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ABSTRACT

As technology scaling slows down in the nanometer CMOS regime and mobile com-

puting becomes more ubiquitous, designing energy-e�cient hardware for mobile sys-

tems is becoming increasingly critical and challenging. Although various approaches

like near-threshold computing (NTC), aggressive voltage scaling with shadow latches,

etc. have been proposed to get the most out of limited battery life, there is still

no “silver bullet” to increasing power-performance demands of the mobile systems.

Moreover, given that a mobile system could operate in a variety of environmen-

tal conditions, like di↵erent temperatures, have varying performance requirements,

etc., there is a growing need for designing tunable/reconfigurable systems in order

to achieve energy-e�cient operation. In this work we propose to address the energy-

e�ciency problem of mobile systems using two di↵erent approaches: circuit tunability

and distributed adaptive algorithms.

Inspired by the communication systems, we developed feedback equalization based

digital logic that changes the threshold of its gates based on the input pattern. We

vii



showed that feedback equalization in static complementary CMOS logic enabled up

to 20% reduction in energy dissipation while maintaining the performance metrics.

We also achieved 30% reduction in energy dissipation for pass-transistor digital logic

(PTL) with equalization while maintaining performance. In addition, we proposed

a mechanism that leverages feedback equalization techniques to achieve near optimal

operation of static complementary CMOS logic blocks over the entire voltage range

from near threshold supply voltage to nominal supply voltage. Using energy-delay

product (EDP) as a metric we analyzed the use of the feedback equalizer as part of

various sequential computational blocks. Our analysis shows that for near-threshold

voltage operation, when equalization was used, we can improve the operating fre-

quency by up to 30%, while the energy increase was less than 15%, with an overall

EDP reduction of ⇡10%. We also observe an EDP reduction of close to 5% across

entire above-threshold voltage range.

On the distributed adaptive algorithm front, we explored energy-e�cient hardware

implementation of machine learning algorithms. We proposed an adaptive classifier

that leverages the wide variability in data complexity to enable energy-e�cient data

classification operations for mobile systems. Our approach takes advantage of varying

classification hardness across data to dynamically allocate resources and improve

energy e�ciency. On average, our adaptive classifier is ⇡100⇥ more energy e�cient

but has ⇡1% higher error rate than a complex radial basis function classifier and

is ⇡10⇥ less energy e�cient but has ⇡40% lower error rate than a simple linear

classifier across a wide range of classification data sets. We also developed a field

of groves (FoG) implementation of random forests (RF) that achieves an accuracy

comparable to Convolutional Neural Networks (CNN) and Support Vector Machines

(SVM) under tight energy budgets. The FoG architecture takes advantage of the fact

that in random forests a small portion of the weak classifiers (decision trees) might be

viii



su�cient to achieve high statistical performance. By dividing the random forest into

smaller forests (Groves), and conditionally executing the rest of the forest, FoG is able

to achieve much higher energy e�ciency levels for comparable error rates. We also

take advantage of the distributed nature of the FoG to achieve high level of parallelism.

Our evaluation shows that at maximum achievable accuracies FoG consumes ⇡1.48⇥,

⇡24⇥, ⇡2.5⇥, and ⇡34.7⇥ lower energy per classification compared to conventional

RF, SVMRBF , Multi-Layer Perceptron Network (MLP), and CNN, respectively. FoG

is 6.5⇥ less energy e�cient than SVMLR, but achieves 18% higher accuracy on average

across all considered datasets.
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Chapter 1

Introduction

1.1 Background and Motivation

As we enter the ‘Internet of Things’ (IoT) regime, the computing industry is placing

more and more emphasis on designing energy-e�cient mobile systems (Wu, 2015).

This increasing emphasis on energy-e�ciency is driven by the need for the mobile

systems to be able to process large quantities of data in real time (which requires

proportional amount of energy) and also the slow development in battery technology.

Moreover, these mobile systems are expected to operate in a variety of environments,

and hence there is a need to develop tunable/adaptive systems that can dynamically

adapt and maximize the system energy e�ciency. The focus of this research is to

address this energy e�ciency problem by developing tunable digital logic circuits as

well as developing hardware based on adaptive data processing algorithms.

In addition to IoT, emerging paradigm of “Big Data” is also driving research to-

wards more energy-e�cient designs. Big Data is a general name for data sets so large

and complex that traditional approaches to computation become inadequate. A good

example of “Big Data” is social media analysis – information whether someone “lik-

ing” company pages on Facebook or tweeting complaints about products needs to be

harvested and processed in order to deliver the best customer interaction. Widespread

access to information as well as ever increasing rate of information generation require

new energy-e�cient data-processing computation units (IDC and EMC2, 2012, Bell

et al., 1972).

1
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This problem of Big Data and IoT is non-trivial - devices are getting smaller

100 times every decade (TSensors, 2013), and every year the number of active nodes

connected to the Web is increasing by hundreds of thousands (Hilbert and Lopez,

2011, IDC and EMC2, 2013, TSensors, 2013). Fundamentally, this creates a demand

for a new design paradigm in the area of mobile computing. Miniaturization of energy

sources and “intelligent” power management, although being of research interest, is

not growing as fast as the demand for computation, making energy-e�ciency an

immediate requirement.

Currently, there are multiple parallel e↵orts in place to design energy-e�cient

computing systems. At the device level, Complementary Metal Oxide Semiconductor

(CMOS) technology scaling enabled us to lower power and improve performance ev-

ery two years. However, CMOS technology scaling has slowed down and is expected

to end in the next 10 years, thus limiting the improvements in energy e�ciency

(Williams, 2017). Hence, alternate switching devices like Tunnel Field E↵ect Tran-

sistors (TFETs), Carbon Nanotube FETs (CNFETS) are being explored (Richter

et al., 2014, Paul et al., 2006). Other emerging technologies such as graphene FETs

(Iannazzo et al., 2015, Khan et al., 2014), silicon NanoWire FETs (Turkyilmaz et al.,

2013, Yazeer et al., 2016), Spintronics (Bishnoi et al., 2017), and Memristor-based

systems (Zangeneh and Joshi, 2014a) have also shown promising results in pushing

the boundaries of the Moore’s law.

At the circuit level, (Zhai et al., 2004) and (Calhoun and Chandrakasan, 2004)

have shown that there exists a minimum energy supply voltage, which lies in the

subthreshold region (Wang and Chandrakasan, 2004). Although subthreshold design

enables ultra-low energy dissipation, the drawback of subthreshold design is that

energy reduction comes at a price of significant performance degradation, which lowers

the energy e�ciency. A better approach is to operate the circuits near the threshold
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voltage. This operating point provides the best balance between energy dissipation

and performance (Dreslinski et al., 2010). However, we would like to note that this

balanced operating point is highly dependent on the application and environmental

conditions. As a result, the solution to this energy e�ciency problem should 1) have

the ability to operate at-or-near the maximum energy e�ciency point, 2) have the

ability to adapt to changing environmental conditions while satisfying condition 1,

and 3) have the mechanism to change the current operating figures-of-merit if the

environment (i.e. battery state) change. To tackle these requirements, we propose a

multilayer approach to energy-e�cient computing. In particular, we laid the grounds

for the development of circuit-, architecture-, and algorithm-level mechanisms as given

below:

• Circuit-level mechanism: While designing a circuit, we use a lot of opti-

mization parameters, such as technology node, device dimensions, architecture,

routing topology, etc. These parameters can be seen as pre-fabrication knobs

for “static optimization”. However, it is di�cult to predict the exact operating

conditions of a circuit. Hence it is necessary to provide a tuning capability

in the circuit. In this work we developed a feedback equalization mechanism

for computation blocks. In particular we have shown that feedback equaliza-

tion with Schmitt Trigger and feedback equalization in pass-transistor logic are

viable solutions for energy-e�cient computation. We expanded this work to

enable tunability (details in Chapters 2 and 3), which enables a more robust

operation in changing environmental conditions.

• Algorithm-level mechanisms: Generally algorithmic approaches are appli-

cation specific, however, we showed that is it possible to develop an adaptive

system that would utilize machine learning in order to achieve adaptability. For

example a mobile processor, that is manufactured without prior knowledge of
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operating conditions might utilize machine learning algorithms to adapt to the

changing environment. In this case the machine learning approach creates a

“tuning knob” for trading o↵ energy, performance, as well as error rate, where

applicable. As shown in Chapter 4, machine learning algorithms can be uti-

lized to adapt to changing operating conditions, such as change in workload,

change in performance requirements, energy budget, etc. In our work we show

that using machine learning approaches, a more energy-e�cient operating point

for supply voltage is achievable. We also show the implementation of a recon-

figurable machine learning approach to enable adaptability for changing input

data-sets.

• Architecture-level mechanisms: Ideally, one would like to have sight of the

entire computing stack, and without the discussion of the architecture-level

mechanisms the picture of energy-e�cient computing is incomplete. In Chap-

ter 5 we propose the use of distributed architecture to achieve lower energy

dissipation using decision forest. In general we show that machine learning sys-

tems that benefit from graceful degradation of accuracy are logical choice to

operate in ever-changing energy-budget conditions in mobile systems.

1.2 General Principles for Energy-E�cient System Design

To provide a little more general background on energy e�ciency, let us share some

insights that we have gathered with regard to the energy-e�cient and low-power

hardware design. In this subsection we would like to summarize some high level ideas

that one must always consider, as well as some general “tips” that might be useful

as stated in (Sarpeshkar, 2010, Rabaey, 2009, Lee, 2004, Chandrakasan, 1996). Note,

that there is no “silver bullet” in designing energy-e�cient circuits, architectures, and

algorithms. However, the following key ideas might be a good starting point towards
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Figure 1·1: Conceptual diagrams of low-power computing architec-
tures. (a) Parallel architecture with N low voltage slow processing
elements (PEs); (b) Pipelined version of the computing unit with N
slow elements operating at low voltage.

improving the energy related figures-of-merit (FoMs).

Two of the most popular ideas for energy-e�cient circuit designs are parallelism

and pipelining. Circuit level parallelism uses a demultiplexer to redirect a high-

bandwidth serial input to many low-throughput identical slow-and-parallel computing

units. The outputs are then sequentially sampled by a fast multiplexer to recreate

the high-throughput serial output. Figure 1·1(a) shows an illustration of this concept

as proposed in (Chandrakasan and Brodersen, 1995). N processing elements (PEs)

are operating at lower voltage and frequency (V low
DD and fclk/N respectively). This

architecture has a multiplexer and a demultiplexer that operate at high voltage V high
DD

in order to support higher frequency fclk. Figure 1·1(b) shows the pipelined version

of the computing system. This architecture does not need to serialize the inputs and

deserialize the outputs, and thus has no need for fast, high-voltage components. The
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dynamic power dissipation for parallel and pipelined architectures can be written as

Pnominal = ↵fclkCbigV
high
DD

2

(1.1)

Pparallel = ↵fclk
⇣
CPEV

low
DD

2

+ CMUXV
high
DD

2

⌘
(1.2)

Ppipeline = N · ↵fclkV low
DD

2

(CPE + CREG) , (1.3)

where Cbig, CPE, CMUX , and CREG are the parasitic capacitances for a nominal (non-

parallel, non-pipelined), small-and-slow PE, multiplexer/demultiplexer, and register

designs respectively. Note that the pipelined version of the architecture introduces

factor N in the dynamic power consumption, but does not include the high-voltage

CMUX as does the parallel architecture. The design choice between parallel and

pipelined versions depends on how many slow PE elements are available and what

the power dissipation of individual components in the system is.

The order in which the computations are done in an architecture also a↵ects

overall energy e�ciency of a system. In general terms, computations that reduce the

information bandwidth of the data should occur as early as possible. For example,

spatial filtering or convolution that allows image information to be encoded in a

compressed representation should occur early in the computational pipeline. One of

the often overlooked principles of energy-e�cient computing is the use of intelligent-

(a) PE 1

PE 2

PE 3

PE'1

PE 3PE'2

(b)

Figure 1·2: Order of execution is defined by the use of an applicable
intelligent-and-e�cient algorithm, especially in conditional execution:
(a) Processing elements are arranged sequentially, and the results are
identified conditionally after each PE; (b) Same results with modified
conditional PEs arranged in a tree.
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and-e�cient algorithms with inherently low operation count. In general, this

idea dictates the trade-o↵s that govern the choice of level of parallelism, pipelining,

order of execution, and architecture topology. As a general example, algorithms with

operations organized in a conditional tree may lead to only a logarithmic number of

computing operations, which might be considered intelligent-and-e�cient, and in a

nutshell represents choice between pipelined vs. parallel execution. Figure 1·2 shows

conceptual diagram of di↵erent ordering of the processing elements. In this example,

if we assume conditional execution, we might choose either (a) sequential or (b) tree-

like architecture. The average energy cost for executing architectures (a) and (b)

could roughly be estimated as E
(a) = EPE · (PW · 1 + PX · 2 + PY · 3 + PZ · 3) and

E
(b) = EPE · (PW · 2 + PX · 2 + PY · 2 + PZ · 2) respectively, where EPE is the average

energy dissipation per conditional PE, and P{W,X,Y,Z} is the probability of di↵erent

conditionals.

