unidirectional error detecting codes were used to protect memories. An­

other nonlinear error detecting code - Berger code (Berger, 1961), was used to detect

unidirectional errors in flash memories. These existing protection architectures based

on nonlinear codes, however, were mainly designed for unidirectional error models.

In the presence of symmetric errors, the reliability of the protected memory systems

can not be guaranteed.

Several constructions of nonlinear SEC-DED codes have been shown in Chapter 3.

To demonstrate the advantage of using these codes to protect memories, we compare

the error correction properties, the hardware overhead and the power consumption

for the (39,32,4) extended Vasil'ev code with Qmc = 0.5 and Ud = 6 (Example 3.4.1),

the (39,32,4) extended Phelps code with Qmc = ^ and u^ = 27 (Example 3.4.3) and

the linear (39,32,4) extended Hamming code used in (Tarn, 2006) to protect double

data rate DIMM memory in a Virtex-II Pro device .

7.1.2 Memory Protection Architecture Based on the Extended Hamming

Code

Figure 7-1 shows the general memory architecture with error correction function based

on systematic error correcting codes. During a WRITE operation, the redundant bits

of the code are generated by the encoder and saved in the redundant memory block.

During a READ operation, the ECC block computes the syndrome of the retrieved

data and executes the error correction algorithm. If uncorrectable errors occur, ERR

146

will be asserted and no correction will be attempted.

For linear SEC-DED codes, the encoder performs matrix multiplication over GF(2)

between the A;-bit data and the encoding matrix P of the selected code. The parity

check matrix used to generate the (39,32,4) extended Hamming code C in (Tarn,

2006) is in standard form H = [P\I], where I is the 7 x 7 identity matrix and

/ 01010110101010101010110101011011 \
10011011001100110011011001101101
11100011110000111100011110001110

P = 00000011111111000000011111110000
00000011111111001111100000000000
11111100000000000000000000000000

\ 11111111111111111111111111111111 /

The last redundant bit of the design in (Tam, 2006) is equal to the parity of the in-

DATAIN

DATA OUT

Figure 7-1: General Memory Architecture with ECC

formation bits. C is only able to detect double bit errors occurring in the information

part of the code. If at least one bit of the double bit error is in the redundant portion

of C, the code may miscorrect it as a single bit error. To make C a SEC-DED code,

we compute the last parity bit based on all bits of the codeword.

147

The redundant bits are generated and written in the memory along with the

associated 32-bit data. During the READ stage, the data and the redundant bits are

read simultaneously. Syndromes S = Hx, where x € GF(239) is a possibly distorted

output of the memory, are calculated and used to identify the error type and locate

the error. A 32-bit correction mask is created to correct single bit errors occurring

to the information part of the code. When a single bit error is detected, the original

data is XORed with the mask and the distorted bit is reversed. When there are no

errors or multi-bit errors, all the mask bits are zeros and the data go through the

ECC block without any changes.

The disadvantage of memory protection architecture based on linear SEC-DED

codes is the large number of undetectable and miscorrected multi-bit errors. For any

linear code, Kd = C and uj = k. Thereby the number of undetectable errors for

a (39,32,4) extended Hamming code is 232. All undetectable errors correspond to

distortions of more than three bits.

It is easy to prove that any (n, k, d) linear error correcting code C is able to correct

not more than 2n~k — 1 errors. If N errors are corrected, 0 < N < 2n~k — 1, the

number of miscorrected errors is N(2k — 1).

For example, for the approach described in (Tarn, 2006), only single errors occur­

ring to the information part of the code will be corrected. Thereby N = 32. The

number of miscorrected multi-bit errors for this code is 32 (232 — 1).

7.1.3 Memory Protection Architecture Based on the Extended Phelps

Code

Error Correction Algorithm

Let C be a (ni,fci,3) binary linear code and B be a (n2,k2,3) binary linear code.

Without loss of generality, assume that rx = nx — kx < r2 = n2 — k2. Denote by

He and HB the parity check matrix for C and B respectively. Denote by d =

148

(xx,x2,xz,Xi) a codeword of C, where xx G GF(2ni),x2 = p(xx) G GF(2),x3 G

GF(2n2),Xi = p(x3) G GF(2), where p(x) is the parity of x. Let a be a permutation

of elements in GF(2ri) such that a(0) = 0. Denote by [z iK^]) a coset vector of

the coset which Xx(x3) belongs to, [xi] G OF(2 n) , [a*] € GF(2 r2). The codewords of

the extended Phelps code C constructed as in Theorem 3.4.4 satisfy the condition

[x3] = (0,a([xx})), where 0 G GF(2r2~ri). C is a (m + n2 + 2,nx + fc2,4) SEC-DED

code and is able to correct all single bit errors and simultaneously detect all double

bit errors.

Denote by e = (ei, e2, e3, e4) the error vector and c7 = (xx,x2, x3, x4) the distorted

codeword, in which Xi = Xi ® ei, 1 < i < 4. The syndrome of the code that can be

used to detect and locate errors are defined as S = (Sx,S2, S3, S4), where

Sx = xx, (7.1)

S2 = P(*i) © P(x2) = p(ei) © e2, (7.2)

^3 = x3, (7.3)

S4 = p(x3) ® p(x4) = p(e3) ® e4. (7.4)

The correction algorithm is as described below. For the purpose of comparing the

error correction abilities of extended Phelps codes and linear extended Hamming codes

presented before, in this algorithm only single bit errors occurring to the information

part will be corrected.

1. Compute by (7.1) to (7.4) the syndrome of the code S = (Sx,S2,S3, S4), where

Sx G GF(2n'), S3 G GF(2"2) and S2, SA G GF(2).

2. If 52 = S4 = 0 and [S3] = (0, a([Si])), no errors are detected.

3. If S2 = S4 = 0 and [S3] ^ (0,a([Si])), multi-bit errors are detected and ERR

will be asserted.

149

4. If S2 = 1, S4 = 0, multi-bit errors occur or a single bit error occurs to the first

or the second part of the codeword.

(a) If [S3] > 2ri, multi-bit errors are detected and ERR will be asserted.

(b) If [S3] <2 r i , then

i. If [S3] = (0,o;([Si])), the single bit error is in x2.

ii. If [S3] 7̂ (0, a;([Si])), multi-bit errors occur or a single bit error occurs

to xx. Let a'1 : GF(2Tl) -» GF(2n) be the inverse function of a.

Denote by e^j and e ^ , the coset leaders of the cosets whose coset

vectors are [Si] and a_1([S3](ri_i:0)), where [S3](ri_i:0) G GF(2ri) is

the rightmost rx bits of [S3], ex is the coset leader of the coset whose

coset vector is [e^j © e ^ i] . If | |ei| | > 1, multi-bit errors are detected.

If ||ei|| = 1, correct the single bit error by adding ex to x\.

5. If S2 = 0, S4 = 1, multi-bit errors occur or a single bit error occurs to the third

or the forth part of the codeword.

(a) If [S3] = (0 ,Q;([SI])) , the single bit error is in X4.

(b) If [S3] 7̂ (0,a([Si])), multi-bit errors occur or the single bit error is in x3.

Denote by e[s3\ and e ^ , the coset leaders of the cosets whose coset vectors

are [S3] and (0,a([Si])). e3 is the coset leader of the coset whose coset

vector is [e[s3] ® ^\s3]\- Without loss of generality, assume the first k2 bits

of any codewords in B are the information bits. If e3 = e*, 1 < i < k2,

where e* has one at position i and zero elsewhere, correct the single bit

error by adding e3 to x3. If e3 = e*, k2 < i < n2, single bit errors occur

to the redundant bits. No corrections will be attempted. If 11̂ 3 j | > 1,

multi-bit errors are detected.

150

6. If S2 = S4 = 1, multi-bit errors occur. ERR will be asserted and the data will

go through ECC without any correction.

Example 7.1.1 In this example we show the error correction procedure for a (11,6,4)

extended Phelps code.Let C be a (4,1,3) linear code whose parity check matrix is

Hn =
1001
1010
0100

Let B be a (5,2,3) linear shortened Hamming code with

HB =
01001
11010
10100

Let {C0 = C,Cx,- •• ,C7},\Ci\ = 2,0 < i < 7 be a partition of GF(2A) into cosets

of C0 and {B0 = B, Bx, • • • , B7}, \Bi\ = 4,0 < i < 7 be a partition of GF(25) into

cosets of BQ. The coset leaders and coset vectors for Ci and Bi are selected as stated

in Table 7.1. It is easy to verify that [x®y] = [x] ® [y] is satisfied.

Table 7.1: Selected coset leaders and coset vectors

c0 = c Cx
c2 c3 c4 c5 C6

c7 BQ = B
Bx
B2
B3
B4
B5
Be
B7

Coset Leader
0000
0001
0010
1000
0100
1110
0110
1100
00000
00001
00010
01000
00100
11000
10000
01100

Coset Vector
000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111

Let 011001 G GF(26) be the message that needs to be encoded, xx is the first four

bits of the message: xx = 0110 G GF(24), which belongs to Ce whose coset vector

is 110. Let a([xx\) = [^i]3 where xx G GF(23). Select the primitive polynomial to

be [xx]3 + [xx] + 1 for GF(23). Then a(110) = 111. So x3 G B7. x3 is equal to

151

the vector in B7 with 01 for the information bits, which is 01100. x2 = p(xx) = 0,
x4 = p(x3) = 0. So the entire codeword is c = 01100011000 G GF(2n). Suppose

a single bit error occurs to the 6th bit of the codeword, c = 01100111000. Then

Sx = 0110, [Sx] = 110, S2 = 0, S3 = 11100 and S4 = 1. HBS3 = HB x 00001 = 100,

so S3 = x3 belongs to Bx and [S3] = 001. Thereby o:([Si]) 7̂ [S3] and the error is in

x3- e[s3] ® e,g , = 00001 ffi 01100 = 01101. So the error is the coset leader of the coset

that 01101 belongs to. HB x 01101 = HB x 10000, hence 01101 G B6 and e3 = 10000.

Theorem 7.1.1 Let C be a (nx, kx,3) binary linear code and B be a (n2, k2,3) binary

linear code with rx — r2, 2 n _ 1 > max{nx,k2}, where rx = nx — kx and r2 = n2—

k2. Assume that a is an almost perfect nonlinear function with Pa = 2~ri+1. The

(nx + n2-\-2, nx + k2,4) extended generalized Phelps code C constructed as in Theorem

3.4-4 has Ud = kx + k2 (dimension of the detection kernel). The size of the correction

kernel of the code is (nx + k2)(2
kl+k2 — 1).

ERR

DATA_OUT

Optional Pipcf"* ' |7^* '
Rifiuera ' '—'

Figure 7-2:
Phelps code

The decoder architecture for the (39,32,4) extended

Proof We divide the errors into four classes as stated below.

1. A nonzero error e = (ex,e2,e3,e4) is masked if and only if it satisfies S2 =

0, S4 = 0 and [S3] = o:([Si]). S2 = 0 and S4 = 0 are satisfied if and only if

e2 = p(ex), e4 = p(e3). If ex G C and e3 G B, [S3] = a([Si]) is always satisfied.

152

These errors are undetectable and form the detection kernel of the code. The

number of errors in this class is 2kl+k2. If ex £ C and e3 £ B, errors will be

conditionally detectable. The number of these errors is (2ni — 2fcl)(2n2 — 2k2).

If ex G C, e3 g B or ex ^ C, e3 G B, errors will always be detected.

2. If S2 = 0, S4 = 0 and [S3] 7̂ a([Si]), multi-bit errors are detected.

3. S2 = 1, S4 = 0, [S3] = a([Si]). We assume that a single bit error occurs to x2.

The error will be detected but not corrected.

4. S2 = 1, S4 = 0, [S3] 7̂ a([Si]). We assume that a single bit error occurs to x\.

S2 = 1 and S4 = 0 are satisfied if and only if e2 = p(ex) ffi 1 and e4 = p(e3).

(a) If ex G C,e3 £ B, [S3] 7̂ ̂ ([S!]) is always satisfied. In this case [xx ffi ex] =

[xx]. A multi-bit error e is miscorrected as a single bit error e\, 1 < i < nx

if and only if a([xx] ffi [e*]) = a([a;i]) ffi [e3]. For every e\, there are at

most 2riPa solutions for [xi]. Since Pa = 2 _ r i + 1 and 2 n _ 1 > nx, for all nx

possible e*, the total number of solutions for [x\] satisfying a([xi] ffi [e*]) =

a([a;i]) ffi ̂ 3] is less than 27"1. Thereby errors in this class are conditionally

miscorrected.

(b) If ex G- C,e3 G B, [S3] 7̂ OJ([S]J) is always satisfied. In this case [x3 ffi e3] =

[x3]. A multi-bit error e is miscorrected as a single bit error e*, 1 < i < nx

if and only if a([xx] ffi [ei] ffi [e*]) = a([xx\). If [ei] = [e*], errors will be

corrected as e\ for all codewords. The number of errors in this class is

nx2kl+k2. nx of them are successfully corrected. The other nx(2kl+k2 —

1) errors belong to Kc- If [ei] 7̂ [e*], the error will be conditionally

miscorrected.

(c) If ex G" C, e3 £ B. A multi-bit error e is miscorrected as a single bit error

e|, 1 < i < nx if and only if ^([xijffifei]©^]) = a-([zi])ffi[e3]. If [ei] = [ej],

153

errors will be always detected. If [ei] 7̂ [e*], errors will be conditionally

miscorrected.

5. S2 = 0, S4 = 1, [S3] = a([Si]). We assume that a single bit error occurs to x4.

The error will be detected but not corrected.

6. S2 = 0, S4 = 1, [S3] 7̂ a([Si]). We assume that a single bit error occurs to x3.

(a) If ex G C,e3 0 B, [S3] 7̂ o;([Si]) is always satisfied. In this case a multi-bit

error will be miscorrected as e*, 1 < i < k2 occurring to x3 if and only

if a([rci]) = OJ([:TI]) ffi ^3] ffi [e\]. Errors will be corrected as [e*] by all

codewords if [63] = [e*]. The number of these errors is k22
kl+k2. k2 of

them are successfully corrected. The other k2(2
kl+k2 — 1) belong to Kc- If

[e3] 7̂ [el], errors are always detected.

(b) If ex S" C, e3 G B, [S3] 7̂ o;([Si]) is always satisfied. In this case a multi-bit

error will be miscorrected as e*, 1 < i < k2 occurring to x3 if and only if

a([xx] ffi [ei]) = a([a:i]) ffi [e*]. Following the same analysis as for 4.(a),

errors in this class will be conditionally miscorrected.

(c) If ex G" C, e3 £ B, a multi-bit error will be miscorrected as e*, 1 < i < k2

occurring to x3 if and only if a([xx] ffi [ex]) = &([xx]) ffi [e3] ffi [e*]. These

errors will be conditionally miscorrected.

