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Secure Multipliers Resilient to Strong Fault-Injection
Attacks Using Multilinear Arithmetic Codes
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Abstract—Public-key cryptographic devices are vulnerable to
fault-injection attacks. As countermeasures, a number of secure
architectures based on linear and nonlinear error detecting codes
were proposed. Linear codes provide protection only against
primitive adversaries with limited attack capabilities. On the
other hand nonlinear codes provide protection against strong
adversaries, but at the price of high area overhead (200%–400%).
In this paper we propose a novel error detection technique based
on the random selection of linear arithmetic codes and explore the
use of this technique for the protection of the multiplier, which
is a basic block in many public-key cryptographic devices. The
error detection technique does not imply any limitations on the
types of errors at the output of the device, e.g., the multiplicity
of the error does not have to be small. Under mild assumptions
the proposed construction achieves near nonlinear code error
detection performance at a lower cost (at most 50% area overhead
for the protection of multipliers) due to the fact that no nonlinear
operations are needed for the encoder and decoder.

Index Terms—Arithmetic codes, cryptography, multipliers, side-
channel attacks.

I. INTRODUCTION

C RYPTOGRAPHIC devices are widely used in applica-
tions like ATM cards and commercial electronics. These

devices are vulnerable to side-channel attacks such as timing-
analysis attacks [1], power-analysis attacks [2], and fault-in-
jection attacks [3], [4]. Due to their active and adaptive na-
ture, fault-based attacks are one of the most powerful types of
side-channel attacks. Since a fault attack was demonstrated by
Boneh et al. in [5] in 1996, numerous papers have been pub-
lished proposing a variety of fault attacks on both public-key
and private-key cryptographic devices. One of the most efficient
fault-injection attacks on AES-128, for example, requires only
two faulty ciphertexts to retrieve all 128 bits of the secret key [6].
Without proper protection against fault-injection attacks, the se-
curity of cryptographic devices can never be guaranteed.

Error detecting codes are often used in cryptographic devices
to detect errors caused by injected faults and prevent the leakage
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of useful information to attackers. Most of the proposed error
detecting codes are linear codes like parity codes, Hamming
codes and AN codes [7]. Protection architectures based on linear
codes concentrate their error detecting abilities on errors with
small multiplicities or errors of particular types, e.g., errors with
odd multiplicities or byte errors. However, in the presence of
unanticipated errors linear codes can provide little protection.
Linear 1-D parity codes [8], for example, can detect no errors
with even multiplicities. By carefully selecting faults and injec-
tion methods an attacker can, with high probability, bypass the
protection based on linear codes and still be able to break the
security of cryptographic devices in a reasonably short time.

In [9], robust algebraic codes were proposed as an alternative
to classical linear codes to protect cryptographic devices imple-
menting Advanced Encryption Standard (AES) against fault-in-
jection attacks. In [10], [11], robust arithmetic residue codes
were proposed for the design of fault tolerant cryptographic de-
vices performing arithmetic operations. Instead of concentrating
the error detecting abilities on particular types of errors, ro-
bust codes provide nearly equal protection against all error pat-
terns. Hence robust codes eliminate the weakness of linear codes
which can be exploited by attackers to mount successful fault
attacks. Moreover, the detection of errors for robust codes are
message-dependent. If the same error stays for more than one
clock cycle, even if the injected fault manifests as an error that
cannot be detected at the current clock cycle, it is still possible
that the error will be detected at the next clock cycle when a new
message arrives. Thereby, the advantage of robust codes will be
more significant for lazy channels where errors have high prob-
abilities to repeat themselves for several clock cycles. Variants
of both algebraic and arithmetic robust codes—partially robust
and minimum distance robust codes—were proposed in [11].
The corresponding architectures allow various tradeoffs in terms
of robustness and hardware overhead. The main disadvantage of
robust codes is the large hardware overhead when implementing
nonlinear operations for the encoding and decoding circuits.

In this paper, we propose a novel error detection technique
based on the idea of randomly selecting a code from multiple
linear codes for each encoding and the corresponding decoding
operation. The resulting codes are called multilinear codes.
These codes have similar error detection capabilities to robust
codes while requiring much less hardware overhead due to the
fact that no nonlinear operations are needed for the encoder and
decoder.

The constructions of multilinear arithmetic codes are pre-
sented. As an illustrative example, the design of secure multi-
pliers (widely used as sub-blocks in public-key cryptosystems)
based on multilinear arithmetic codes will be shown. As in most
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papers on protecting the data path of cryptographic devices,
e.g., see [11]–[13], we assume that countermeasures are im-
plemented in the cryptographic device preventing the attackers
from tampering with the clock signals. We further assume that a
low-rate true random number generator (e.g., [14]) is available.
In fact, most cryptographic devices incorporate a true random
number generator by default for key initialization, random pad
computation, challenge generation, etc.

The error detection capability of the proposed secure mul-
tiplier architecture was simulated in C++ and compared to ar-
chitectures based on linear and partially robust arithmetic codes
to demonstrate the advantages of the proposed error detection
techniques. This paper was extended from our previous work
on applications of multilinear arithmetic codes in [15]. The con-
structions of multilinear algebraic codes and the analysis of fault
detection capabilities of secure cryptographic devices based on
multilinear algebraic codes was discussed in [16]. The applica-
tion of multilinear algebraic codes in the design of secure fi-
nite-state machines (FSMs) was shown in [17].