To illustrate the choice between di↵erent architectures for conditional execution

shown on figures 1·2 (a) and (b), consider an example when the cost of all PEs is 1 en-

ergy unit (EU), and conditions W , X, Y , and Z are equiprobable (P{W,X,Y,Z} = 0.25).

In that case the average energy cost for (a) would be E
(a) = 2.25 EUs. However, the

use of tree-like architecture (b) would yield E
(b) = 2.0 EUs. As a counter exam-

ple, let us assume that the conditions happen with probabilities PW = 0.5, PX =

0.25, P{Y,Z} = 0.125. In that case, E
(a) = 1.75 EU, while E

(b) = 2.0 EU. This exam-

ple, although over-simplified, shows how the choice of architectures and algorithms

can improve the overall energy e�ciency.

In addition to the general ideas mentioned above, we can identify several principles

or “tips” for low-power design. Although there is some overlap and redundancy

in these principles, we are hoping these principles will capture the essence of the

underlying idea of energy e�ciency. The principles, in no particular order, are
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1. Exploit preprocessing in an optimal way. Preprocessing a high-throughput

input often improves all FoMs in a low-power or energy-e�cient system. The

preprocessing was shown to be very e�cient in analog domain (Sarpeshkar et al.,

2005, Avestruz et al., 2008). In digital domain convolutional layers in CNNs ef-

fectively preprocess the input to extract more information (Simard et al., 2003),

thus improving the accuracy. Chapter 4 describes an adaptive classifier that has

a “chooser” function that can be seen as preprocessing the input by identifying

its “hardness” and selectively enabling di↵erent computational paths.

2. Find a technology that “encodes” your computation. Some functions,

such as simple integration or even RBF (Tsividis et al., 1990) is possible to

implement using a single bypolar junction transistor (BJT), which could signif-

icantly improve energy-e�ciency. Another example is the use of emerging tech-

nologies such as memristive crossbar networks to mitigate the processor-memory

bottleneck (Velasquez and Jha, 2014). “Technology encodings” were shown to

be e�cient in both analog and digital domains (Rabaey, 2009, Sarpeshkar, 2010)

3. Use parallel and pipelined architectures. As described earlier, parallel and

pipelined systems implement complex computational systems through divide-

and-conquer approach. The speed, complexity, and accuracy of each PE can

be significantly less than that needed in the overall computation. Chapter 5

describes an energy-e�cient way of implementing random forest and field of

groves algorithms using parallelization and pipelining.

4. Balance computation and communication costs. A frequent trade-o↵

in many mobile and embedded systems is the balance between communication

and computation energy costs. If one computes too little, there is too much

information to transmit, increasing the communication cost. On the other hand,
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if computing too much, one might be passing on the opportunity to save some

energy by computing in the “cloud”. The optimal solution for this problem is

still in its infancy, and requires extensive analyses.

5. Use hybrid systems. In the mixed-signal domain, the concept of hybrid

(Sarpeshkar, 1998) and collective analog (Mandal et al., 2009) is widely used

to combine the best of the analog and digital worlds to design ultra low-power

systems. The main idea is to separate the computation into multiple simpler

blocks that communicate with each other, thus using parallelization and rebal-

ancing the computation vs. communication costs. This principle overlaps with

the principle of parallelism but does not assume that the processing elements

in the system are identical. Expanding the definition of the hybrid systems, we

would also include the notion of specialized accelerators under this bullet. A

complex system can be separated into two parts:

(a) General purpose processor: high ignorance of what is important; limited

adaptation; no learning; highly energy-e�cient for general tasks;

(b) Specialized accelerator: high knowledge of what is important; supporting

adaptation and live reprogrammability; high use of analog and mixed-

signal components in addition to digital; highly energy-e�cient for spe-

cialized tasks.

Chapters 4 and 5 describe accelerators that are specialized for machine learning

classification, and achieve high energy-e�ciency compared to general purpose

processors.

6. Reduce the amount of information to be processed. Energy and in-

formation are naturally linked, and the overarching principle of information

reduction could encompass all principles in low-power or energy-e�cient design
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listed here. This principle is rather abstract, and its concrete implementation

requires the knowledge of the algorithms, signal processing, architectures, cir-

cuit topologies, as well as prior knowledge of the types of data that would be

processed, and application for the design.Many examples could be placed un-

der this principle, ranging from purely analog circuits such as automatic gain

control (AGC) (Baker and Sarpeshkar, 2006) and ending with e�cient digital

algorithms like clock gating (Rabaey, 2009). Adaptive classifier described in

chapter 4 can be loosely seen as utilizing this principle by adaptively selecting

how much information should be processed by linear, polynomial, or infinite

order RBF blocks.

7. Use feedback and feedforward architectures. Feedback is an important

concept in improving both the e�ciency and robustness of an energy-e�cient

system. The energy-e�ciency of the feedback stems from three primary mech-

anisms (Sarpeshkar, 2010): 1) a lowpass or integrator transfer function in a

feedback path provides di↵erentiation, delta encoding, highpass filtering, or

“adaptation” such that unwanted information (usually DC) is removed, while

desirable information (usually AC) is propagated; 2) non-linear feedback imple-

ments automatic gain control or compression, which allows relatively constant

average information (as current or SNR) to be mapped from input to output

even if environmental conditions change; 3) feedback attenuation of the device

noise statistics. Chapters 2 and 3 describe our view of how the feedback loop

is incorporated in the computational channels.

8. Separate speed and precision/accuracy. Recent advances in the domain

of machine learning (Wang et al., 2017) have shown drastic improvement in

all FoMs of energy-e�cient approximate computing (see chapter 1.3). However,

energy-e�ciency is still a major bottleneck in the mobile and embedded systems.
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Thus, it is important to remember that it costs power to be simultaneously fast

and accurate (whether we are performing analog/digital processing, sensing, or

actuating). It is advantageous to design architectures (as far as possible) where

speed and precision are not simultaneously needed. For example, in case of the

machine learning, it is possible to design systems where only the latch is precise,

while the rest of the architecture would utilize low-power approximate comput-

ing units. This principle can be seen in nature: neurons “discretize” continuous

analog vector inputs into a set of digital outputs. The process of sampling is

performed using current-integrating comparator (Sarpeshkar et al., 1992), and

is equivalent to an approximate integrator combined with accurate comparator.

A typical neuron in the human brain operates on a ⇡6000-input vector with

⇡0.5nW of power, such that ⇡22 billion neurons in the brain consume ⇡15W

of power (Aiello, 1997). Nature inspired a lot of theoretical and practical work

(see chapter 1.3).

9. Use subthreshold operation if possible. Although not the best tip for high-

performance computing modes, operating in subthreshold regime is advanta-

geous from the point of view of low-power operation. According to (Sarpeshkar,

2010, Mead, 1989, Enz and Vittoz, 2006) the main power dissipation reducing

traits of operating in the subthreshold regime are 1) maximized speed per watt;

2) lower saturation voltage; 3) no velocity saturation; 4) low resistive and induc-

tive drops dues to parasitics; 5) possibility of implementing machine learning

computing blocks in this regime in a highly energy-e�cient fashion – blocks such

as exponential/radial basis function (RBF), tanh, cosh, sinh, etc. can profitably

use “leakage” currents as “analog computing units” (ACU).

10. Operate slowly and/or adiabatically. Although not necessarily energy e�-

cient, operating slowly might be power e�cient. One of the reasons why natural
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neurons are extremely power e�cient is because they operate relatively slowly,

and do not dissipate power with the surrounding cells – so called adiabatic

process. Operating far below nominal frequency fnom was shown to be power

e�cient (Lee, 2004) in digital circuits. It is suggested that following this princi-

ple one must try and operate at a frequency the is at least five times below fnom

and because this principles assumes low computational performance, it is best

suited to work well in subthreshold regimes as shown in (Sarpeshkar, 2010).

It is worth pointing out that the “No Free Lunch” theorem (Wolpert and Macready,

1997) is universal, and in our case robustness, flexibility, accuracy, and performance

always trade-o↵ with energy e�ciency: the extra degrees of freedom necessary to

maintain robustness or flexibility invariably hurt e�ciency; increase in accuracy or

performance almost always requires an increase in complexity, thus making the sys-

tem less e�cient. With that said, we employ the reader to accept the listed principles

with a grain of salt – keeping the trade-o↵ game in mind.

1.3 Related Work

1.3.1 Circuits and Architectures that Trade-O↵ Performance, Energy,

and Error Rate

The tunability and adaptability of a system is best described in the context of its

operating condition. For example, in high performance computing it is rarely expected

for performance to be tuned down, while in medical applications, implant systems are

almost always expected to operate in low energy dissipation modes. Mobile systems,

however, need and can take advantage of tunability and adaptability where we can

trade o↵ for low power dissipation or high performance. A mobile device that is

running out of battery can reduce its energy requirements by turning o↵ some of its

components to save power. A more intelligent and e�cient algorithm for a mobile
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device would be to collect run-time statistics in order to be able to predict which

parts of the system it is more optimal to switch o↵.

Mobile computing makes an ideal candidate application for dynamically tunable

and adaptable systems which could determine the optimal trade o↵ between power

dissipation and computational performance at run-time (Gautschi et al., 2017). One

can switch the voltage anywhere between nominal voltage to achieve high compu-

tational performance and near-threshold voltage (NTC) to achieve the most energy

savings (Dreslinski et al., 2010). Operating in the near-threshold regime provides the

best energy-performance trade o↵. One of the main challenges to be addressed in the

NTC region is the PVT variability as well as finding the right combination of circuit

and architecture solutions that meet the energy-performance specifications. Seok et

al. (Seok et al., 2011) have shown several established techniques in mitigating vari-

ability from di↵erent perspectives: logic, memory, and clock distribution. They have

shown that techniques such as body biasing and soft edge clocking are good circuit

techniques to minimize the e↵ects of the variability. Karpuzcu et al. (Karpuzcu et al.,

2013) proposed an algorithmic approach to NTC, while it was also shown that the en-

ergy could be traded-o↵ for reliability and vice versa (Takhirov et al., 2013, Zangeneh

and Joshi, 2014b). Although their work does not focus on variability, the algorithm

is tunable to trade-o↵ energy for reliability, thus making the trade-o↵ problem three

dimensional: while designing a system in near-threshold regime, it is possible to sac-

rifice one of the three FoMs (energy, performance, or error rate) while improving the

other two. Dynamic voltage and frequency tuning (DVFS) is an important part of the

run-time tunability, and its precision su↵ers from temperature variations. Kiamehr

et al. have shown that ambient temperature has a huge impact on DVFS in NTC

(Kiamehr et al., 2017). The have also proposed a low-cost, ambient temperature

aware voltage scaling technique to reduce the unnecessary energy overhead caused
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by temperature variation. Some recent works provide analysis of process variation

e↵ect on the adiabatic logic in NTC (Lu and Kazmierski, 2016), as well as impact of

FinFET on NTC scalability (Pinckney et al., 2017).

As the performance of a digital system is limited by error rates, some works are

focused on mitigating or detecting and correcting errors due to timing faults in the

system. Timing errors happen when some of the timing constraints, such as setup

or hold time, are violated (Valadimas et al., 2013). In tunable systems and NTC

that happens when the data path delay increases due to aggressive voltage scaling.