7. S2 = 1, S4 = 1. In this case multi-bit errors occur and no error correction will

be attempted. The number of errors in this class is 2 n i + n 2 . •

From Theorem 7.1.1, it is easy to show that the (39,32,4) extended Phelps code

constructed in Example 3.4.3 has uJd = kx + k2 = 5 + 22 = 27. The size of the

correction kernel is (m + k2)(2
kl+k2 - 1) = 32(227 - 1).

154

Hardware Implementation of the Encoder and the Decoder for the Ex­
tended Phelps Code

The encoder for the extended Phelps code is mainly composed of the following parts:

1. Syndrome computation unit for C;

2. Circuits to realize the nonlinear permutation a. In our case a is the cube

operation in GF(2ri).

3. Encoder for the linear Hamming code B;

4. Exclusive OR network to convert codewords of B to vectors in other cosets;

5. Parity check generation unit.

The input to the encoder can be any (nx + k2)-bit binary vector. The first ni-bit is

Xx and the left k2-bit is the information part of x3. The syndrome computation unit

computes HcXx, which is used to determine the coset that Xx belongs to. [x3] = [xx]3.

x3 is computed by first derive the codeword in B and then mask it with the coset

leader of the coset which x3 belongs to. The parity check generation unit computes

the parity bits x2 and x4.

The architecture of the decoder for the extended Phelps code is shown in Figure

7-2. After receiving a possibly distorted codeword c' — (xx,x2,x3,x4), the syndrome

S = (Sx, S2, S3, S4) will be computed. Si and S3 are used to determine the coset

vectors of the coset which Xx and x3 belong to. Then whether [S3] = [Si]3 will

be tested. To speed up the design, the possible error vector ex and e3 will be pre-

computed and sent to a MUX before the type of the error is known. If a single bit

error in Xx or the first k2 bits of x3 is detected, ex or e3 will be XORed with the

corresponding part of the received data to recover the original message. If multi-

155

bit errors are detected, the ERR generation unit will pull up the ERR signal. The

received data will go through the ECC module without any error correction.

The latency penalty, the hardware overhead and the power consumption of the

encoder and the non-pipelined decoder for the extended Phelps code will be shown

in section 7.1.5. We also note that the design of the decoder for the extended Phelps

code can be pipelined to increase the throughput of the system. The possible locations

of the pipeline registers are shown in Figure 7-2.

7.1.4 Memory Protection Architecture Based on the Extended Vasil'ev

Code

Error Correction Algorithm

The codewords of a (a + m + 2, a + ky, 4) extended Vasil'ev code constructed as in

Theorem 3.4.2 are in the format of

(u, (u, 0) ffi v,p(u) ffi f(y),p(u) ®p(v) ffi f(y)),

where u G GF(2a), 0 G GF(2m~a), 0 < a < m, v G V is the codeword of a (m, kv, 3)

Hamming code V,y e GF(2kv) are the information bits of v, f : GF(2kv) -» {0,1}

is a nonlinear mapping satisfying / (0) = 0 and p is the linear parity function. In

order to simplify the encoding and decoding complexities, we select V to be a linear

Hamming code.

The redundant portion of the extended Vasil'ev code contains three parts. The

first part is the redundant bits of V which can be generated by a linear XOR network

performing matrix multiplication over GF(2). The second and the third part are non­

linear. The encoder for these two parts needs to perform the linear parity predictions

p(u),p(v) as well as the nonlinear mapping / : GF(2kv) —»• {0,1}. When Ay is even,

we can select / to be the non-repetitive quadratic function (Example 3.4.5) for the

156

purpose of minimizing Qmc.

f(v) = vx • v2 ffi v3 • v4 ffi v5 • VQ ffi • • • ffi vkv_3 • vkv„2 ffi vkv_x • vkv- (7.5)

Before we describe the error correction algorithm for the extended Vasil'ev code,

the syndrome S for locating and correcting errors need to be defined. Denote by

c = (xx,x2,x3,x4) a codeword of the extended Vasil'ev code, e = (ex,e2,e3,e4) an

error vector and c = (xx,x2, x3, x4) the distorted codeword. Then

Xx — u,

x2 = (u,0)®v,

x3 = p(u)®f(y),

x4 = p(u)®p(v)®f(y).

Let H be the parity check matrix of the linear code V and y be the distorted infor­

mation bits of V. The syndrome can be defined as S = (Si, S2, S3), where

Si = H((xx,0)®x2), (7.6)

52 = p(xx)®f(y)®x3, (7.7)

53 = p(xx)®p(x2)®p(x3)®p(x4). (7.8)

The error correction algorithm is as stated below. Similar to the design described in

(Tarn, 2006), only single errors in the information part of the code will be corrected.

If single errors are in the redundant portion or multi-bit errors are detected, ERR

will be asserted but no correction will be attempted.

1. Compute by (7.6),(7.7),(7.8) the syndrome S = (Si,S2 ,S3) of the code, where

Si G G F (2 ^ m + 1) l) and S2,S3 G GF(2).

2. If S is the all zero vector, then no error is detected. Otherwise one or more

157

errors are detected.

3. If S3 = 0 and at least one of Si, S2 is nonzero, errors with even multiplicities are

detected and ERR will be raised. Errors in this class are uncorrectable because

all of them are multi-bit errors.

4. If S3 = 1 and Si = 0, a single bit error occurs to one of the last two redundant

bits of the code. ERR will be asserted and the data will go through ECC

without any correction because only single bit errors in the information part

need to be corrected.

5. If S3 = 1, Si 7̂ 0 and Si does not match any columns of the parity check matrix

H, an uncorrectable multi-bit error of an odd multiplicity is detected and ERR

will be raised.

6. If S3 = 1 and Si = hi, where hi is the ith column of H, a single bit error in

the first two parts of the code or multi-bit errors are detected. Without loss

of generality, we assume that the first ky = m — \log2(m + 1)] bits of V are

information bits.

(a) If a < ky and 1 < i < a, flip the ith bit of x\, recalculate S2. If S2 = 0, the

single error is at the ith bit of xx and is successfully corrected. Otherwise

the single error is at the ith bit of x2.

(b) If a < ky and a < i < ky flip the ith bit of x2, recalculate S2. If S2 = 0, the

single error is in the ith bit of x2 and is successfully corrected. Otherwise

multi-bit errors with odd multiplicities are detected.

(c) If a < ky and i > ky, the error occurs to the redundant bits of V and does

not need to be corrected. ERR will be asserted and no correction will be

attempted.

(d) Similar procedures can be applied to the case when a > ky.

Example 7.1.2 In this example we show the encoding and decoding procedure for a

158

(39,32,4) extended Vasil'ev code C with a = 6. When a = 6, u G GF(26), v — (y, z) G

GF(231),kv = 26, where y G GF(226) are the information bits and z G GF(25) are

the redundant bits of the (31,26,3) binary Hamming code. Let

11111001011011000110010111001111 G GF(232)

be the message that needs to be encoded. Then u = 111110 and p(u) = 1. y can be

computed by XOR (u, 0), 0 G GF(2^a~kv^) with the other ky = 26 bits of the message.

Thus

y = 10100011000110010111001111 G GF(226).

C
1111101110110100111100000010000 \
1111011101101010100011100001000 \
1110111011011001010010011000100
1101110111000111001001010100010 I
1011110000111111000100101100001 /

be the parity check matrix of V. Then the redundant bits z of v G V are 00101 and

p(v) = 0. Let f be the non-repetitive quadratic function as described in Example 3-4-5,

then f(y) = 0. The last two nonlinear redundant bits are 11. The entire codeword is

111110010110110001100101110011110010111 G GF(239).

Suppose a single bit error occurs to the 9th bit of the codeword. After receiving the

distorted codeword, Sx,S2 and S3 can be computed according to (7.6),(7.7),(7.8). We

have Si = h3 = 11101, S2 = 0, S3 = 1. The 3rd bit of Xx is flipped and S2 is

recomputed. The new value of S2 is one. So the error is at the 3r(* bit of the x2, i.e.

9th bit of the entire codeword.

The sizes of Kd and Kc for the extended Vasil'ev code can be computed according

to the next theorem.

Theorem 7.1.2 For (a + m + 2, a + ky, 4) extended Vasil'ev codes, where ky = m —

\log2(m-\-1)], let t = min{a, ky], there are 2a undetectable errors and 2a+1(2fev — 1)

conditionally detectable errors. If only errors occurring to the information part of the

code are corrected, the number of miscorrected errors is 2t(2a+kv — 1) + (2* — l)|a —

ky\- The number of conditionally miscorrected errors is 2\a — ky\(2a+kv — 2'). The

probability of error masking for conditionally detectable errors and the probability of

159

miscorrection for conditionally miscorrected errors are bounded by Pf, which is the

nonlinearity of f defined by (4).

Proof The syndrome of the code can be re-written as follows.

Si = H((xx,0)®x2) = H((ei,0)®e2),

52 = p(xx) ffi f(y) ffi x3

= f(y)®f(y)®p(ei)®e3,

53 = p(xx) ® p(x2) ® p(x3) ® p(x4)

= p(ex) ffip(e2) ffip(e3) ffip(e4).

1. Kd = {e\Sx = 0 G GF(2^2(^+D1),S2 = S3 = 0 G GF(2),Vc G C}. Since

Si = H((ex,0) ffi e2) = 0, (ei,0) ffi e2 is a codeword of the linear code V.

Because / is a nonlinear function, the only possibility to guarantee S2 = 0, Vc G

C is that (ei,0) = e2,p(ex) = e3. S3 = 0, thus e4 = e3 = p(ex). So the

detection kernel of the code contains all error vectors e = (ei,e2,e3,e4) such

that (ei, 0) = e2, e3 = e4 = p(ex). The number of errors in this class is 2a;

2. If (ei,0) ffi e2 is a nonzero codeword of V and e4 = p(ex) ffi p(e2) ® p(e3),

then Si = 0, S3 = 0, Vc G C. S2 can be either one or zero depending on the

information part of the code. These errors will be conditionally detected. The

error masking probability is bounded by Pf. If / is a perfect nonlinear Boolean

function, these errors will be detected with probability 0.5. The number of

errors in this class is 2a+1(2fev — 1).

3. Multi-bit error e will be miscorrected as a single bit error occurring to the

information part of the code if and only if S3 = 1, Si = hi, 1 < i < max {a, ky}.

Let t = min{a, ky}.

(a) If 1 < i < t, e will always be miscorrected as a single error in the ith bit of

160

either xx or x2. The number of pairs of ex, e2 satisfying Si = H((ex, 0) ffi

e2) = hi, I < i < t is t x 2a+kv. e3 can be either one or zero. e4 =

p(ex) ®p(e2) ®p(e3) ffi 1. So there are 2t x 2a+kv errors that satisfy S3 =

l ,Si = hi, 1 < i < t. 2t of them are correctly corrected. The number of

miscorrected errors in this class is 2t(2a+ky — 1).

(b) If t < i < max{a, ky}, the number of errors satisfying S3 = 1, Si = hi is

2|a — ky\ x 2a+kv. After flipping the ith bit of either xx or x2, Sx and S3

become zero. Denote by ei,e2 the new error vectors after flipping the bit

for the first two parts of the codewords,

i. If (ei, 0) = e2 and e3 = p(ei), S2 is always zero. The number of errors

in this class is 2' x \a — ky\ and \a — ky[of them are correctly corrected.

The number of miscorrected errors is (2* — l)\a — ky\-

ii. If (ei, 0) = e2 and e3 7̂ p(e~x), S2 is always one. Errors in this class are

always detectable. The number of them is 2*|a — Ay|.

in. If (ei,0) 7̂ e2, then S2 can be either one or zero depending on the

information bits of the code. Errors in this class will be conditionally

miscorrected. The probability of miscorrection is bounded by Pf. If /

is a perfect nonlinear function, the probability of miscorrection is 0.5.

The number of errors in this class is 2\a — ky\(2a+kv —2l). •

The sizes of the detection and the correction kernel are functions of a and m. For any

extended Vasil'ev codes with length n and number of information bits k, we have

A; = a + ky = a + m— \log2(m + 1)],

n = a + m + 2,

a < m.

161

Hence n - 2n~k~2 - 1 < a < \ ^ \ . When n = 39, A; = 32, 6 < a < 18. Figure

7-3 shows the sizes of the detection and the correction kernel for (39,32,4) extended

Vasil'ev codes for different a. The minimum sizes of the detection and the correction

kernel are 26 and 12(232 — 1) + 20(26 — 1) respectively, both of which are achieved

when a = 6. Different from traditional linear error detecting codes, extended Vasil'ev

Is0" 4

aj
.x:
c
_o

T> <u
a!
T 3 2
a>

.£=

_̂ O
<u
N

"(O
<D
sz
r -

X10
' '

"""Detection Kernel
" " Correction Kernel

, V

' X
' X

/ s
/ t , 1

' 1 • /
/ -s I

S 1
/ 1

r 1
' / ' / ' / ' 1

s /

/
/ +"

1 8

0.5
10 12 14 16 18

The value of a

Figure 7-3: Kernels of (39,32,4) extended Vasil'ev codes as a function
of "a"

codes have conditionally undetectable or miscorrected errors. For (39,32,4) extended

Vasil'ev code with a = 6, the numbers of errors which are masked or miscorrected

with probability 0.5 are 2(232 - 26) and 40(232 - 26) respectively.

Hardware Implementation of the Encoder and the Decoder for the Ex­

tended Vasil'ev Codes

The encoder for the (39,32,4) extended Vasil'ev code is similar to the encoder for

the (39,32,4) extended Hamming code. The main difference between them is that

the encoder for the extended Vasil'ev code needs to realize one nonlinear function /

(see (7.5)), which requires thirteen 2-input AND gates and twelve 2-input XOR gates

given the fact that ky = 26. The latency penalty, the hardware overhead and the

162

power consumption of the encoder for the extended Vasil'ev code is comparable to

that of the linear extended Hamming code (Table 7.4).

The architecture of the decoder for the extended Vasil'ev code is shown in Figure

7-4. After new data arrives, the syndrome S = (Si,S2 ,S3) is computed. If a single

error in the information part is detected, we first assume that the error is in x2 and

attempt to correct the error by flipping the erroneous bit in x2. Then S2 will be

re-computed. If S2 becomes zero, then the error is successfully corrected. Otherwise

the error is in x\. The bit in x2 will be flipped back and the distorted bit in xx will

be corrected, which is done by masking the output of the first XOR network with a

mask pre-computed according to the value of the syndrome.

Pipeline registers can be added to increase the throughput of the system. Possible

locations for the pipeline registers are shown in Figure 7-4. In section 7.1.5, the latency

penalty, the hardware overhead and the power consumption of the non-pipelined

decoder for the extended Vasil'ev code will be shown and compared to that of the

other two alternatives.

r DATA IN

5

I • n i
W-

S\yS^S\

Sjndroint-
Computation

Optional Pipeline J f ^ |
Registers "* ~~ ~

Error
Computation

Recompute

?

& •

-£

Optional Pipeline J)
Registers |

Mask ERR
Gctwrstltm Generation

ERR i

•/—*G—> !