The remainder of this paper is organized as follows. In
Section II, the error and attacker models used throughout this
paper are described. In Section III, we analyze the repeatability
of errors when injecting faults into Wallace Tree multipliers to
further motivate the usage of robust and multilinear arithmetic
codes. In Section IV, we formalize the design and propose
several constructions of multilinear arithmetic codes. The hard-
ware overhead and the error and fault detection capabilities of
16-bit unsigned secure Wallace tree multipliers based on linear,
multilinear, and partially robust arithmetic codes are compared
in Section V.

II. ERROR AND ATTACKER MODEL

In this paper we concentrate on the analysis of the error detec-
tion capabilities for systematic arithmetic codes and the security
of multipliers based on these codes. Different from the widely
used non-systematic codes [7], the codewords of systematic
arithmetic codes contain two parts: the information part and the
redundant part. Any codeword can be written in the format of

, where is the number of information
bits, is the number of redundant bits and is the additive
group of integers . We denote by
the error vector and the distorted
codeword in which is the arithmetic
addition and is the modulo operation.

Let be an arith-
metic code. An error is masked by a codeword

if also belongs to
. Given an error , the error masking probability is cal-

culated as follows:

(1)

where is the size of . If an error is masked by all codewords
of the code, and the error is called undetectable. If

, the error is called conditionally detectable. Dif-
ferent from algebraic codes, arithmetic codes rarely have unde-
tectable errors. To illustrate the advantage of multilinear arith-
metic codes, we compare the number and the probability of bad

errors—errors with —for linear arithmetic codes
and the proposed multilinear arithmetic codes. (This definition
of bad errors was also used in [11].) Since bad errors are the most
difficult to detect, we will show that the transition from linear to
multilinear arithmetic codes results in a drastic reduction of the
number of bad errors and an improvement of the error detection
ability of the code (see Sections IV and V).

Remark 1: Estimations of numbers of bad errors presented in
this paper can be easily generalized to the case when bad errors

are defined as errors with for any .
Fault attacks can be performed in many different ways. The

most investigated mechanisms of fault injections in the cryp-
tography communities include introducing variations in power
supplies [18]–[21], perturbing the silicon of the chip using white
light or laser guns (light attacks) [3], [18], [22]–[25] and gen-
erating eddy current on the surface of the chip using magnetic
field (electromagnetic attacks) [26], [23], etc.

Fault attacks can be classified according to the capabilities of
the attackers to control the parameters of the injected faults such
as timing, locations, the type of the faults and the error patterns
[4], [24]. With the vast arsenal of fault injection methods and
techniques available to the attacker, the type of faults and the
error patterns appearing as manifestations of the injected faults
at the outputs of the device-under-attack is hard to model and
predict. In [21], for example, the author showed that the number
of faults can be controlled by reducing the supply voltage to
a certain level. However, as the technology moves into deep-
micro realm, it becomes harder and harder for the attacker to
control the specific error patterns at the output of the device
[25]. Moreover, to the best of our knowledge, all the known
fault injection mechanisms can only provide a limited spatial
and timing resolution. For instance, the affected die area due to a
laser gun shot, which is one of the most powerful fault injection
methods, is determined by the device technologies and the focus
area of the laser beam [25]. The time between two consecutive
shot of the laser gun is affected by the speed of recharging and
the delay between the trigger signal and the shot [24].

In this paper, we concentrate on protecting the data path of
cryptographic devices against fault injection attacks. We assume
that countermeasures are implemented in the cryptographic de-
vice preventing the attackers from tampering with the clock
signal [4], the control circuits [27] (e.g., FSMs and state regis-
ters) and the error detecting network (EDN). This is a common
assumption in many papers discussing countermeasures against
fault injection attacks for the data path of cryptographic devices
[11], [12], [15], [28].

Throughout this paper, we assume a strong attacker model
in which an attacker knows everything about the hardware ar-
chitecture of the device including the codes used to detect er-
rors. Specifically, the attackers may be able to inject faults which
only affect the original multiplier (but not the redundant portion
used for error detection). We assume that the attacker cannot
fully control the manifestation of injected faults as error pat-
terns at the output of the device. However, as opposed to pre-
vious works on protecting cryptographic devices based on linear
error detecting codes, e.g., parity codes or duplication codes,
we do not impose any limitations on error patterns such as the
number of distorted bits at the output of the protected device.
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TABLE I
ESTIMATED REPEATABILITY OF ERRORS FOR FAULTS INJECTED INTO SIGNED (2’S COMPLEMENT) AND UNSIGNED WALLACE TREE MULTIPLIERS

The manifested error patterns are determined by factors such as
the number of affected gates, input patterns to the device, etc.
We further assume that the attacker cannot change the faults
at each clock cycle (slow fault-injection mechanisms). Once
faults are injected and an error is generated, the faults stay for
several clock cycles before new faults can be injected and tend
to manifest themselves as the same error patterns at the output
of the device. Similar assumptions were also used in [15], [28].
This is the case for several well known fault-injection method-
ologies mentioned in the last paragraph. We call this kind of
channels where errors have high probabilities to repeat them-
selves for several consecutive clock cycles lazy channels or
channels with memory. Multiple fault injections may also re-
sult in the same errors. For example, the author in [24] showed
that two shots of a laser gun fired in rapid succession on a 32-bit
ARM processor produces the same errors. The reason is that the
fault locations cannot be adjusted in a short time due to the in-
flexible laser bench.