A number of existing techniques were shown to manage timing errors at the circuit

level. For example, Razor is a mechanism to tolerate PVT variation induced errors

and soft errors by flagging spurious transitions followed by recovery at the architecture

level (Ernst et al., 2004, Das et al., 2005, Das et al., 2009). he Razor based approach

requires an extra memory element per flip-flop and su↵ers from high silicon area cost

and power consumption. Moreover, in order to treat metastability phenomena in

the main flip-flop, a metastability detector is required to guarantee high levels of

reliability. Other approaches introduce the use of spatial or temporal computation

redundancy at the circuit level (Naeimi and DeHon, 2008, Bowman et al., 2009),

timing and delay redistribution (Kahng et al., 2010, Mohapatra et al., 2011), and even

circuit level error correcting codes (Lala, 2001, Mathew et al., 2008, Poolakkaparambil

et al., 2011). To monitor and mitigate degradation due to HCI, BTI, and dielectric

breakdown (TDDB), numerous techniques, such as silicon odometer, in-situ sensors,

etc. were proposed (Agarwal et al., 2007, Karl et al., 2008, Keane et al., 2010, Qi and

Stan, 2008).

At the architectural level N-modular redundancy with voting mechanism has

been widely used to tolerate error (Avirneni et al., 2009, Chen et al., 2011, Sar-

tori et al., 2009). Other approaches used on the architecture level of hierarchy is
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the use of stochastic processing platform with multiple functional units (Leem et al.,

2010, Narayanan et al., 2010) and instruction-level error correction used in NTC

to achieve timing error resilience (Wang et al., 2017), while (Pan and Teodorescu,

2014) presented energy-e�cient STT-RAM implementation. These approaches avoid

the timing errors by utilizing error-resilient algorithms and their architectural im-

plementations in many-core and many-processor systems. Given the multitude of

the approaches to error mitigation and power-performance trade-o↵ techniques, we

can combine some of those techniques while using the error rate as a figure-of-merit

rather than a constraint: consider an example, where the architecture has some level

of error correction. In that case the circuit level constraints could be relaxed in or-

der to achieve better power-specifications (Akturk et al., 2015). At the same time,

some applications are error-tolerant by nature, which could allow for error rate to

be another dimension in the “trade-o↵ game” (Tagliavini et al., 2016). Our feedback

equalization technique (described in chapters 2 and 3) uses variable threshold to mit-

igate timing errors while maintaining the goal power-performance specifications. In

addition to that it enables the possibility of dynamic threshold voltage readjustment

by biasing the feedback into the base of the CMOS transistors, which would widen

the power-performance tunability range in digital circuits.

1.3.2 Adaptive Systems and Machine Learning Hardware

Apart from the circuit level tunable systems described in this section, it is also impor-

tant to look into the research performed in the area of adaptive systems. In particular

those related to energy e�cient adaptive machine learning algorithms. This is mo-

tivated by the “Big Data” problem as combined with the problem of “Internet of

Things” (IoT), where massive amount of data is being generated, and its processing

is required in an energy-constrained environment. Machine Learning (ML) algorithms

are one of the most useful tools in the age of the “Big Data” and IoT and are get-
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ting more pervasive in the mobile space (ComScore Report 2016, 2016, Abadi et al.,

2015). However, because the operating conditions of the mobile devices constantly

change during the run-time, the figures-of-merit also change. This means that it is

very important to improve the run-time parameters adaptively, rather than statically.

There has been prior work in the implementation of the machine learning algo-

rithms in all levels of abstraction of the hardware design. Some works have focused

on application-specific solutions (Kaul et al., 2012, Lin et al., 2005). In general, ap-

proximate computing (Grigorian et al., 2015, Venkataramani et al., 2013, Narayanan

et al., 2010, Sidiroglou-Douskos et al., 2011, Esmaeilzadeh et al., 2012) leverages the

fact that computational e↵ort can be scaled at di↵erent levels of abstraction by ex-

ploiting the resilience of applications to inexact solutions (Düben et al., 2015, Chippa

et al., 2010, Chippa et al., 2011). However, generalizing such approaches to a broader

spectrum of applications is a non-trivial task, that current research focuses on.

Recent works have shown that although GP-GPUs are still the most commonly

used platform in accelerating machine learning algorithms (Cireşan et al., 2011, Yaz-

danbakhsh et al., 2015), other platforms are also a viable option. Specifically, neuro-

morphic approaches are getting more traction, and more works focus on accelerating

neural networks. Emulation of the biological linear-leak integrate-and-fire (LLIF)

spiking neurons was shown to be possible in basic digital circuits (Nere et al., 2013).

It is possible to achieve similar neuromorphic functionality using analog computing

with resistive crossbars (Liu et al., 2015), which adopts a rate-coding scheme where

pre- and post-neuron signals are represented in digitized pulses. Unfortunately, due

to their large computational requirements, purely digital hardware implementations

of larger neuromorphic architectures prove to be challenging (Du et al., 2015).

Multiple works tackle the large-scale neuromorphic architectures from di↵erent

angles. Rahman et al. (Rahman et al., 2016) proposed a flexible and highly e�cient
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3D neuron array architecture on an FPGA and is a natural fit for convolutional lay-

ers of a neural network. One of the main challenges with such an approach is the

size of the network, and memory requirements for their acceleration. Techniques like

factorization and pruning were proposed to compress the neural network models as

well as maintain the form of the models for the execution of neuromorphic archi-

tectures (Chung and Shin, 2016). Another way to reduce the size of a model is to

remove the near-zero weights, which was shown in (Kim et al., 2016) to improve the

energy e�ciency of the design without loss in accuracy. In their work, the weights

in a neural network were also scaled, and the activation function was embedded in

the accumulator, which makes this approach suitable for ultra low power accelera-

tor design. Cambricorn-X (Zhang et al., 2016) exploits sparsity and irregularity in

neural networks to achieve energy-e�cient neural network acceleration. Their work

utilizes an indexing module that e�ciently selects and transfers needed neurons to

appropriate processing elements. A more general purpose accelerators such as DaDi-

anNao (Chen et al., 2014) uses multiple multi-stage processing elements to achieve

energy-e�cient acceleration of machine-learning algorithms in general. This approach

inspired a whole family of DianNao accelerators (Chen et al., 2016a).

Another field that is of high interest in hardware design, is the application of

the emerging technologies in neuromorphic computing and in machine learning in

general (Panda et al., 2016b). Memristive devices have been proven to be useful in

mimicking spiking neurons, and were used in memristive crossbar structures to speed

up the executions of artificial neural networks (Xia et al., 2016, Liu et al., 2015).

A more general work by Hu et al. (Hu et al., 2016) have shown that memristive

devices are useful in accelerating matrix-vector multiplication in general. In their

work they proposed a memristive crossbar array programming for arbitrary matrix

values multiplication. This would allow for any machine learning algorithm to be
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accelerated. Other works focus more on emerging applications such as Resistive RAM

(ReRAM or RRAM) to either implement supervised (Chi et al., 2016) or unsupervised

(Bojnordi and Ipek, 2016) machine learning algorithms to achieve better energy-

performance metrics. These works use metal-oxide ReRAM to store the synaptic

weights and improve the e�ciency of the matrix dot product, which is in the core

of neural computing. ReRAM uses memristors as a memory unit, and recent works

show that it could be used as an in-memory computing device (Tang et al., 2015, Song

et al., 2017, Hamdioui et al., 2015).

Recent research has shown that adaptive machine learning acceleration is a pos-

itive step towards energy e�cient computing. The classification system proposed by

Venkataramani et al. (Venkataramani et al., 2015b) centers on using increasingly

complex classifiers in a pipeline fashion on examples close to the decision bound-

ary. Their approach assumes that complex classifiers will always correctly classify

examples, potentially using multiple complex classification functions on inherently

noisy examples. That means that if the input “hardness” is very high, all classififiers

have to try to identify the labels, before sending the input to the complex classifier.

Panda et al. (Panda et al., 2015, Panda et al., 2017) introduce an object detec-

tion mechanism using energy-e�cient neural computing. The hierarchical framework

of classifiers were set up in an increasing level of complexity, making the dynamic

trade-o↵ between classification performance and energy e�ciency hard. Similarly,

the classification system proposed by Park et al. (Park et al., 2015a) uses dynamic

threshold adjustment in deep neural networks (DNN) to achieve low power operation.

In this work, a “little” DNN is used, and if it fails, a “big” DNN is used, etc. Because

of the little-big topology it is not possible to automatically enable the appropriate

DNN without running all other DNNs (Sampson, 2015).

The approach proposed in the current work could be viewed as the energy-e�cient
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learning problem, which in turn is a variation of the problem of learning under test-

time budgets (Trapeznikov and Saligrama, 2013, Wang et al., 2014b, Wang et al.,

2014a). Here, learning under test-time budgets is a family of approaches that focus

on minimizing the costs at test time. In general, these approaches focus on selecting

sensors as opposed to energy expenditure and ignore the energy usage associated

with selection system. As the main obstacle in the test-time budget problem is the

sequential revelation of information, the energy expenditure of the selection system

is generally not accounted for. Additionally, many approaches to test-time budgeted

learning require design of both the resource allocation as well as the classification

functions, preventing the use of optimized modular systems (Xu et al., 2013, Kusner

et al., 2014, Nan et al., 2015).

Our work could be contrasted by other works that focus on adaptive classification.

In (Judd et al., 2016) authors propose an adaptive neural network that allows on-

the-fly trade-o↵ among accuracy, performance, and energy. Similarly Panda et al.

(Panda et al., 2016a) focus on dynamic adjustment of computational e↵orts in neural

networks. Unlike these works, our work is not restricted to using one type of machine

learning algorithm such as neural networks. We use a notion of a “core” classifier,

which we treat as a black box, and use another classifier (“chooser”) to achieve the

adaptive functionality.

Our work on adaptive systems is closely related to works on learning under test-

time budgets (Wang et al., 2014b, Trapeznikov and Saligrama, 2013). Although our

work falls in the same category as the works by Venkataramani et al., Panda et al., and

Park et al., and we cast the energy e�ciency learning problem in a similar fashion, our

approach is fundamentally di↵erent as it does not ignore the energy usage associated

with selecting a classification model. We also don’t focus on the sequential learn-

ing problem as new information is revealed, but consider a non-sequential selection
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process and account for the energy consumed in selecting the most energy-e�cient

classifier.

The contribution of the current work also includes the use of distributed and

parallel architectures. Algorithmically, our proposed approach is based on random

forest (RF) classifiers (Breiman, 2001). Traditionally, energy e�ciency has not been

considered when designing random forests; however, recent work has studied learning

of the RFs as a subject to test-time constraints (Nan et al., 2015). This approach

centers on reducing feature/sensor acquisition cost, however it does not address the

system energy constraints. Similar approaches to learning decision rules to minimize

error subject to a budget constraint during prediction-time have been proposed (Kus-

ner et al., 2014, Xu et al., 2012, Wang et al., 2015). Although closely related, these

approaches also ignore the energy usage and disregard computational cost, making

them of limited use in an energy constrained settings.

The state of the art machine learning techniques for image processing, video pro-

cessing, object recognition, etc. are CNN and DNN, and custom hardware accelerator

design have been proposed for the same (Chakradhar et al., 2010, Park et al., 2015b).

In addition to that, a variety of techniques including stochastic computing (Kim et al.,

2016), dataflow architecture (Chen et al., 2016b, Nowatzki et al., 2015), data reuse

(Rahman et al., 2016), custom sparse matrix-vector multiplication (Han et al., 2016)

and run-time adaptivity (Venkataramani et al., 2015a, Takhirov et al., 2016) have

been adopted to achieve energy-e�cient machine learning based operation.

1.4 Contributions

In the light of the current developments in the field of energy-e�cient computing

described in subsection 1.1, and the principles of energy-e�cient system design rules

laid out by us in subsection 1.2, we developed several mechanisms to achieve better
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energy-related figures-of-merit in digital design.

The following work was completed leading up to this dissertation:

Error Avoidance using Feedback Equalization and Schmitt Trigger

In this work we have implemented the feedback equalizer to improve the per-

formance of digital CMOS logic. The improvement is achieved by eliminating

the inter-symbol interference (ISI) between successive outputs of the digital

logic. Our simulations have shown that at nominal frequency fnom and 0%

error rate the design with the feedback was able to operate at the voltages

close to the threshold, while the baseline design (without feedback) saw higher

degradation in error rates at voltages other than super-threshold. The results

of the work were presented at the 13th International Symposium on Quality

Electronic Design 2012. The work has shown that a system with feedback

equalization achieves lower energy dissipation while maintaining the error rate

and computational performance. For example, in complex circuit blocks like

FIR, the use of feedback equalization reduced the energy dissipation by up to

40% when operating at threshold voltage VT = 0.55V and nominal frequency of

fnom = 500MHz. This work was extended to evaluate the use of equalization

for entire voltage range above threshold voltage VT . The use of equalized FF at

above threshold voltage enables an increase in operating frequency (up to 30%)

and decrease in the overall energy-delay product (up to 10%) making it possible

to operate the digital block at its near-optimal operating point from the EDP

perspective over the entire above-threshold voltage range.