Figure 7-4: The decoder architecture for the (39,32,4) extended
Vasil'ev code

163

7.1.5 Comparison of Memory Architectures Based on Extended Ham­
ming Codes, Extended Vasil'ev Codes and Extended Phelps Codes

Error Detection and Correction Capabilities

In Table 7.2 we summarize the size of the detection kernel Kd, the size of the correction

kernel Kc and the worst case error masking probability Qmc for errors outside the

detection kernel for the (39,32,4) extended Hamming code, the (39,32,4) extended

Vasil'ev code with u = 6,Qmc = 0.5 (Example 3.4.1) and the (39,32,4) extended

Phelps code with Ud = 27, Qmc = JQ (Example 3.4.3). The extended Hamming code

has the largest size of Kd and the largest size of Kc among the three alternatives.

The extended Vasil'ev code has only 26 undetectable errors. The size of Kc for the

extended Vasil'ev code is nearly one third of that for the extended Hamming code.

The extended Phelps code has the smallest Qmc and the smallest size of Kc- Its Kd

is larger than that of the extended Vasil'ev code but is only ^ of the size of Kd for

the extended Hamming code.

Table 7.2: Detection and correction kernels for the (39,32,4) ex­
tended Hamming code, the (39,32,4) extended Vasil'ev code with
Wd = 6, Qmc = 0.5 and the (39,32,4) extended Phelps code with
Ud = 27, Qmc = ig

Hamming
Vasil'ev
Phelps

^imc
1

0.5
l
16

size of Kd

2w
2e

2'27

size of Kc
32 • 2s2 - 1

~ 12 • (23* - 1)
32 • (227 - 1)

Table 7.3 shows the number of undetectable and miscorrected errors with mul­

tiplicities three to six for the three alternatives. All the three codes have no un­

detectable single, double and triple errors. Only errors with odd multiplicities are

miscorrected. The total number of miscorrected errors with multiplicities less or

equal to six for the extended Vasil'ev code is less than one half of the corresponding

164

number for the extended Hamming code. The number of miscorrected errors with

multiplicity three to six for the extended Phelps code is the smallest of the three,

which makes it a good choice for error correction purpose.

We note that errors e = (ex,e2,e3,e4) in the detection kernel of the extended

Phelps codes satisfy

ei € C, e2 = p(ex), e3 G B,e4= p(e3).

Errors in the correction kernel of the extended Phelps codes satisfy either

N = [e?], e2 = p(ei) ffi 1, e3 € B, e4 = p(e3),

or

ci eC,e2= p(ex), [e3] = [e*], e4 = p(e3) ffi 1.

Obviously, the number of undetectable triple errors and miscorrected quadruple errors

of the extended Phelps codes can be further reduced by minimizing the number of

codewords of Hamming weight three and four in codes C and B.

Table 7.3: Number of undetectable and miscorrected errors with mul­
tiplicities less or equal to six for the (39,32,4) extended Hamming code,
the (39,32,4) extended Vasil'ev code with u>d = 6, Qm c = 0.5 and the
(39,32,4) extended Phelps code with Ud = 27, Qmc = ^

\Kd\

\KC\

Code
Ext. Hamming
Ext. Vasil'ev
Ext. Phelps

Ext. Hamming
Ext. Vasil'ev
Ext. Phelps

He = 3
0
0
0

5176
1635
2263

e = 4
1583
21

364
0
0
0

IN = 5
0
0
0

254432
108993
42692

e = 6
51744

0
3362

0
0
0

165

Area Overhead, Power Consumption and Latency

The encoder and the non-pipelined decoder for all the three codes have been modeled

in Verilog and synthesized in Cadence Encounter RTL Compiler using the Nangate

45nm Opencell library (Nangate, 2011). The designs were placed and routed using

Cadence Encounter.

The latency, area overhead and the power consumption of the encoders and de­

coders for the memory protection architectures based on the three alternatives are

shown in Table 7.4 and 7.5. The data is for the typical operation condition assuming

a supply voltage of 1.1V and a temperature of 25G.

The encoder for the extended Vasil'ev code has almost the same area overhead and

power consumption as that of the linear extended Hamming code. The decoder for

the extended Vasil'ev code requires 23% more area overhead and consumes 17.15%

more power than that of the extended Hamming code. In terms of the latency,

the architectures based on the extended Vasil'ev code results in 21.2% more latency

for the decoder and 26.5% more latency for the encoder compared to the extended

Hamming code. We note that the output of the memory can be directly forwarded

to the processors before it goes through the decoder. When the decoder detects or

corrects errors, the processor can be stalled and the data can be re-fetched from either

the output of the decoder (error correction) or the memory (error detection). In this

case the latency penalty for the decoder, which is the main factor that affects the

performance of the memory system, is only incurred when there are errors.

For both the encoder and the decoder, the Phelps code has the largest penalty in

all the three aspects. Compared to the extended Hamming code, the latency penalty

of the extended Phelps code is increased by 47.9% for the encoder and increased by

24.5% for the decoder. The area overhead and the power consumption of the decoder

for the extended Phelps code is almost three times of that for the extended Hamming

166

Table 7.4: Latency, area overhead and power consumption for the
encoders for (39,32,4) SEC-DED codes (Voltage = 1.1 V, Temperature
= 25C)

extended Hamming
extended Vasil'ev
extended Phelps

Latency (ns)
0.290
0.367
0.429

Area (iiniz)
2812
296.1
383.0

Power (mW)
0.2898
0.2916
0.4728

code. However, for reliable memory systems the area and power consumption over­

head is mainly contributed by the redundant memory cells, which is determined by

the number of redundant bits of the error correcting code. Since all the three alter­

natives have the same number of redundant bits, they have similar area and power

consumption overhead.

Thereby, compared to the extended Hamming code, the extended Vasil'ev code

and the extended Phelps code can achieve better error detection and correction ca­

pabilities at the cost of only a small penalty in latency, area overhead and the power

consumption.

Table 7.5: Latency, area overhead and power consumption for the
decoders for (39,32,4) SEC-DED codes (Voltage = 1.1 V, Temperature
= 25C)

extended Hamming
extended Vasil'ev
extended Phelps

Latency (ns)
0.538
0.652
0.670

Area (/xra2)
620.3
763.2
1799.8

Power (mW)
0.7119
0.8340
1.774

7.1.6 Further Discussions

We note that errors in the decoders for the proposed nonlinear SEC-DED codes may

also compromise the reliability of the memories. To protect the decoder against errors

caused by temporary faults like SEU and MBU, a fault secure design is required. A

circuit is fault secure for a fault set e if every fault in e can be detected as long as

167

it manifests at the output of the circuit. The design of fault secure circuits is well

studied in the community (see e.g. (Rao and Fujiwara, 1989)). Most of the existing

technologies of designing fault secure circuits (e.g. methodologies based on duplication

and two-rail code checker (Rao and Fujiwara, 1989)) can be directly applied to build

fault secure decoders for the nonlinear SEC-DED codes.

7.2 Reliable MLC NAND Flash Memories Based on Nonlin­

ear Multi-Error Correction Codes

The semiconductor industry has witnessed an explosive growth of the NAND flash

memory market in the past several decades. Due to its high data transfer rate, low

power consumption, large storage density and long mechanical durability, the NAND

flash memories are widely used as storage media for devices such as portable media

players, digital cameras, cell phones and low-end netbooks.

The increase of the storage density and the reduction of the cost per bit of flash

memories were traditionally achieved by the aggressive scaling of the memory cell

transistor until the multi-level cell (MLC) technology was developed and implemented

in 1997 (Atwood et a l , 1997). MLC technology is based on the ability to precisely

control the amount of charge stored into the floating gate of the memory cell for the

purpose of setting the threshold voltage to a number of different levels corresponding

to different logic values, which enables the storage of multiple bits per cell.

However, the increased number of programming threshold voltage levels has a

negative impact on the reliability of the device due to the reduced operational margin.

The raw bit error rate of the MLC NAND flash memory is around 10 - 6 (Cooke,

2007) and is at least two orders of magnitude worse than that of the single-level cell

(SLC) NAND flash memory (Dan and Singer, 2003). Moreover, the same reliability

concerns as for SLC NAND flash memories, e.g. program/read disturb, data retention,

168

programming/erasing endurance (Bez et al., 2003) and soft errors (Cellere et al.,

2009)(Bagatin et al., 2007)(Irom and Nguyen, 2007), may become more significant

for MLC NAND flash memories. Hence a powerful error correcting code (ECC) that

is able to correct at least 4-bit errors is required for the MLC NAND flash memories

to achieve an acceptable application bit error rate, which is no larger than 10 - 1 1

(Cooke, 2007).

Several works have investigated the use of linear block codes to improve the reli­

ability of MLC NAND flash memories. In (Liu et al., 2006), the authors presented a

high-throughput and low-power ECC architecture based on (n = 4148, k = 4096, d =

9) BCH codes correcting quadruple errors (t = 4). In (Micheloni et al., 2006), a

4Gb 2b/cell NAND flash memory chip incorporating a 250MHz BCH error correcting

architecture was shown. The author of (Sun et al., 2007) demonstrated that the use

of strong BCH codes (e.g. t = 12,15,67,102) can effectively increase the number

of bits/cell thus further increasing the storage capacity of MLC NAND flash memo­

ries. In (Chen et al., 2009), an adaptive-rate ECC architecture based on BCH codes

was proposed. The design had four operation modes with different error correcting

capabilities. An ECC architecture based on Reed-Solomon codes of length 828 and

820 information digits constructed over GF(210) was proposed in (Chen et al., 2008),

which can correct all bit errors of multiplicity less than or equal to four. The architec­

ture achieves higher throughput, requires less area overhead for the encoder and the

decoder but needs 32 more redundant bits than architectures based on BCH codes

with the same error correcting capability. In (Cassuto et al., 2007), an architecture

based on asymmetric limited-magnitude error correcting code was proposed, which

can correct all asymmetric errors of multiplicities up to t.

The above architectures are based on linear block codes and have a large number

of undetectable errors. For any linear code with k information bits, the number of

169

undetectable errors is 2 , which is a potential threat to the reliability of the memory

systems. The situation becomes even worse due to the possible miscorrection of errors.

Let us denote a binary error vector by e and the multiplicity of the error by ||e||. A

multi-bit error e, | |e| | > t is miscorrected by a linear t-error-correcting code if and only

if it has the same syndrome as some e', where ||e'| | < t. It is easy to show that the

number of errors miscorrected for all codewords of a (n, A;, d) linear t-error-correcting

code is El=i (?) x (2k - 1).

Under the assumption that errors are independent whose distribution satisfies

P(e) = 0llell(i - 0)n-IHI, where 6 is the raw bit distortion rate and P(e) is the

probability of the occurrence of event e, the most harmful miscorrected errors are

errors of multiplicity t + 1. Let us denote the number of codewords of Hamming

weight 2t + 1 for a linear error correcting code by A2t+1. The number of errors of

multiplicity t+1 that are miscorrected for all codewords of a linear bit-error correcting

code is (2t^x) x A2t+1. For the commonly used (n = 8262, A; = 8192, d = 11) linear

BCH codes with t = 5, the number of errors of multiplicity six miscorrected for all

codewords is as large as 462 x Axx ~ 10 i r. This large number of miscorrected errors of

multiplicity six cannot be neglected and should be taken into account when designing

reliable MLC NAND flash memories.

To reduce the number of undetectable and miscorrected errors, nonlinear minimum

distance robust and minimum distance partially robust codes have been proposed in

(Karpovsky and Taubin, 2004; Wang et al., 2009c; Kulikowski et a l , 2008b). An

ECC architecture based on nonlinear single-error-correcting, double-error-detecting

(SEC-DED) codes for the protection of memories against soft errors was shown in

(Wang et al., 2009c).

In this Section we propose to use the two nonlinear multi-error correcting codes

presented in Chapter 3 to improve the reliability of MLC NAND flash memories. We

170

present the error correcting algorithms for both codes. The error correcting algorithm

for the generalized Vasil'ev codes can also correct some errors beyond the error cor­

recting capability t without any modifications and extra requirements. When p = 2m,

the presented constructions can also generate nonlinear error correcting codes with

the same digit-error and burst-error correcting capabilities as linear Reed-Solomon

codes in GF(2m). In addition to errors that are undetectable or miscorrected for all

codewords, there are also some errors which are masked or miscorrected by a fraction

of codewords of the presented nonlinear multi-error correcting codes. These errors are

called conditionally detectable and conditionally miscorrected errors. We note

that the data-dependent error detecting and correcting properties of the presented

codes are useful for detecting and locating repeating errors, e.g. errors introduced by

hardware malfunctions such as data retention and programming/erasing failure.

We propose ECC architectures for MLC NAND flash memories based on the

presented nonlinear multi-error correcting codes. The proposed architectures have

nearly no undetectable errors and errors miscorrected for all codewords at the cost

of less than 20% increase in area and power consumption compared to architectures

based on the widely used BCH and Reed-Solomon codes with the same bit error

correcting capability t. Moreover, the reliability of the memories protected by the

generalized Vasil'ev codes can be further improved given the fact that the proposed

architecture is able to correct some errors of multiplicity larger than t.

7.2.1 MLC N A N D Flash Memories

Multi-level cell is able to store multiple bits by precisely controlling the threshold

voltage level of the cell. In practice, the threshold voltage of the whole memory array

satisfies a Gaussian distribution due to random manufacturing variations (Chen et al.,

2008). Figure 7-5 illustrates the threshold voltage distribution of a multi-level cell

171

which can store 2 bits. Let us denote the standard deviation of the middle two

Gaussian distributions in Figure 7-5 by a. The standard deviations of the outer two

distributions are approximately 4cr and 2a (Chen et al., 2008). Each voltage range

corresponds to a specific logic value represented as a 2-bit binary vector. Different

schemes can be used for mapping the logic values to binary vectors. A direct mapping

was used in (Atwood et al., 1997). The authors in (Chen et al., 2008) proposed to use

a Gray mapping to improve the reliability of the memory. If an error occurs during

a READ operation, it is more likely that the original 2-bit binary vector is distorted

into another 2-bit vector corresponding to the adjacent voltage level (Figure 7-5).

Hence the Gray mapping can efficiently reduce the average error multiplicity thus

increasing the error detecting probability compared to the direct mapping scheme.

3

* - »
(A

Q

Direct Mapjsi ngi _ 1U!'

Gray Ma^ingi "00"

2 Bit/Cell: 4 Levels

A

..•iff...

L_"1Q"-

<

—

1

"Oil.

'11"

\

I'QffL....

A
Threshold Voltage V

Figure 7-5: Threshold voltage distribution for a MLC storing 2 bits
(Chen et a l , 2008)

The data of the NAND flash memory is organized in blocks. Each block consists

of a number of pages. Each page stores K data bytes and R spare bytes. Cells in the

spare area are physically the same as cells in the rest of the page and are typically

used for overhead functions such as ECC and wear-leveling (Micron, 2008). The

proportion of the spare bytes in the total number of bytes per page is usually 3% ,

e.g. 64 spare bytes for 2048 data bytes. More spare bytes may be required as the page

172

size increases, e.g. 218 spare bytes for 4096 data bytes (Cooke, 2007). Due to the

existence of spare bytes, the number of redundant bits of the error correcting codes

used for NAND flash memories is not as critical as for other types of memories such

as SRAM and DRAM where the area overhead is mostly determined by the number

of redundant bits. This allows for a flexible design of more powerful error correcting

codes for NAND flash memories.

