IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

1221

Nonlinear Multi-Error Correction Codes for Reliable
MLC NAND Flash Memories

Zhen Wang, Mark Karpovsky, Fellow, IEEE, and Ajay Joshi, Member, IEEE

Abstract—Multi-level cell (MLC) NAND flash memories are
popular storage media because of their power efficiency and
large storage density. Conventional reliable MLC NAND flash
memories based on BCH codes or Reed-Solomon (RS) codes
have a large number of undetectable and miscorrected errors.
Moreover, standard decoders for BCH and RS codes cannot be
easily modified to correct errors beyond their error correcting
capability ¢ = |(d — 1/2)], where d is the Hamming distance
of the code. In this paper, we propose two general constructions of
nonlinear multi-error correcting codes based on concatenations or
generalized from Vasil’ev codes. The proposed constructions can
generate nonlinear bit-error correcting or digit-error correcting
codes with very few or even no errors undetected or miscorrected
for all codewords. Moreover, codes generated by the generalized
Vasil’ev construction can correct some errors with multiplicities
larger than ¢ without any extra overhead in area, latency, and
power consumption compared to schemes where only errors with
multiplicity up to ¢ are corrected. The design of reliable MLC
NAND flash architectures can be based on the proposed nonlinear
multi-error correcting codes. The reliability, area overhead and
the penalty in latency and power consumption of the architectures
based on the proposed codes are compared to architectures based
on BCH codes and RS codes. The results show that using the pro-
posed nonlinear error correcting codes for the protection of MLC
NAND flash memories can reduce the number of errors undetected
or miscorrected for all codewords to be almost 0 at the cost of less
than 20% increase in power and area compared to architectures
based on BCH codes and RS codes.

Index Terms— Multi-error correcting codes, nonlinear codes, re-
liable memory.

1. INTRODUCTION

HE semiconductor industry has witnessed an explosive
T growth of the NAND flash memory market in the past sev-
eral decades. Due to its high data transfer rate, low power con-
sumption, large storage density and long mechanical durability,
the NAND flash memories are widely used as storage media for
devices such as portable media players, digital cameras, cell
phones, and low-end netbooks.

Manuscript received November 27, 2010; revised March 01, 2011; accepted
May 05, 2011. Date of publication June 16, 2011; date of current version June
01, 2012. The work of the second author is supported by the NSF Grant CNS
1012910.

Z. Wang is with the Department of Electrical and Computer Engineering,
Boston University, Boston, MA 02215 USA and also with the DSP Simulator
Group, Mediatek, Inc., Dedham, MA 02026 USA (e-mail: zhen.boston @ gmail.
com).

M. Karpovsky and A. Joshi are with the Department of Electrical and
Computer Engineering, Boston University, Boston, MA 02215 USA (e-mail:
markkar@bu.edu; joshi@bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2011.2157183

The increase of the storage density and the reduction of the
cost per bit of flash memories were traditionally achieved by the
aggressive scaling of the memory cell transistor until the multi-
level cell (MLC) technology was developed and implemented in
1997 [1]. MLC technology is based on the ability to precisely
control the amount of charge stored into the floating gate of the
memory cell for the purpose of setting the threshold voltage
to a number of different levels corresponding to different logic
values, which enables the storage of multiple bits per cell.

However, the increased number of programming threshold
voltage levels has a negative impact on the reliability of the
device due to the reduced operational margin. The raw bit
error rate of the MLC NAND flash memory is around 1076 [2]
and is at least two orders of magnitude worse than that of the
single-level cell (SLC) NAND flash memory [3]. Moreover, the
same reliability concerns as for SLC NAND flash memories,
e.g., program/read disturb, data retention, programming/erasing
endurance [4], and soft errors [5]-[7], may become more sig-
nificant for MLC NAND flash memories. Hence a powerful error
correcting code (ECC) that is able to correct at least 4-bit errors
is required for the MLC NAND flash memories to achieve an
acceptable application bit error rate, which is no larger than
10~ [2].

Several works have investigated the use of linear block codes
to improve the reliability of MLC NAND flash memories. In [8],
the authors presented a high-throughput and low-power ECC
architecture based on (n = 4148, k = 4096, d = 9) BCH
codes correcting quadruple errors (¢ = 4). In [9], a 4Gb 2b/cell
NAND flash memory chip incorporating a 250 MHz BCH error
correcting architecture was shown. The author of [10] demon-
strated that the use of strong BCH codes (e.g., t =12,15,67,102)
can effectively increase the number of bits/cell thus further in-
creasing the storage capacity of MLC NAND flash memories. In
[11], an adaptive-rate ECC architecture based on BCH codes
was proposed. The design had four operation modes with dif-
ferent error correcting capabilities. An ECC architecture based
on Reed-Solomon (RS) codes of length 828 and 820 information
digits constructed over G'F'(2'°) was proposed in [12], which
can correct all bit errors of multiplicity less than or equal to
four. The architecture achieves higher throughput, requires less
area overhead for the encoder and the decoder but needs 32
more redundant bits than architectures based on BCH codes
with the same error correcting capability. In [13], an architecture
based on asymmetric limited-magnitude error correcting code
was proposed, which can correct all asymmetric errors of mul-
tiplicities up to 7.

The above architectures are based on linear block codes and
have a large number of undetectable errors. For any linear code
with %k information bits, the number of undetectable errors is

1063-8210/$26.00 © 2011 IEEE

1222

2% which is a potential threat to the reliability of the memory
systems. The situation becomes even worse due to the possible
miscorrection of errors. Let us denote a binary error vector by
e and the multiplicity of the error by ||e||. A multi-bit error
e, |le|| > t is miscorrected by a linear ¢-error-correcting code if
and only if it has the same syndrome as some e’, where ||¢'|| < t.
It is easy to show that the number of errors miscorrected for
all codewords of a (n,k,d) linear t-error-correcting code is
i (7) x (28 = 1).

Under the assumption that errors are independent whose dis-
tribution satisfies P(e) = gll<ll(1 — g)"~llell, where 6 is the raw
bit distortion rate and P(e) is the probability of the occurrence
of event e, the most harmful miscorrected errors are errors of
multiplicity ¢ + 1. Let us denote the number of codewords of
Hamming weight 2¢ + 1 for a linear error correcting code by
Ag¢y1. The number of errors of multiplicity ¢+1 that are miscor-
rected for all codewords of a linear bit-error correcting code is
(2?1) X Asgy41. For the commonly used (n = 8262, k = 8192,
d = 11) linear BCH codes with ¢ = 5, the number of errors
of multiplicity six miscorrected for all codewords is as large as
462 x Aq; =~ 10'7. This large number of miscorrected errors
of multiplicity six cannot be neglected and should be taken into
account when designing reliable MLC NAND flash memories.

To reduce the number of undetectable and miscorrected er-
rors, nonlinear minimum distance robust and minimum distance
partially robust codes have been proposed in [14]-[16]. An ECC
architecture based on nonlinear single-error-correcting, double-
error-detecting (SEC-DED) codes for the protection of memo-
ries against soft errors was shown in [15].

The contribution of this paper is threefold. First, we present
two general constructions of nonlinear multi-error correcting
codes in GF(p™), where n is the length of the code and p is
a power of prime. The first construction is based on the idea of
concatenating linear and nonlinear redundant digits. It can gen-
erate nonlinear robust codes with no undetectable errors and no
errors miscorrected for all codewords at the cost of extra redun-
dant digits compared to BCH codes and RS codes with the same
error correcting capabilities. The second construction is gener-
alized from the existing nonlinear perfect Hamming codes, i.e.,
Vasil’ev codes [17]. These codes are partially robust codes and
can be as good as BCH codes and RS codes in terms of the
number of redundant digits but have less undetectable errors and
errors miscorrected for all codewords.

Second, we present the error correcting algorithms for both
constructions of nonlinear multi-error correcting codes. The
error correcting algorithm for the generalized Vasil’ev codes
can also correct some errors beyond the error correcting ca-
pability ¢ without any modifications and extra requirements.
When p = 2™, the presented constructions can also generate
nonlinear error correcting codes with the same digit-error and
burst-error correcting capabilities as RS codes in GF(2™).

In addition to errors that are undetectable or miscorrected for
all codewords, there are also some errors which are masked or
miscorrected by a fraction of codewords of the presented non-
linear multi-error correcting codes. These errors are called con-
ditionally detectable and conditionally miscorrected errors.
We note that the data-dependent error detecting and correcting
properties of the presented codes are useful for detecting and

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

I
i
I
Direct Mapping: _"11" 10" i 01 "00"
_Gray Mapping: "00"_____} "10" [L | i1 01"
C
i)
5
Ee]
R
O | 2BitCell: 4 Levels
Threshold Voltage V;

Fig. 1. Threshold voltage distribution for a MLC storing 2 bits [12].

locating repeating errors, e.g., errors introduced by hardware
malfunctions such as data retention and programming/erasing
failure.

Third, we propose ECC architectures for MLC NAND flash
memories based on the presented nonlinear multi-error cor-
recting codes. The proposed architectures have nearly no
undetectable errors and errors miscorrected for all codewords
at the cost of less than 20% increase in area and power con-
sumption compared to architectures based on BCH and RS
codes with the same bit error correcting capability ¢t. Moreover,
the reliability of the memories protected by the generalized
Vasil’ev codes can be further improved given the fact that
the proposed architecture is able to correct some errors of
multiplicity larger than ¢.

The rest of this paper is organized as follows. In Section II,
we briefly review the architecture of MLC NAND flash memories
and explain the error model we use in this paper. In Section III,
the definitions of robust codes and partially robust codes are
given. In Section IV, the two general constructions of nonlinear
multi-error correcting codes will be shown. As opposed to
the known nonlinear perfect Hamming codes, the presented
constructions can generate nonlinear codes with any given
length and Hamming distance. The error correcting algorithm
for the proposed nonlinear multi-error correcting codes will be
described and the error correcting capabilities of these codes
will be analyzed and compared to BCH codes and RS codes. In
Section VI, the hardware design of the encoder and the decoder
for the nonlinear multi-error correcting codes will be given.
The area overhead, the latency, and the power consumption of
the design will be estimated and compared to designs based on
BCH codes and RS codes. This paper is an extended version of
our work presented in [18].