As it will be shown in the following sections, the advantages
of multilinear arithmetic codes in terms of error detection capa-
bilities are two-fold. First, they are better than linear arithmetic
codes in a sense that they have a much smaller number of bad
errors. Second, multilinear arithmetic codes have much higher
error detection probabilities than linear codes for lazy chan-
nels hence they will effectively prevent the attacker from im-
plementing a successful fault-induction attack under the afore-
mentioned strong attacker model.

III. REPEATABILITY OF ERRORS WHEN INJECTING FAULTS

INTO WALLACE TREE MULTIPLIERS

To support the statement that slow fault-injection methodolo-
gies may result in repeating errors, we conducted fault-injection
simulations in C++ for unsigned and signed (2’s complement)
Wallace tree multipliers.

Multipliers based on Wallace trees [29] are commonly used
in various applications due to their faster speed compared to
other alternatives. In general, the propagation delay of a -bit
Wallace tree multiplier is on the order of in terms
of logic gates. When combined with the Booth encoding tech-
nique, Wallace tree multipliers can be used for 2’s complement
multiplications. The gate level netlists for both signed and un-
signed Wallace tree multipliers are modeled in C++. In order
to inject faults into the device, we insert a multiplexer at the
output of every logic gate as shown in Fig. 1. To simplify the
analysis, we assume that the injected faults are either stuck-at-0
or stuck-at-1 faults. When fault enable is asserted, faulty output
is selected and the observed output of the gate is determined by
the internal fault model. We further assume that the attackers
are able to inject multiple faults into the devices and the injected

Fig. 1. Fault-injection into a single gate.

fault (or faults) may affect more than one logic gate. Ten thou-
sands of simulations are performed for every fixed number of af-
fected gates. For each simulation, locations of the affected gates
are randomly picked up and one million input operand pairs to
the multipliers are randomly generated.

The injected faults may or may not manifest as non-zero error
patterns at the output of the multiplier. The probability of mani-
festation increases as more gates are affected. We also note that
when only 1 gate is affected and the fault manifests, it will al-
most always manifest as the same non-zero error pattern at the
output of the multiplier. Moreover, it is highly probable that the
manifested non-zero error pattern is in the format of , where

is an integer (single errors). As the number of the affected gates
increases, both the number of possible error patterns and the av-
erage multiplicity of errors will increase.

For fixed faults, the error pattern observed at the
output of the multiplier may vary for different input pairs when
more than 1 gate are affected. Assume that every multiplication
takes one clock cycle to finish. Let be the observed error pat-
tern at the th clock cycle. The repeatibility of errors can be
defined by the following equation:

(2)

Table I shows the average repeatability of errors when up
to 5 logic gates are affected by the injected faults for 16- and
32-bit signed and unsigned Wallace tree multipliers. For the
16-bit unsigned Wallace tree multiplier, the average repeata-
bility of errors is higher than 0.5 when only one gate is affected.
The repeatability of errors decreases as the number of affected
gates increases. The signed Wallace tree multipliers based on
the Booth encoding technique has smaller repeatability of er-
rors compared to the unsigned Wallace tree multipliers. We also
note that longer operand size will result in smaller error repeata-
bility for both signed and unsigned Wallace tree multipliers.

In practice, more than five logic gates may be affected by
the injected faults. But as the number of the affected gates in-
creases, the manifestation of faults becomes more complex and
it is harder for the attacker to predict the error at the output of the
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device. As a result, the attacker loses control of how the faults
manifest as errors at the output, which reduces the probability
for the attacker to conduct a successful fault injection attack by
generating undetectable errors. Moreover, the repeatability of
errors is highly dependent on the types of the devices and the
locations of the injected faults. The more linear the device is
(more XOR gates it contains), the higher the repeatability of the
errors. Faults injected close to the output pins of the devices
have higher probability to manifest as repeating errors. Another
example is the faults injected into memories (e.g., SRAM array,
FLASH). The faults tend to manifest as the same error pattern
regardless of the number of memory cells that are affected. We
note that even a small repeatability of errors (e.g., 0.05 for the
32-bit signed Wallace tree multiplier) can be sufficient for ro-
bust and multilinear arithmetic codes to increase their error de-
tection capabilities. Let be the error masking probability
for an error . If stays for clock cycles, the chance that
will be detected is .

Remark 2: For secure applications, robust and multilinear
arithmetic codes can benefit from design for repeatibility. The
circuit can be designed and synthesized in such a way that the
repeatability of errors is high. In this case, the error detection
capabilities of robust and multilinear arithmetic codes can be
drastically increased. Thereby, the security level of the system
protected by these codes will be much higher. For example, re-
ducing the average fanout of gates can result in a smaller number
of possible error patterns once the fault is fixed. As a result, the
repeatability of errors will increase, assuming a similar prob-
ability of fault manifestation. Moreover, as we mentioned in
the last paragraph, linear networks consisting of only XOR gates
have higher repeatibilities than nonlinear networks.

IV. CONSTRUCTIONS OF CODES AND ANALYSIS OF

NUMBERS OF BAD ERRORS

We first analyze the error detection properties of linear arith-
metic codes.

Theorem 1: (Linear Arithmetic Codes) Let be a linear
arithmetic code defined by

(3)

in which is an integer (not a power of 2) and
represents the modulo reduction operation. Denote by

an additive error, .
The distorted codeword is

. As , the number of bad errors converges to

(4)

where represents the th harmonic
number. For large the difference con-
verges to . In this case the probability of bad errors
converges to as .