Similar to SLC flash memories, the primary failure mechanisms for MLC NAND

flash memories include threshold voltage distribution, program/read disturb, data

retention, programming/erasing endurance and single event upset. However, while for

SLC flash memories a lot of errors are asymmetric, e.g. errors introduced by program

disturb and data retention (Cassuto et al., 2007), for MLC NAND flash memories

errors have no preferred symmetry (Yaakobi et al., 2009). Moreover, experimental

results show that errors in MLC flash memories are more likely to occur uniformly

within a page without any observable burstiness or local data dependency (Yaakobi

et al., 2009). Thereby, throughout the paper we assume a random symmetric error

model. Let c be the error-free output of the memory and e be the error vector. The

distorted output c can be written as c ffi e, where ffi is the XOR operation. The

probability of a non-zero error e can be computed as P(e) = #HeH(l — #)n-Hell, where

9 is the raw bit distortion rate and ||e|| is the multiplicity (the number of non-zero

components) of the error. We want to emphasize that the proposed nonlinear multi-

error correcting codes not only have advantages over linear codes under this error

model but can also provide a guaranteed level of reliability in situations where the

error model is unpredictable or multi-bit errors are more probable.

173

7.2.2 Error Correcting Algorithms for Nonlinear Multi-Error Correcting
Codes

In Chapter 3, the constructions of two nonlinear multi-error correcting codes were

shown. In this Section, we present the error correcting algorithms and analyze the

error detecting and correcting properties of these two codes.

The Error Correcting Algorithm for Codes Based on Concatenation

The first construction of nonlinear multi-error correcting codes is based on the idea

of concatenating linear and nonlinear redundant digits (see Theorem 3.4.7 in Chapter

3). Let / : GF(pk) —> GF(pTn) be a nonlinear function with nonlinearity Pf. Let

V = {(z,(j)(z))} be a linear code with Hamming distance d, where z € GF(pk+Tn)

and 4>(z) : GF(pk+Vn) —> GF(pn) is the encoding function. The codewords are in

the format of (y, f(y),<j>(z)), where y e GF(pk),f(y) e GF(pr»),z = (y,f(y)) e

GF(pk+r") and </>(z) e GF(pTl).

Table 7.6: The output of the decoder for linear codes that can correct
up to t errors

Cases
No errors are detected
Errors of multiplicity at most t
are detected
Errors ol multiplicity larger
than t are detected

Error Vector
0
Correctable error vector

0

Error Flag Signal
0
Multiplicity of the error

-1

Let e = (ei,e2,e3) be the error vector, c = (xx,x2,x3) be the original codeword

and c = (xx, x2, x3) be the distorted codeword, where ei,x\, xx € GF(pk), e2, x2, x2 e

GF(pTn),e3,x3,x3 e GF(pri) and x{ = x{ ffi e,, 1 < i < 3. Let S = f(xx) © x2 be

the nonlinear syndrome of the code that can be used for error detection. Assume a

standard decoder for V is available. The output of the decoder is composed of the

error flag signal Ey and the possible error vector (ei,e2,e3). The values of Ey and

the error vector in different situations are defined in Table 7.6.

174

The detailed error correcting algorithm for code C is described in Algorithm 1.

The algorithm only corrects errors when information digits are distorted. If errors

only occur in the redundant digits or errors are uncorrectable, no correction will be

attempted.

Algor i thm 1: Error correcting algorithm for the nonlinear multi-error correct­
ing codes in Theorem 3.4.7

Input : c = (xx, x2, x3)
Output: e = (ei,e2,e3), ERR

l begin

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Decode V, compute S;
if Ev = 0, S = 0 then
| No errors are detected, ERR = 0;

else if Ev = 0, S / 0 then
| Uncorrectable multi-errors are detected, ERR = 1;

else if Ey — — 1 then
I Uncorrectable multi-errors are detected, ERR — 1;

else
Ev>0;
if ex = 0 then
| Errors in the redundant digits are detected, ERR = 0;

else
Compute xx = xx © ex, x2 = x2 ffi e2 ;
Compute S = f(xx) © x2;
if S = 0 then
| e = (ei,e2 ,e3), ERR = 0 ;

else
I Uncorrectable multi-errors are detected, ERR — 1

T h e o r e m 7.2.1 The nonlinear multi-error correcting codes presented in Theorem

3.4-7 have no errors miscorrected for all codewords. Any non-zero error will be mis­

corrected as an error e = (e i , e 2 , e 3) , | |e | | < t,ix ^ 0 with a probability of at most

Pf-

Proof In Algorithm 1, an error e will be miscorrected if and only if Ev > 0, ex ^ 0,

(ei ,e2 ,e3) ^ (ei,e2 ,e3) and S = 0. When Ey > 0, after correcting possible errors in

175

xx and x2, the effective error vector when computing S is (ei ffi ex, e2 ffi e2). Thereby

S = f(xx ffi ei ffi ei) ®x2®e2® e2. Since x2 = f(xx), S = 0 can be re-written as

f(xx ffi ei ffi ei) ffi f(xx) ffi e2 ffi e2 = 0. (7.9)

Let H be the parity check matrix of V. When (ei, e2, e3) is miscorrected as (ei, e2,63),

we have H(ex,e2,e3) = H(ex,e2,e3). Thereby (ei,e2,e3) ffi (ei,e2,e3) is a codeword

of V. If (ei,e2,e3) 7̂ (ex,e2,e3), then (ei,e2) cannot be equal to (ei,e2). Otherwise

to guarantee that (ei,e2,e3) ffi (ei,e2,e3) is a codeword of V, e3 has to be equal to

e3, which contradicts to the assumption that (ei,e2,e3) 7̂ (ei,e2,e3). Thereby the

miscorrected errors can be divided into two cases as stated below.

1. If ix 7̂ ex, from the definition of the nonlinear function, there are at most

PfPk solutions for x\ in (7.9). Thereby, the error will be miscorrected with a

probability of at most Pf.

2. If ex = e2, then e2 7̂ e2. The error will always be detected since (7.9) will never

be satisfied.

The nonlinear multi-error correcting code presented in Theorem 3.4.7 has no un­

detectable errors and no errors miscorrected for all codewords. Its encoding and

decoding area overhead is comparable to the linear code V (Section 7.2.5). When

p = 2m, the presented code has the same digit-error and burst-error detecting and

correcting capabilities as V. We note that the proposed code has errors that are

conditionally detected or miscorrected. However, most of these errors are of a high

multiplicity and are less dangerous assuming that errors with small multiplicities are

more probable. Moreover, these errors will be detected with a probability of at least

1 — Pf, where Pf is the nonlinearity of / . Thereby, the reliability of architectures

protected by the presented nonlinear multi-error correcting codes can be further im-

176

proved by increasing the nonlinearity for / . (To increase the nonlinearity of / , it

may be necessary to increase the number of redundant digits for V (Carlet and Ding,

2004).)

While being able to provide an improved protection of systems comparing to

linear error correcting codes, the nonlinear multi-error correcting codes generated

by Theorem 3.4.7 still have the following shortages. First, it always requires more

redundant digits than linear codes with the same error correcting capabilities. Second,

the error correcting algorithm cannot be easily modified to correct errors beyond the

error correcting capability t. Obviously, corrections of some errors with multiplicity

larger than t can further improve the reliability of the system. Although in the

literature there are works discussing the beyond-i error corrections for linear error

correcting codes, the modified algorithm usually has much higher area or timing

complexity, see e.g. (Sudan, 1997).

The Error Correcting Algorithm for Multi-Error Correcting Generalized
Vasil'ev Codes

The second construction of nonlinear multi-error correcting codes is generalized from

Vasil'ev constructions (Vasil'ev, 1962). The presented codes may have the same

number of redundant digits as linear Hamming codes or BCH codes (see Theorem

3.4.8 in Chapter 3). Moreover, the error correcting algorithm for the presented codes

can also be used to correct some errors with multiplicities larger than t requiring no

extra area and timing overhead when comparing to schemes that only correct errors

with multiplicities up to t.

Let qx = pl1 and q2 = pl2, h > h > 1- Let V be a (nx,kx,d) <?i-ary code and

U = {(u, uP)} be a (n2, k2, d') q2-&ry code, where u e GF(qk2), k2 < nx, r2 = n2 — k2,

d' > d — 1 and P is a, k2 x r2 encoding matrix in GF(q2) (the last r2 columns of the

generator matrix of the code in standard form). Let / : GF(qkl) —> GF(q2
2) be an

177

arbitrary mapping such that / (0) ,0 G GF(q1
1) is equal to zero and f(y) ffi f(y') 7̂

f(y © y') for some y,y' G GF(qkl), where ffi is the digit-wise addition in GF(p). Let

U = (l*i,«2,-'-Mfca)i w h e r e ui G GF(q2). Let /3(u) = ((ui, 0),(«2, ()),••• ,(wfc2,0)),

where 0 G GF(ph-l2),(uh0) G GF(qx) and 0(u) G G F (^ 2) . Denote by vfc the

information bits of v G V. The code is composed of all vectors (u, (P(u), 0) ffi v, uP ffi

We next describe the error correcting algorithm for the nonlinear multi-error cor­

recting codes presented in Theorem 3.4.8. We consider elements of U in GF(q2) and

elements of V in GF(qx) as equivalent digits. The multiplicity of the error is defined

as the number of non-zero digits in the error vector. Let e = (ei,e2,e3) be the er­

ror vector and c = (xx,x2,x3) be the distorted codeword, where ex,xx G GF(q2
2),

e2,x2 G GF(qr{1),e3,x3 G GF(q2
2) and Xi = xt ffi et, 1 < i < 3. Denote by

v = (/3(xx),0) ffi x2 the distorted codeword in V and vk the information part of

v. In the presented error correcting algorithm, we assume that d' = d (see Theorem

3.4.8) and the standard error correcting algorithms are available for V and U. After

receiving the possibly distorted codeword (xx,x2,x3), compute S = xxP®f(vk)®x3.

Decode v using the standard error correcting algorithm for V. The output of the

decoder for V contains two parts. One is the decoded error vector e2 in GF(qx1)

and the other is the error flag signal Ey. Similarly, the outputs of the decoder for

U contain the error flag signal Ey and the possible error patterns for the first and

the third part of the codeword, which are ex G GF(q2
2) and e3 G GF(q2

2) respec­

tively. The values of the output signals of the decoders for U and V in different cases

are described in Table 7.6. The detailed error correcting algorithm for the nonlinear

multi-error correcting code presented in Theorem 3.4.8 is shown in Algorithm 2.

In reality, the error will be corrected only if at least one of the information bits is

distorted. If all errors are in the redundant bits, no correction will be attempted. The

178

Algor i thm 2: Error correcting algorithm for the nonlinear multi-error correct­
ing codes in Theorem 3.4.8

Input : c = (xi, x2, x3)
Output: e = (ei,e2,e3), ERR

begin
Decode V, compute e2, Ey, S;
if Ev = 0, S = 0 then
| No errors are detected, ERR — 0;

else if Ev = 0, S ^ 0 then
if d — 3 then

Errors either occur only in the redundant bits or are uncorrectable
multi-errors;
ERR = 1;

else
Decode U, compute ex,e3,Eu;
if Ev > 0 then

e = (ex,(/3(ex),0),e3);
e will only be corrected when ||e|| < t;
ERR = 0 when errors are corrected and ERR = 1 otherwise;

else
I Uncorrectable muti-errors are detected, ERR = 1;

else if Ey — — 1 then
| Uncorrectable muti-errors are detected, ERR = 1;

else
Ey is larger than 0;
Compute: ;

x2 — x2 0 <§2;
v = (l3(xx),Q)®x2;
x3 — x3® f(vk) (vk is the information part of ij);

Decode U according to xx and x3;
if Ev = 0 then

e = (0,12,0);
e will be only corrected if there are errors in the information bits;
ERR = 0 when errors are corrected and ERR = 1 otherwise;

lse if Eu > 0 then

e = (ei,G0(ei),O)©C2,e3) ;
e will only be corrected when ||e|| < t and there are errors in the
information bits;
ERR = 0 when errors are corrected and ERR = 1 otherwise;

else
I Eu = — 1, uncorrectable multi-errors are detected, ERR — 1.

179

miscorrection of errors for C is strongly related to the error correcting properties of U

and V. To simplify the analysis, we assume that U and V are both linear codes. For

a given e, 1 < ||e|| < t, all vectors belonging to the coset in which e is the coset leader

will be miscorrected as e by the linear code. For any (n, k,d = 2t + 1) binary linear

code that can correct up to t errors, for example, the number of miscorrected errors

is Yll=i (n)(2fc — 1). Compared to linear codes, the number of miscorrected errors

for the proposed nonlinear multi-error correcting codes will be drastically reduced as

shown in the following Theorem.

Theorem 7.2.2 Assume d' = d in Theorem 3.4-8 and f is a perfect nonlinear func­

tion from GF(q1
1) to GF(q2

2). Suppose only errors occurring to the information bits

are corrected, denote by T the number of correctable error patterns by the nonlinear

multi-error correcting codes presented in Theorem 3.4-8. The number of errors mis­

corrected for all codewords of the multi-error correcting codes presented in Theorem

3.4-8 is \KC\ = (qk2 - 1)T.

Proof According to Algorithm 2, the occurrence of miscorrections can be divided

into the following cases.

1. When d > 3, Ey = 0, S ^ 0, Ev > 0, the error pattern is e = (ex, (P(ex), 0), e3)

which is generated by the decoder of U. Errors are miscorrected by C if and

only if they are miscorrected by the linear code U. Since e will be corrected

only if ex 7̂ 0 and ||e|| < t, the number of possible correctable error patterns is

Thereby the number of miscorrected errors in this class is

i - 1

180

t t—i t—i—j

i+j

(7.15)

tf-^Etg(*)(7)(?)(.-i«.-xr
-££©(?)<•-*">• (716)

2. When F v > 0,

x3 = x3 ffi f(vk) = xxP ffi f(vk) ffi f(vk) ffi e3. (7.12)

After correcting e2, the error pattern visible to U is (ei, f(vk) ffi /(£&) ffi 63).

(a) If vk 7̂ vk ((ei,0) ffi e2 is miscorrected by V), f(vk) ffi f(vk) ffi e3 may

vary for different information bits. An error (ei, f(vk) ffi f(vk) ffi e3) will be

miscorrected if and only if it belongs to the same coset as correctable errors

(including the all-zero error vector) by U. Since errors are only corrected

when ||e|| < t, it is easy to verify that none of errors in this class will

always be miscorrected.