II. MLC NAND FLASH MEMORIES

Multi-level cell is able to store multiple bits by precisely
controlling the threshold voltage level of the cell. In practice,
the threshold voltage of the whole memory array satisfies a
Gaussian distribution due to random manufacturing variations
[12]. Fig. 1 illustrates the threshold voltage distribution of a
multi-level cell which can store 2 bits. Let us denote the stan-
dard deviation of the middle two Gaussian distributions in Fig. 1
by o. The standard deviations of the outer two distributions are
approximately 40 and 2¢ [12]. Each voltage range corresponds
to a specific logic value represented as a 2-bit binary vector.
Different schemes can be used for mapping the logic values to

WANG et al.: NONLINEAR MULTI-ERROR CORRECTION CODES FOR RELIABLE MLC NAND FLASH MEMORIES

binary vectors. A direct mapping was used in [1]. The authors in
[12] proposed to use a Gray mapping to improve the reliability
of the memory. If an error occurs during a READ operation, it
is more likely that the original 2-bit binary vector is distorted
into another 2-bit vector corresponding to the adjacent voltage
level (see Fig. 1). Hence the Gray mapping can efficiently re-
duce the average error multiplicity thus increasing the error de-
tecting probability compared to the direct mapping scheme.
The data of the NAND flash memory is organized in blocks.
Each block consists of a number of pages. Each page stores K
data bytes and R spare bytes. Cells in the spare area are phys-
ically the same as cells in the rest of the page and are typi-
cally used for overhead functions such as ECC and wear-lev-
eling [19]. The proportion of the spare bytes in the total number
of bytes per page is usually 3%, e.g., 64 spare bytes for 2048
data bytes. More spare bytes may be required as the page size
increases, e.g., 218 spare bytes for 4096 data bytes [2]. Due to
the existence of spare bytes, the number of redundant bits of
the error correcting codes used for NAND flash memories is not
as critical as for other types of memories such as SRAM and
DRAM where the area overhead is mostly determined by the
number of redundant bits. This allows for a flexible design of
more powerful error correcting codes for NAND flash memories.
Similar to SLC flash memories, the primary failure mecha-
nisms for MLC NAND flash memories include threshold voltage
distribution, program/read disturb, data retention, program-
ming/erasing endurance, and single event upset. However,
while for SLC flash memories a lot of errors are asymmetric,
e.g., errors introduced by program disturb and data retention
[13], for MLC NAND flash memories errors have no preferred
symmetry [20]. Moreover, experimental results show that errors
in MLC flash memories are more likely to occur uniformly
within a page without any observable burstiness or local data
dependency [20]. Thereby, throughout this paper we assume a
random symmetric error model. Let ¢ be the error-free output
of the memory and e be the error vector. The distorted output
¢ can be written as ¢ @ e, where @ is the XOR operation.
The probability of a non-zero error e can be computed as
P(e) = @lel(1 — g)n—llell where 6 is the raw bit distortion
rate and ||e|| is the multiplicity (the number of non-zero com-
ponents) of the error. We want to emphasize that the proposed
nonlinear multi-error correcting codes not only have advantages
over linear codes under this error model but can also provide
a guaranteed level of reliability in situations where the error
model is unpredictable or multi-bit errors are more probable.

III. DEFINITIONS OF NONLINEAR ROBUST AND PARTIALLY
ROBUST CODES

Throughout the paper we denote the addition in Galois field
GF(p) by @ and denote an error control code with length n,
dimension k£ and Hamming distance d by (n, k, d). In general,
the error correcting capability is ¢t = |(d — 1/2)].

Definition 1 (Kernels of the code): For any error correcting
code C' C GF(p"), the detection kernel K, is the set of errors
that are masked for all codewords

Ki={ele®ce C,Vece C}. @)

1223

It is easy to show that K 4 is a linear subspace of C. If C'is linear,
K, = C.

Let us denote the error correction algorithm for code C by A
and denote the set of errors that A attempts to correct by . The
correction kernel K is defined as follows:

K.={ele¢ ENce C,3' € E,A(e® c) = A(e ®c)}.

©))

A main characteristic of traditional linear error detecting
codes is that they concentrate their error detecting and cor-
recting power on a small subset of errors which are assumed to
be the most likely to occur. Typically, such codes concentrate
their error detection on errors of a small multiplicity. They are
designed to guarantee detection of all errors with a multiplicity
less than d. Error detection beyond the minimum distance of
the code is typically not a part of the design criteria and can
be unpredictable and ineffective. Although for some classes of
errors the codes provide 100% protection, for a very large class
of errors linear codes offer no protection for all messages. For
linear codes, K4 = C, these codes have the largest detection
kernel K, (the set of undetectable errors) of any class of
systematic codes with the same n and k.

Robust codes are designed to provide a guaranteed level of
detection against all errors. These codes are characterized by
their error masking probability Q(e), which is the fraction of
codewords that mask a given error e

{clce C,edee CY

3)

Definition 2: The code C is robust iff max..o Q(e) < 1, or
equivalently the detection kernel of the code contains only the
zero vector K4y = {0}.

Robust codes are optimal when the maximum Q(e) for all
errors is minimized [21]. For a robust code the error masking
probability is bounded for non-zero errors. Most robust codes
do not have a minimum distance larger than one and do not
guarantee 100% detection probability for any subset of errors.
A possible variant of the robust codes is to include a minimum
distance into the design criteria.

Definition 3: Let ||e|| denote the multiplicity of an error e.
A robust code where Q(e) = 0 for all |le|| < d, e # Oisa
d-minimum distance robust code.

Minimum distance robust codes have no undetectable errors
and the worst case error masking probability is bounded by
max.-o Q(e) < 1. However, unlike traditional robust codes
they also provide a guaranteed 100% probability of detection
of errors of small multiplicities (||¢|| < d). These codes can
be useful for providing the highest protection against the most
likely or most dangerous threat while maintaining a detection
guarantee in case of an unexpected behavior.

For some applications the error characteristics of robust
codes can be considered too pessimistic. Partially robust codes
and minimum distance partially robust codes (see Definition
4) allow for a tradeoff among robustness, decoding complexity
and overheard, which fill the gap between the optimistic linear
codes and pessimistic robust codes.

Definition 4: A (n, k,d) code with a detection kernel smaller
than the size of the code |C] is a partially robust code. If the

1224

code also has a minimum distance greater than one it is referred
to as a minimum distance partially robust code.

Partially robust codes reduce the number of undetectable er-
rors while preserving some structures of linear codes which can
be exploited to build efficient prediction hardware that generates
redundant bits of a message. Like linear codes, partially robust
codes still have undetectable errors (hence they are not com-
pletely robust). The number of undetectable errors is reduced by
many orders of magnitude compared to that of the linear codes.
For practical partially robust constructions, the number of un-
detectable errors can be reduced from p* to p*~" compared to
a linear p-ary (n, k, d) code [14].

In the next section, we present the general constructions of
a robust and a partially robust nonlinear multi-error correcting
codes. We describe the error correcting algorithms for these
codes, compare their error detecting and correcting capabilities
to BCH and RS codes for the protection of MLC NAND flash
memories.

IV. CONSTRUCTIONS OF NONLINEAR MULTI-ERROR
CORRECTING CODES

The error detecting properties of nonlinear codes are highly
related to nonlinear functions. The nonlinearity Py of a function
f:GF(p*) — GF(p") can be defined by (from [22])

max max P(f(z®a)® f(z)=0) @)

Pf - 0 k ™
#a€GF(p*) beGF(pm)

where P(E) denotes the probability of occurrence of event E.
The smaller the value of P is, the higher the corresponding
nonlinearity of f is. f is a perfect nonlinear function when Py =

pf”‘
A. Multi-Error Correcting Codes Based on Concatenations

The first construction of nonlinear multi-error correcting
codes is based on the idea of concatenating linear and nonlinear
redundant digits.

Theorem 1: Let f : GF(p*) — GF(p™) be a nonlinear
function with nonlinearity Py. Let V = {(z, #(#))} be a linear
code with Hamming distance d, where z € GF(p**™) and
#(z) : GF(p*+™) — GF(p™) is the encoding function. The
code defined by

{(v, f(¥), 9(2))} 5)

where y € GF(p"). f(y) € GF(p™). 2z = (y.f(y) €
GF(p**™), and ¢(z) € GF(p™) is a robust error correcting

code with Hamming distance d and K; = K. = {0}. Any
non-zero error will be detected with a probability of at least
1— Ps.

Proof: Lete = (e, ea, e3) be the error vector, where e; €
GF(p*),es € GF(p™),and e3 € GF(p"). The error masking
equations can be written as

fly®e)=f(y) e (6)
¢ (2 + (e1,e2)) = d(2) + e3. (7
1) If e; = 0 and e, e3 are not both 0, at least one of the

equations shown above will not be satisfied. The error will
always be detected.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

TABLE I
OUTPUT OF THE DECODER FOR LINEAR CODES THAT CAN CORRECT UP TO
t ERRORS
Cases Error Vector | Error Flag
Eyv
No errors are detected 0 0
Errors of multiplicity at Correctable Multiplicity
most ¢ are detected error vector of the error
Errors of multiplicity larger | O -1
than ¢ are detected

2) If ey # 0, from the definition of nonlinear functions, there
are at most Py p* solutions of y for (6). Thereby, the error
will be masked with a probability of at most Py.

|

The resulting code C' in Theorem 1 has the same Hamming
distance d and the same error correcting capability ¢ as the linear
code V. Moreover, the error correcting algorithm for V' can be
slightly modified to correct errors in C'.

Let e = (e1,e2,e3) be the error vector, ¢ = (21, 2,23)
be the original codeword and ¢ = (%1, Z2, Z3) be the distorted
codeword, where e1, 1,71 € GF(pF), es, 12,59 € GF(p™),
es, 3,3 € GF(p™), and &; = x; ® e;,1 < i < 3. Let
S = f(#1) ® &2 be the nonlinear syndrome of the code that
can be used for error detection. Assume a standard decoder for
V' is available. The output of the decoder is composed of the
error flag signal Ey and the possible error vector (é1, éa,€3).
The values of Ey- and the error vector in different situations are
defined in Table I.