Decision Feedback Equalization in Pass-Transistor Logic

We proposed a novel di↵erential “equalized pass-transistor-logic” (E-PTL) cir-

cuit that enables aggressive voltage scaling to lower energy consumption. Con-

versely the same approach could be used to enable aggressive overclocking to
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improve performance at the cost of error rate and/or energy dissipation. In

our approach a di↵erential Flip-Flop based Strong-Arm register was modified to

accommodate for equalization. For a 16-bit Kogge Stone Adder (KSA), using

convex optimization toolbox (CVX Research, Inc., 2012, Grant and Boyd, 2008)

the minimum energy design point for a given performance and error rate goal

was found and implemented. It was shown that the proposed design reduces

energy consumption by up to 30% while operating close to the threshold voltage

(a.k.a. near-threshold). The results of the work were published in the IEEE

International Symposium on Low Power Electronics and Design in 2013.

Machine Learning on a Budget using Adaptive E↵ort Classifiers

In this work we have investigated adaptive machine learning classification sys-

tems and their implementation in digital hardware. The results of this work

have shown that adaptive systems can be tuned along the energy e�ciency vs.

accuracy curve at run-time. Here, the data throughput (number of classifica-

tions per unit time) of adaptive system could be readjusted to be anywhere

between 0.5x to 3x as compared to non-adaptive approaches. The same way

the energy dissipation is adjustable (post-fabrication) from 0.01x to 10x as com-

pared to the non-adaptive classifiers. The readjustment in adaptive classifier is

as simple as changing a bias variable to enable more frequent use of one clas-

sifier vs. another. This allows for machine learning techniques to be used to

adapt to changing environment while maintaining optimal power-performance

metrics. This work was released for public in International Symposium on Low

Power Electronics and Design 2016, and was further extended by allowing the

host CPU report the current environmental conditions which is used as extra

information in deciding the best operating mode. This enabled the adaptive

classifier to be aware of the current energy reserves, which further optimized
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the trade-o↵ between energy-dissipation and accuracy rates. This work is being

prepared to be submitted to the Transactions on VLSI systems.

Distributed Computing using the Field of Groves approach

We also introduced a field of groves (FoG) implementation of random forests

(RF) that achieves an accuracy comparable to Convolutional Neural Networks

(CNN) and Support Vector Machines (SVM) under tight energy budgets. The

FoG architecture takes advantage of a property of random forests that a small

portion of the weak classifiers (decision trees) might be su�cient to achieve

high statistical performance. By dividing the random forest into smaller forests

(Groves), and conditionally executing the rest of the forest, FoG is able to

achieve much higher energy e�ciency levels for comparable error rates. We

also take advantage of the distributed nature of the FoG to achieve high level of

parallelism. Our evaluation shows that at maximum achievable accuracies1 FoG

consumes ⇡1.48⇥, ⇡24⇥, ⇡2.5⇥, and ⇡34.7⇥ lower energy per classification

compared to conventional RF, SVMRBF , Multi-Layer Perceptron (MLP), and

CNN, respectively. FoG is 6.5⇥ less energy e�cient than SVMLR, but achieves

18% higher accuracy on average across all considered datasets.

The remainder of the current dissertation is outlined as follows: Chapter 2 provides

a detailed analysis of the feedback equalization in CMOS circuits. It also provides a

comparison of sequential logic with feedback equalization with Schmitt trigger (FEST)

circuit and sequential logic without FEST circuit. Chapter 3 introduces the feedback

mechanisms in pass-transistor logic (PTL). It includes the modeling of the energy,

performance, and error rate of an equalized system. We also present a comparison of

1Maximum achievable accuracies are di↵erent for all classifiers. Although highly dependent on the
datasets, we can assume (with great caution) that RF, SVMRBF , MLP, and CNN have comparable
maximum accuracies; the accuracy of SVMLR is generally much lower than the other presented
algorithms.
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static CMOS logic with equalized and non-equalized PTL circuits. Chapter 4 and 5

present novel machine learning architectures and algorithms: an adaptive classifica-

tion algorithm and evaluation of its implementation in digital hardware and Field of

Groves implementation of RF algorithms and the detailed evaluation of its hardware

implementation. Chapter 6.2 concludes the current dissertation and discusses the

future directions for the completed research.



Chapter 2

Error Mitigation in Digital Logic Using

Feedback Equalization

2.1 Introduction

Inter-symbol Interference (ISI) is a common problem in the long-distance1 wired dig-

ital communication systems, which emerges due to finite rise and fall times of the

logical HIGH and LOW. Parasitic resistances and capacitances in a long wire reshape

the square-wave signals of the digital logic to have long “tails”. This causes increased

delays in the circuit, and conversely limits the minimum operating voltage, as delay

in digital CMOS is a function of the supply voltage. A commonly used approach to

the timing problems caused by ISI in communication systems is to use equalization.

Getting an inspiration from the communication system, we proposed a feedback-

based technique for mitigating timing errors in computational blocks. Many of the

timing errors observed after voltage scaling are due to residual e↵ects from the pre-

vious computation, which in e↵ect is the same as ISI problem in the long-wire com-

munication. We developed an equalization system that could be used in the critical

paths of the computational blocks. The system uses feedback equalization to elimi-

nate the “ISI” as well as a Schmitt Trigger to clean the signal of any artifacts and

glitches. Feedback Equalization with Schmitt Trigger (FEST) adjusts the switching

thresholds in the critical path based on the prior outputs. Specifically, if the input to

1For example core-to-core bus

25
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a flip-flop is switching, the FEST circuit provides a faster charging (or discharging)

path for the input capacitance of the flip-flop to ensure correct sampling of data.

Overall, this makes the system more robust to timing errors and enables more power

savings through voltage scaling. It should be noted that the FEST circuit can also

be used to provide fast charging/discharging paths for the one or more gates in the

critical path preceding the flip-flop to further reduce the power dissipation.

In this chapter I will describe the FEST circuit as well as its analysis. In or-

der to analyze the proposed circuit, several designs were considered: as a first step

4-bit Kogge-Stone Adder (KSA) and a 3-tap 4-bit finite impulse response (FIR) fil-

ter were designed. After achieving promising results, more complex functions were

implemented in a more aggressive technology node: 24-bit multiplier, AES-256, Reed-

Solomon decoder, and Fast-Fourier Transform blocks.

2.2 Error Manifestations in Digital Logic

A CMOS circuit can have permanent faults (due to irreversible physical changes such

as a gate output stuck at one or zero, short, or electromigration-induced open circuits),

transient faults (due to temporary changes in supply voltage and temperature) and/or

intermittent faults (due to unstable or marginal hardware) (Constantinescu, 2003).

These faults manifest themselves into bit errors and might cause catastrophic system

failures. We focused exclusively on timing errors due to supply voltage scaling. These

timing errors can be traced to the fact that voltage scaling increases the switching

time of the transistors, which in turn leads to timing constraint violations that result

in incorrect sampling of the data by the flip-flop/latch. We proposed circuit-level

technique that can mitigate these errors, thus permitting further voltage scaling and

a reduction in energy consumption. For the purposes of this work, we assumed that

the application layer is able to tolerate some errors, so long as the probability is
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very low – this assumption was made with a more complex future systems in mind.

Understanding the interaction between our circuit technique and higher layer error-

resiliency is an interesting subject for future study. Given a complex digital logic

block, its critical paths are the ones that define the timing violations. The errors

are expected to arise when the transitioning outputs of a gate do not have enough

time to charge/discharge the parasitic capacitances due to reduced supply voltage

(in case of NTC). To verify this simple hypothesis, we simulated a 4-bit Kogge-Stone

Adder (KSA) in HSPICE. We designed the adder to run (without errors) at 2GHz

at a nominal supply voltage (800mV for 22nm PTM). The supply voltage was then

scaled to 490mV and the KSA was tested by providing 1000 randomly generated input

patterns and observing the timing errors. These observed error manifestations closely
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Figure 2·1: DC response of the feedback equalizer circuit.

mirror the inter-symbol interference (ISI) errors that arise in communication channels.

In this setting, a decision feedback equalization (DFE) mechanism is commonly used

to combat ISI at the receiver end. The basic idea is that the receiver subtracts a

weighted estimate of the prior bit before making a decision on the current bit. In

the next section, we explore a circuit that mimics this technique for use in arithmetic

logic.
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Figure 2·2: Variable threshold inverter circuit (Sridhara et al., 2008).

2.3 Equalization Techniques

In a communications system, DFE is often implemented by multiplying the estimate

of the previous bit by an appropriate scaling factor and subtracting this quantity

from the channel output. In our considerations, the multiply-accumulate circuits

required for DFE far exceed the complexity of the digital arithmetic logic we are

trying to protect. From a digital circuit design perspective, DFE can be viewed as

a mechanism to vary the switching threshold of a logic gate based on the prior gate

output. If the prior output is a zero, then the switching threshold is decreased to

facilitate a transition to a one. Conversely, if the prior output is a one, then the

switching threshold is increased. Below, we describe a variable threshold inverter

that can be used as a basic feedback equalizer. Afterwards, we argue that coupling

this circuit with a Schmitt trigger leads to a robust equalizer that is well-suited for

over-scaling arithmetic logic to save energy.
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2.3.1 Feedback circuit

Sridhara et al. employed feedback equalization to overcome the ISI encountered in on-

chip communication channels (Sridhara et al., 2008). They used a variable threshold

inverter (depicted in Figure 2·2) to implement feedback equalization on a bus. The

switching threshold of this inverter depends upon the values of the inputs at nodes

P and N as detailed in Table 2.1 with V �
th < V 0

th < V +

th . The sizes of transistors M1,

M2, M3, and M4 are chosen depending on the desired values for V +

th and V �
th . This

circuit can be used as a feedback equalizer in digital logic by simply connecting the

P and N nodes to the previous output sampled by the flip-flop (see Figure 2·4). In

this configuration, the circuit adjusts the switching threshold and facilitates faster

high-to-low and low-to-high transitions. Note that the inverter (INV1) should be

fairly weak to ensure that the output does not float (Sridhara et al., 2008). The DC

response of the variable threshold inverter is shown in Figure 2·1.

P N Vth

LOW HIGH V 0

th
LOW LOW V +

th
HIGH HIGH V �

th

Table 2.1: The inverter threshold depends on the inputs P and N .
Our system varies the threshold using feedback.

One drawback of using this circuit in low power digital logic is that, in the deep

sub-micron regime, it becomes susceptible to glitches after voltage scaling. This is

mainly due to the di↵erence in switching times of the di↵erent nodes in the circuit. At

nominal voltage, these glitches can be tolerated and the correct output will be sampled

by the succeeding flip-flop. However, these glitches widen with voltage scaling and

eventually get incorrectly interpreted as valid signals.
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Figure 2·3: Inverting Schmitt trigger circuit (Baker, 2004).

2.3.2 Schmitt trigger

The deficiencies of the feedback circuit can be overcome by using a Schmitt trigger.

A Schmitt trigger is a dual-threshold bu↵er or an inverter with positive feedback

(i.e. with loop gain greater than one) that can mitigate the impact of glitches. It is

typically used to smooth a ringing pulse, as well as in voltage controlled oscillators. It

also can be useful in generating a clean pulse from a noisy input signal. An inverting

Schmitt trigger described in (Baker, 2004) is shown in Figure 2·3. The Schmitt

trigger transfer function exhibits a hysteresis loop with two switching thresholds –

lower switching point VSPL and higher switching point VSPH . (In a conventional

inverter, VSPL = VSPH .)

The threshold voltages of the Schmitt trigger can be controlled using the following

equations
�
1

�
3

=


VDD � VSPH

VSPH � VTHN

�
2

(2.1)

where VTHN is the threshold voltage of the NMOS and the device transconductances
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satisfy �
2

� (�
1

or �
3

) (M2 is a switch), and

�
5

�
6

=


VSPL

VDD � VSPL � VTHP

�
2

(2.2)

where VTHP is the threshold voltage of the PMOS and the device transconductances

satisfy �
4

� (�
5

or �
6

) (M4 is a switch) (Baker, 2004).