If no errors occur to the redundant part of the code
, the number of bad errors is upper bounded by

and is lower bounded by . As
, the probability of bad errors in the format of

converges to .

Proof: To simplify the analysis, we divide the errors into
two classes according to the value of .

1) , we have
.

a) , then . An error
is masked if and only if .

Or equivalently . For a codeword to mask
a given error , the following conditions must
be satisfied:

(5)

(6)

(7)

From (6) and (7) we have . For
any given , the number of sat-
isfying (5) is upper bounded by .
Thereby for a given error , the total number
of codewords that mask the error is upper bounded by

. For bad errors the error
masking probability is larger or equal to 0.5. Thus

(8)

As , the asymptotic error masking prob-
ability can be estimated by removing the ceiling func-
tion. Thereby (8) can be rewritten as follows:

(9)

Thereby

(10)

We know that , so

(11)

The total number of satisfying (10) and (11) is
upper bounded by (For simplicity, let .)

(12)

and is lower bounded by

(13)

So the number of bad errors in this class is upper
bounded by (12) and is lower bounded by (13).

b) , errors in this class will never
be masked because the redundant part of a distorted
codeword is an invalid value.

c) , then .
An error is masked if and only if

. Or equivalently .
It is easy to show that , so
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. For a codeword to mask
a given error , the following conditions must
be satisfied:

(14)

(15)

(16)

From (15) and (16) we have . For a
certain value of , the number of
satisfying (14) is upper bounded by .
Thereby for a given error , the total number
of codewords that mask the error is upper bounded
by . For bad errors the error
masking probability is larger or equal to 0.5. Thus

(17)

As , the error masking probability
can be estimated by removing the ceiling function.
Thereby (17) can be rewritten as follows:

(18)

So

(19)

Because

(20)

The total number of satisfying (19) and (20) is
upper bounded by (For simplicity, let .)

(21)

and is lower bounded by

(22)

So the number of bad errors in this class is upper
bounded by (21) and is lower bounded by (22).

From the above analysis, the total number of bad errors for
the case when is upper bounded by

and is lower bounded

by .
2) , we have

. Following the same analysis, we can show
that the number of bad errors in this class is also upper
bounded by

and lower bounded by
.

Thereby for linear arithmetic codes, an upperbound of the
number of bad errors is

Similarly, a lowerbound of the number of bad errors is

As , the number of bad errors converges to (4).
If no errors occur to the redundant part of the code, .

For the case when , a codeword mask an error
if and only if . It is easy to

prove that the number of errors in this class is upper bounded
by and is lower bounded by . Sim-
ilarly, when , the number of bad errors in the
format of is also upper bounded by and
is lower bounded by . So the total number of bad
errors occurring to the information part of the code is between

and .
For linear arithmetic codes, the number of bad errors in the

format of decreases as increases. When ,
there are very few bad errors in the format of . How-
ever, the total number of bad errors is still very large for linear
arithmetic codes.

In general, the hardware overhead for the encoder of the code
is mostly affected by the number of redundant bits .
The smallest fraction of bad errors for linear arithmetic code is
of the order of . The only way to reduce the fraction is to
increase the number of redundant bits, which is costly in terms
of the hardware overhead. To reduce the number of bad errors
while maintaining the number of redundant bits, partially robust
codes based on nonlinear functions were proposed in [10] and
[11].

Construction 1 [10], [11]: Let be a prime
number larger than 2 and . Denote by the
modulo reduction operation. The arithmetic code composed
of all vectors , in which , is a partially
robust arithmetic code.

Partially robust codes have nearly no bad errors
and can provide better protection of cryptographic devices
than linear arithmetic codes assuming a slow fault-injection
mechanism [11]. However, codes rely on nonlinear
squaring operations and have larger overhead than linear
arithmetic codes. Moreover, codes have worse de-
tection capabilities of errors in the format of (see
Section V-B3).

We next propose two constructions of multilinear arithmetic
codes based on the idea of randomly selecting among multiple
linear arithmetic codes for each encoding and the corresponding
decoding operation. For each multiplication, one randomly se-
lected code is used to generate the redundant bits and decode the
possibly distorted outputs of the multiplier and the predictor. For
different multiplications, different codes may be used.
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Intuitively, when we randomly select among multiple codes,
even if an error is missed by one of the codes, it may still be
detected by other codes. Suppose we randomly select among
codes with equal probabilities. Let be the
probability that an error is masked by the th code. It is easy
to show that the average probability that the error is masked
when we randomly select one out of these codes with the same
probability can be computed as

(23)

With different error detecting properties, the codes will
have different distribution of error masking probabilities

. When randomly selecting among them, even
if some are larger than 0.5, (For single arithmetic codes,
the error is bad.) it is highly probable that the average error
masking probability will still be smaller than 0.5 due to
the fact that other other codes can detect the error with a high
probability. Specifically, when we randomly select from two
codes, the only possible bad errors are errors masked by both
of the codes or errors masked by one code with probability one.
Obviously, this constrain will drastically reduce the number of
bad errors.

The multilinear codes proposed in the left part of this section
have similar number of bad errors to partially robust
codes. One construction will result in a hardware overhead close
to architectures based on linear arithmetic codes. The other con-
struction will have much better error detection capabilities of er-
rors in the format of than linear and partially robust
arithmetic codes.