The detailed error correcting algorithm for code C' is de-
scribed in Algorithm 1. The algorithm only corrects errors when
information digits are distorted. If errors only occur in the re-
dundant digits or errors are uncorrectable, no correction will be
attempted.

Theorem 2: The nonlinear multi-error correcting codes pre-
sented in Theorem 1 have no errors miscorrected for all code-
words. Any non-zero error will be miscorrected as an error e =
(é1,€2,€3), |le]| < t, é1 # 0 with a probability of at most Py.

Proof: In Algorithm 1, an error e will be miscorrected if
and Ol’lly if By > 0,é1 75 0, (él., ég, é3) 75 (61, €9, 63), and S’ =
0. When Ey > 0, after correcting possible errors in 21 and 22,
the effective error vector when computing Sis (e1®é1,e2Pés).
Thereby S = f(z1®e1 ®é1)Dra®esdés. Since 22 = f(21),
S = 0 can be rewritten as

fz1@er ®ér)d f(r1) Deadéa=0. (8)

Let H be the parity check matrix of V. When (e, es,e3)
is miscorrected as (é1,é2,€3), we have H(ép,éa,63) =
H(eq,ea,e3). Thereby (é1,és,é3) ® (e, €2, e3) is a codeword
of V. If (é1, é2, é3) # (e1, ea, e3), then (é1, é2) cannot be equal
to (e1, e2). Otherwise to guarantee that (é1, é2, é3)® (€1, 2, €3)
is a codeword of V, é3 has to be equal to e3, which contradicts
to the assumption that (é1, és,¢é3) # (e1, €2, e3). Thereby the
miscorrected errors can be divided into two cases as stated in
the following.
1) If é1 # ey, from the definition of the nonlinear function,
there are at most prk solutions for z; in (8). Thereby, the
error will be miscorrected with a probability of at most P.

WANG et al.: NONLINEAR MULTI-ERROR CORRECTION CODES FOR RELIABLE MLC NAND FLASH MEMORIES

Algorithm 1: Error correcting algorithm for the nonlinear
multi-error correcting codes in Theorem 1

Input L C= (51,5‘2,513)
Output: ¢ = (e1,e2,e3), ERR

1 begin

2 Decode V, compute S;

3 if By = 0,5 = 0 then

4 No errors are detected, FRR = 0;

5 else if £y = 0,5 # 0 then

6 | Uncorrectable multi-errors are detected, FRR = 1;
7 else if £y = —1 then

8 | Uncorrectable multi-errors are detected, FRR = 1;
9

else

10 Ey > 0;

1 if €1 = 0 then

12 Errors in the redundant digits are detected,
ERR =0;

13 else

14 Compute T1 = 21 P €1,T2 = T2 D é2

15 Compute S = f(£1) ® &2

16 if S = 0 then

17 | e=(é1,é2,é3), ERR=0;

18 else

19 Uncorrectable multi-errors are detected,

ERR=1

2) If é; = es, then é # es. The error will always be detected
since (8) will never be satisfied.
|

The nonlinear multi-error correcting code presented in The-
orem 1 has no undetectable errors and no errors miscorrected for
all codewords. Its encoding and decoding area overhead is com-
parable to the linear code V' (see Section VI-C). When p = 2™,
the presented code has the same digit-error and burst-error de-
tecting and correcting capabilities as V. We note that the pro-
posed code has errors that are conditionally detected or miscor-
rected. However, most of these errors are of a high multiplicity
and are less dangerous assuming that errors with small multi-
plicities are more probable. Moreover, these errors will be de-
tected with a probability of at least 1 — Py, where Py is the
nonlinearity of f. Thereby, the reliability of architectures pro-
tected by the presented nonlinear multi-error correcting codes
can be further improved by reducing the nonlinearity for f. (To
reduce the nonlinearity of f, it may be necessary to increase the
number of redundant digits for V' [22].)

Example 1: (38,32,3) shortened Hamming codes are widely
used for single-bit error correcting in 32-bit systems. It is easy to
prove that the number of undetectable errors and the number of
errors miscorrected for all codewords for a (38,32,3) shortened
Hamming code is 232 and 32 x (232 — 1) respectively. Instead
of using the (38,32,3) shortened Hamming code, we can use a
(39,32,3) nonlinear single-bit error correcting code generated by
Theorem 1. Let f(y) : GF(2%?) — GF(2) be a quadratic per-
fect nonlinear function [22] defined by the following equation:

Fi,y2, - y32) =192 DYsya ® - D yaryze (9)

where all the operations are in the binary field. Let V be a
(39,33,3) shortened Hamming code. According to Theorem 1,

1225

the resulting code {y, f(v), ¢(2)}, where z = (y, f(y)) and
¢ is the encoding function for the (39,33,3) Hamming code, is

a single-bit error correcting code with no undetectable errors
and no errors miscorrected for all codewords. Most of the errors
can be 100% detected. The worst case error masking or miscor-
recting probability is 0.5, which is the nonlinearity of f. This
probability can be further reduced by increasing the number of
redundant bits for the nonlinear error correcting code and select
f to be a quadratic perfect nonlinear function from G F(2?) to
GF(2™), where m > 1.

While being able to provide an improved protection of sys-
tems comparing to linear error correcting codes, the nonlinear
multi-error correcting codes generated by Theorem 1 still have
the following shortages. First, it always requires more redun-
dant digits than linear codes with the same error correcting capa-
bilities. Second, the error correcting algorithm cannot be easily
modified to correct errors beyond the error correcting capability
t. Obviously, corrections of some errors with multiplicity larger
than ¢ can further improve the reliability of the system. Although
in the literature there are works discussing the beyond-t error
corrections for linear error correcting codes, the modified algo-
rithm usually has much higher area or timing complexity [23].

To improve the code from the above two aspects, we next
present a construction of nonlinear partially robust multi-error
correcting codes generalized from Vasil’ev constructions [17].
The presented codes may have the same number of redundant
digits as Hamming codes and BCH codes. Moreover, the error
correcting algorithm for the presented code can also be used to
correct some errors with multiplicity larger than ¢ requiring no
extra area and timing overhead compared to schemes that only
correct errors with multiplicities up to ¢.

B. Generalized Vasil’ev Codes

Vasil’ev constructions were first proposed in [17] to generate
perfect nonlinear Hamming codes with n = 2¥ — 1 and d = 3.
In [15], [24], we generalized Vasil’ev constructions to generate
Hamming codes with arbitrary length n and analyzed the error
correcting and detecting capabilities of the codes. The presented
codes required the same number of redundant digits as linear
(shortened) Hamming codes. In this paper, Vasil’ev construc-
tions will be further generalized to construct codes with any
given distance d and dimension k.

Theorem 3: Letqy = p't andgo = p'2,11 > 15 > 1.Let V be
a (ny,k1,d) qi-ary code and U = {(u,uP)} be a (ng, ka,d’)
go-ary code, where u € GF(q'gz), ko <mi,190 =nog—ko,d >
d—1,and P is a k2 X ro encoding matrix in GF(q2) (the last ro
columns of the generator matrix of the code in standard form).
Let f : GF(q¥) — GF(g5?) be an arbitrary mapping such
that £(0),0 € GF(¢}") is equal to zero and f(y) @ f(y') #
flye®y') for some y,y’ € GF(q’fl), where @ is the digit-wise
addition in GF(p). Let u = (uy,uz,- - ug,), where u; €
GF(q2). Let B(u) = ((u1,0),(us2,0),---,(uk,,0)), where
0 € GF(p"~"),(u;,0) € GF(q1) and B(u) € GF(q").
Denote by vy, the information bits of v € V. The code defined
by

C = {(u, (B(u),0) ® v,uP ® f(vg))},0 € GF (q?l_kg)
(10

1226

is a (ling + lang, likr + loks, d) p-ary partially robust code
with |K4| = p'2*2. The remaining errors are detected with a
probability of at least 1 — P, where Ps is the nonlinearity of
f. Consider elements of U in GF(q2) and elements of V' in
GF(q) as equivalent digits. The codeword of C has ny + ns
digits. C has the same digit error correcting capability as V.

Proof: Let ¢ = (u,(B(u),0) ® v,uP & f(v)), ¢ =
(', (B(u),0)® v, u'P & f(v},)) be two codewords of C. The
Hamming distance between c and ¢’ is

le@ dll =llua || + (B(w),0) & v (B(u'),0) & v
+luP @ floe) @ u'P & f (vl
2 |lv @'l

D) Ifv # v, |le® || > d because the Hamming distance of
Vs d.

) Ifvo=2,|cad||=2x|ludd|+]|uP&uP| >d
because the Hamming distance of U = {(u,uP)} is at
least d — 1.

Thereby, the Hamming distance of C' is d. We say that an error
e is masked by a codeword c if e ® ¢ = ¢/ € C. Let H be
the parity check matrix of V. An error e = (ey, ez, e3) where
e1 € GF(g?), es € GF(¢™), and e3 € GF(¢5?) is masked
if and only if H((3(e1),0) @ e2) is zero and f(0r) & f(vr) B
e1P @ e3 = 0, where vy, is the information part of v = v @
(B(e1),0)®eq and 0 € GF (g ~**). The errors can be divided
into four classes as follows.

1) (B(e1),0) = eg and eq P = e3. The error will always be
masked. The number of errors in this class is q§2.

2) (B(e1),0) = eq but 1P # e3. The error will always be
detected. There are g5 — qlgz errors belonging to this class.

3) H((B(e1),0) @ eq) is zero but (5(e)1,0) # eo. The
error masking probability depends on the nonlinear func-
tion f. In the worst case, a specific error will be masked by
P; x |C| codewords. The number of errors in this class is
6 (qf — 1),

4) H((B(e1),0) @ ez) is not zero. The error will always be
detected. The number of errors is ¢5* (" — ¢¥*).

|

Remark 1: Binary Vasil’ev code presented in [17] is a special

case where ¢; = ¢2 = 2, {(u, Pu)} isa 1 — d parity code with
minimum distance two and V is a perfect Hamming code.

Some nonlinear multi-error correcting codes as good as linear

codes in terms of the number of redundant digits for the same
distance and length can be generated based on the above con-
struction.