Although the Schmitt trigger is an e↵ective way to eliminate glitches, it exhibits

slight additional delay between the time when the input signal changes and the output

signal changes. Thus, despite the fact that the Schmitt trigger is useful in eliminating

artifacts, it can still introduce errors due to a possible shift of the gate output (which

would be the input to the flip-flop) transition closer to the clock edge. This e↵ect

is mitigated by carefully sizing the feedback equalizer and Schmitt trigger, such that

Schmitt trigger and following flip flop input capacitances would be small, while the

feedback equalizers output strength would be large.

2.3.3 Feedback Equalization with Schmitt Trigger (FEST)

Figure 2·4: Pipelined combinational logic with FEST circuit.

The feedback equalizer described in Section 2.3.1 and the Schmitt trigger in Sec-

tion 2.3.2 exhibit di↵erent output switching behavior for the same input transition.

The feedback circuit, due to the altered threshold voltages, starts switching earlier,

but the switching time might be larger if sized incorrectly (meaning that more time
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is needed to charge up the parasitics). On the other hand, the Schmitt trigger has a

smaller switching time (when the switching starts, |VGS| is already high, and most of

the parasitics are charged/discharged), but it starts switching later. It follows that in

the feedback circuit there is a high chance of falling into meta-stability due to a timing

violation. In the case of the Schmitt trigger, the chance of falling into meta-stability

is relatively low (due to fast transitions), but there is a high chance of being sampled

at the wrong cycle. This e↵ect is easily mitigated if certain sizing rules are applied.

For our proposed FEST circuit we connect the output of the feedback circuit to

the input of the Schmitt trigger. The feedback circuit stage reduces the ISI caused by

voltage over-scaling while the Schmitt trigger stage smooths out any glitches created

by the feedback circuit. On their own, the feedback circuit and the Schmitt trigger

invert their inputs so the FEST circuit is non-inverting. Overall, the FEST circuit

can be viewed as a variable threshold bu↵er that is robust to ISI and glitches. Figure

2·4 illustrates how the FEST circuit is connected to enhance pipelined combinational

logic. A comparison of the switching thresholds of the four di↵erent designs – nominal

circuit design, design with feedback equalizer circuit, design with Schmitt trigger

circuit and design with FEST circuit, is shown in Table 2.2. Though the switching

threshold of the design with the FEST circuit is higher (lower) than that of the design

with feedback equalizer circuit for 0!1 (1!0) input transition, the design with FEST

circuit takes advantage of the fast switching of the Schmitt trigger and reaches VDD

earlier than the remaining three designs.

Input Nominal Feedback Schmitt
Transition design Equalizer Trigger FEST

only only

0 ! 1 400 mV 280 mV 600 mV 300 mV
0  1 400 mV 500 mV 200 mV 480 mV

Table 2.2: Comparison of switching threshold voltages for various
designs.
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2.4 Experimental Results

We examine two arithmetic circuits – a 4-bit Kogge-Stone adder (KSA) and a 4-

bit 3-tap finite impulse response (FIR) filter to determine the e↵ectiveness of our

proposed FEST circuit. We compare three designs – nominal arithmetic circuit design,

arithmetic circuit design with only the feedback equalizer circuit, and arithmetic

circuit design with the FEST circuit. We do not consider the arithmetic circuit

design with Schmitt trigger circuit as it does not exhibit graceful degradation in the

word error rate (WER) with voltage scaling. For both the KSA and the FIR filter,

we add the feedback circuit and the FEST circuit along the critical path(s). We

simulate all three designs for the two circuits using the 22 nm predictive technology

model (PTM) (Cao, 2009) with a nominal voltage of 800 mV . We scale the supply

voltage to determine the trade-o↵ between WER and energy consumption for all

three designs. For each voltage value, we simulate 1000 random operations. In the

energy consumption results, clock energy is not included, as the proposed design is

independent of the clock energy. To determine computation errors in the KSA and

FIR filter, we compare the simulated output with the output of error-free arithmetic

logic. The WER is then calculated by dividing the total number of erroneous outputs

with the total number of operations.

2.4.1 Kogge-Stone Adder

KSA is a parallelized version of a carry look-ahead adder (see Figure 2·6a). It com-

putes its carry signals by calculating propagate (P) and generate (G) signals concur-

rently in each vertical stage. The result of the adder is generated in the last stage

by XORing the output of the PG-calculator. The nominal design of our 4-bit KSA

operates at 2 GHz. The analysis of the KSA has shown that the most errors happen

in the higher order bits, which lie in the critical path. Conversely, the FEST circuit
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Figure 2·5: Transient response of the outputs of KSA (A), feedback
equalization (B), Schmitt trigger (C), and latched signal (D).

errors are roughly uniform.

Figure 2·5 shows a 10 ns transient snippet of the most significant bit of the Kogge-

Stone Adder, showing the output of the combinational logic (graph A), output of

the equalizer (graph B), output of the Schmitt trigger (graph C), and the latched

result (graph D). Observe that the output of the KSA combinational logic contains

glitches which are the result of di↵erent data propagation times. If not filtered out,

these glitches cause setup and hold time violations in the output registers. At the

output of the feedback equalizer (B), the rise-fall time improves, however some of

the glitches are amplified. The Schmitt trigger filters the glitches (C) but slightly

delays the signal. However, due to a very low rise-fall time of the Schmitt trigger,

it completes its transition earlier then the original signal A, enabling the register to

record the results correctly (D). At 520 mV, the average delay and rise/fall times of

the FEST circuit are 40ps and 70ps, respectively. The KSA without FEST has a

rise/fall time of 190ps. If we assume that the rise and fall is linear, the KSA with

FEST reaches the 90% point 20ps earlier than the KSA without FEST.

Figure 2·6b shows the WER of the KSA for the three designs. For the nominal
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design, errors start to appear below 580 mV . At this point, the charge and discharge

times of the transistor parasitic capacitors are large enough to cause interference

between computations. The feedback circuit provides comparatively faster charging

and discharging paths so it is possible to scale the voltage slightly lower to 570 mV

before we start seeing errors due to both glitches and timing errors. The FEST circuit

is able to suppress glitches and timing errors until the voltage falls below 510 mV ,

which leads to significant energy savings.

Figure 2·6b also shows the energy consumption (data-dependent and fixed) per

operation for each design. Note that the energy overhead of the feedback equalizer and

FEST circuits is fairly small. To keep the WER near zero, nominal design and design

with the feedback equalizer circuit require ⇡ 19.5 fJ/op. For the same performance,

design with the FEST circuit consumes ⇡ 15.5 fJ/op providing a 20% savings in

energy. If an application is error-resilient at the algorithm level and can tolerate a

relatively large fraction of errors, the proposed FEST circuit can o↵er even larger
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Figure 2·7: 4-bit 3-tap finite impulse response (FIR) filter: a) Block
diagram; b) Word error rate and energy consumption for the nominal
design, design with only the feedback circuit, and design with the FEST
circuit.

energy savings. For example, at a WER of 0.1, the FEST circuit uses 25% less energy

than the other designs.

2.4.2 Finite Impulse Response Filter

To determine the scalability of the proposed FEST circuit, we consider a 4-bit 3-tap

FIR filter. Finite impulse response (FIR) filters are widely used in data communica-

tions and audio processing. The output of the FIR filter is defined as the convolution
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of the input signal x with an impulse response h. Specifically, the output is given by

y[n] =
NX

i=0

hix[n� i], (2.3)

where x[n] is the input signal, y[n] is the output, hi is the weight of the i-th tap, and

N is the total number of taps (or filter order).

For our case study, we designed and simulated an FIR filter using Wallace tree

multipliers and Kogge-Stone adders as building blocks (see Figure 2·7a for a block

diagram). The critical path, as seen in the block diagram passes through a bu↵er,

multiplier, and an adder. At the nominal supply voltage of 800 mV , the 3-tap FIR

filter reliably operates at 500 MHz.

One of the main sources of errors for this filter implementation is that the input

signals to the adders arrive at di↵erent times – out of the two input signals, one of the

signals passes through a multiplier before arriving at the input of the adder, while the

second signal has no such delay. This causes the output signal of the adder to have

a glitch. At nominal voltage, this glitch has a small width and does not get sampled

by the flip-flop following the adder. However, as the supply voltage is scaled down,

the width of the glitch increases, and at a critical voltage it is incorrectly sampled

and interpreted as an independent bit value by the flip-flop following the adder. The

FEST circuit enables us to further scale down the supply voltage while maintaining

reliable operation by mitigating the errors resulting from glitches and slow transitions.

In Figure 2·7b, we have plotted the WER for each of the three designs operating

at 500 MHz. For the nominal design, design with only the feedback equalizer circuit,

and design with FEST circuit, the errors start to appear below 680 mV , 610 mV , and

510 mV , respectively. Figure 2·7b also shows the energy consumption of the 3-tap

FIR filter for the three designs. To keep the WER near zero, the energy consumed

by the nominal design, design with only the feedback equalizer circuit, and design
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with FEST circuit is 420 fJ/op, 350 fJ/op, and 250 fJ/op, respectively. Thus, the

design with only the feedback equalizer circuit and design with the FEST circuit can

provide 16% and 40% energy savings. If the overlying algorithm is error resilient up

to a 10% error rate, then we get 5.7% energy savings with only the feedback circuit

and 34.3% energy savings. The area overhead for the FEST circuit is 15.8%.

2.5 Experimental Results for Near-Threshold Design

The results presented here are an extension to the previous results. This work was

done after “equalized pass-transistor logic” (E-PTL), which is described in Chapter

3. The reason E-PTL project was stalled is that implementation of PTL logic is

extremely hard to automate, which makes it less appealing due to very high design

costs. In addition to that PTL synthesis is outside of the scope of this research.

2.5.1 Experimental Setup

To evaluate our approach of using feedback equalization, several digital blocks were

designed using Cadence Encounter and 40 nm GF process technology. The digital

blocks were synthesized, place-and-routed (PAR) and RC-extracted using two dif-

ferent standard cell libraries - the baseline provided by Synopsys, and custom library

that we developed specifically for operating under multiple voltage settings. The

following computational blocks were designed for evaluation: 24-bit Wallace Tree

multiplier, AES-256, Reed-Solomon Decoder (204, 188), and 256-point, radix-8 FFT

using Verilog HDL.

In order to achieve the best average energy-delay operation in the DVFS-enabled

custom systems, transistor sizing was subject to an iterative sizing approach, where

the gates were first designed to operate optimally at near-threshold voltages using

the approaches described in (Roy et al., 2015, Kwong and Chandrakasan, 2006), and

then sized-up until a better average operation point in the DVFS-enabled system
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is achieved. This approach does not guarantee the best FoMs at any given voltage

setting, however it allows for the minimization of the average EDP over the entire

voltage range, which is beneficial during dynamic voltage scaling.

Baseline designs were PARed using standard cells provided by Synopsys, while

custom designs followed the upsizing approach described earlier. Custom designed

systems were sized such that they would provide reliable operation in the presence of

process, voltage, and temperature variations (PVT). Voltage and process variations

were assumed to be 10% of the nominal, while temperature was assumed to vary from

�25 �C to 125 �C.

The maximum operating frequency was determined by stress testing the design.

Essentially, we operated the design over a range of frequencies and over a million

random inputs to determine the highest frequency at which no timing errors were

observed. The operating energy was determined by keeping track of the current

drawn by the voltage supply throughout the simulation.

2.5.2 Experimental Results

Table 2.3 shows the maximum operating frequency and the corresponding energy

dissipation of the evaluated designs. Because the delay is being traded-o↵ for energy

dissipation, we have also included the energy-delay product (EDP) metric in the

table. At near-threshold voltage, our proposed equalized design has lower EDP than

the other two designs for all digital blocks. At nominal supply voltage, our proposed

equalized design has marginally higher EDP. Figure 2·8 shows the comparison of

EDP across multiple voltage ranges. From the plots we can see that the EDP for

E-FF designs is lower at near-threshold voltages, and only slightly higher in the

super-threshold. The average improvement in EDP close 5% across the entire voltage

ranges for all designs.