(b) If vk = vk ((ei,0) ffi e2 is successfully corrected by V), the error pattern

visible to U will be (ei,es). Errors in this class are miscorrected if and

only if (ei, e3) is miscorrected by U.

i. When Eu > 0 and ix = 0, the error will be only corrected if e2 has

181

errors in the information bits and ||e|| < t. The number of correctable

error patterns is given by (7.13). The number of miscorrected errors

in this situation is given by (7.14).

ii. When Eu > 0 and ix 7̂ 0, the number of correctable error patterns

is (7.15). The number of miscorrected errors in this case is given by

(7.16).

Nonlinear multi-error correcting codes presented in Theorem 3.4.8 still have errors

undetected or miscorrected for all codewords. However, the number of these errors

are drastically reduced compared to linear codes with the same length and the same

error correcting capability (see Section 7.2.3).

In Theorem 3.4.8, elements of U and V can belong to different fields, which allows

a more flexible selection of the two codes. For example, in order to construct a

nonlinear 5-digit error correcting code with elements in GF(210), we can select V

to be a linear 5-digit error correcting Reed-Solomon code in GF(210) and U to be a

binary repetition code with n = 11 and A; = 1 with elements in GF(2). The resulting

code will have the same digit-error correcting capabilities, much less undetectable

and miscorrected errors at the cost of only one more redundant digit in GF(210)

(redundant bits of U) when comparing to V.

The codes presented in Theorem 3.4.8 may be as good as BCH codes in terms

of the number of redundant digits (Example 3.4.6). Moreover, Algorithm 2 can be

slightly modified to correct errors with multiplicities larger than t. For example,

when Ey = 0, S 7̂ 0 and Eu > 0, the potential error pattern is e = (ei, ((3(ii), 0), e3).

The original algorithm only correct errors when ||e|| < t. This requirement can be

removed so that some errors with multiplicity larger than t can also be corrected.

Example 7.2.1 In this example we describe the encoding and decoding procedure of

a (31,17,5) binary nonlinear 2-error-correcting code. Let V be a (26,16,5) BCH code

182

whose generator polynomial is g(x) = x10+x9+x8+x6+x5+x3+1. Let U = {(u, uP)}

be a repetition code, where u G GF(2),uP G GF(24). Select f to be a quadratic perfect

nonlinear function from GF(216) to GF(24) defined by f = sx»s2®s3»s4, where ffi is

the bit-wise XOR and • is the multiplication in GF(24). Let (10101100111101001) be

the 17-bit message that needs to be encoded. Then u = 1, vk = (1101100111101001).

The redundant bits for V is (0101110001) and Pu ffi f(vk) = (1001). Thereby the

entire codeword is

c = (1010110011110100101011100011001).

Suppose the four left-most bits are distorted. The distorted codeword is

c= (0101110011110100101011100011001).

Thereby we have

v = (10111001111010010101110001).

The decoder will correct the 2-bit error i2 = (01100000000000000000000000) in v.

After this, v and x3 are re-computed and U is decoded according to Xx and x3. It is

easy to verify that x3 = (1111). Since Xx = 0 (the first bit of c), the input to the

decoder ofU is (01111). An error in the first bit will be successfully corrected by U.

Hence we have

e = (ii,(/3(ii),0)®i2,i3)

= (1111000000000000000000000000000).

Thereby, an error of multiplicity four is successfully corrected although the Hamming

distance of the code is only five.

We note that correcting errors with multiplicity larger than t will result in more

errors that are miscorrected for all codewords. For example, when Ey = 0, S = 0 and

Eu > 0, the error e = (ei, e2, e3) is miscorrected if and only if (ei, 63) is miscorrected

by U. Suppose no correction will be attempted if ||e|| > t, errors will not be corrected

if | |ei|| + ||e3 | | = t since in that case the resulting error vector (ix, (f3(ii), (0)), e3) will

have a multiplicity larger than t. As a result, no miscorrections will happen when

183

(ii,is) 7̂ (ei,e3), ||ei|| + ||e3 | | = t. Without the limitation on ||e||, miscorrections

will occur when (ex, e3) with a multiplicity of t + 1 is mistakenly corrected as (ei, i3)

whose multiplicity is t. Thereby, there is a tradeoff between the number of correctable

error patterns and the size of the correction kernel \Kc\- The decision of whether and

how to modify Algorithm 2 should be made according to specific applications and the

estimated error models.

7.2.3 Alternatives for the Protection of MLC N A N D Flash Memories

In this Section we compare six 5-bit error correcting codes for the protection of MLC

NAND flash memories with 1024 data bytes in each page. For MLC NAND flash

memories with a larger page size, longer codes generated by Theorem 3.4.7 and 3.4.8

can be used and all the analysis and comparison can be easily adjusted to justify the

advantage of the presented codes.

The first two alternatives are the widely used (8262,8192,11) BCH code (Sun

et a l , 2007) and the (830,820,11) shortened Reed-Solomon code defined over GF(210)

(Chen et al., 2008). The third and the forth alternatives are based on Theorem 3.4.7.

Let p = 2, k = 8200, rn = 10. Select / to be a quadratic perfect nonlinear function

defined by the following equation.

f(y) = yi • 2/2 © 2/3 • 2/4 • • • J/819 • 2/820, (7.17)

where y* G GF(210), 1 < i < 820 and • is the multiplication in GF(210). Let V be a

(8280,8210,11) BCH code. The codeword of the resulting nonlinear multi-bit correct­

ing code constructed as described in Theorem 3.4.7 is in the format of (y, f(y), <fi(z)),

where z = (y,f(y)), y G GF(28200) are the information bits, f(y) G GF(210) are the

nonlinear redundant bits and <f>(z) G GF(270) are the linear redundant bits. The code

is a 5-bit error correcting code with length 8280 and dimension 8200.

file:///Kc/

184

Let p = 210, k = 820 and rn = 1. Let / be the same quadratic function defined

in (7.17) and V be a (831,821,11) shortened Reed-Solomon codes in GF(210). A

(831,820,11) nonlinear multi-digit error correcting code can be constructed by Theo­

rem 3.4.7. The code has the same bit-error correcting capabilities as the (8262,8192,11)

BCH codes. Moreover, the code can also correct burst errors and up to 5-digit errors

like (830,820,11) Reed-Solomon codes defined over GF(210).

The fifth and the sixth alternatives are based on Theorem 3.4.8. For these two

alternatives, / is still selected to be the quadratic function defined in (7.17). Let

qi = q2 = 2. Let V be a (8270,8200,11) BCH code and U be a (11,1,11) linear

repetition code. The nonlinear code constructed as described in Theorem 3.4.8 is a

(8281,8200,11) nonlinear 5-bit error correcting code. The code can also correct some

errors with multiplicities higher than 5 without any extra overhead.

Let qx = 210 and q2 = 2 in Theorem 3.4.8. Let V be a (830,820,11) shortened

Reed-Solomon code defined over GF(210) and U be a (11,1,11) repetition code in

binary field. The resulting code in Theorem 3.4.8 is a (8301,8201,11) nonlinear 5-

digit error correcting code. (The length and the dimension here are in terms of the

number of binary bits.) The code can correct up to 5-digit errors in GF(210) and has

the same burst error correcting capabilities as Reed-Solomon codes. (The first bit

is treated as a separate digit.) Like alternative five, the nonlinear multi-digit error

correcting code based on Theorem 3.4.8 can also correct some errors with more than

5 digits distorted.

Table 7.7 compares the error correcting properties of the six 5-bit error correcting

codes. BCH code and Reed-Solomon code have a large number of undetectable errors.

Let us denote the number of codewords of multiplicity i by A- For every codeword c

of multiplicity eleven belonging to the BCH code, if effie' = c, ||e|| = 5 and ||e'|| = 6,

He'll will be miscorrected for all codewords as e since they have the same syndrome.

185

Table 7.7: Comparison of six 5-bit error correcting codes for the pro­
tection of MLC NAND flash memories

fcW

Digit & Burst Error Correcting
Beyond 5-bit Error Correcting

Number of Undetectable Errors (e)

Miscorrected Errors (e\ | |e|| = 6
Fraction of Miscorrected Errors

BCH
8262
8192
No
No

28192

« 1 0 1 7

wlf j - 4

Reed-Solomon^
8300
8200
Yes
No

28200

<^i(V)(C>

« i o - 3

Code 3
8280
8200
No
No
0

0
0

Code 4
8310
8200
Yes
No
0

0
0

Code 5
8281
8201
No
Yes
1

o<«o
« 0

Code 6
8301
8201
Yes
Yes
1

0(d)

« 0

(a): The code is denned in GF(2W).
(b): The length and the dimension here are in terms of the number of bits in binary field.
(c): J4JJ is the number of codewords in a code over GF(210) with 11 non-zero digits.
(d): The number is for the case when no errors with multiplicity larger than 5 are corrected.
(e): Errors undetectable or miscorrected for all codewords. Besides these two types of errors, the
presented codes also have errors that are conditionally detectable or conditionally miscorrected, most
of which can be detected with a probability of 1 — 2 - 1 0 .

Thereby, the number of errors of multiplicity six miscorrected for all codewords of

the BCH code is An(1
6

1). (If the error is only corrected when there is at least one

information bit distorted, this number will be a little smaller.) According to the

results presented in (MacWilliams and Sloane, 1998), for a (8262,8192,11) shortened

BCH code, An can be roughly estimated by Axl = (82f) /27 0 « 1014. Thereby, a large

number of errors with multiplicity 6 will be miscorrected by the BCH codes. The

fraction F of errors that are always miscorrected by the BCH code can be calculated

as

(2fe-i)EL(I) £ L O (7.18)
On 2n~k

For the linear (8262,8192,11) BCH code, F « 10"4.

For the Reed-Solomon code, a 6-bit error is miscorrected if and only if (1) the 6

bits are spread over 6 digits in GF(210); and (2) there is a codeword with 11 digits

that contains the 6 digits in (1). Moreover, given the fact that the length of the Reed-

Solomon code (in terms of digits) is much smaller than the length of the BCH code

(in terms of bits), the number of miscorrected 6-bit errors for Reed-Solomon codes

will be much smaller than that for BCH codes. However, similar to (7.18), we can

186

compute the proportion of errors that are always miscorrected by the Reed-Solomon

code, which is of the order of 10 - 3 and is worse than the BCH code.

Codes 3 and 4 generated by Theorem 3.4.7 do not have undetectable and miscor­

rected errors. Codes 5 and 6 based on Theorem 3.4.8 have only 1 undetectable error.

When no error with multiplicity larger than 5 is corrected, according to the proof of

Theorem 3.4.8 it is easy to derive that the smallest possible multiplicity of errors that

are always miscorrected by code 5 or 6 is seven. Moreover, since q2 = 2, A;2 = 1, the

number of errors that are miscorrected for all codewords is equal to the number of

correctable errors. As a result, the fraction of errors that are always miscorrected by

these two codes is almost 0. When each non-zero error pattern is equi-probable, the

probability of miscorrection for the presented nonlinear multi-error correcting codes

is much smaller than that for BCH codes and Reed-Solomon codes. Moreover, the

presented codes have no errors of multiplicity 6 that are miscorrected for all code­

words. Thereby, when assuming a fixed bit error rate, the probability that an error is

always miscorrected by these codes is still much smaller than their linear alternatives.

Different from linear codes, the four presented nonlinear multi-error correcting

codes have errors that are conditionally undetectable or miscorrected. These errors

usually have high multiplicities. Moreover, most of these errors can be detected

with a probability 1 — 2~10. Thereby, the existence of conditionally undetectable

or miscorrected errors will not compromise the reliability of NAND flash memories

protected by the proposed nonlinear multi-error correcting codes.

We note that the above message-dependent error detecting characteristic of the

proposed nonlinear multi-error correcting code is also very helpful for MLC NAND

flash memories for the protection of hardware malfunctions such as data retention

and programming/erasing endurance failure (Bez et al., 2003). Due to the decreased

programming voltage margin, data retention is more likely to happen for MLC tech-

187

nology than for SLC technology. The problem of programming/erasing endurance

also becomes more serious for MLC NAND flash memories, for which the typical

number of supported program/erase cycles is fewer than 10000 (Cooke, 2007). Errors

introduced by these hardware failures will never disappear or will only disappear after

the next erasing or programming operation. Hence, the proposed nonlinear t-error-

correcting code with stronger error detecting and correcting capability for repeating

errors due to the message-dependent error detecting characteristic can be used to­

gether with other protection schemes to efficiently detect these failures and protect

the devices against them.

Generally speaking, the proposed nonlinear multi-error correcting codes require

more redundant bits than their linear alternatives. However, this results in only a

very small decrease in the code rate (10 more redundant bits are required for more

more than 8000 information bits). Moreover, due to the existence of spare bytes in

MLC NAND flash memory (Section 7.2.1), the number of redundant bits of the error

correcting codes used for MLC NAND flash memories is not as critical as for other

types of memories such as SRAM and DRAM where the area overhead is mostly

determined by the number of redundant bits.

7.2.4 Hardware Design of the Encoder and the Decoder for Nonlinear
Multi-Error Correcting Codes

In this section, we present the encoder and the decoder architectures for the proposed

nonlinear multi-error correcting codes. We estimate the area, the performance and the

power consumption of the proposed architectures and compare them to architectures

based on linear BCH codes and linear Reed-Solomon codes (see Section 7.2.3).

188

Encoder Architecture

The encoder for BCH codes and Reed-Solomon codes are conventionally implemented

based on a linear feedback shift register (LFSR) architecture. Both the serial and the

parallel structures for LFSRs are well studied in the community. In general, the

serial LFSR needs A; clock cycles while the parallel LFSR needs only \k/q] clock

cycles to finish the computation of the redundant bits at the cost of higher hardware

complexity, where k is the number of information bits and q is the parallelism level

of the LFSRs.
XOR

Multiplier in GF(210) ®——*- Reg -*t--4-v$$/-

Figure 7-6: The architecture of the encoder for the (8281,8201,11)
nonlinear 5-error-correcting code

Compared to the encoder for the BCH codes and Reed-Solomon codes, the encoder

for the proposed nonlinear multi-error correcting codes requires one more finite field

multiplier and two registers for the computation of the nonlinear redundant bits.

The detailed architecture of the encoder for the nonlinear (8281,8201,11) 5-bit error

correcting code generated by Theorem 3.4.8 is shown in Figure 7-6. The design is

based on the parallel LFSR proposed in (Pei and Zukowski, 1992). The parallelism

level of the design is 10. During each clock cycle, 10 information bits are inputted to

the encoder. The most significant bit (msb) of the message is input via a separate

port. The first information bit for the BCH code is derived by XORing msb with the

189

first bit of msg at the first clock cycle (when cnt = 0 as shown in the figure). The

bottom half of the architecture is a parallel LFSR used to generate the redundant

bits for BCH codes. D is a 10 x 70 binary matrix (Pei and Zukowski, 1992). During

each clock cycle, the 10 most significant bits in the shift register are XORed with

the new input and then multiplied by D. The output of the multiplier is XORed

with the shifted data from the shift register to generate the input to the register.

The top half of the architecture is for the computation of nonlinear redundant bits.