Example 2: In [25], it was shown that the largest possible

k for binary codes with n = 63 and d = 5 is 52. Let V be
a (63,52,5) binary code (¢1 = 2). Let {(u,uP)} be a (4,1,4)
binary repetition code that contains only 2 codewords 0000 and
1111 (g2 = 2). Select f to be a quadratic perfect nonlinear
function f = s, @50 D S3054D - D 513 @514 With Py = 1/8,
where s; € GF(2%) and e is the multiplication in GF(23). A
(67,53,5) partially robust double-bit error correcting code can be
constructed as described in Theorem 3. This code has Hamming
distance 5 and only 1 undetectable non-zero error with the same
number of redundant bits as BCH codes. All the other non-zero
errors are detectable with a probability of at least 0.875.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

Theorem 3 can also generate nonbinary multi-error correcting
codes that are as good as linear codes in terms of the number of
redundant digits.

Example 3: In general, a nonbinary BCH code with Ham-
ming distance d in GF(q) has length n = ¢ —1 and dimension
k=qm—1—(d—1)m.Letn = 49,q = 7Tandd = 5. The corre-
sponding nonbinary BCH code is constructed by shortening the
BCH code with m = 3 and k = 73 — 13. The number of redun-
dant digits is 12. Let V be a (48,40,5) nonbinary BCH code in
GF(7) (m = 2),U be a(5,1,5) repetition code in GF(7) and f
be a perfect nonlinear function from GF(74°) to GF(7*). The
resulting nonlinear nonbinary BCH code constructed as in The-
orem 3 has the same number of redundant digits as the BCH
codes in GF(7). Only seven errors are undetectable (including
the all-zero error vector). All other errors are detected with a
probability of at least 1 — 774,

We next describe the error correcting algorithm for the
nonlinear multi-error correcting codes presented in Theorem
3. We consider elements of U in GF(g2) and elements of V'
in GF(q1) as equivalent digits. The multiplicity of the error is
defined as the number of non-zero digits in the error vector. Let
e = (e1,e2,e3) be the error vector and ¢ = (&1,%2,%3)
be the distorted codeword, where e;,z7; € GF (qé”),
es, o € GF(q]"), e3,%3 € GF(qy?), and &; = z; D e;,
1 < i < 3.Denote by o = (8(Z1),0) @ & the distorted code-
word in V and vy the information part of v. In the presented
error correcting algorithm, we assume that d’ = d (see Theorem
3) and the standard error correcting algorithms are available
for V and U. After receiving the possibly distorted codeword
(Z1,Z2,%3), compute S = &1 P @ f(0r) ® &3. Decode ¥ using
the standard error correcting algorithm for V. The output of
the decoder for V' contains two parts. One is the decoded error
vector é; in GF(¢7") and the other is the error flag signal Ey .
Similarly, the outputs of the decoder for U contain the error
flag signal Ey and the possible error patterns for the first and
the third part of the codeword, which are é; € GF(q5?) and
és € GF(qy?), respectively. The values of the output signals
of the decoders for U and V' in different cases are described
in Table 1. The detailed error correcting algorithm for the
nonlinear multi-error correcting code presented in Theorem 3
is shown in Algorithm 2.

In reality, the error will be corrected only if at least one of
the information bits is distorted. If all errors are in the redun-
dant bits, no correction will be attempted. The miscorrection of
errors for C is strongly related to the error correcting properties
of U and V. To simplify the analysis, we assume that U and V'
are both linear codes. For a given e, 1 < |le|| < t, all vectors
belonging to the coset in which e is the coset leader will be mis-
corrected as e by the linear code. For any (n,k,d = 2t + 1)
binary linear code that can correct up to ¢ errors, for example,
the number of miscorrected errors is Y;_, (M) (2¥ — 1). Com-
pared to linear codes, the number of miscorrected errors for the
proposed nonlinear multi-error correcting codes will be drasti-
cally reduced as shown in the following Theorem.

Theorem 4: Assume d’ = d in Theorem 3 and f is a perfect
nonlinear function from GF (¢) to GF(¢5?). Suppose only er-
rors occurring to the information bits are corrected, denote by T’
the number of correctable error patterns by the nonlinear multi-

WANG et al.: NONLINEAR MULTI-ERROR CORRECTION CODES FOR RELIABLE MLC NAND FLASH MEMORIES

Algorithm 2: Error correcting algorithm for the nonlinear
multi-error correcting codes in Theorem 3

Input : ¢ = (%1, %2, 73)
Output: e = (e1,e2,e3), ERR

1 begin

2 Decode V, compute éz, Ev, S

3 if £v = 0,5 = 0 then

4 No errors are detected, FRR = 0;

5 else if £y = 0,5 # 0 then

6 if d = 3 then

7 Errors either occur only in the redundant bits or
are uncorrectable multi-errors;

8 ERR =1,

9 else

10 Decode U, compute é.1, é3, Ey;

11 if £y > 0 then

12 €= (élv(ﬁ(é1)70)7é3);

13 e will only be corrected when ||e|| < ¢;
14 ERR = 0 when errors are corrected and
ERR = 1 otherwise;

15 else
16 Uncorrectable muti-errors are detected,
L ERR =1,

17 else if vy = —1 then
18 | Uncorrectable muti-errors are detected, FRR = 1;

19 else

20 FEy is larger than 0;

21 Compute: ;

22 To = T2 P é2;

23 ﬁz(ﬁ(iﬂ,())@:iz;

24 T3 = Z3 @ f(0x) (U is the information part of ¥);

25 Decode U according to 21 and Z3;

26 if £y = 0 then

27 e =(0,é2,0);

28 e will be only corrected if there are errors in the
information bits;

29 ERR = 0 when errors are corrected and
ERR =1 otherwise;

30 else if £y > 0 then

31 e = (é1,(B(61),0) ® é2,€3) ;

k?) e will only be corrected when ||e|| < ¢ and there
are errors in the information bits;

33 ERR = 0 when errors are corrected and
ERR =1 otherwise;

34 else

35 Ey = —1, uncorrectable multi-errors are detected,

ERR =1.

error correcting codes presented in Theorem 3. The number of
errors miscorrected for all codewords of the multi-error cor-
recting codes presented in Theorem 3 is |K.| = (¢52 — 1)T.

Proof: According to Algorithm 2, the occurrence of mis-
corrections can be divided into the following cases.

1) Whend > 3, Ey = 0,5 # 0, and Ey > 0, the error
pattern is e = (é1,(3(é1),0), é3) which is generated by
the decoder of U. Errors are miscorrected by C'if and only
if they are miscorrected by the linear code U. Since e will
be corrected only if é; # 0 and |le|| < ¢, the number of
possible correctable error patterns is

5 () ()

1=1 7=0

N|“"

1), (11)

1227

Thereby the number of miscorrected errors in this class is

[5] -2

CEDEDDY ()() @-1D". 1)
=1 j=0
2) When EV >0
T3 =73 @ f(0) = 1P @ f(vr) ® f(0r) © e3. (13)

After correcting é,, the error pattern visible to U is
(e1, f(ve) ® f(0r) ® e3).

a) If o # wvg ((e1,0) @ ez is miscorrected by V),
f(vi)® f(0r) @ es may vary for different information
bits. An error (e1, f(vi) @ f(0x) @ e3) will be mis-
corrected if and only if it belongs to the same coset as
correctable errors (including the all-zero error vector)
by U. Since errors are only corrected when |le|| < ¢,
it is easy to verify that none of errors in this class will
always be miscorrected.

b) If o = v ((e1,0) @ eq is successfully corrected
by V), the error pattern visible to U will be (eq, e3).
Errors in this class are miscorrected if and only if
(e1,e3) is miscorrected by U

Z tgj () () <T12> (=) (@ = 1) (14)
o
)

t

>

=1 j=0
t t—it—i—j
CEDEDID
i=1 j=0 [=0

15)

)z-{—l

@ — 1) (g2 -1

(.
(i

B) 0

55 ()

i=1 j=0

(m

ir
==}

i=1 j=0
(1) » zzz () ()
0= S5 () (P

i) When Fy > 0 and ¢; = 0, the error will
be only corrected if é, has errors in the in-
formation bits and ||e|]| < ¢. The number of
correctable error patterns is given by (14). The
number of miscorrected errors in this situation
is given by (15).

ii) When Eyy > 0 and é; # 0, the number of
correctable error patterns is (16). The number
of miscorrected errors in this situation is given
by (17)

|

Nonlinear multi-error correcting codes presented in Theorem

3 still have errors undetected or miscorrected for all codewords.
However, the number of these errors are drastically reduced

1228

compared to linear codes with the same length and the same
error correcting capability (see Section V).

In Theorem 3, elements of U and V' can belong to different
fields, which allows a more flexible selection of the two codes.
For example, in order to construct a nonlinear 5-digit error cor-
recting code with elements in GF'(21?), we can select V to be a
linear 5-digit error correcting RS code in GF(2!°) and U to be a
binary repetition code with n = 11 and k£ = 1 with elements in
GF'(2). The resulting code will have the same digit-error cor-
recting capabilities, much less undetectable and miscorrected
errors at the cost of only one more redundant digit in GF'(2'°)
(redundant bits of U) when comparing to V.

The codes presented in Theorem 3 may be as good as BCH
codes in terms of the number of redundant digits (Example 2).
Moreover, Algorithm 2 can be slightly modified to correct er-
rors with multiplicities larger than ¢. For example, when Ey =
0, S # 0and Ey > 0, the potential error pattern is e =
(é1,(B(é1),0),é3). The original algorithm only correct errors
when ||¢|| < ¢. This requirement can be removed so that some
errors with multiplicity larger than ¢ can also be corrected.

Example 4: In this example we describe the encoding and
decoding procedure of a (31,17,5) binary nonlinear 2-error-cor-
recting code. Let V' be a (26,16,5) BCH code whose generator
polynomial is g(z) = 20 + 2° + 28 + 25 + 25 + 23 4+ 1. Let
U = {(u,uP)} be a repetition code, where u € GF(2),uP €
GF(2%). Select f to be a quadratic perfect nonlinear function
from GF(216) to GF(2%) defined by f = 51 52D 53054, where
@ is the bit-wise XOR and e is the multiplication in GF(2%).
Let (10101100111101001) be the 17-bit message that needs to
be encoded. Then v = 1, v, = (1101100111101001). The re-
dundant bits for V' is (0101110001) and Pu & f(vg) = (1001).
Thereby the entire codeword is

¢ = (1010110011110100101011100011001).