Theorem 2 Multilinear Code): Let be
two arithmetic systematic codes defined by

where . Denote by the
arithmetic errors and the dis-
torted codeword, where and
is the number of redundant bits. If we randomly select and

to encode the original messages with equal probability, the
total number of bad errors is upper bounded by
and is lower bounded by . As , the
probability of bad errors for multilinear codes con-
verges to . The probability of bad errors in the format of

converges to .
Proof: A non-zero error is masked by a linear arithmetic

code when one of the four cases shown in Table II is satisfied.
(Please refer to the proof of Theorem 1 for more details.) When
we randomly select and with equal probability, an error

is bad if only it is masked by both of the codes or
it is masked by one code with probability 1. More specifically,

is bad if and only if the total number of codewords in and
that mask is larger or equal to .

1) For a given error , when is in Case1 (i.e.,
) or Case2 and is in

Case3 or Case4, the total number of codewords masking

the error is less than . So there are no bad errors in this
class. Similarly, when is in Case3 or Case4 and is
in Case1 or Case2, there are no bad errors.

2) is in Case1 and is in Case2. For ,
the possible number of is . For

, the possible number of is . For each
possible value of , the number of masking the error
is upper bounded by . It is easy to prove
that the total number of masking the error is less than .
So there are no bad errors in this class. Similarly we can
prove that for the following three cases there are also no
bad errors:

a) is in Case2, is in Case1;
b) is in Case3, is in Case4;
c) is in Case4, is in Case3.

3) When and both belong to Case2, , we
have and

. In this case
. For , an error

is missed if and only if

(24)

For , an error is missed if and only if

(25)

From (24) and (25) we have
. For an error to be masked by both of the codes, the

following conditions must be satisfied:

(26)

(27)

(28)

(29)

From (29), .
So no errors in this case will be masked by both of the
codes. Errors in this class are all non-bad errors. Similarly,
when and both belong to Case4, there are no bad
errors.

4) When and both belong to Case1, ,
we have

. and
. In this case

. For , an error is missed if and only
if

(30)

For , an error is missed if and only if

(31)

From (30) and (31) we have . For a code-
word to mask a given error , the following con-
ditions must be satisfied:

(32)

(33)
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TABLE II
CLASSIFICATION OF MASKED ERRORS FOR LINEAR ARITHMETIC CODES

(34)

(35)

When (35) is satisfied, (33) and (34) are also satisfied. For
each such that , the total number of
codewords in and that mask the error is .
For bad errors this number should be larger or equal to .
Thus

(36)

(37)

From (35) and (37), the number of non-zero bad errors
is upper bounded by and is lower bounded
by . Similarly, when and both belong
to Case3, the number of bad errors is upper bounded by

and is lower bounded by .
So the total number of bad errors is between
and .

The number of bad errors for multilinear codes is
much smaller than that for the linear arithmetic codes [see (4)].
All bad errors are in the format of . The security
level of systems protected by the codes can be fur-
ther increased by implementing a merged design of the original
device and the encoder generating redundant bits of the output
of the protected device. In that case, the injected faults will have
high probability to affect not only the original device but also the
encoder that generates the redundant bits of the code. The prob-
ability of errors in the format of will be efficiently
reduced. As a result, the error detection capabilities and the se-
curity level of the system will be increased.

If the original device and the encoder are separated and
the attacker is able to inject faults only in the original device,

multilinear codes do not have any advantages
over linear arithmetic codes in terms of the error detecting
capability. In this case, the system should be protected using
multi-modulus multilinear codes shown below.

A more general case of Theorem 2 is to randomly select from
codes defined by where

. However, it is easy to show that increasing
the number of codes from which we randomly select a code for
encoding and decoding will not reduce the number of bad errors
in this situation.

We next present a construction based on using multiple
modulii. The resulting codes will be different from
codes in the following two aspects.

• They have much less bad errors in the format of
.

• Increasing the number of codes from which we randomly
select a code for encoding and decoding will further reduce
the number of bad errors.

Theorem 3 (Multi-modulus Multilinear Code): Let
be two systematic arithmetic codes defined by

in which , where are co-prime
numbers (not a power of 2) and .
If we randomly select with equal probability to encode the
original messages, the number of bad errors in the format of

is upper bounded by

(38)

and is lower bounded by

(39)

When , the probability of bad errors in the format of
converges to .

Proof: Since , we have and
. For each linear code, errors are masked if and only if one

of the following two conditions are satisfied (see the proof of
Theorem 1).
Case 1: .
Case 2: .

If we randomly select with equal probability, an error
is masked by a probability at least 0.5 if and only if the

total number of codewords belonging to which mask the error
is larger or equal to . For a given non-zero error ,
there are three possible situations as stated below.

1) Both belong to Case1, . The total
number of codewords belonging to which mask the
error is . Hence the error is bad if and only
if . Since , the number of bad
errors in this class is upper bounded by and
is lower bounded by ( does not
satisfy and ).