During the even-numbered clock cycles, the 10-bit input is buffered. During the odd-

numbered clock cycles, the buffered data is multiplied by the new input in GF(210)

and then added to the output registers. A 10-bit mask is XORed with the data in

the output register to generate the nonlinear redundant bits. For the (8281,8201,11)

5-error-correcting code, 820 clock cycles are required to complete the encoding of the

message.

The encoder for the (8280,8200,11) nonlinear 5-bit error correcting code based

on Theorem 3.4.7 is similar to the one shown in Figure 7-6. The same structure (top

half) is used to compute the 10-bit nonlinear redundant bits. The main difference

between the two encoders is as follows. First, the encoder for the (8280,8200,11)

code does not require a separate port for msb. All information bits are input via

msg in 820 clock cycles, assuming a parallelism level of 10. Second, the encoding

of the (8280,8200,11) code needs one more clock cycle to complete compared to the

(8281,8201,11) code. At the 821*fc clock cycle, the input to D (Figure 7-6) is switched

to the already-generated nonlinear check bits using a 10-bit 2:1 multiplexer.

Instead of using a parallel architecture described above, the encoders for the linear

shortened (830,820,11) Reed-Solomon code defined over GF(210) and the two non­

linear multi-digit error correcting codes presented in Section 7.2.3 can be based on a

much simpler serial LFSR. Since the length of the Reed-Solomon code and the non-

190

linear multi-digit error correcting codes is 10 times shorter than that of the bit-error

correcting codes, the number of clock cycles required to complete the encoding for

the Reed-Solomon code and the nonlinear error correcting codes will still be the same

as for the bit-error correcting codes even with a serial LFSR. The former, however,

requires that all operations are performed in GF(210).

Decoder Architecture

The decoding of the proposed nonlinear multi-error correcting codes requires the

decoding of a BCH code or a Reed-Solomon code. The standard decoder for the

BCH codes mainly contains three parts: the syndrome computation block, the error

locator polynomial generation block and the Chien search block (Cho and Sung, 2008).

Compared to the decoder for the BCH codes, the decoder for the Reed-Solomon codes

requires one more block to compute the error magnitude. We next briefly discuss the

implementation of the above four blocks and then present the decoder architecture

for the proposed nonlinear multi-error correcting codes.

1. Syndrome Computation: Without loss of generality, assume that the BCH

code is a narrow-sense BCH code (MacWilliams and Sloane, 1998). Let us de­

note the received codeword by c = (xx,x2- • • xn-x, xn)- For a (n, k, d = 2t+1) t-

error-correcting BCH codes, the syndromes are defined as Si = £j=o Xj+xa^, 0 <

i < 2t — 1, where a is the primitive element of GF(2m). For binary BCH codes,

S2i = Sf. Hence only odd-numbered Si needs to be computed from c. The other

syndromes can be computed using a much simpler square circuit in GF(2m).

To improve the throughput of the decoder, a parallel design can be applied to

process multiple bits per clock cycle. Figure 7-7 shows the syndrome compu­

tation circuit with a parallelism level of q for one Si. For the whole syndrome

computation block, t such structures are needed.

191

Figure 7-7: The syndrome computation block with a parallelism level
of q for BCH codes

2. Error Locator Polynomial Generation: After the syndromes are computed,

the error locator polynomial A will be generated using the Berlekamp-Massey

(BM) algorithm. The hardware implementations of the BM algorithms have

been well studied in the community (Burton, 1971; Sarwate and Shanbhag,

2001; Seth et al., 2006; Rizwan, 2008). In our design a fully serial structure

proposed in (Burton, 1971) is used to minimize the area overhead. The design

mainly requires three multipliers in GF(2m) and two FIFOs. The error locator

polynomial A of degree t can be generated in t(t + 3)/2 clock cycles. For our

design, t = 5 and 20 clock cycles are needed for the generation of A.

3. Chien Search: Let us denote the primitive element in GF(2m) by a. The

Chien search algorithm exhaustively tests whether a% is a root of the error

locator polynomial A. If A(al) = 0, the error location is 2m — 1 — i. Rewrite

A(o;i) as:

A(a') = A0 ffi Aia* ffi X2a
2i ffi • • • ffi Xta

u

= A0,j ffi Xltia ffi A2>iQ;2 ffi • • • ffi At)ioA (7.19)

The computation complexity is reduced based on the fact that A ĵ+i = Xj^oP, 0 <

j < t. The algorithm can also be paralleled to test multiple positions per clock

192

cycle. A typical implementation of the algorithm with a parallelism level of q

contains t ra-bit multiplexers and registers, qxt multipliers for multiplication

by a constant and q adders in GF(2m) (Chen and Parhi, 2004). In (Cho and

Sung, 2008), a strength-reduced parallel Chien search architecture is proposed.

The authors showed that by a simple transformation of the error locator polyno­

mial, most of the Galois field multiplications can be replaced by shift operations

resulting in much lower hardware complexity (Figure 7-8). For the detail of the

architecture, please refer to (Cho and Sung, 2008).

\A(q') -

r ^ r*®*-2™

«< <H

-®J
/ M U X \ Reg

r-*®*-^
m-

4> Sad)

^&=P
/MUX\

•nc.
x2

: Ri(a)

(« K9d! Rq-Ka)]

~*&f~
m-

y\(a<fU^

A(ai')

Reg I /MUX\ Reg

r i
Figure 7-8: Strength-reduced Chien search architecture with a paral­
lelism level of q

4. Error Magnitude Computation for Reed-Solomon Codes: Besides the

error locator polynomial A, the Berlekamp-Massey algorithm can also generate

the error magnitude polynomial Q(z) defined by

(1 + S(z))A(z) = fl(z) mod z2t, (7.20)

where S(z) = So®Sxz®-- •®S2t-xz2t x is the syndrome polynomial. According

to Forney's algorithm (Sarwate and Shanbhag, 2001), the error magnitude at

193

position i can be computed as

zbQ(z)
ei = —m-z,z = a

zA'(z)
(7.21)

where A (z) is the derivative of A(z) and b is an integer. It is easy to verify

that A'(z) is simply the sum of the terms with odd degrees in A(.z) and can be

directly derived during the computation of A.

Syndrome Compulation

cycle 1 ~ 827
BM Algorithm Chien Search Re-check

cycle 828 ~ 847 cycle 848 ~ 1674 cycle 1675

TL

cnt[0] — 1?,—I
/ MUX \

£ - -y •& S "9*f- J i ij» s <•"»*"' w™

Figure 7-9: Decoder architecture for the proposed (8281,8201,11)
nonlinear 5-error-correcting code

The decoder for the nonlinear multi-error correcting codes presented in Theorem

3.4.7 is similar to the decoders for BCH codes and Reed-Solomon codes. In fact, most

of the decoding can be completed by the standard BCH or Reed-Solomon decoder.

The main difference is as follows. First, the nonlinear multi-error correcting codes

need to compute the nonlinear syndrome S (see Algorithm 1) when receiving the

possibly distorted codewords and re-compute S after correcting errors located by V.

Second, after the decoding of the linear codes is completed and S is re-computed, one

more clock cycle is required for the decoder of the nonlinear code to verify the error

194

correcting results so that possible miscorrection of errors can be prevented.

The decoder for the nonlinear multi-error correcting codes based on Theorem 3.4.8

is slightly more complicated than the decoder for codes based on Theorem 3.4.7. As

an example, the detailed architecture of the decoder for the (8281,8201,11) nonlinear

5-bit error correcting code is shown in Figure 7-9. The whole decoding procedure

requires 1675 clock cycles assuming a parallelism level of 10. During the first 827

cycles, S and the syndrome of the BCH code are computed. If no errors are detected

by the BCH code, the decoding procedure will be completed at the 828*'1 clock cycle.

Depending on the value of S, either the first two information bits will be flipped or

ERR will be pulled down by the ERR generating circuit which indicates that there are

no errors occurring to the information bits of the code. The error locator polynomial

generation and the Chien search will be incurred only when errors are detected by

the BCH code, which can effectively reduce the average decoding latency.

If errors are detected by the BCH code, the Berlekamp-Massey algorithm will take

another 20 clock cycles to generate the error locator polynomial A. After this the

Chien search block will exhaustively test all possible error locations. If A(a%) = 0,

then the error location is 2m - 1 - i. Since a (8270,8200,11) shortened BCH code

is used, only A(al),8114 < i < 16383 (m = 14) need to be computed. The original

strength-reduced Chien search architecture is slightly modified for the decoding of

shortened BCH codes. The constant inputs Aj, 1 < i < t to the bottom t Galois field

multipliers in Figure 7-8 are set to be a~101 instead of a10* (q = 10).

S is initialized to be S and is serially updated during the Chien search stage.

Starting from the 848t/l clock cycle, the 10-bit FIFO output Xi (possibly distorted

codeword) and the decoded 10-bit error vector ej will be buffered in two 10-bit regis­

ters. At each odd-numbered clock cycle, S is updated as follows.

S = S® Xi_x »Xi® (xi-x © ei_i) • (xi ffi e^. (7.22)

195

At the 1675 clock cycle, msb and S are used to re-check whether the most significant

two bits are successfully corrected. A 2-bit error mask will be generated to make

adjustment to these two bits according to the check results.

The decoder for the digit-error correcting code based on Theorem 3.4.8 presented

in Section 7.2.3 and the decoder for the (8281,8201,11) nonlinear 5-bit error correcting

code are different as follows.

1. All operations of the decoder for the 5-digit error correcting code are performed

in GF(210).

2. The 5-digit error correcting code does not require a parallel architecture. A

serial design can achieve a similar decoding latency in terms of the number of

clock cycles to the decoder for the (8281,8201,11) 5-bit error correcting code

with a parallelism level of 10.

3. One more block for the computation of the error magnitude is integrated into

the architecture shown in Figure 7-9. The block is connected to the Chien search

block and generates the final decoded memory contents.

The error magnitude polynomial is generated by the Berlekamp-Massey block.

To reduce the hardware overhead, multipliers in GF(210) for the calculation of the

nonlinear syndrome S are re-used to generate the error magnitude polynomial. One

inverter in GF(210) is required to compute ê according to Forney's algorithm (see

(7.21)). In general, inverters in Galois field have much longer critical path than

multipliers. Thus a 4-stage pipeline is added to reduce the latency of the inverter.

Let a G GF(210), o~x can be represented as

196

Given the fact that a 4-stage pipeline is implemented, the above function can be

realized using square operations and 5 multiplications in GF(210). Again we re-use

the multipliers in other blocks for the purpose of reducing the hardware overhead.

Since the square operation is simple in GF(210), the inverter adds minimal area

overhead and has a latency similar to the Galois filed multiplier in our design.

7.2.5 Area, Latency and Power Consumption

The area, latency and the power consumption for architectures based on the six alter­

natives presented in Section 7.2.3 are shown in Table 7.8. The designs are modelled

in Verilog and synthesized in RTL Design Compiler using 45nm NANGATE library

(Nangate, 2011). In practice the logic circuits used in NAND flash memory could be

different from those used in standard digital designs. The estimation presented here

is only for the purpose of investigating the increase in area, power and latency of

architectures based on the proposed nonlinear multi-error correcting codes compared

to architectures based on the widely used BCH codes and Reed-Solomon codes.

During the synthesis we fixed the clock rate for the encoder and the decoder and

compared the area and the power consumption for architectures based on different

codes. The encoders work at 1GHz. The decoders work at a lower frequency -

400MHz - due to the long critical path in Berlekamp-Massey block (Chen et al.,

2008). The six alternatives require the similar latency in terms of the number of clock

cycles for encoding and decoding. Due to the computation of the error magnitude

and the pipeline for the inverter in the Galois field, digit-error correcting codes (Reed-

Solomon, etc) need 8 more clock cycles to complete the decoding compared to bit-error

correcting codes (BCH, etc).

The encoders for the digit-error correcting codes require 40% ^ 50% more area

overhead and power than the encoders for bit-error correcting codes due to the fact

197

that all operations are in GF(210). The decoders for digit-error correcting codes,

however, require 20% ^ 30% less overhead in area and power because of a much

simpler serial architecture.

Compared to BCH codes and Reed-Solomon codes, the proposed nonlinear multi-

error correcting codes need about 10% ^ 20% more area and power in total for the

encoder and the decoder and have the similar latency in terms of the number of

clock cycles required to complete the encoding and decoding. The (8281,8201,11)

nonlinear 5-bit error correcting codes based on Theorem 3.4.8 (column 6 and 7 in

Table 7.8), for example, requires 17.5% more area and consumes 10.0% more power

in total for the encoder and the decoder compared to the (8262,8192,11) BCH code.

We note that the encoder and the decoder are only a very small portion in the MLC

NAND flash memory chip, where the major portion is the memory cell array. Thereby

the increase in area overhead for the encoder and the decoder is not significant for

the reliable memory design. The power for ECC schemes is mostly consumed by

the decoder. However, when there are no errors, which is the most probable case,

the only active part in the decoder is the syndrome computation block. Thereby, in

practice the average increase of the power consumption for the presented nonlinear

multi-error correcting codes will be smaller than the data shown in Table 7.8. Given

the fact that the reliability of MLC NAND flash memories protected by the proposed

nonlinear multi-error correcting codes are much higher than those protected by linear

codes (Table 7.7), the small increase in area and power is reasonable and acceptable.

7.3 Summary

We propose to use nonlinear error correcting codes to improve the reliability of mem­

ory systems. Nonlinear SEC-DED codes generalized from Vasil'ev codes and Phelps

codes can be used for the build of reliable SRAMs tolerant to SEUs, etc. Nonlinear

198

multi-error correcting codes based on concatenations and Vasil'ev constructions can

be used to protect MLC NAND flash memories, where multi-bit (or multi-digit) error

correcting is essential for the stability and reliability of the device.

Architectures based on nonlinear error correcting codes have less undetectable

errors and less errors that are misscorrected for all codewords than architectures

based on linear codes. The error correcting algorithms for the proposed nonlinear

codes are described. The multi-error correcting code generalized from Vasil'ev codes

can also correct some errors with multiplicity larger than its error correcting capability

t without any extra overhead in area, latency and power consumption compared to

schemes that correct only up to t errors.

The encoders and decoders for different codes are modelled in Verilog and synthe­

sized in RTL design compiler. The results show that architectures based on nonlinear

error correcting codes can have nearly no undetectable and miscorrected errors while

consuming about 15% ~ 30% more area and power consumption compared to archi­

tectures based on the linear codes with the same error correcting capability.

Table 7.8: Comparison of the area, the latency and the power consumption of different alternatives that
can correct up to 5-bit errors for the protection of MLC NAND flash memories

Parallelism Level
Speed(Hz)

Latency(Cycles)
Area((im'z)

Power(mVv)

Bit-Error Correcting
BCH

ENC
10
lG
820

854.4
0.61

DEC
10

400M
1674

12501.7
3.31

i'heorem 3.4.7
ENC

10
1G
821

1468.3
0.85

DEC
10

400M
1675

14114.0
3.37

i'heorem 3.4.8
ENC

10
1G
820

1459.8
0.82

DEC
10

400M
1675

14245.9
3.48

Digit-Error Correcting
KS

ENC
1

1G
820

1407.4
0.91

DEC
1

400M
1682

9597.8
2.03

Theorem 3.4.7
ENC

1
1G
821

2051.7
1.13

DEC
1

400M
1683

11059.2
2.14

i'heorem 3.4.8
ENC

1
1G
820

2094.5
1.20

DEC
1

400M
1683

11127.3
2.18

References

Akdemir, K. D., Hammouri, G., and Sunar, B. (2009). Non-linear error detection
for finite state machines. In Proceedings of the 10th International Workshop on
Information Security Applications (WISA), pages 226-238.