Figure 2·9 compares the equalized approach of the 24-bit multiplier to non-equalized
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Figure 2·8: EDP results across entire above-threshold range

in the presence of PVT variations. The Monte-Carlo simulation results indicate that

for equalized design we have 3%� 5% lower spread in operating frequency (�2/µ). In

the best case scenario (the highest error-free operating frequency), at near-threshold

voltage, the non-equalized design operates at ⇡ 1.6GHz, while equalized multiplier

operates at ⇡ 2GHz. This translates to ⇡ 25% increase in operating frequency, while

consuming ⇡ 15% more energy, which manifests itself as lower EDP. Figures 2·10,

2·11, and 2·12 show similar results in the AES, Reed-Solomon, and FFT respectively.
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Figure 2·9: Distribution of the maximum operating frequency and
energy dissipation in a 24-bit Multiplier under PVT variations. The
dashed line represents the standard cells provided by Synopsys; solid
lines represent the custom standard cell library designed by us. Equal-
ized design shows improvement in performance by ⇡ 25%, while con-
suming ⇡ 15% more energy.

2.6 Conclusion

In this chapter we presented a feedback equalizer with Schmitt trigger (FEST) circuit

for use in error mitigation in digital CMOS logic. This work is one of the first to

propose the use of equalization in computational circuits as a tool for error mitigation.

The results of the work have shown that FEST circuit enables rapid switching of the

logic gates thus decreasing the worst case propagation delay in sequential blocks. This

allows for reducing energy dissipation in digital logic through provided opportunity

for further scaling of supply voltage.

As a case study, a 4-bit Kogge-Stone Adder (KSA) and a 3-tap 4-bit finite im-

pulse response (FIR) filter were implemented using 22nm CMOS technology. In case

of KSA, 20% reduction in energy dissipation was observed, while maintaining an

operating frequency of 2GHz with no errors. Similar results were observed in the

FIR filter simulations: up to 40% reduction in energy dissipation at the operating

frequency of 500MHz.
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Figure 2·10: Distribution of the maximum operating frequency and
energy dissipation in a AES-256 core under PVT variations. The
dashed line represents the standard cells provided by Synopsys; solid
lines represent the custom standard cell library designed by us. Equal-
ized design shows improvement in performance by ⇡ 40%, while con-
suming ⇡ 20% more energy.

As part of the extended evaluation process we have designed the non-equalized

systems (baseline) using standard cells provided by Synopsys for the 40nm Global

Foundries process node. We have developed a library of custom standard cells for

equalized designs using the same process technology. We have designed and analyzed

a 24-bit multiplier, AES-256, Reed-Solomon Decoder (204, 188), and 256-point Fast-

Fourier Transform blocks. The systems where the equalization was used, we saw

improvement in operating frequency of up to 30%, while the energy increase was

lower than 15%. We also showed the reduction of average EDP across entire above-

threshold voltage range (of up to 10%). The Monte-Carlo analysis of digital blocks

have shown that in the worst case scenario the equalized system is capable of operating

at much higher performance while maintaining the energy dissipation.
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Figure 2·11: Distribution of the maximum operating frequency and
energy dissipation in a Reed-Solomon Decoder core under PVT varia-
tions. The dashed line represents the standard cells provided by Syn-
opsys; solid lines represent the custom standard cell library designed
by us. Equalized design shows improvement in performance by ⇡ 20%,
while consuming ⇡ 15% more energy.
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Figure 2·12: Distribution of the maximum operating frequency and
energy dissipation in a Fast-Fourier Transform (FFT) core under PVT
variations. The dashed line represents the standard cells provided by
Synopsys; solid lines represent the custom standard cell library designed
by us. Equalized design shows improvement in performance by ⇡ 20%,
while consuming ⇡ 15% more energy.
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Design

Multiplier
Standard

Custom (no FE)
Custom (FE)

AES-256
Standard

Custom (no FE)
Custom (FE)

Reed-Solomon Dec.
Standard

Custom (no FE)
Custom (FE)

FFT
Standard

Custom (no FE)
Custom (FE)

Operating Energy
Freq. Dissip. EDP
(GHz) (pJ/op.)

1.88 11.8 6.3
2.2 12.8 5.8
2.33 13.2 5.7

1.13 294.7 260.8
1.39 338.4 243.5
1.49 341.6 229.2

1.76 239.2 135.9
2.06 275.0 133.5
2.11 279.9 132.7

1.85 373.4 100.9
2.13 417.1 97.9
2.2 422.7 96.1

(a) VDD = 0.6V

Operating Energy
Freq. Dissip. EDP
(GHz) (pJ/op.)

2.53 47.2 18.6
2.70 51.8 19.2
2.73 52.2 19.3

1.51 1178.7 785.8
1.70 1353.6 796.2
1.73 1366.2 803.7

2.42 429.1 429.2
2.56 449.6 449.6
2.58 458.3 458.3

2.49 644.6 644.6
2.61 657.6 657.5
2.64 663.8 663.8

(b) VDD = 1.1V

Table 2.3: Evaluation results for variaous computation blocks at 0.6V
and 1.1V. Standard represents the design PARed with standard cells
provided by Synopsys; Custom corresponds to the custom cells the we
designed using up-/down- sizing approach. no FE and FE indicate if
design included the feedback equalizer. EDP FoM is normalized to
1⇥10�21



Chapter 3

Energy E�cient Pass-Transistor Logic

Using Decision Feedback Equalization

3.1 Introduction

In the previous chapter (2) we introduced the FEST circuit to be used for mitigating

the timing errors caused by aggressive voltage scaling. Elaborating on this work

we have developed an equalized system for use in di↵erential signal systems, and in

particular for use in pass transistor logic. In this chapter we will review the proposed

system as well as the analysis of performance, energy e�ciency, as well as modeling

approach for (equalized) pass-transistor logic (PTL).

As mentioned previously, the performance of the CMOS-based computing sys-

tems is being increasingly constrained by limiting power budgets (Fuller and Millett,

2011). Moreover, the continuing scaling of CMOS devices has increased the proba-

bility of occurrence of faults/defects, which has made the need for the novel designs

(Borkar et al., 2004, Gielen et al., 2008). For lowering power dissipation, several

techniques including the supply voltage scaling, the use of sleep transistors, the use

of pass-transistor logic (PTL), the use of multiple threshold voltage (Vth) devices and

the dynamic scaling of Vth are being widely deployed. To mitigate/detect-and-correct

the errors manifesting due to the faults/defects in the CMOS devices various tech-

niques including redundant latches/paths, slack redistribution, and confidence-driven

computation have been proposed.

45
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As with the FEST circuit described in Chapter 2, we took inspiration from commu-

nication theory and proposed a novel circuit design technique that uses equalization

to lower energy consumption, improve performance and manage errors in digital logic

circuits. The use of the FEST circuit described earlier, although showed improve-

ment was focusing only on improving the last gate of the combinational logic which

limited the potential savings in terms of energy and performance. The use of PTL

with equalization takes care of the problem due to the RC nature of the PTL. We

propose a novel di↵erential equalized pass-transistor logic (E-PTL) that dynamically

adjusts the strength of the currents in its internal paths to ease the logic circuit output

transitions, and in turn mitigates timing errors and creates opportunities for lower-

ing power dissipation and/or improving performance. Our proposed E-PTL can be

readily incorporated into the digital flow for designing both low-power custom ASIC

and general-purpose processors. The main contributions of this work are as follows:

• We propose a novel di↵erential E-PTL circuit design technique that enables ag-

gressive voltage scaling to lower energy consumption and/or enables aggressive

over-clocking to improve performance, while mitigating the occurrence of tim-

ing errors by dynamically adjusting the strength of the current in its internal

paths.

• We present detailed circuit-level power, error and delay models for the E-PTL

circuit. We present the formulation of a convex optimization problem using

these models to determine the minimum energy design for a given performance

and error constraint. We solve the optimization problem using the CVX toolbox

(CVX Research, Inc., 2012, Grant and Boyd, 2008) and validate our model-

based design against HSPICE simulations for an example 16-bit adder.

• We compare E-PTL, conventional PTL and static complementary CMOS logic

(SCL)-based designs of four di↵erent arithmetic blocks. Our proposed technique
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Figure 3·1: Schematic diagram of a Equalized Pass-Transistor Logic
(E-PTL) for Sumn = An �Bn � Cn, where Cn = An�1

· Bn�1

+An�1

·
Cn�1

+Bn�1

· Cn�1

.

Figure 3·2: Timing diagram of a non-equalized (left) and equalized
(right) system. The highlighted waveforms in row 4 show the boosted
current in equalized system compared to the non-equalized system.

reduces energy consumption by up to 30% on average while sustaining the circuit

throughput and maintaining target error rates. We also evaluate the variability

tolerance of our proposed design technique.

3.2 Equalized Pass-Transistor Logic

We propose the Equalized Pass-Transistor-Logic (E-PTL) as a low-power alternative

to conventional static CMOS logic (SCL).The choice of PTL for designing equalized

digital logic circuits is driven by the fact that the equivalent resistance-capacitance

(RC) model of a PTL design closely resembles the RC model of on-chip communica-
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tion links, which makes it more amenable to the application of equalization techniques.

Figure 3·1 shows the circuit topology for our proposed E-PTL design technique.

The circuit consists of two stages - PTL network and sense-amplifier + DFE (SA-E).

The non-equalized PTL design is same as E-PTL except that the SA does not have

any DFE. The PTL circuit is based on DCVSL family, and has PMOS transistors

with gates connected to logic 0 acting as pull-up transistors. The PTL network

consists of two sub-networks, one each for the complemented and non-complemented

implementation of the minimized sum-of-products (SOP) form of the logic function.

The product term (AND) is implemented using pass transistors in series, while the

sum operation (OR) is implemented by connecting the product implementations in

parallel. The gate inputs of the NMOS devices in the PTL sub-networks are controlled

by the outputs of the sense amplifiers in the previous pipeline stages. Both PTL and

SA-E have their own dedicated supply voltages – VPTL and VSA. In the circuit shown

in Figure 3·1, one sub-network of the PTL stage has been designed to perform An �

Bn � Cn operation, while the other sub-network performs An � Bn � Cn operation.

These sub-networks complete their operation during the positive half of the clock

cycle, and the outputs are fed to the di↵erential input NC and C of the SA-E. In the

negative half of every clock cycle, the DFE in E-PTL is used to dynamically adjust

the strength of the current in each arm of the SA based on the data sampled in the

previous clock cycle.

Figure 3·2 shows the timing waveforms of the non-equalized and equalized design

of our sample circuit, where the expected output bit stream is 1110111. At 1.5 ns

the VC � VNC value is negative, which corresponds to an expected output of logic 0.

Note that the rise/fall times of the VC � VNC are very steep. The reason for this is

that due to tight error rate constraints (BER ⇡ 0 in the worst case scenario) the

optimization process tends to converge to larger channel width transistors, thus in
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average cases making the rise/fall times steep. In the non-equalized case, the strength

of current in Arm 2 (i.e., I
0

+ IC) is not su�cient to trip the cross-coupled inverters

in a timely manner. Here I
0

is the current through the two arms when VC = VNC =

VSA, IC is the current due to the voltages at nodes C. This lower current strength

is due to the fact that VC � VNC has not completely reversed within the allocated

half clock period. This partial reversal is due to the slow switching of the transistors

in the PTL. This phenomenon leads to the latch maintaining its previous output of

logic 1. In the equalized case, the logic 1 output from previous cycle switches ON

transistor M2, which provides a boost to the current in arm 2 (I
0

+ IC + IQ
0

FB), and

trips the cross-coupled inverter at an earlier time than that in the non-equalized case

(in spite of the transistors in the PTL switching equally slowly). The SR latch is then

able to correctly sample the data. Here, IQ
0

FB is the current through transistor M2.

The current boost provided in the SA through equalization provides opportunities

for aggressive voltage scaling to lower energy consumption and/or over-clocking of

the circuit to improve performance. It should be noted that the transistors M1 and

M2 need to be sized carefully in order to avoid under- and over-equalization. Under-

equalization can lead to a situation where the amount of feedback current is not

su�cient to ensure correct operation. On the other hand, over-equalization can lead

to larger than required boost to the current leading to incorrect tripping of the cross-

coupled inverters. In addition, we also compared a single-ended E-PTL (i.e., sense

amplifier receives the one input from PTL and the other input is a threshold voltage)

with our di↵erential E-PTL. Unlike the di↵erential E-PTL, in the single-ended E-PTL

approach di↵erent threshold voltages were required for di↵erent PTL networks, which

led to a non-trivial overhead. On the other hand, using same threshold voltage for

all PTL networks led to a sub-optimal design.
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3.3 Modeling and Design Automation of E-PTL

In this section, we present detailed models for the power dissipation, bit error rate,

and performance of E-PTL logic. We also present an automated tool-flow that uses

these models to generate an energy-e�cient design that meets error rate constraints.