2) Both belong to Case2, following similar analysis we
can prove that the number of bad errors in this class is
upper bounded by and is lower bounded by

.
3) When belong to different cases, it is easy to prove that

as long as satisfies
or , the total number of code-
words masking the error is always . Hence the error
is always bad. The number of bad errors in this class is
upper bounded by and is lower bounded by

.
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TABLE III
NUMBER OF BAD ERRORS IN THE FORMAT OF � � �� � �� FOR LINEAR AND MULTILINEAR CODES �� � ���

TABLE IV
NUMBER OF BAD ERRORS WHEN SELECTING FROM LINEAR ARITHMETIC CODES WITH DIFFERENT MODULII

Remark 3: When randomly selecting from two codes, exper-
imental results show that the total number of bad errors

for the multi-modulus codes is comparable to that of
multilinear codes and is much smaller than that

of linear arithmetic codes. The idea of using multiple residues
as the redundant part of the code has already been presented
in [7]. With two residues, the codeword was in the format of

. We want to emphasize that our construction is
different from multi-residue codes proposed in [7] since at each
clock cycle our code has only one residue for the redundant part.
Instead of using multiple residues simultaneously, we use only
one for each encoding and decoding operation and randomly se-
lect the modulus for different operations.

Multi-modulus codes have much less bad errors in the format
of than linear and multilinear arithmetic
codes [see (38)]. Table III shows the estimated number of bad
errors in this class for all three constructions. The number of
information bits of the codes in Table III is . For multi-
modulus codes, corresponds to the larger modulus. The other
modulus is selected to be the largest possible prime number less
than , e.g., when , the other modulus is 239. As
increases, the number of bad errors for multi-modulus codes
decreases much faster than for the other two alternatives. When

, the multi-modulus code has only
bad errors in the format of while the other two codes
have about .

These characteristics of multi-modulus codes are beneficial
in many different situations. For example, when the attacker can
identify and inject faults only to the original device, or the en-
coder of the code is only a small part of the cryptographic system
and is separated from the original device so that most of the in-
jected single (or even double) faults affect only the original de-
vice, errors will be in the format of . In this case,
systems protected by multi-modulus codes will have a higher
security level than architectures based on other alternatives. Sys-
tems with different error rates for the original device and the pre-
dictor generating the redundant bits can also benefit
from this characteristic of multi-modulus codes. Design based
on multi-voltage regions is proposed to reduce the total power
consumption of the system [30]. In the region with the smaller
voltage level, circuits are more vulnerable to soft errors and are
more probable to have errors caused by problems such as timing

violations [31]. As a result, the error rate for circuits in this re-
gion will be higher. If the original device operates at a lower
voltage level than the predictor, multi-modulus codes can pro-
vide better protections due to the fact that they have higher de-
tection capabilities of errors in the format of .

Different from codes, for multi-modulus codes
increasing the number of codes from which we randomly select
a code for encoding and decoding can further reduce the total
number of bad errors. Table IV shows the simulation results
for a 8-bit multipliers protected by multi-modulus codes with
different number of modulii. The second line corresponds to
the case when a single linear arithmetic code is used. When we
randomly select from multiple linear arithmetic codes with four
different modulus, the number of bad errors in the format of

is only 13, which is more than 100 times better than
architectures based on linear arithmetic codes.

Remark 4: From Table IV, when we randomly select from
two linear arithmetic codes with different modulii, the number
of bad errors in the format of is a little bit larger than
the result given by (38). This is because when using arithmetic
codes to protect multipliers, the output of the multiplier, hence
the information bits of the arithmetic codes, is not uniformly
distributed. Moreover, some combinations of information bits
in may never occur at the output of a multiplier whose
operands are bits. However, simulation results show
that in this situation multilinear codes still largely over-perform
linear arithmetic codes and all the advantages of multilinear
codes are preserved.

Table V summarizes the probability of bad errors of linear
and multilinear arithmetic codes. In the next section we will
present the hardware design of secure multiplier architectures
based on and multi-modulus codes as well as linear
and codes.

V. SECURE MULTIPLIERS BASED ON LINEAR, MULTILINEAR,
AND PARTIALLY ROBUST ARITHMETIC CODES

The multiplier is a basic block in many public key crypto-
graphic devices. Due to its arithmetic nature of the operations,
arithmetic error model is most often used for such devices. We
assume that faults manifest as additive arithmetic errors at the
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TABLE V
PROBABILITY OF BAD ERRORS FOR LINEAR AND MULTILINEAR CODES

Fig. 2. Hardware architectures for multipliers protected by (a) linear arithmetic codes, (b) ���� � ���� � multilinear codes, and (c) multi-modulus multilinear codes.

output of the multiplier and the predictor.1 The error is in the
format of , where is
the number of information bits and is the number of redun-
dant bits. In this section, we analyze and compare the hardware
overhead, the number of bad errors and the fault detection ca-
pabilities for architectures protected by linear, multilinear (see
Section IV) and robust arithmetic codes [11].

A. Hardware Overhead

The general architecture of multipliers protected by block
codes contains three parts: the original multiplier, the predictor
that generates the redundant bits of the code and the EDN. The
detailed architectures for secure multipliers protected by linear
and multilinear arithmetic codes are shown in Fig. 2. For the ar-
chitecture based on partially robust arithmetic codes,
please refer to [11].

The predictor for the linear arithmetic codes contains one
multiplier in . Except for the -bit comparator, the only oper-
ation implemented in the error detection network is a modulo
operation. The hardware overhead mainly comes from the -bit
modulo multiplier , whose complexity is of
the order of , and the modulo operation in EDN, whose
complexity is . ( is the number of information bits).

Compared with architectures based on linear arithmetic
codes, the architecture utilizing multilinear codes
only needs one extra -bit multiplexer and one extra mul-
tiply-by-2 operation in for both the predictor and the EDN.
Multiply-by-2 operation is equal to shifting the operands by
1 bit, which is trivial in terms of the hardware overhead. We
assume that the complexity of a -bit multiplexer is in general
of the order of . Thereby this architecture has comparable
hardware overhead to linear arithmetic codes.