Suppose the four left-most bits are distorted. The distorted code-
word is

¢ =(0101110011110100101011100011001).
Thereby we have
© =(10111001111010010101110001).

The decoder will correct the 2-bit error és =
(01100000000000000000000000) in @. After this,
and Z3 are recomputed and U is decoded according to z; and
Z3. It is easy to verify that 3 = (1111). Since 21 = 0 (the first
bit of ¢), the input to the decoder of U is (01111). An error in
the first bit will be successfully corrected by U. Hence we have

e = (él‘, (B(él)a 0) D é27 ég)
= (1111000000000000000000000000000).

Thereby, an error of multiplicity four is successfully corrected
although the Hamming distance of the code is only five.

We note that correcting errors with multiplicity larger than
t will result in more errors that are miscorrected for all code-
words. For example, when £y = 0,5 = 0 and Ey > 0, the
error ¢ = (eq, 9, e3) is miscorrected if and only if (e, e3) is
miscorrected by U. Suppose no correction will be attempted if

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

|le]| > ¢, errors will not be corrected if ||é1]| + ||é3]] = ¢ since
in that case the resulting error vector (é1, (6(é1), (0)), é3) will
have a multiplicity larger than ¢. As a result, no miscorrections
will happen when (é1, é3) # (e1, e3), ||é1]|+]|é3]| = ¢. Without
the limitation on ||e||, miscorrections will occur when (eq, e3)
with a multiplicity of ¢ + 1 is mistakenly corrected as (&1, €3)
whose multiplicity is £. Thereby, there is a tradeoff between the
number of correctable error patterns and the size of the correc-
tion kernel |K¢|. The decision of whether and how to modify
Algorithm 2 should be made according to specific applications
and the estimated error models.

V. ALTERNATIVES FOR THE PROTECTION OF MLC NAND
FLASH MEMORIES

As case studies, in this section we compare six binary 5-bit
error correcting codes for the protection of MLC NAND flash
memories with 1024 data bytes in each page. For MLC NAND
flash memories with a larger page size, longer codes generated
by Theorem 1 and 3 can be used and all the analysis and com-
parison can be easily adjusted to justify the advantage of the
presented codes.

The first two alternatives are the widely used (8262,8192,11)
BCH code [10] and the (830,820,11) shortened RS code defined
over G F(21%) [12]. The third and the forth alternatives are based
on Theorem 1. Let p = 2, kK = 8200, r,, = 10. Select f to be
a quadratic perfect nonlinear function defined by the following
equation:

fy)=y10y2Dys ®ya---ysio ® Ys20 (13)
where y; € GF(29),1 < i < 820 and e is the multiplication in
GF(2'°).Let V be a (8280, 8210, 11) BCH code. The codeword
of the resulting nonlinear multi-bit correcting code constructed
as described in Theorem 1 is in the format of (y, f(y), #(z)),
where z = (y, f(y)), y € GF(252°0) are the information bits,
f(y) € GF(2'9) are the nonlinear redundant bits and ¢(z) €
GF(27) are the linear redundant bits. The code is a 5-bit error
correcting code with length 8280 and dimension 8200.

Letp = 29 k = 820 and r,, = 1. Let f be the same
quadratic function defined in (18) and V be a (831,821,11)
shortened RS codes in GF(21?). A (831,820,11) nonlinear
multi-digit error correcting code can be constructed by The-
orem 1. The code has the same bit-error correcting capabilities
as the (8262,8192,11) BCH codes. Moreover, the code can also
correct burst errors and up to 5-digit errors like (830,820,11)
RS codes defined over GF(210).

The fifth and the sixth alternatives are based on Theorem 3.
For these two alternatives, f is still selected to be the quadratic
function defined in (18). Let ¢ = ¢» = 2. Let V be a (8270,
8200, 11) BCH code and U be a (11,1,11) linear repetition code.
The nonlinear code constructed as described in Theorem 3 is a
(8281,8200,11) nonlinear 5-bit error correcting code. The code
can also correct some errors with multiplicities higher than 5
without any extra overhead.

Let ¢ = 2'© and ¢o = 2 in Theorem 3. Let V be a
(830,820,11) shortened RS code defined over GF(2'%) and
U be a (11,1,11) repetition code in binary field. The resulting
code in Theorem 3 is a (8301, 8201, 11) nonlinear 5-digit

WANG et al.: NONLINEAR MULTI-ERROR CORRECTION CODES FOR RELIABLE MLC NAND FLASH MEMORIES

1229

TABLE II
COMPARISON OF SIX 5-BIT ERROR CORRECTING CODES FOR THE PROTECTION OF MLC NAND FLASH MEMORIES

BCH |Reed-Solomon®[Code 3 (Theo 1)|Code 4 (Theo 1)|Code 5 (Theo 3)|Code 6 (Theo 3)

n® 8262 8300 8280 8310 8281 8301

E® 8192 8200 8200 8200 8201 8201

Digit & Burst Error Correcting No Yes No Yes No Yes

Beyond 5-bit Error Correcting No No No No Yes Yes
Number of Undetectable Errors(® | 25192 28200 0 0 1 1

Miscorrected Errors(®), [le|| =6 |~ 10'7| < A}, (161)(0) 0 0 0@ 0D
Fraction of Error Patterns) ~10°* ~ 1073 0 0 =~ ~

Miscorrected for all Codewords

(a): The code is defined in GF(2'°).

(b): The length and the dimension here are in terms of the number of bits in binary field.

(c): A}, is the number of codewords in a code over GF(21°) with 11 non-zero digits.

(d): The number is for the case when no errors with multiplicity larger than 5 are corrected.

(e): Errors undetectable or miscorrected for all codewords. Besides these two types of errors, the presented codes also have errors that are conditionally detectable
or conditionally miscorrected, most of which can be detected with a probability of 1-271°.

(f): We assume each error pattern is equi-probable.

error correcting code. (The length and the dimension here are
in terms of the number of binary bits.) The code can correct
up to 5-digit errors in GF(2'°) and has the same burst error
correcting capabilities as RS codes. (The first bit is treated as a
separate digit.) Like alternative five, the nonlinear multi-digit
error correcting code based on Theorem 3 can also correct
some errors with more than five digits distorted.

Table II compares the error correcting properties of the six
5-bit error correcting codes. BCH code and RS code have a
large number of undetectable errors. Let us denote the number
of codewords of multiplicity ¢ by A;. For every codeword ¢ of
multiplicity eleven belonging to the BCH code, if ¢ @ ¢ = ¢,
lle|ll = 5 and ||| = 6, ||¢’|| will be miscorrected for all code-
words as e since they have the same syndrome. Thereby, the
number of errors of multiplicity six miscorrected for all code-
words of the BCH code is A11 (). (If the error is only corrected
when there is at least one information bit distorted, this number
will be a little smaller.) According to the results presented in
[25], for a (8262, 8192, 11) shortened BCH code, A1 can be
roughly estimated by Ay; = (*29%)/27° ~ 10'*. Thereby, a
large number of errors with multiplicity 6 will be miscorrected
by the BCH codes. Assume that every error pattern is equi-prob-
able, the fraction F' of error patterns that are always miscor-
rected by the BCH code can be calculated as

P DXL () X ()
on ~ on—k -

For the linear (8262,8192,11) BCH code, F ~ 1074,

For the RS code, a 6-bit error is miscorrected if and only if
(1) the 6 bits are spread over 6 digits in GF(21°); and (2) there
is a codeword with 11 digits that contains the 6 digits in (1).
Moreover, given the fact that the length of the RS code (in terms
of digits) is much smaller than the length of the BCH code (in
terms of bits), the number of miscorrected 6-bit errors for RS
codes will be much smaller than that for BCH codes. However,
similar to (19), we can compute the proportion of errors that are
always miscorrected by the RS code, which is of the order of
10~3 and is worse than the BCH code.

Codes 3 and 4 generated by Theorem 1 do not have unde-
tectable and miscorrected errors. Codes 5 and 6 based on The-
orem 3 have only 1 undetectable error. When no error with mul-

F= 19)

tiplicity larger than 5 is corrected, according to the proof of The-
orem 3 it is easy to derive that the smallest possible multiplicity
of errors that are always miscorrected by code 5 or 6 is seven.
Moreover, since g2 = 2, ko = 1, the number of errors that are
miscorrected for all codewords is equal to the number of cor-
rectable errors. As a result, the fraction of error patterns that
are always miscorrected by these two codes is almost 0. When
each non-zero error pattern is equi-probable, the probability of
miscorrection for the presented nonlinear multi-error correcting
codes is much smaller than that for BCH codes and RS codes.
Moreover, the presented codes have no errors of multiplicity
6 that are miscorrected for all codewords. Thereby, when as-
suming a fixed bit error rate, the probability that an error is al-
ways miscorrected by these codes is still much smaller than their
linear alternatives.

Different from linear codes, the four presented nonlinear
multi-error correcting codes have errors that are condition-
ally undetectable or miscorrected. These errors usually have
high multiplicities. Moreover, most of these errors can be
detected with a probability 1 — 2719, Thereby, the existence
of conditionally undetectable or miscorrected errors will not
compromise the reliability of NAND flash memories protected
by the proposed nonlinear multi-error correcting codes.

We note that the above message-dependent error detecting
characteristic of the proposed nonlinear multi-error correcting
code is also very helpful for MLC NAND flash memories for
the protection of hardware malfunctions such as data retention
and programming/erasing endurance failure [4]. Due to the de-
creased programming voltage margin, data retention is more
likely to happen for MLC technology than for SLC technology.
The problem of programming/erasing endurance also becomes
more serious for MLC NAND flash memories, for which the typ-
ical number of supported program/erase cycles is fewer than
10000 [2]. Errors introduced by these hardware failures will
never disappear or will only disappear after the next erasing or
programming operation. Hence, the proposed nonlinear ¢-error-
correcting code with stronger error detecting and correcting ca-
pability for repeating errors due to the message-dependent error
detecting characteristic can be used together with other protec-
tion schemes to efficiently detect these failures and protect the
devices against them.