3.3.1 Power Modeling

Our E-PTL circuit consists of two stages: the PTL stage and the SA-E stage. The

di↵erent components of power dissipation in the PTL stage can calculated as

P dynamic
PTL =

 
V 2
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X

i

Ci
g,PTL + V 2

PTL

X
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d,PTL
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· f · ↵ (3.1)
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where VSA is the sense amplifier supply voltage, VPTL is the PTL supply voltage, Vth

is the threshold voltage of the transistors, C i
g is the gate capacitance of the transistor,

C i
d is the di↵usion capacitance of the transistor, Ri

on is the resistance of the transistor

in saturation, Ri
off is the resistance of the transistor in cuto↵, R is the resistance

of the pull up transistors M3 and M4 (see Figure 3·1), f is the operating frequency,

↵ is the activity factor, µ
0

is the carrier mobility, Cox is the oxide capacitance of a

transistor, n is a technology dependent parameter, VT is the thermal voltage, and Wi

and Li are the width and length of the transistor i.

The power consumed in SA-E stage can be calculated as

PSA = ↵ · 2V 2

PTLCSA
g,in · f . + VSAImin� + Platch. (3.4)

The first term corresponds to the dynamic power consumed in charging/discharging

the gate capacitance of the PMOS transistors that receive C or NC as inputs. The



51

�a a y

fY |X(y|x)

Figure 3·3: Conditional probability density function for the noisy
PTL output y = x + z where x is either a or �a and z is zero-mean
Gaussian noise.

second component is the static power consumed in the sense-amplifier. Here, Imin is

the total current passing through the sense-amplifier when all transistors are minimum

sized and � is the scaling factor corresponding to the sizing up of all the transistors

(by the same scale) to scale the current. Platch corresponds to the (dynamic and

static) power consumed by the latch. We have ignored the power consumed in the

wires and clock as we expect the equalized PTL and non-equalized PTL designs to

have minimal di↵erence in these two power components.

3.3.2 Error Rate Modeling

Timing errors in a circuit are caused by inter-symbol interference (ISI) due to varia-

tions in circuit RC delay. The change in the delay of a circuit can be due to voltage

scaling, process-voltage-temperature variations, negative bias temperature instability,

cosmic radiation, noise, etc, which change the RC properties of a system, and thus

a↵ect the transition time of the various nodes of the circuit. Below, we model the

probability of error, first in the absence of ISI and then in its presence.

Noise Model

Our model focuses on the impact of noise at the SA stage, where the di↵erential

output of the PTL stage is thresholded into a logical output and latched. For now,
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assume that the observation at the input of the SA stage, sampled once per clock

period, can be written as yi = xi + zi where xi is the output of the PTL stage and zi

is noise. For a logical 1, the di↵erential PTL output is xi = a and, for a logical 0, it

is xi = �a for some positive value a. The noise zi is assumed to be independent of

xi and Gaussian with mean zero and variance �2 (see Figure 3·3).

The SA stage simply thresholds its observation: it latches a logical 1 if yi � 0 and

a 0 if yi < 0. Clearly, the probability of error will decrease if the strength a of the

di↵erential PTL output increases. The probability of making an incorrect decision is

given by the probability that the noise pushes the PTL output across the decision

threshold p
error, no ISI

= Q(a/�) where Q(v) ,
R1
v

1p
2⇡

exp(�u2

2

)du.

ISI Model

The error model above ignores the possibility of ISI. That is, it assumes that the

previous PTL di↵erential output has been completely dissipated when the SA thresh-

olds the current output. However, in our considerations, we assume that the supply

voltage is scaled to the point that ISI is a significant factor. To quantify the e↵ect

of ISI, consider a simple low-pass RC filter (see Figure 3·4). The voltage across the

resistor R is defined by i(t)R = Vin(t)�Vout(t), where i(t) =
dQ

c

dt
is the current flowing

through the resistor, and Qc = CVout(t) is the charge at the capacitor. Rearranging

the equations, we get

Vin(t)� Vout(t) = RC
dVout(t)

dt
(3.5)

In discrete time (with a sampling period of �t), this becomes

Vin,i � Vout,i = RC
Vout,i � Vout,i�1

�t
. (3.6)
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Figure 3·4: Model of our proposed E-PTL. R and C represent equiv-
alent parasitics in the PTL. Thresholding and latching is performed
using the sense-amplifier.

Equivalently,

Vout,i = (1� !)Vin,i + ! Vout,i�1

(3.7)

! =
RC

RC +�t
. (3.8)

As the RC-delay increases (or the clock period decreases), ! approaches 1, and the

previous PTL output starts a↵ecting the current output. However, if �t� RC, the

e↵ect of the ISI approaches zero. Notice that the input-output relationship in (3.7)

has an infinite impulse response. For our purposes, we can safely assume that RC

and �t are such that all but the first-order ISI term have a negligible e↵ect,

Vout,i ⇡ (1� !)Vin,i + !Vin,i�1

. (3.9)

Probability of Error

Combining our ISI and noise models, we arrive at the following model of the input to

the SA stage

yi = (1� !)xi + !xi�1

+ zi , (3.10)
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where xi 2 {�a, a} is the di↵erential output of the PTL stage at clock period i and

zi is independent zero-mean Gaussian noise with variance �2. The SA thresholds

its observation yi and latches it. If we make no attempt to mitigate the ISI, it can

significantly increase the probability of error. In the worst case, the current and

previous PTL outputs have opposite signs. For instance, if xi = a and xi�1

= �a,

then the SA observation will be

yi = (1� 2!)a+ zi. (3.11)

Thus, probability of error with ISI can be upper bounded as

p
error, ISI

 Q

✓
(1� 2!)a

�

◆
. (3.12)

The di↵erential PTL output a is a function of

a = |IC � INC | (3.13)

= µ
0
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where,

V +

GS = VPTL ·
P

i R
i
onP

i R
i
on +R

, V �
GS = VPTL ·

P
i R

i
offP

i R
i
off +R

(3.15)

Here the values for {Ron, Roff , R} are dependent on the corresponding widths and

lengths of the transistors in the PTL.

Impact of Decision Feedback Equalization

To counter the e↵ects of ISI, our E-PTL architecture employs decision feedback equal-

ization (DFE) prior to the SA threshold. Specifically, the circuit uses its estimate

x̂i�1

of the previous PTL output xi�1

to remove the ISI from the SA observation.
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Figure 3·5: Model vs. Simulation for 16-bit CLA. (a) The PTL volt-
age is fixed at its optimal value, while the sizing of the transistors is
free for optimization. (b) The sizing of the transistors is fixed at its op-
timal value, while the PTL voltage is free for optimization. (c) The SA
voltage is fixed at its optimal value, while the sizing of the transistors
is free for optimization.

This results in the following new observation at the SA

ỹi = (1� !)xi + !xi�1

+ zi � !x̂i�1

. (3.16)

If x̂i�1

= xi�1

(meaning the DFE prediction was correct), then the SA will observe

the current PTL output free of ISI, which significantly decreases the likelihood of an

error. However, since x̂i�1

is the result of thresholding the previous noisy observation

ỹi�1

, it is definitely possible that it is in error. If this is the case, the likelihood of an

error will increase as the signal strength will be further diminished by DFE. The key

point is that on average the error probability will decrease. This is well-established

in the communication theory literature (Belfiore and Park, 1979) and this analysis

can be carried out for our system model as well. However, owing to the non-linearity

of the thresholding step used to produce x̂i�1

, it is not possible to write down the

error probability in closed form, although it can be accurately characterized using

numerical methods.
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3.3.3 Delay Modeling

The overall delay of the E-PTL circuit can be written as the sum of the PTL delay

⌧PTL and the SA delay ⌧SA. The PTL can be modeled as a simple RC network and

its delay can be calculated using the Elmore delay technique. The SA delay consists

of the delay from the falling edge of the clock until the input of one of the inverters

increases above Vth as well as the setup time of the latch. It can be written as

⌧SA =
V P
thC

I
0

+ IC/NC + IQ
0/Q

FB

+ tRS (3.17)

where, IC/NC is the current contributed by the input, IQ
0/Q

FB current contributed by

the feedback, and I
0

is the default current o↵set in the modified Strong-arm SA. The

switch time of the RS latch is tRS and IC/NC+IQ
0/Q

FB defines how fast the cross-coupled

inverters switch. Note that whichever inverter reaches V P
th at its source terminal first

will dominate the cycle.

3.3.4 Optimization Tool-flow

The optimization tool-flow consists of several steps. The first step is converting a

combinational function into a minimized sum-of-products (SOP) form. We used the

Quine-McCluskey algorithm to generate minimized expressions. The second step

is the formulation of the min kAx � bk
1

problem where the matrix A represents

equations governing the energy dissipation, critical delays, error rates, etc. of the

circuit, vector b represents the design goals and circuit constraints and vector x has

the free parameters. We used the CVX optimization toolbox (CVX Research, Inc.,

2012, Grant and Boyd, 2008) that solves min kAx � bk
1

and returns the optimal

transistor parameters x. The results of the CVX optimization toolbox as well as the

previously generated minimized SOP can be fed into the subcircuit netlister which

generates a SPICE netlist for further verification.
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3.3.5 Modeling vs. Simulation

To validate our modeling approach, we designed a 16-bit carry-lookahead adder (CLA)

via the optimization approach above and compared the energy usage predicted by

our model to that obtained from HSPICE simulations for a 22nm PTM (Cao, 2009)

technology model. Figure 3·5a shows the model-based optimization and simulation

results for the 16-bit CLA when the VPTL is kept fixed at the optimal value, and we

sweep the transistor sizes for each value of VSA to determine the minimum energy per

operation. This figure shows that VSA obtained from our model-based optimization

matches that obtained by exhaustively searching the parameter space. Similarly in

Figure 3·5b, we held the transistor sizing fixed and swept the VPTL for each value

of VSA to determine the minimum energy point. Finally, for Figure 3·5c, we kept

VSA fixed at the optimal value and swept transistor sizing for each value of VPTL to

determine the minimum energy point. Overall, the design parameters obtained using

our model-based optimization approach closely match the design parameters obtained

through sweeping the design space via simulation.

(a) Energy vs Operating frequency with 1%
word error rate

(b) Energy dissipation vs word error rate at
2 GHz.

Figure 3·6: 16-bit Carry-Look Ahead Adder
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3.4 Evaluation

In this section, we first compare the E-PTL design with the non-equalized PTL design

for di↵erent target frequencies and error rates using a 16-bit adder example. Then

we compare E-PTL, PTL and SCL designs a 16-bit CLA circuit, an 8-bit multiplier

circuit, an 8-bit 3-tap FIR filter circuit, and a 64-bit CRC circuit. Figure 3·6a shows

the energy versus target operating frequency plot for both PTL and E-PTL design

approaches for a 16-bit CLA. For each target frequency, we determined the PTL and

E-PTL designs that consumed the least amount of energy per operation and had

1% word error rate. These designs were generated using the automated tool flow

described in Section 3.3. On average, the E-PTL design consumes 20% less energy

than the PTL design. This lower energy consumption is due to the fact that more

aggressive voltage scaling is possible in E-PTL. Figure 3·6b shows a plot of energy per

operation versus word error rate for the PTL and E-PTL designs for a 16-bit CLA

operating at 2 GHz frequency. As the target word error rate increases, the two plots

diverge because the E-PTL design has more flexibility in sizing the transistors in the

PTL stage. On average, the E-PTL design consumes 45% less energy than the PTL

design over a target word error rate range of 0% to 2%.

Table 3.1 shows a comparison of the energy per operation for SCL, PTL and

E-PTL designs of a 16-bit CLA circuit, an 8-bit multiplier circuit, an 8-bit 3-tap

FIR filter circuit, and a 64-bit CRC circuit. The adder and multiplier circuits were

designed for 2 GHz, while the FIR filter and CRC circuits were designed for 500

MHz. All circuits were designed to have zero error rate, and the optimization problem

objective was set to minimize energy-per-bit figure of merit. Compared to the SCL

designs, the E-PTL designs have 30% lower energy per operation on average due

to lower supply voltage in the computational part of the circuit (VPTL ⌧ nominal

voltage). Similarly, compared to the PTL designs, the E-PTL designs have 15% lower
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energy per operation on average. The lower energy per operation in E-PTL is mainly

due to the fact that the equalization technique enables more aggressive scaling of the

supply voltage.