1The term predictor is used in this context to refer to the circuit that computes
the redundant bits of the output of the operation directly from the inputs. In our
case the predictor computes the redundant bits of the multiplication result.

The protection architecture based on multi-modulus multi-
linear codes needs one more multiplier in for the predictor.
When , which is often the case in real life, should be
selected as the largest prime number that is smaller than if we
want to minimize the number of bad errors. A multiplier in
will have about the same hardware complexity as the multiplier
in and this will double the overhead for the predictor. How-
ever, we claim that a merged design of the two multipliers for
the predictor should be implemented. First, from the security
point of view, separate redundant data path may be used by at-
tackers to derive the secret information of the devices, e.g., the
attacker can inject faults into one redundant path of the device
which will never influence the other. A merged design can ef-
fectively solve the problem because most of the faults injected
into the redundant part of the device will affect the generation of
redundant bits for both codes. Second, the hardware overhead of
the predictor will be reduced if we merge the design of the two
multipliers. A more aggressive approach is to design the original
multiplier and the predictor of the code together as discussed in
Section IV.

Remark 5: There is a tradeoff between the error detection ca-
pabilities and the hardware overhead when we select and .
Specialized and can significantly reduce the hardware com-
plexity of the modulo operation, e.g., using Mersenne primes
[32].

To compare the hardware area overhead, we modeled 16-bit
Wallace tree multipliers protected by different alternatives in
Verilog and synthesized them in RTL design compiler using
Nangate 45-nm technology [33]. The area comparison is based
on synthesized results. The results are shown in Table VI. We
select to be 31. For multi-modulus multilinear codes, is
selected to be 29. The percentage overhead is computed by
dividing the estimated gate area of the predictor and EDN by
the estimated area of the Wallace tree multiplier. As expected,
secure multipliers based on codes have similar
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TABLE VI
HARDWARE AREA OVERHEAD FOR ARCHITECTURES BASED ON LINEAR, MULTILINEAR, AND PARTIALLY ROBUST ARITHMETIC CODES

�� � ��� � � �� � � ��� � � ���

overhead to architectures based on linear arithmetic codes.
Architectures based on multi-modulus codes require the largest
overhead, which is around 50%. The benefit of these codes
is that they have the best error detection capabilities against
errors in the format of . In Section V-B3, we will
show that this characteristics of multi-modulus codes will
make them the best alternative against fault-injection attacks
when the design of the predictor is separated from the original
multiplier. Moreover, the hardware overhead of architectures
based on multi-modulus codes will be drastically reduced if we
select to be a Mersenne prime. In fact, 50% overhead is still
much smaller than overheads for architectures based on robust
arithmetic codes, which is around 200%–400% [10], [11].

B. Experimental Results on Comparison of Error and Fault
Detection Capabilities for Linear, Partially Robust and
Multilinear Arithmetic Codes

To demonstrate the advantages of multilinear codes and par-
tially robust codes over linear codes for building secure mul-
tipliers against fault-injection attacks, we conduct simulations
to analyze and compare the number of bad errors and the fault
detection capabilities of the four alternatives presented in the
last section. For all the simulations, we assume the operands of
the multipliers are 16 bits. Each code has 32 information bits

. and are selected to be 31 and 29, respectively.
1) Number of Bad Errors: In this simulation, we randomly

generate 5000 non-zero errors . For each , we
randomly select one million messages in and encode
them using linear, , multi-modulus and
partially robust arithmetic codes. The distorted codewords

are decoded by the error
detection network. The number of codewords masking each
error is recorded. The distribution of error masking probabilities
of the 5000 non-zero errors is shown in Table VII. Most of the
errors are masked with a probability of less than 10% for all the
alternatives. Linear arithmetic codes have 149 bad errors which
are masked by a probability of at least 0.5. The numbers of bad
errors for , multi-modulus and codes are
similar and are much smaller than that of the linear arithmetic
codes, which can result in better fault detection capabilities
assuming a slow fault-injection mechanism (fault stays for
several consecutive clock cycles). Compared to multilinear
codes, codes have much less errors that are masked
by a probability of more than 10%. However, we will show
later in this section that codes actually have the worst
error detection capabilities of errors in the format of
and is only suitable for designs where the multiplier and the
predictor are synthesized together. Moreover, codes
have larger overhead than multilinear codes. The

TABLE VII
ERROR MASKING PROBABILITY DISTRIBUTIONS FOR SECURE MULTIPLIERS

BASED ON LINEAR, MULTILINEAR, AND PARTIALLY ROBUST ARITHMETIC

CODES �� � ��� � � �� � � ��� � � ���

disadvantage of overhead for will become more
significant as increases.

2) Fault Detection Capabilities When Both the Multiplier and
the Predictor Are Affected: Suppose both the original multiplier
and the predictor are affected by the injected faults, which man-
ifest as a non-zero error at the output of the device.
Assume that each multiplication is completed in one clock cycle
and stays for consecutive clock cycles (slow fault-injection
mechanism). If is detected at least once among the clock
cycles, we say that is detected. Otherwise is masked. In this
simulation, we randomly select 10 millions possible error pat-
terns and assume that may stay up to three clock cycles.
The average error masking probabilities of for the four pre-
sented alternatives are shown in Table VIII. All codes have sim-
ilar error detection capabilities when stays for only one clock
cycle. However, when , the error masking probabilities of

and multi-modulus codes are already nearly half of
that of linear arithmetic codes. As increases, the advantage of

and multi-modulus codes become more significant.
As expected, when both the original multiplier and the predictor
are affected by the injected faults, codes have the best
error and fault detection capabilities among the four alternatives.