Akdemir, K. D., Wang, Z., Karpovsky, M. G., and Sunar, B. (book chapter to appear
in 2011). Design of Cryptographic Devices Resilient to Fault Injection Attacks
Using Nonlinear Robust Codes, in Fault Analysis in Cryptography.

Assmus, E. F., Jr, and Key, J. D. (1995). Polynomial codes and finite geometries,
Manuscript, h t t p : / / c i t e s e e r x . i s t . psu. edu/viewdoc/summary?doi=10.1.1.
9.1139s.

Atwood, G., Fazio, A., Mills, D., and Reaves, B. (1997). Intel StrataFlash™ memory
technology overview. Intel Technology Journal, 1(2).

Bagatin, M., Cellere, G., Gerardin, S., Paccagnella, A., Visconti, A., Beltrami, S.,
and Maccarrone, M. (2007). Single event effects in 1Gbit 90nm NAND flash
memories under operating conditions. In 13th IEEE International On-Line Testing
Symposium, 2007. IOLTS 07., pages 146-151.

Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., and Whelan, C. (2006). The
sorcerer's apprentice guide to fault attacks. Proceedings of the IEEE, 94(2) :370
-382.

Baranov, S., Levin, I., Keren, O., and Karpovsky, M. (2009). Designing fault tolerant
FSM by nano-PLA. IEEE International On-Line Testing Symposium, pages 229-
234.

Barenghi, A., Bertoni, G., Parrinello, E., and Pelosi, G. (2009). Low voltage fault
attacks on the RSA cryptosystem. Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 23-31.

Berger, J. M. (1961). A note on an error detection code for asymmetric channels.
Information and Control, 4:68-73.

Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., and Piuri, V. (2003). Error
analysis and detection procedures for a hardware implementation of the advanced
encryption standard. IEEE Transactions on Computers, 52(4):492-505.

200

201

Beth, T., Jungnickel, D., and Lenz, H. (1999). Design Theory, volume 1. Cambridge
University Press.

Bez, R., Camerlenghi, E., Modelli, A., and Visconti, A. (2003). Introduction to flash
memory. Proceedings of the IEEE, 91(4):489-502.

Bhattacharryya, D. K. and Nandi, S. (1997). An efficient class of SEC-DED-AUED
codes. In Proceedings of the 1997 International Symposium on Parallel Architec­
tures, Algorithms and Networks, ISPAN '97, pages 410-, Washington, DC, USA.
IEEE Computer Society.

Boneh, D., Demillo, R. A., and Lipton, R. J. (2001). On the importance of elimi­
nating errors in cryptographic computations. In Journal of Cryptology, volume 14,
pages 101-119.

Bose, B. (1984). Unidirectional error correction/detection for VLSI memory. In
Proceedings of the 11th annual international symposium on computer architecture,
pages 242-244.

Bousselam, K., Natale, G. D., Flottes, M.-L., and Rouzeyre, B. (2010). Evaluation of
concurrent error detection techniques on the advanced encryption standard. IEEE
International On-Line Testing Symposium, pages 223-228.

Burton, H. (1971). Inversionless decoding of binary BCH codes. IEEE Transactions
on Information Theory, 17(4):464-466.

Canivet, G., Maistri, P., Leveugle, R., Cldire, J., Valette, F., and Renaudin, M.
(2010). Glitch and laser fault attacks onto a secure AES implementation on a
SRAM-based FPGA. Journal of Cryptology, pages 1-22. 10.1007/s00145-010-
9083-9.

Carlet, C. and Ding, C. (2004). Highly nonlinear mappings. Journal of Complexity,
20(2-3).

Cassuto, Y., Schwartz, M., Bohossian, V., and Bruck, J. (2007). Codes for multi­
level flash memories: Correcting asymmetric limited-magnitude errors. In IEEE
International Symposium on Information Theory, 2007. ISIT 2007., pages 1176-
1180.

Cellere, G., Gerardin, S., Bagatin, M., Paccagnella, A., Visconti, A., Bonanomi,
M., Beltrami, S., Harboe-Sorensen, R., Virtanen, A., and Roche, P. (2009). Can
atmospheric neutrons induce soft errors in NAND floating gate memories? IEEE
Electron Device Letters, 30(2):178-180.

202

Chen, B., Zhang, X., and Wang, Z. (2008). Error correction for multi-level NAND
flash memory using Reed-Solomon codes. In IEEE Workshop on Signal Processing
Systems, 2008. SiPS 2008., pages 94-99.

Chen, C. L. (1983). Error-correcting codes with byte error-detection capability.
IEEE Transactions on Computers, C-32:615-621.

Chen, C. L. (1996). Symbol error correcting codes for memory applications. In
Proceedings of the The Twenty-Sixth Annual International Symposium on Fault-
Tolerant Computing (FTCS '96), pages 200 -207.

Chen, T.-H., Hsiao, Y.-Y., Hsing, Y.-T., and Wu, C.-W. (2009). An adaptive-
rate error correction scheme for NAND flash memory. In 27th IEEE VLSI Test
Symposium, VTS '09., pages 53-58.

Chen, Y. and Parhi, K. (2004). Small area parallel Chien search architectures for long
BCH codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
12(5):545-549.

Cho, J. and Sung, W. (2008). Strength-reduced parallel Chien search architecture
for strong BCH codes. IEEE Transactions on Circuits and Systems II: Express
Briefs, 55(5):427-431.

Cooke, J. (2007). The inconvenient truths about NAND flash memory. Micron
MEMCON'07presentation, ht tp: / /download.micron.com/pdf/presentat ions/
events/flash_mem_summit_jcooke_inconvenient_truths_nand.pdf.

Cramer, R., Dodis, Y., Fehr, S., Padro, C , and Wichs, D. (2008). Detection of alge­
braic manipulation with applications to robust secret sharing and fuzzy extractors.
In Proceedings of the theory and applications of cryptographic techniques 27th an­
nual international conference on Advances in cryptology, EUROCRYPT'08, pages
471 488, Berlin, Heidelberg. Springer-Verlag.

Dan, R. and Singer, R. (2003). White paper: Implementing MLC NAND flash for
cost-effective, high capacity memory. M-Systems. h t t p : / / s u p p o r t . gateway.
com/s/Manuals/Desktops/5502664.

Degtyaryov, A. and Slyozkin, V. (2001). Conception of a generalized receiver in
telecommunication systems. In 11th International Conference on Microwave and
Telecommunication Technology, 2001. CriMiCo 2001, pages 290-291.

Dodis, Y., Katz, J., and Reyzin, L. (2006). Robust fuzzy extractors and authenticated
key agreement from close secrets. In Advances in Cryptology - CRYPTO 06, pages
232-250. Springer.

http://download.micron.com/pdf/presentations/
http://support

203

Dunning, L. A. (1985). SEC-BED-DED codes for error control in byte-organized
memory systems. IEEE Transactions on Computers, 34:557-562.

Dutta, A. and Touba, N. A. (2007). Multiple bit upset tolerant memory using a
selective cycle avoidance based SEC-DED-DAEC code. In 25th IEEE VLSI Test
Symposium (VTS'07), pages 349-354.

Eto, A., Hidaka, M., Okuyama, Y., Kimura, K., and Hosono, M. (1998). Impact
of neutron flux on soft errors in mos memories. In International Electron Devices
Meeting, 1998. IEDM '98 Technical Digest, pages 367 -370.

Etzion, T. and Vardy, A. (1994). Perfect binary codes: Constructions, properties,
and enumeration. In IEEE Transaction on Information Theory, volume 40, pages
754-763.

Gao, S. (1993). Normal Bases over Finite Fields. PhD thesis, University of Waterloo,
ht tp: / /c i teseerx. is t .psu.edu/viewdoc/summary?doi=10.1.1.67.2965.

Gaubatz, G. and Sunar, B. (2006). Robust finite field arithmetic for fault-tolerant
public-key cryptography. In Workshop on Fault Diagnosis and Tolerance in Cryp­
tography (FDTC), pages 196-210.

Gaubatz, G., Sunar, B., and Karpovsky, M. G. (2006). Non-linear residue codes for
robust public-key arithmetic. In Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC).

Georgakos, G., Huber, P., Ostermayr, M., Amirante, E., and Ruckerbauer, F. (2007).
Investigation of increased multi-bit failure rate due to neutron induced seu in ad­
vanced embedded srams. In IEEE Symposium on VLSI Circuits, 2007, pages 80
-81.

Halfhill, T. R. (2005). Z-ram shrinks embedded memory. Technical report, Micro­
processor Report, ht tp: / /www.onversi ty.net/ load/zram.pdf.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell
System Technical Journal, 29(2):147-160.

Hammouri, G., Akdemir, K., and Sunar, B. (2009). Novel puf-based error detection
methods in finite state machines. In Information Security and Cryptology(ICISC)
2008, pages 235-252.

Hsiao, M. Y. (1970). A class of optimal minimum odd-weight-column seeded codes.
IBM Journal of R & D, 14:395-401.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.2965
http://www.onversity.net/load/zram.pdf

204

Irom, F. and Nguyen, D. (2007). Single event effect characterization of high density
commercial NAND and NOR nonvolatile flash memories. IEEE Transactions on
Nuclear Science, 54(6):2547-2553.

Johnston, A. H. (2000). Scaling and technology issues for soft error rates. 4th
Annual Research Conference on Reliability. h t t p : / / t r s - n e w . j p l . n a s a . g o v /
dspace/handle/2014/16240.

Joye, M. and Yen, S.-M. (2003). The montgomery powering ladder. In Revised
Papers from the 4th International Workshop on Cryptographic Hardware and Em­
bedded Systems, CHES '02, pages 291-302, London, UK, UK. Springer-Verlag.

Jungnickel, D. and Pott, A. (1999). Difference Sets, Sequences and Their Correla­
tion Properties, volume 542 of NATO Science Series, chapter Difference Sets: An
Introduction. Kluwer Academic Publishers.

Karpovsky, M., Kulikowski, K. J., and Taubin, A. (2004). Robust protection against
fault-injection attacks on smart cards implementing the advanced encryption stan­
dard. In Proceedings of the 2004 International Conference on Dependable Systems
and Networks, pages 93-, Washington, DC, USA. IEEE Computer Society.

Karpovsky, M. and Nagvajara, P. (1989). Optimal codes for the minimax criteria on
error detection. IEEE Transaction on Information Theory, 35(6): 1299-1305.

Karpovsky, M. and Taubin, A. (2004). New class of nonlinear systematic error
detecting codes. IEEE Transactions on Information Theory, 50(8): 1818 - 1819.

Karpovsky, M. and Wang, Z. (2011). Algebraic manipulation detection codes re­
sistant to advanced fault injection attacks. IEEE Transactions on Information
Theorem, submitted.

Karpovsky, M. G., Kulikowski, K. J., and Wang, Z. (2007). Robust error detection in
communication and computation channels. In Workshop on Spectral Techniques.
ht tp: / /mark.bu.edu.

Karpovsky, M. G., Kulikowski, K. J., and Wang, Z. (2008a). On-line self error
detection with equal protection against all errors. Interenational Journal of Highly
Reliable Electronic System Design, h t t p : / /mark. bu. edu.

Karpovsky, M. G., Stankovic, R. S., and Astola, J. T. (2008b). Spectral Logic and
Its Applications in Design of Digital Devices. John Wiley & Sons.

Karri, R., Wu, K., Mishra, P., and Kim, Y. (2002). Concurrent error detec­
tion schemes for fault-based side-channel cryptanalysis of symmetric block ciphers.
IEEE Transactions on CAD of Integrated Circuits and Systems, 21(12):1509-1517.

http://trs-new.jpl.nasa.gov/
http://mark.bu.edu

205

Kermani, M. M. and Reyhani-Masoleh, A. (2008). A lightweight concurrent fault de­
tection scheme for the AES S-boxes using normal basis. In Cryptographic Hardware
and Embedded Systems Workshop (CHES), pages 113-129.

Khursheed, S., Al-Hashimi, B., Reddy, S., and Harrod, P. (2009). Diagnosis of
multiple-voltage design with bridge defect. IEEE Transactions on Computers-
Aided Design of Integrated Circuits and Systems, 28(3) :406 -416.

Kim, C. and Quisquater, J.-J. (2007). Fault attacks for CRT based RSA: New at­
tacks, new results, and new countermeasures. In Sauveron, D., Markantonakis, K.,
Bilas, A., and Quisquater, J.-J., editors, Information Security Theory and Prac­
tices. Smart Cards, Mobile and Ubiquitous Computing Systems, volume 4462 of
Lecture Notes in Computer Science, pages 215-228. Springer Berlin / Heidelberg.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis. In Lecture
Notes in Computer Science, pages 388-397.

Kocher, P. C. (1996). Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In KOBLITZ, N(ed.) CRYPTO, Lecture Notes in
Computer Science, volume 1109, pages 104-113.

Krasniewski, A. (2008). Concurrent error detection for finite state machines imple­
mented with embedded memory blocks of SRAM-based FPGAs. Microprocessors
and Microsystems, pages 303-312.

Kulikowski, K., Venkataraman, V., Wang, Z., Taubin, A., and Karpovsky, M. (2008a).
Asynchronous balanced gates tolerant to interconnect variability. In IEEE Inter­
national Symposium on Circuits and Systems, 2008. ISC AS 2008., pages 3190
-3193.

Kulikowski, K., Wang, Z., and Karpovsky, M. G. (2008b). Comparative analysis
of fault attack resistant architectures for private and public key cryptosystems.
In Proceedings of International Workshop on Fault-tolerant Cryptographic Devices,
pages 41-50.

Kulikowski, K. J., Karpovsky, M. G., Taubin, E., Wang, Z., and Kulikowski, A.
(2008c). Concurrent fault detection for secure QDI asynchronous circuits. In
Workshop on Dependable and Secure Nanocomputing (WDSN). h t tp : \ \mark .bu .
edu.

Kulikowski, K. J., Venkataraman, V., Wang, Z., and Taubin, A. (2008d). Power
balanced gates insensitive to routing capacitance mismatch. In Proceedings of the
conference on Design, automation and test in Europe, DATE '08, pages 1280-1285,
New York, NY, USA. ACM.

206

Kulikowski, K. J., Venkataraman, V., Wang, Z., Taubin, A., and Karpovsky, M. G.
(2008e). Asynchronous balanced gates tolerant to interconnect variability. In
IEEE International Symposium on Circuits and Systems (ISCAS 2008), pages
3190-3193. IEEE Press.