1230

Generally speaking, the proposed nonlinear multi-error cor-
recting codes require more redundant bits than their linear al-
ternatives. However, this results in only a very small decrease in
the code rate (10 more redundant bits are required for more more
than 8000 information bits). Moreover, due to the existence of
spare bytes in MLC NAND flash memory (see Section II), the
number of redundant bits of the error correcting codes used for
MLC NAND flash memories is not as critical as for other types of
memories such as SRAM and DRAM where the area overhead
is mostly determined by the number of redundant bits.

VI. HARDWARE DESIGN OF THE ENCODER AND THE DECODER
FOR NONLINEAR MULTI-ERROR CORRECTING CODES

In this section, we present the encoder and the decoder archi-
tectures for the proposed nonlinear multi-error correcting codes.
We estimate the area, the latency and the power consumption of
the proposed architectures and compare them to architectures
based on BCH codes and RS codes (see Section V).

A. Encoder Architecture

The encoder for BCH codes and RS codes are conventionally
implemented based on a linear feedback shift register (LFSR)
architecture. Both the serial and the parallel structures for
LFSRs are well studied in the community. In general, the serial
LFSR needs k clock cycles while the parallel LFSR needs only
[k/q] clock cycles to finish the computation of the redundant
bits at the cost of higher hardware complexity, where k is the
number of information bits and ¢ is the parallelism level of the
LFSRs.

Compared to the encoder for the BCH codes and RS codes,
the encoder for the proposed nonlinear multi-error correcting
codes requires one more finite field multiplier and two registers
for the computation of the nonlinear redundant bits. The detailed
architecture of the encoder for the nonlinear (8281,8201,11)
5-bit error correcting code generated by Theorem 3 is shown
in Fig. 2. The design is based on the parallel LFSR proposed
in [26]. The parallelism level of the design is 10. During each
clock cycle, 10 information bits are inputted to the encoder. The
most significant bit (msb) of the message is input via a separate
port. The first information bit for the BCH code is derived by
XORing msb with the first bit of msg at the first clock cycle
(when ¢nt = 0 as shown in the figure). The bottom half of the
architecture is a parallel LFSR used to generate the redundant
bits for BCH codes. D is a 10 x 70 binary matrix [26]. During
each clock cycle, the 10 most significant bits in the shift register
are XORed with the new input and then multiplied by D. The
output of the multiplier is XORed with the shifted data from the
shift register to generate the input to the register. The top half of
the architecture is for the computation of nonlinear redundant
bits. During the even-numbered clock cycles, the 10-bit input is
buffered. During the odd-numbered clock cycles, the buffered
data is multiplied by the new input in GF(21°) and then added
to the output registers. A 10-bit mask is XORed with the data
in the output register to generate the nonlinear redundant bits.
For the (8281,8201,11) 5-error-correcting code, 820 clock cy-
cles are required to complete the encoding of the message.

The encoder for the (8280,8200,11) nonlinear 5-bit error
correcting code based on Theorem 1 is similar to the one shown

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

0000000000 [~~~ W XOR
= a
Multiplier in GF(2'"") = Reg N
>‘<J \\J—V \\/;k/)nlincar
—1 R —] check bits
LI]I[O] T 0000000000 e
—— zji
— Reg =
L | >
[)
/ | D "«“ Linear
check bits
. R Tt N
Ma""‘.Mgg";"ca‘“’“ A Shifi-Reg [N
in GF(2) 10 bits
/\Q

Fig. 2. Architecture of the encoder for the (8281,8201,11) nonlinear 5-error-
correcting code.

in Fig. 2. The same structure (top half) is used to compute
the 10-bit nonlinear redundant bits. The main difference be-
tween the two encoders is as follows. First, the encoder for the
(8280,8200,11) code does not require a separate port for msb.
All information bits are input via msg in 820 clock cycles,
assuming a parallelism level of 10. Second, the encoding of the
(8280,8200,11) code needs one more clock cycle to complete
compared to the (8281,8201,11) code. At the 821th clock cycle,
the input to D (Fig. 2) is switched to the already-generated
nonlinear check bits using a 10-bit 2:1 multiplexer.

Instead of using a parallel architecture described above, the
encoders for the (830,820,11) linear shortened RS code defined
over GF(21Y) and the two nonlinear multi-digit error correcting
codes presented in Section V can be based on a much simpler
serial LFSR. Since the length of the RS code and the nonlinear
multi-digit error correcting codes is 10 times shorter than that
of the bit-error correcting codes, the number of clock cycles re-
quired to complete the encoding for the RS code and the non-
linear error correcting codes will still be the same as for the
bit-error correcting codes even with a serial LFSR. The former,
however, requires that all operations are performed in G F'(210).

B. Decoder Architecture

The decoding of the proposed nonlinear multi-error cor-
recting codes requires the decoding of a BCH code or a RS
code. The standard decoder for the BCH codes mainly contains
three parts: the syndrome computation block, the error locator
polynomial generation block and the Chien search block [27].
Compared to the decoder for the BCH codes, the decoder for
the RS codes requires one more block to compute the error
magnitude. We next briefly discuss the implementation of the
above four blocks and then present the decoder architecture for
the proposed nonlinear multi-error correcting codes.

1) Syndrome Computation: Without loss of generality, as-
sume that the BCH code is a narrow-sense BCH code [25]. Let
us denote the received codeword by ¢ = (Z1,Z2 -+ Tpn_1,Zn)-
For a (n, k,d = 2t + 1) t-error-correcting BCH codes, the syn-
dromes are defined as S; = Z;:& T 0 < i < 2t —
1, where « is the primitive element of GF'(2™). For binary
BCH codes, S, = Siz. Hence only odd-numbered S; needs
to be computed from ¢. The other syndromes can be computed
using a much simpler square circuit in GF(2™). To improve

WANG et al.: NONLINEAR MULTI-ERROR CORRECTION CODES FOR RELIABLE MLC NAND FLASH MEMORIES

0L(q—l i .
ql
Tig-1] Q
[]
[]
. »
S.
o i
In[2] eee Reg

i
T[T]ees ®

Fig. 3. Syndrome computation block with a parallelism level of ¢ for BCH
codes.

the throughput of the decoder, a parallel design can be applied
to process multiple bits per clock cycle. Fig. 3 shows the syn-
drome computation circuit with a parallelism level of q for one
S;. For the whole syndrome computation block, ¢ such struc-
tures are needed.

2) Error Locator Polynomial Generation: After the syn-
dromes are computed, the error locator polynomial A will
be generated using the Berlekamp-Massey (BM) algorithm.
The hardware implementations of the BM algorithms have
been well studied in the community [28]-[31]. In our design a
fully serial structure proposed in [28] is used to minimize the
area overhead. The design mainly requires three multipliers in
GF(2™) and two FIFOs. The error locator polynomial A of
degree ¢ can be generated in ¢(¢ + 3)/2 clock cycles. For our
design, ¢ = 5 and 20 clock cycles are needed for the generation
of A.

3) Chien Search: Let us denote the primitive element in
GF(2™) by «. The Chien search algorithm exhaustively tests
whether o' is a root of the error locator polynomial A. If
A(a?) = 0, the error location is 2™ — 1 — i. Rewrite A(a') as

A(ai) =X @M’ @ X @D Aa

=)\012‘ D)\172‘04 D)\211‘052 D---P /\tviat. (20)

The computation complexity is reduced based on the fact that
Ajit1 =)\jyioﬂ', 0 < j < t. The algorithm can also be paral-
leled to test multiple positions per clock cycle. A typical imple-
mentation of the algorithm with a parallelism level of g contains
t m-bit multiplexers and registers, ¢ x ¢ multipliers for multi-
plication by a constant and ¢ adders in GF'(2™) [32]. In [27], a
strength-reduced parallel Chien search architecture is proposed.
The authors showed that by a simple transformation of the error
locator polynomial, most of the Galois field multiplications can
be replaced by shift operations resulting in much lower hard-
ware complexity (see Fig. 4). For the detail of the architecture,
please refer to [27].

4) Error Magnitude Computation for RS Codes: Besides the
error locator polynomial A, the Berlekamp-Massey algorithm
can also generate the error magnitude polynomial Q(z) defined
by

(14 8(2)) A(z) = Q(z)mod 2** 21

where S(z) = So @ S12 @ --- @ Sar_122'~1 is the syndrome
polynomial. According to Forney’s algorithm [33], the error
magnitude at position ¢ can be computed as

22Q(2)

= miy C=o (22)

1231

D@
»@15)—2—> : Rl(coT H

2T Ao
'

Ao

Fig.4. Strength-reduced Chien search architecture with a parallelism level of g.

Syndrome Computation BM Algorithm Chien Search Re-check

cycle 828 ~ 847 cycle 848 ~ 1674 cycle 1675

cycle 1 ~ 827
1 £RR

ent[0] = 17, E
Ol Vo Gen L ;
0000000000 R Reg E echeek| |2
0 o
wo bi

D
Al b
00000000 é ent[0] ,/L MUT\ %
| X =y = o
msb, /f if ‘T L—k}
7/ — A
Syndrome || s, Berlekamp- A | Chien
Computation Massey Search
d (\

coded FIFO 0 .

Fig. 5. Decoder architecture for the proposed (8281,8201,11) nonlinear
S-error-correcting code.

where A’(z) is the derivative of A(z) and b is an integer. It is
easy to verify that A’(z) is simply the sum of the terms with odd
degrees in A(z) and can be directly derived during the compu-
tation of A.

5) Decoder Architecture for the Nonlinear Multi-Error Cor-
recting Codes: The decoder for the nonlinear multi-error cor-
recting codes presented in Theorem 1 is similar to the decoders
for BCH codes and RS codes. In fact, most of the decoding can
be completed by the standard BCH or RS decoder. The main dif-
ference is as follows. First, the nonlinear multi-error correcting
codes need to compute the nonlinear syndrome S (see Algo-
rithm 1) when receiving the possibly distorted codewords and
recompute S after correcting errors located by V. Second, after
the decoding of the linear codes is completed and S is recom-
puted, one more clock cycle is required for the decoder of the
nonlinear code to verify the error correcting results so that pos-
sible miscorrection of errors can be prevented.