3) Fault-Injection Simulations for the Case When Only the
Multiplier Is Affected: Suppose the design of the multiplier
and the predictor is separated and the attacker manages to in-
ject faults only to the original multiplier. In order to analyze
the fault detection capabilities, we conduct gate-level fault-in-
jection simulations in C++ on 16-bit secure Wallace tree multi-
pliers protected by different alternatives. The gate level netlist
is derived from Verilog models. Each gate may have stuck-at-0
or stuck-at-1 faults. We assume that 2 to 4 gates
may be affected by the injected faults and the faults stay for up
to three consecutive clock cycles . At each clock cycle,
a new pair of operands are randomly generated and multiplied.
If the manifested error is detected for at least one clock cycle,
we say that the fault is detected.

Table IX summarizes the fault masking probabilities for all
combinations of and . When a certain number of gates
are affected ( is fixed), larger will result in smaller fault
masking probabilities. When , the average fault masking
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TABLE VIII
FAULT MASKING PROBABILITIES WHEN BOTH THE ORIGINAL MULTIPLIER AND THE PREDICTOR ARE AFFECTED �� � ��� � � �� � � ��� � � ���

TABLE IX
FAULT MASKING PROBABILTIES WHEN ONLY THE ORIGINAL DEVICE IS AFFECTED �� � ��� � � �� � � ��� � � ���

probabilities increase as increases. However, when ,
the average fault masking probabilities will drop as increases.
This is because for larger , errors are more probable to mani-
fest as different non-zero errors at the output of the device. For
smaller , it is more likely that even if the fault stays for several
consecutive clock cycles, it only manifests in one clock cycle.
In this case, the fault detection capabilities will not increase.

When only the original multiplier is affected, multi-modulus
codes have the best error detection capabilities. When ,
the fault masking probabilities of multi-modulus codes are
nearly half of the fault masking probabilities of linear and

arithmetic codes with the same . The advantage
of multi-modulus codes becomes larger as increases.

Linear arithmetic codes and codes have the
same error detection capabilities for errors in the format of

. The reason is when , the error masking equa-
tions for and codes are
and depending on the ranges
of . Obviously, is equivalently to
and is equivalent to . Thereby,

is masked by codes if and only if it is
masked by linear arithmetic codes.

codes have the worst error detection capabilities
of errors in the format of among the four alterna-
tives. When , the error masking equation for
is and for
different ranges of . When or

or is always
true. But the inverse statement is incorrect. Thereby,
will mask more errors in the format of than linear
and arithmetic codes.

4) Selection of Arithmetic Codes for Secure Multipliers:
From the above analysis, linear arithmetic codes have a lot
of bad errors—errors masked with a probability of at least
0.5—which may compromise the security level of the system.

, multi-modulus and codes have much
less bad errors than linear arithmetic codes (see Tables V and
VII). and are more suitable for designs
where the original multipliers and the predictors are synthe-
sized together. have better fault and error detection
capabilities while require less hardware overhead.

The selection of these two codes depends on specific applica-
tions. When the designs of the multiplier and the predictor are
separated and only the multiplier is affected by the injected
faults, and are no better than linear
arithmetic codes. In this case, we should select multi-modulus
codes which have the best detection capabilities against errors
in the format of .

VI. CONCLUSION

In this paper we propose to use multilinear codes to pro-
tect cryptographic devices against strong fault-injection attacks.
Two constructions of multilinear arithmetic codes are presented.
The hardware overhead and the error and fault detection capa-
bilities of secure multipliers based on multilinear codes are ana-
lyzed and compared to those based on linear and partially robust
arithmetic codes. Simulation results show that multilinear and
partially robust arithmetic codes have smaller number of bad
errors (errors masked by a probability of at least 0.5) and can
provide better protection than linear arithmetic codes assuming
a slow fault-injection mechanism. The proposed codes do not
imply any limitations on the types of errors at the output of the
protected device, e.g., the multiplicities of the errors do not have
to be small.

codes have similar overhead to linear arithmetic
codes with the same number of redundant bits. and
multi-modulus codes have slightly higher overhead than linear
arithmetic codes. But the overhead is at most around 50% and is
much smaller than the overhead of architectures based on robust
arithmetic codes, which is around 200%–400%.

If the designs of the predictor and the original multiplier
are separated and the injected faults affect only the multiplier,
multi-modulus code is the best alternative. In this case, the fault
masking probability of architectures based on multi-modulus
codes is almost twice smaller than architectures based on the
other codes when the fault stays for only one clock cycle. The
advantage of multi-modulus codes will become even more
significant as the fault and the resulting error pattern stays
longer.

If the faults affect both the multiplier and the predictor,
codes have the best fault detection capabilities.

code has similar performance to multi-modulus
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codes and require the least hardware overhead among multi-
linear and partially robust arithmetic codes. The selection of
codes depends on specific applications.

Multi-modulus codes can be generalized to the case of ran-
domly selecting from codes ,
where are different prime numbers larger than 2. The number
of bad errors will be further reduced as increases.
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