Lala, P. K. (1978). An adaptive double error correction scheme for semiconductor
memory systems. Digital processes, 4:237-243.

Lala, P. K. (2001). Self-Checking and Fault-Tolerant Digital Design, Book. Elsevier.

Lala, P. K. (2003). A single error correcting and double error detecting coding scheme
for computer memory systems. In Proceedings of the 18th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, DFT '03, pages 235-,
Washington, DC, USA. IEEE Computer Society.

Lange, F. (1967). Correlation techniques. Princeton, N.J., Van Nostrand.

Lisboa, C. A., Erigson, M. I., and Carro, L. (2007). System level approaches for
mitigation of long duration transient in future technologies. In 12th IEEE European
Test Symposium (ETS'07), pages 165-172.

Liu, W., Rho, J., and Sung, W. (2006). Low-power high-throughput BCH error cor­
rection VLSI design for multi-level cell NAND flash memories. In IEEE Workshop
on Signal Processing Systems Design and Implementation, 2006. SIPS '06, pages
303-308.

MacWilliams, F. and Sloane, N. (1998). The Theory of Error-Correcting Codes.
North-Holland Mathematical Library.

Maistri, P. and Leveugle, R. (1982). Double-data-rate computation as a countermea­
sure against fault analysis. IEEE Transactions on Computers, 57(11):1528 1539.

Maistri, P., Vanhauwaert, P., and Leveugle, R. (2007). Evaluation of register-level
protection techniques for the advanced encryption standard by multi-level fault
injections. In Bolchini, C , Kim, Y.-B., Salsano, A., and Touba, N. A., editors, 22nd
IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems
(DFT 2007), pages 499-507. IEEE Computer Society.

Maiz, J., Hareland, S., Zhang, K., and Armstrong, P. (2003). Characterization of
multi-bit soft error events in advanced srams. In IEEE Int'l Electronic Device
Meeting, pages 519-522.

Malkin, T., Standaert, F.-X., and Yung, M. (2006). A comparative cost/security
analysis of fault attack countermeasures. In Breveglieri, L., Koren, I., Naccache,

207

D., and Seifert, J.-R, editors, Fault Diagnosis and Tolerance in Cryptography, vol­
ume 4236 of Lecture Notes in Computer Science, pages 159-172. Springer Berlin /
Heidelberg.

Massey, J. and Omura, J. (1986). Computational method and apparatus for finite
field arithmetic. In US Patent No. 4587627.

Maxwell, M. S. (2005). Almost Perfect Nonlinear functions and related combinatorial
structures. PhD thesis, Iowa State University.

Micheloni, R., Ravasio, R., Marelli, A., Alice, E., Altieri, V., Bovino, A., Crippa, L.,
Di Martino, E., D'Onofrio, L., Gambardella, A., Grillea, E., Guerra, G., Kim, D.,
Missiroli, C , Motta, I., Prisco, A., Ragone, G., Romano, M., Sangalli, M., Sauro,
P., Scotti, M., and Won, S. (2006). A 4Gb 2b/cell NAND flash memory with em­
bedded 5b BCH ECC for 36mb/s system read throughput. In IEEE International
Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers,
pages 497-506.

Micron (2008). Wear-leveling techniques in NAND flash devices. Micron, h t t p : / /
download.micron.com/pdf/technotes/nand/tn2942_nand_wear_leveling.pdf.

Mollard, M. (1986). A generalized parity function and its use in the construction of
perfect codes. In SIAM J. Algebraic Discrete Methods, volume 7, pages 113-115.

Monnet, Y., Renaudin, M., Leveugle, R., Clavier, C , and Moitrel, P. (2006). Case
study of a fault attack on asynchronous DES crypto-processors. In Breveglieri, L.,
Koren, I., Naccache, D., and Seifert, J.-R, editors, Fault Diagnosis and Tolerance
in Cryptography, volume 4236 of Lecture Notes in Computer Science, pages 88-97.
Springer Berlin / Heidelberg.

Moore, S. K. (2007). Masters of memory. IEEE Spectrum, 44(l):45-49.

Moore, S. W., Anderson, R. J., Cunningham, P., Mullins, R., and Taylor, G. (2002).
Improving smart card security using self-timed circuits. In 8th International Sym­
posium on Asynchronous Circuits and Systems (ASYNC 2002), pages 211-218.
IEEE Computer Society.

Nangate (2011). Nangate 45nm open cell library, http://www.nangate.com.

Pei, T.-B. and Zukowski, C. (1992). High-speed parallel CRC circuits in VLSI. IEEE
Transactions on Communications, 40(4):653-657.

Penzo, L., Sciuto, D., and Silvano, C. (1995). Construction techniques for systematic
SEC-DED codes with single byte error detection and partial correction capabil­
ity for computer memory systems. IEEE Transactions on Information Theory,
41(2):584 -591.

http://
http://download.micron.com/pdf/technotes/nand/tn2942_nand_wear_leveling.pdf
http://www.nangate.com

208

Phelps, K. T. (1983). A combinatorial construction of perfect codes. In SI AM J.
Algebraic Discrete Methods, volume 4, pages 398-403.

Phelps, K. T. and Levan, M. (1995). Kernels of nonlinear Hamming codes. Designs,
Codes and Cryptography, 6:247-257.

Piret, G. and Quisquater, J.-J. (2003). A differential fault attack technique against
spn structures, with application to the AES and KHAZAD. In Cryptographic
Hardware and Embedded Systems Workshop (CHES), pages 77-88.

Rao, T. and Garcia, O. (1971). Cyclic and multiresidue codes for arithmetic opera­
tions. IEEE Transactions on Information Theory, 17(1):85 - 91.

Rao, T. R. N. and Fujiwara, E. (1989). Error-control coding for computer systems.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Reddy, S. (1978). A class of linear codes for error control in byte-per-card organized
digital systems. IEEE Transactions on Computers, C-27:455-459.

Reyhani-Masoleh, A. and Hasan, M. A. (2002). A new construction of Massey-Omura
parallel multiplier over GF(2m). IEEE Transactions on Computers, 51(5):511 520.

Rizwan, S. (2008). Retimed decomposed serial Berlekamp-Massey (BM) architecture
for high-speed Reed-Solomon decoding. In 21st International Conference on VLSI
Design, 2008. VLSID 2008, pages 53-58.

Roberts, D., Austin, T., Blauww, D., Mudge, T., and Flautner, K. (2005). Error
analysis for the support of robust voltage scaling. In Sixth International Symposium
on Quality of Electronic Design, 2005. ISQED 2005., pages 6 5 - 7 0 .

Rochet, R., Leveugle, R., and Saucier, G. (1993). Analysis and comparison of fault
tolerant FSM architecture based on SEC codes. In The IEEE International Work­
shop on Defect and Fault Tolerance in VLSI Systems, pages 9-16.

Samyde, D., Skorobogatov, S., Anderson, R., and Jacques Quisquater, J. (2002). On a
new way to read data from memory. In Proceedings of the First International IEEE
Security in Storage Workshop, pages 65-, Washington, DC, USA. IEEE Computer
Society.

Santhi, N. (2007). On algebraic decoding of q-ary Reed-Muller and product Reed-
Solomon codes. In IEEE International Symposium on Information Theory, 2007.
ISIT 2007, pages 1351 -1355.

Sarwate, D. V. and Shanbhag, N. R. (2001). High-speed architectures for Reed-
Solomon decoders. IEEE Transactions on Very Large Scale Integrated Systems,
9(5):641-655.

209

Satoh, S., Tosaka, Y., and Wender, S. A. (2000). Geometric effect of multiple-bit soft
errors induced by cosmic ray neutrons on DRAMs. IEEE Electron Device Letters,
21(6):310 -312.

Schmidt, J.-M. and Herbst, C. (2008). A practical fault attack on square and mul­
tiply. In Proceedings of the 2008 5th Workshop on Fault Diagnosis and Tolerance
in Cryptography, pages 53-58, Washington, DC, USA. IEEE Computer Society.

Schmidt, J. M. and Hutter, M. (2007). Optical and EM fault-attacks on CRT-
based RSA: Concrete results. In 15th Austrian Workshop on Microelectronics.
ht tp : / / even ts . i a ik . tugraz .a t / aus t roch ip2007/proceed ings / index .h tm.

SECG (2000). Standards for efficient cryptography, sec 2: Recommended elliptic
curve domain parameters, h t tp : / /www.secg.org/col la tera l / sec2_f inal .pdf.

Seth, K., Viswajith, K., Srinivasan, S., and Kamakoti, V. (2006). Ultra folded high­
speed architectures for Reed Solomon decoders. In VLSI Design, 2006. Held
jointly with 5th International Conference on Embedded Systems and Design., 19th
International Conference on, pages 4 pp.-.

Sherman, H. (1956). Some optimal signals for time measurement. IRE Transactions
on Information Theory, IT-2(1).

Skorobogatov, S. (2010). Optical fault masking attacks. In Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2010 Workshop on, pages 23 -29.

Skorobogatov, S. P. and Anderson, R. J. (2003). Optical fault induction attacks. In
Revised Papers from the 4th International Workshop on Cryptographic Hardware
and Embedded Systems, pages 2-12, London, UK. Springer-Verlag.

Sudan, M. (1997). Decoding of Reed Solomon codes beyond the error-correction
bound. Journal of Complexity., 13(1):180-193.

Sun, F., Devarajan, S., Rose, K., and Zhang, T. (2007). Design of on-chip error
correction systems for multilevel NOR and NAND flash memories. IET Circuits,
Devices and Systems, l(3):241-249.

Sunar, B., Gaubatz, G., and Savas, E. (2007a). Sequential circuit design for embed­
ded cryptographic applications resilient to adversarial faults. IEEE Transactions
on Computers, 57:126-138.

Sunar, B., Martin, W. J., and Stinson, D. R. (2007b). A provably secure true random
number generator with built-in tolerance to active attacks. IEEE Transactions on
Computers, 56(1):109-119.

http://events.iaik.tugraz.at/austrochip2007/proceedings/index.htm
http://www.secg.org/collateral/sec2_f

210

Swift, G. M. (2001). In-flight observations of multiple-bit upset in DRAMs. IEEE
Transactions on Nuclear Science, 47(6):2386-.

Tahir, J. M., Dlay, S. S., Naguib, R. N. G., and Hinton, O. R. (1995). Fault tol­
erant arithmetic unit using duplication and residue codes. The VLSI Journal on
Integration, 18(2-3): 187 - 200.

Tarn, S. (2006). Application Note: Single Error Correction and Double Error Detec­
tion. XILINX. http:/ /www.xil inx.com/support/documentation/application_
notes/xapp645.pdf.

Trichina, E. and Korkikyan, R. (2010). Multi fault laser attacks on protected CRT-
RSA. Workshop on Fault Diagnosis and Tolerance in Cryptography, 0:75-86.

Vasil'ev, J. L. (1962). On nongroup close-packed codes. In Problemy Kibernetiki.
(in Russian), volume 8, pages 337-339.

Vasyltsov, I., Hambardzumyan, E., Kim, Y.-S., and Karpinskyy, B. (2008). Fast dig­
ital TRNG based on metastable ring oscillator. In In Proceedings of Cryptographic
Hardware and Embedded Systems Workshop (CHES), pages 164-180.

Wallace, C. S. (1964). A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, EC-13(1):14 -17.

Wang, Z. and Karpovsky, M. (2010). Robust FSMs for cryptographic devices resilient
to strong fault injection attacks. In 16th IEEE International On-Line Testing
Symposium (IOLTS'2010), pages 240-245.

Wang, Z. and Karpovsky, M. (2011). Algebraic manipulation detection code and
their applications for design of secure cryptographic devices. In IEEE International
On-Line Testing Symposium (IOLTS), submitted.

Wang, Z., Karpovsky, M., and Joshi, A. (2011a). Influence of metallic tubes on the
reliability of CNTFET SRAMs: Error mechanisms and countermeasures. In Great
Lakes Symposium on VLSI (GLSVLSI), to appear.

Wang, Z., Karpovsky, M., and Joshi, A. (2011b). Reliable NAND flash memories
based on nonlinear multi-error correcting codes. IEEE Transactions on Very Large
Scale Integration Systems, revised,.

Wang, Z., Karpovsky, M., and Joshi, A. (2011c). Secure multipliers resilient to strong
fault injection attacks based on multilinear arithmetic codes. IEEE Transactions
on Very Large Scale Integration Systems, accepted.

http://www.xilinx.com/support/documentation/application_

211

Wang, Z., Karpovsky, M., and Kulikowski, K. (2010a). Design of memories with
concurrent error detection and correction by nonlinear SEC-DED codes. Journal
of Electronic Testing, 26:559> 580. 10.1007/sl0836-010-5168-5.

Wang, Z., Karpovsky, M., and Sunar, B. (2009a). Multilinear codes for robust error
detection. IEEE International On-Line Testing Symposium, pages 164-169.

Wang, Z., Karpovsky, M., Sunar, B., and Joshi, A. (2009b). Design of reliable and
secure multipliers by multilinear arithmetic codes. In Information and Communi­
cations Security, volume 5927 of Lecture Notes in Computer Science, pages 47-62.

Wang, Z., Karpovsky, M. G., and Joshi, N. (2010b). Reliable MLC NAND flash
memories based on nonlinear t-error-correcting codes. In 2010 IEEE/IFIP In­
ternational Conference on Dependable Systems and Networks (DSN 2010), pages
41-50. IEEE Computer Society.

Wang, Z., Karpovsky, M. G., and Kulikowski, K. (2009c). Replacing linear Hamming
codes by robust nonlinear codes results in a reliability improvement of memories. In
IEEE/IFIP International Conference on Dependable Systems and Networks, 2009.
DSN '09., pages 514-523.

Whitaker, S., K.Cameron, G.Maki, J.Canaris, and P.Owsley (1991). VLSI Reed-
Solomon processor for the hubble space telescope. In VLSI Signal Processing IV
IEEE Press.

Yaakobi, E., Ma, J., Caulfield, A., Grupp, L., Swanson, S., Siegel, P. H., and Wolf,
J. K. (2009). Error correcting coding for flash memories. Technical report, Center
for Magnetic Recording Research (CMRR).

Yuan, J., Carlet, C , and Ding, C. (2006). The weight distribution of a class of
linear codes from perfect nonlinear functions. IEEE Transactions on Information
Theory, 52(2):712-717.

CURRICULUM VITAE

Zhen Wang

Zhen Wang was born in Qingdao - a beautiful coast city in China. He received his
B.S and M.S degree in Information and Communication Engineering from Zhejiang
University, China in 2006. Since the summer of 2006, he started working towards his
PhD degree at Boston University under the supervision of Prof. Mark G. Karpovsky
and Prof. Ajay Joshi. His research is focused on the design of robust codes and
the application of robust codes in building reliable and secure devices, e.g. secure
cryptographic devices and reliable memories. He also conducts research to investigate
the influence of nano-scale technologies on the reliability of modern digital systems,
etc. He is now working in the DSP simulator group in Mediatek, Inc.