The decoder for the nonlinear multi-error correcting codes
based on Theorem 3 is slightly more complicated than the de-
coder for codes based on Theorem 1. As an example, the de-
tailed architecture of the decoder for the (8281,8201,11) non-
linear 5-bit error correcting code is shown in Fig. 5. The whole
decoding procedure requires 1675 clock cycles assuming a par-
allelism level of 10. During the first 827 cycles, S and the syn-
drome of the BCH code are computed. If no errors are detected
by the BCH code, the decoding procedure will be completed at
the 828th clock cycle. Depending on the value of S, either the
first two information bits will be flipped or ERR will be pulled
down by the ERR generating circuit which indicates that there

1232

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

TABLE III
COMPARISON OF THE AREA, THE LATENCY, AND THE POWER CONSUMPTION OF DIFFERENT ALTERNATIVES THAT CAN CORRECT UP TO 5-BIT ERRORS FOR THE
PROTECTION OF MLC NAND FLASH MEMORIES

Bit-Error Correcting Digit-Error Correcting
BCH Theorem 1 Theorem 3 RS Theorem 1 Theorem 3
ENC | DEC |ENC | DEC |ENC | DEC |ENC |[DEC |ENC | DEC |ENC | DEC
Parallelism Level | 10 10 10 10 10 10 1 1 1 1 1 1

Speed(Hz) 1G | 400M 1G | 400M 1G | 400M 1G |400M | 1G | 400M 1G | 400M
Latency(Cycles) | 820 | 1674 | 821 1675 820 1675 820 | 1682 | 821 1683 820 1683
Area(um?) [854.4[12501.7 [1468.3 [14114.0 [1459.8 [14245.9 [1407.4 [0597.8 [2051.7 [11059.2 [2094.5 [11127.3

Power(mW) 10.61 | 3.31 085 | 337 [082 | 348 [091 203 |1.13 | 2.14 1.20 | 2.18

are no errors occurring to the information bits of the code. The
error locator polynomial generation and the Chien search will be
incurred only when errors are detected by the BCH code, which
can effectively reduce the average decoding latency.

If errors are detected by the BCH code, the Berlekamp-
Massey algorithm will take another 20 clock cycles to generate
the error locator polynomial A. After this the Chien search block
will exhaustively test all possible error locations. If A(a?) = 0,
then the error location is 2™ — 1 — ¢. Since a (8270,8200,11)
shortened BCH code is used, only A(a?),8114 < i < 16383
(m = 14) need to be computed. The original strength-reduced
Chien search architecture is slightly modified for the decoding
of shortened BCH codes. The constant inputs A;,1 < ¢ < ¢
to the bottom ¢ Galois field multipliers in Fig. 4 are set to be
a~ 1% instead of o' (¢ = 10).

S is initialized to be S and is serially updated during the Chien
search stage. Starting from the 848th clock cycle, the 10-bit
FIFO output z; (possibly distorted codeword) and the decoded
10-bit error vector e; will be buffered in two 10-bit registers. At
each odd-numbered clock cycle, S is updated as follows:

S=Sqai10x;® (zis1 ®ei1) e (x: D e;). (23)

Atthe 1675 clock cycle, msb and S are used to recheck whether
the most significant two bits are successfully corrected. A 2-bit
error mask will be generated to make adjustment to these two
bits according to the check results.

The decoder for the digit-error correcting code based on
Theorem 3 presented in Section V and the decoder for the
(8281,8201,11) nonlinear 5-bit error correcting code are dif-
ferent as follows.

1) All operations of the decoder for the 5-digit error cor-

recting code are performed in G F(21'0).

2) The 5-digit error correcting code does not require a par-

allel architecture. A serial design can achieve a similar de-
coding latency in terms of the number of clock cycles to
the decoder for the (8281,8201,11) 5-bit error correcting
code with a parallelism level of 10.
One more block for the computation of the error magni-
tude is integrated into the architecture shown in Fig. 5. The
block is connected to the Chien search block and generates
the final decoded memory contents.

The error magnitude polynomial is generated by the
Berlekamp-Massey block. To reduce the hardware overhead,
multipliers in GF(21°) for the calculation of the nonlinear
syndrome S are reused to generate the error magnitude poly-
nomial. One inverter in GF(2!°) is required to compute e;
according to Forney’s algorithm [see (22)]. In general, inverters

3)

in Galois field have much longer critical path than multipliers.
Thus a four-stage pipeline is added to reduce the latency of the
inverter. Let 0 € GF(2!%), 0=! can be represented as

_ 10_ 1,92 ...199
J1:O_2 220'2+2++2.

(24)

Given the fact that a four-stage pipeline is implemented, the
above function can be realized using square operations and five
multiplications in G F'(2!°). Again we reuse the multipliers in
other blocks for the purpose of reducing the hardware overhead.
Since the square operation is simple in GF(2!°), the inverter
adds minimal area overhead and has a latency similar to the
Galois filed multiplier in our design.

C. Area, Latency, and Power Consumption

The area, latency, and the power consumption for architec-
tures based on the six alternatives presented in Section V are
shown in Table III. The designs are modelled in Verilog and
synthesized in RTL Design Compiler using 45-nm NANGATE
library [34]. In practice the logic circuits used in NAND flash
memory could be different from those used in standard digital
designs. The estimation presented here is only for the purpose
of investigating the increase in area, power and latency of archi-
tectures based on the proposed nonlinear multi-error correcting
codes compared to architectures based on the widely used BCH
codes and RS codes.

During the synthesis we fixed the clock rate for the encoder
and the decoder and compared the area and the power consump-
tion for architectures based on different codes. The encoders
work at 1 GHz. The decoders work at a lower frequency—
400 MHz—due to the long critical path in Berlekamp-Massey
block [12]. The six alternatives require the similar latency in
terms of the number of clock cycles for encoding and decoding.
Due to the computation of the error magnitude and the pipeline
for the inverter in the Galois field, digit-error correcting codes
(RS, etc.) need eight more clock cycles to complete the decoding
compared to bit-error correcting codes (BCH, etc.).

The encoders for the digit-error correcting codes require 40%
«~ 50% more area overhead and power than the encoders for
bit-error correcting codes (see Figs. 6 and 7) due to the fact
that all operations are in GF'(21?). The decoders for digit-error
correcting codes, however, require 20% «~ 30% less overhead in
area and power because of a much simpler serial architecture.

Compared to BCH codes and RS codes, the proposed non-
linear multi-error correcting codes need about 10% -~ 20%
more area and power in total for the encoder and the decoder
and have the similar latency in terms of the number of clock
cycles required to complete the encoding and decoding. The

WANG et al.: NONLINEAR MULTI-ERROR CORRECTION CODES FOR RELIABLE MLC NAND FLASH MEMORIES

15000

T
[l (8262,8192,11) Liniear BCH

-(6280,8200,11) Bit-Error Correcting (Theorem 1)
D(8281,&201,1 1) Bit-Error Correcting (Theorem 3)
[1(8300,8200,11) Linear Reed-Solomon
-(8310,8200,1 1) Digit-Error Correcting (Theorem 1)
-(8301 ,8201,11) Digit-Error Correcting (Theorem 3)

—~ 10000

Area (um?

50001 1

=mz—HR

Encoder

o

Dec(lnder

Fig. 6. Comparison of the area overhead of the encoder and the decoder for
different alternatives.

3.5 ‘ —
[l (8262,8192,11) Liniear BCH
[(8280,8200,11) Bit-Error Correcting (Theorem 1)
3 [71(8281,8201,11) Bit-Error Correcting (Theorem 3)]
[1(8300,8200,11) Linear Reed-Solomon
2 5 -(8310,8200,11) Digit-Error Correcting (Theorem 1) 4
—~ || MM 8301,8201,11) Digit-Error Correcting (Theorem 3)
£ 2t T 1
=
P
£ 15
3 I
o
0 1

Encoder Decéder

Fig. 7. Comparison of the power consumption of the encoder and the decoder
for different alternatives.

(8281,8201,11) nonlinear 5-bit error correcting codes based on
Theorem 3 (columns 6 and 7 in Table III), for example, requires
17.5% more area and consumes 10.0% more power in total for
the encoder and the decoder compared to the (8262,8192,11)
BCH code.

We note that the encoder and the decoder are only a very
small portion in the MLC NAND flash memory chip, where the
major portion is the memory cell array. Thereby the increase in
area overhead for the encoder and the decoder is not significant
for the reliable memory design. The power for ECC schemes
is mostly consumed by the decoder. However, when there are
no errors, which is the most probable case, the only active part
in the decoder is the syndrome computation block. Thereby, in
practice the average increase of the power consumption for the
presented nonlinear multi-error correcting codes will be smaller
than the data shown in Table III. Given the fact that the reliability
of MLC NAND flash memories protected by the proposed non-
linear multi-error correcting codes are much higher than those
protected by linear codes (see Table II), the small increase in
area and power is reasonable and acceptable.

VII. CONCLUSION

In this paper, the constructions of two nonlinear multi-error
correcting codes are proposed. Their error correcting algorithms
are presented. The proposed codes have much less undetectable
and miscorrected errors than the conventional BCH codes and
RS codes. The code constructed based on Theorem 3 can also

1233

correct some errors with multiplicity larger than its error cor-
recting capability ¢ without any extra overhead in area, timing,
and power consumption compared to schemes that correct only
up to ¢ errors. The beyond-t error correcting capability of the
presented nonlinear multi-error correcting codes results in a fur-
ther improvement of the reliability of the system.

The designs of reliable MLC NAND flash memories based
on the proposed nonlinear multi-error correcting codes are pre-
sented. We compare the area, the latency and the power con-
sumption of the reliable MLC NAND flash architectures using the
proposed nonlinear multi-error correcting codes to architectures
based on BCH codes and RS codes. The encoder and the decoder
for all the alternatives are modeled in Verilog and synthesized
in RTL Design Compiler. The results show that architectures
based on nonlinear multi-error correcting codes can have close
to zero undetectable and miscorrected errors while consuming
less than 20% more area and power consumption than architec-
tures based on the BCH codes and the RS codes.

REFERENCES

[1]1 G. Atwood, A. Fazio, D. Mills, and B. Reaves, “Intel Strata memory
technology overview,” Intel Technol. J., vol. 1, 1997 [Online]. Avail-
able: http://www.intel.com/technology/itj/archive/1997.htm

J. Cooke, “The inconvenient truths about NAND flash memory,” pre-

sented at the Micron MEMCON Presentation, Santa Clara, CA, 2007.

[3] R. Dan and R. Singer, “Implementing MLC NAND flash for

cost-effective, high capacity memory,” M-Syst. White paper, 2003

[Online]. Available: http://support.gateway.com/s/Manuals/Desk-

tops/5502664/Implementing MLC_NAND_Flashwhite%20paper.pdf

R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to

flash memory,” Proc. IEEE, vol. 91, no. 4, pp. 489-502, Apr. 2003.

G. Cellere, S. Gerardin, M. Bagatin, A. Paccagnella, A. Visconti,

M. Bonanomi, S. Beltrami, R. Harboe-Sorensen, A. Virtanen, and

P. Roche, “Can atmospheric neutrons induce soft errors in NAND

floating gate memories?,” IEEE Electron Device Lett., vol. 30, no. 2,

pp. 178-180, Feb. 2009.

M. Bagatin, G. Cellere, S. Gerardin, A. Paccagnella, A. Visconti, S.

Beltrami, and M. Maccarrone, “Single event effects in 1Gbit 90nm

NAND flash memories under operating conditions,” in Proc. 13th IEEE

Int. On-Line Test. Symp. (IOLTS) , 2007, pp. 146—-151.

F. Irom and D. Nguyen, “Single event effect characterization of high

density commercial NAND and NOR nonvolatile flash memories,”

IEEE Trans. Nucl. Sci., vol. 54, no. 12, pp. 2547-2553, Dec. 2007.

W. Liu, J. Rho, and W. Sung, “Low-power high-throughput BCH error

correction VLSI design for multi-level cell NAND flash memories,”

in Proc. IEEE Workshop Signal Process. Syst. Design Implementation

(SIPS), 2006, pp. 303-308.

R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino,

L. Crippa, E. Di Martino, L. D’Onofrio, A. Gambardella, E. Grillea,

G. Guerra, D. Kim, C. Missiroli, I. Motta, A. Prisco, G. Ragone, M.

Romano, M. Sangalli, P. Sauro, M. Scotti, and S. Won, “A 4Gb 2b/cell

NAND flash memory with embedded 5b BCH ECC for 36mb/s system

read throughput,” in Dig. Techn. Papers IEEE Int. Solid-State Circuits

Conf. (ISSCC), 2006, pp. 497-506.

[10] F. Sun, S. Devarajan, K. Rose, and T. Zhang, “Design of on-chip error
correction systems for multilevel NOR and NAND flash memories,”
IET Circuits, Devices, Syst., vol. 1, no. 3, pp. 241-249, 2007.

[11] T.-H. Chen, Y.-Y. Hsiao, Y.-T. Hsing, and C.-W. Wu, “An adaptive-
rate error correction scheme for NAND flash memory,” in Proc. 27th
IEEE VLSI Test Symp. (VTS), 2009, pp. 53-58.

[12] B. Chen, X. Zhang, and Z. Wang, “Error correction for multi-level
NAND flash memory using Reed-Solomon codes,” in Proc. IEEE
Workshop Signal Process. Syst. (SiPS), 2008, pp. 94-99.

[13] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for

multi-level flash memories: Correcting asymmetric limited-magnitude

errors,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2007, pp.

1176-1180.

M. Karpovsky and A. Taubin, “New class of nonlinear systematic error

detecting codes,” IEEE Trans. Inform. Theory, vol. 50, pp. 1818-1819,

Aug. 2004.

[2

—

[4

=

[5

[ty

[6

—

[7

—

[8

=

[9

—

[14

1234

[15] Z. Wang, M. Karpovsky, and K. Kulikowski, “Replacing linear Ham-
ming codes by robust nonlinear codes results in a reliability improve-
ment of memories,” in Proc. IEEE/IFIP Int. Conf. Depend. Syst. Netw.
(DSN), 2009, pp. 514-523.

[16] K. Kulikowski, Z. Wang, and M. Karpovsky, “Comparative analysis of
robust fault attack resistant architectures for public and private cryp-
tosystems,” in Proc. 5th Workshop Fault Diagnosis Toler. Cryptog-
raphy (FDTC), 2008, pp. 41-50.

[17] J. L. Vasil’ev, “On nongroup close-packed codes,” Probl. Kibernet.,
vol. 8, pp. 375-378, 1962.

[18] Z. Wang, M. G. Karpovsky, and N. Joshi, “Reliable MLC NAND flash
memories based on nonlinear t-error-correcting codes,” in Proc. IEEE/
IFIP Int. Conf. Depend. Syst. Netw. (DSN), 2010, pp. 41-50.

[19] Micron, Boise, ID, “Wear-leveling techniques in NAND flash devices,”
2008.

[20] E. Yaakobi, J. Ma, A. Caulfield, L. Grupp, S. Swanson, P. H. Siegel,
and J. K. Wolf, “Error correcting coding for flash memories,” Center
for Magnetic Recording Research (CMRR), La Jolla, CA, 2009.

[21] M. G. Karpovsky, K. Kulikowski, and Z. Wang, “Robust error detection
in communication and computation channels,” in Proc. Int. Workshop
Spectral Techn., 2007 [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.63.908&rank=1

[22] C. Carlet and C. Ding, “Highly nonlinear mappings,” J. Complex., vol.
20, no. 2-3, pp. 205-244, 2004.

[23] M. Sudan, “Decoding of Reed Solomon codes beyond the error-cor-
rection bound,” J. Complex., vol. 13, no. 1, pp. 180-193, 1997.

[24] Z. Wang, M. Karpovsky, and K. Kulikowski, “Design of memories
with concurrent error detection and correction by nonlinear SEC-DED
codes,” J. Electron. Test., vol. 26, pp. 559-580, 2010.

[25] F.J.MacWilliams and N. J. A. Sloane, The Theory of Error Correcting
Codes. Amsterdam: North-Holland, 1977.

[26] T.-B. Pei and C. Zukowski, “High-speed parallel CRC circuits in
VLSL” IEEE Trans. Commun., vol. 40, no. 4, pp. , pp. 653-657, Apr
1992.

[27] J. Cho and W. Sung, “Strength-reduced parallel Chien search architec-
ture for strong BCH codes,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 55, no. 5, pp. 427-431, May 2008.

[28] H. Burton, “Inversionless decoding of binary BCH codes,” IEEE Trans.
Inform. Theory, vol. 17, no. 4, pp. 464—466, Jul. 1971.

[29] D. V. Sarwate and N. R. Shanbhag, “High-speed architectures for
Reed-Solomon decoders,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 9, no. 5, pp. 641-655, May 2001.

[30] K. Seth, K. Viswajith, S. Srinivasan, and V. Kamakoti, “Ultra folded
high-speed architectures for Reed Solomon decoders,” in Proc. 19th
Int. Conf. VLSI Design, Held jointly with 5th Int. Conf. Embed. Syst.
Design, 2006, pp. 517-520.

[31] S. Rizwan, “Retimed decomposed serial Berlekamp-Massey (BM) ar-
chitecture for high-speed Reed-Solomon decoding,” in Proc. 21st Int.
Conf. VLSI Design (VLSID), 2008, pp. 53-58.

[32] Y. Chen and K. Parhi, “Small area parallel Chien search architectures
for long BCH codes,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 12, no. 5, pp. 545-549, May 2004.

[33] D. V. Sarwate and N. R. Shanbhag, “High-speed architectures for
Reed-Solomon decoders,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 9, no. 5, pp. 641-655, Oct. 2001.

[34] Nangate Inc., Sunnyvale, CA, “Nangate 45 nm Open Cell Library,”
2009. [Online]. Available: http://www.nangate.com

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

Zhen Wang received the B.S. and M.S. degrees in
information and communication engineering from
Zhejiang University, Hangzhou, China, in 2006. He
is currently pursuing the Ph.D. degree in computer
engineering from Boston University, Boston, MA,
under the supervision of Prof. M. G. Karpovsky and
Prof. A. Joshi.

He is with the DSP Simulator Group, Mediatek,
Inc., Dedham, MA, His research is focused on
the design of robust codes and their variations for
building reliable and secure devices, e.g., secure
cryptographic devices and reliable memories. He also conducts research to
investigate the influence of nano-scale technologies on the reliability of modern
digital systems, etc.

Mark Karpovsky (M’80-SM’84-F’91) has been a
Professor of computer engineering and the Director
of the Reliable Computing Laboratory, Department
of Electrical and Computer Engineering, Boston
University, Boston, MA, since 1983. Before joining
Boston University, he taught at the State University
of New York, Binghamton, and Tel-Aviv University,
Tel-Aviv, Israel. He was a visiting Professor with
the University of Dortmund, Dortmund, Germany,
the Ecole National Superieure des Telecommunica-
tion, Paris, France, and the New Jersey Institute of
Technology, Newark. He has been a consultant for IBM, Digital Corporation,
Honeywell Corporation, AT&T, Raytheon, and several companies in Europe.
He has published over 200 papers and several books in the areas of logical
design, testing and diagnosis of computer systems, fault-tolerant computing,
error-correcting codes, and computer communication networks. He conducts
research in the areas of design, testing, and diagnosis of computer networks,
message routing for multiprocessors and computer communication networks,
and design of cryptographic devices resistant to side-channel attacks. He
recently published, together with R. S. Stankovic and J. T. Astola, the book
Spectral Logic and its Applications for the Design of Digital Devices (Wiley,
2007).

Ajay Joshi (S’99-M’07) received the M.S. and
Ph.D. degrees in electrical and computer engineering
from Georgia Institute of Technology, Atlanta,
in 2003 and 2006, respectively, and the B.Eng.
degree in computer engineering from University of
Mumbai, Mumbai, India, in 2001.

He is currently an Assistant Professor with the
Electrical and Computer Engineering Department,
Boston University, Boston, MA. Prior to joining
Boston University, he worked as a postdoctoral
researcher with the Electrical Engineering and
Computer Science Department, Massachusetts Institute of Technology. His
research interests span across various aspects of VLSI design including
circuits and systems for communication and computation, and emerging device
technologies including silicon photonics and carbon nanotubes.