We have also compared the robustness of a 16-bit CLA designed using PTL and

E-PTL. A Monte Carlo simulation was performed with 22 nm PTM models and a

±10% variation in supply voltage, channel length and temperature. Figure 3·7 shows

the variation in delay and energy. The PTL design was optimized to have a delay of

500 psec. We considered two di↵erent E-PTL designs. E-PTL 1 design was optimized

to have the same energy consumption (29.6 fJ/op) as the optimized PTL design. The

mean delay for E-PTL 1 design was ⇡ 365 ps. The E-PTL 2 design was optimized

such that its worst-case delay (under variations) was less than 500 psec. The energy

consumption in the E-PTL 2 design was approximately 27.5 fJ/op. Thus, the E-PTL 2

design creates a win-win situation which can tolerate variations in delay (i.e., it meets

target performance) and simultaneously provides 7% lower energy consumption than

PTL design.

Figure 3·7: Monte-Carlo simulation results for delay and energy a
16-bit CLA. PTL and E-PTL 1 are the designed to operate at a fixed
energy budget. E-PTL 2 is designed to have ⇠ 0% failure rate in
presence of variations at 2 GHz.
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Goal: f Digital block SCL PTL E-PTL

2 GHz 16-bit CLA 45.1 fJ/op 29.6 fJ/op 21.1 fJ/op
2 GHz 8-bit Multiplier 285.1 fJ/op 219.6 fJ/op 204.3 fJ/op

500 MHz 8-bit 3-tap FIR 1750 fJ/op 1590 fJ/op 1360 fJ/op
500 MHz 64-bit CRC 259.2 fJ/bit 237.1 fJ/bit 217.0 fJ/bit

Table 3.1: Comparison of the minimum energy in SCL, PTL and E-
PTL designs of various digital logic blocks. Word Error Rate is set to
0.

3.5 Conclusion

In this chapter proposed a novel equalized PTL design. We have shown that when

PTL is combined with equalization techniques, we can lower energy dissipation while

maintaining the goal frequency (performance). In addition to that computation in

PTL logic is current based, thus the supply voltage could be scaled to extremely low

values. We have shown that depending on the circuit topology, E-PTL allows for up

to 30% reduction in energy dissipation, while keeping the performance and error rate

metrics the same.



Chapter 4

Adaptive Classification: Energy-E�cient

Design for Machine Learning

4.1 Introduction

Over the last decade, there has been a shift in the consumer electronics market towards

mobile computing. Mobile workloads have become more diverse, and are increasingly

trending towards utilizing computationally expensive machine learning approaches

to process large amounts of data (Lane et al., 2010). Some examples of these prob-

lems are live translation (Wu et al., 2016), fingerprint matching (Unar et al., 2014),

and diabetes testing (Sowjanya et al., 2015, Wu, 2015). Other applications gaining

traction in the mobile domain involve processing time- series data using machine

learning algorithms. These applications include live audio processing (Lee et al.,

2009), fitness assessment (Kranz et al., 2013), and smart homes that can learn user’s

schedule (Rashidi and Cook, 2009). One of the challenges in these applications is

that some inputs within time-series are easy to classify, while others require complex

machine learning algorithms (Cinar et al., 2017). For example, the problem of recog-

nizing human activities was shown to be a very complex and energy-consuming prob-

lem, currently tackled using recurrent neural networks (RNN) (Godfrey and Gashler,

2017, Ordóñez and Roggen, 2016, Olah, 2015). The main challenge in such appli-

cations is that the time-series input data usually requires signal pre-processing for

feature extraction of the data to achieve high accuracy. Essentially, executing ex-

61
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pensive machine learning algorithms on battery powered mobile systems with limited

energy budget is challenging. It requires minimizing energy consumption of machine

learning algorithms while achieving the desired accuracy.

Although most machine learning algorithms are designed to achieve high accu-

racy, the choice of a particular machine learning algorithm often involves a three-

dimensional trade-o↵ between error rate, energy dissipation, and computational per-

formance. In order to achieve high accuracy, data scientists often choose to use com-

plex non-linear classification functions such as ensemble methods, radial basis function

(RBF), and neural networks that allow for flexible boundaries to be learned yield-

ing strong classification accuracy. These non-linear classification functions, however,

are computationally demanding resulting in lower energy e�ciency (Venkataramani

et al., 2015b). In contrast, simple decision functions such as sparse linear functions

can be used for applications that can tolerate errors. The sparse linear functions have

low complexity, and hence are very energy e�cient. However, they lack the flexibility

to learn complex decision boundaries necessary for high classification accuracy.

Typically, the same machine learning algorithm is used for classification of all data

inputs within the same dataset. A problem with this approach is that it does not

take into account the variability across individual input data. Some inputs within a

dataset are “easy” and could be classified using a less complex linear function, while

other inputs are “hard” and require non-linear classification functions. For most

“easy” inputs, using a complex classifier results in a similiar classification accuracy as

a simple classifier, but has higher engergy dissipation. Conversely, for “hard” inputs,

using a simple classifier lowers engergy dissipation, but it results in a lower classifica-

tion accuracy. In this section, we introduce an adaptive classifier approach that has

a“chooser” function which identifies the “hardness” of the incoming data and then

assigns it to the appropriate “core” classifier1, taking both classification accuracy and
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energy dissipation into account. In our approach, the chooser function dynamically

picks a classifier for each new input to maximize classification performance subject

to an energy budget constraint. This approach also enables one to incorporate both

existing and new machine learning approaches into constrained learning problems.

Essentially, one can seamlessly incorporate optimized, complex classifiers into a bud-

geted system. Moreover, the budget can be dynamically changed during run-time by

retraining the chooser function, which avoids the need to retrain complex classifiers.

The main contributions of our work are as follows:

– We propose a novel adaptive classifier that uses a linear regression-based chooser

function to classify the incoming data as “easy”, “harder”, and “hardest”, and based

on this classification the chooser function assigns the data to the most energy-e�cient

classifier that meets the target accuracy.

– We propose an energy budget-aware approach for training the “chooser” function.

In this approach, the “chooser” function takes the current energy capacity of the bat-

tery and the “hardness” of data as input features to decide the “core” classifier. Here

we assume that the adaptive classifier will receive the current energy budget as an

input from the host processor or micro-controller connected to the adaptive classifier.

We implemented our adaptive classifier in hardware with Chisel (Bachrach et al.,

2012) and Global Foundries 40nm technology node. The implementation includes the

design of the chooser function and three di↵erent “core” classifiers: logistic regression

based classifier (linear), SVM with a polynomial and RBF kernels. The evaluation

results show that on average the proposed approach consumes up to 10⇥ more energy

as compared to a linear classifier, while achieving ⇡ 40% higher accuracy. When

compared to RBF SVM, our adaptive classifier consumes 2 orders of magnitude less

energy, while introducing ⇡ 0.5% higher error rate on average. The second proposed

approach, which is budget-aware, is an improvement on the adaptive classifier, which

1Only one “core” classifier at a time is enabled by the “chooser”
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achieves up to 11% lower energy dissipation on average as compared to the approach

that is not budget-aware.

The rest of this section is organized as follows. We open up with discussion

of the formal definition of “hard” and “easy” problems and a description of the

adaptive classifier in Section 4.2. Section 4.3 introduces a detailed overview of the

microarchitecture of the proposed approaches. We describe the evaluation of the

current work in Section 4.4, with discussion and concluding remarks in Sections 4.5

and 4.6.

4.2 Adaptive Classifier – Theory

Table 4.1: Notation and variables used in the current work

Term Description

xi(d) 2 X m⇥D Value of training input feature i = {1, ..., m} and dimension d = {1, ..., D}
in a training set X

yi 2 Ym⇥1 Value of training input label i = {1, ..., m} in label space Y
(xi, yi) 2 X ⇥ Y Training input pair (xi, yi) in space X ⇥ Y
f1, . . . , fk : X ! Y Set of k “core” classifiers f that map feature space X to label space Y
c1, . . . , ck 2 R Cost of “core” classifiers*
g : X ! 1, . . . , k “Chooser” classifiers g that maps input X to the “core” classifiers
� 2 B Current energy budget �
"f Error rate of classifier f
Accf = 1/"f Accuracy of classifier f
EEf = 1/EDP Energy e�ciency of classifier f defined as inverse of EDP

* The cost of a classifier is expressed in either energy, delay, energy-delay product (EDP), or any
other minimizable metric. In our case, the cost is EDP.

In this section, we first present the motivation for the adaptive classifier by describ-

ing the variability in hardness within the same dataset. We also present a detailed

description of the algorithm and architecture of our adaptive classifier later in the

current section.

4.2.1 Hardness of an Input and Penalty for Misclassification

As di↵erent machine learning algorithms perform di↵erently in terms of energy-

e�ciency, statistical performance (error rate), and computational performance (de-
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Input “Core” Classifiers Assigned
Example Linear Polynomial RBF Pseudo-label

3 3 3 “easy”

7 3 3 “hard”

7 7 3 “harder”

7 7 7 “easy”

Table 4.2: Pseudo-label assignment example: given di↵erent inputs
“8”, we generate pseudo-labels depending on the correct predictions of
the “core”.

lay), depending on the properties of a dataset, one or another approach might be

more appropriate. In addition to that, within the same dataset there exists variation

in complexity. For example, a wide variety of classification approaches ranging from

sparse linear classifiers to deep neural networks exist today, with each approach pre-

senting a trade-o↵ between classification accuracy and energy e�ciency. Generally,

the input dataset is treated as a “homogeneous” set of inputs X that require some

classifier g in order to maximize the accuracy. If several such classifiers exist, the one

with the lowest evaluation cost c is chosen. One way to optimize this approach with

respect to the cost (energy-e�ciency), one can treat the input set as non-homogeneous

in terms of “hardness”. In the current work we identify the “hardness” of an input

depending on the “core” classifiers used. Consider an example of creating pseudo-

labels shown in table 4.2. We used three “core” SVM classifiers with di↵erent kernels:

linear, third degree polynomial, and RBF. From the table we see that given some in-

puts, if an input is classified correctly by all classifiers, it is labeled as “easy”, while

if it is only classified by more complex classifiers, we label the input as “harder” or
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Table 4.3: Datasets used and the number of inputs misclassified dur-
ing the training phase.

Dataset Linear Polynomial RBF
Image Segmentation 168 20 0
ISOLET 543 69 4
Letter Recognition 239 34 2
MNIST 481 98 9
Penbase Recognition 109 14 0
Spam filter 39 8 0
Vowel Recognition 29 9 1

“hardest”. In our work, because the main optimization goal is energy-e�ciency, we

label as “easy” all the inputs that cannot be classified by any classifier. This allows

us to avoid expensive computation on the inputs that are incorrectly identified by the

“core” classifiers anyway.

The “hardness” distribution varies between the datasets. Table 4.3 shows the

datasets that we have considered and it also shows number of misclassified inputs of

our “core” classifiers on the said datasets. Notice that the more complex classifiers

tend to have less misclassified data inputs. Using one classifier for the whole dataset

involves penalty either in energy e�ciency or in accuracy2.

To explain the penalty incurred, let us consider a synthetic example with dis-

tributed “hardness” when using an SVM with linear, polynomial, and RBF kernels,

having 60% of all inputs as “easy”, 30% as “harder”, and 10% as the “hardest”. If

we use only the linear classifier, we will have no energy-e�ciency penalty (as linear

kernel is more energy e�cient than both polynomial and RBF kernels), but we will

take a hit in accuracy. The accuracy penalty can be calculated case-by-case: if the

input is “easy”, there is no accuracy penalty; if the input is “harder”, the accuracy

penalty is the potential accuracy gain that we missed multiplied by the fraction of the

“harder“ inputs, that is (Acc
poly

�Acc
linear

)⇥0.3. Similarly, if the input is “hardest”,

the penalty is (Acc
RBF

� Acc
linear

) ⇥ 0.1. The total accuracy penalty of choosing

2The penalty is the loss of potential gain from other alternatives when one alternative is chosen,
also known as “Opportunity Cost”.



67

linear classifier is 0.1Acc
RBF

+ 0.3Acc
poly

� 0.4Acc
linear

. Conversely, if only an RBF

is used, all of the inputs will be identified using the most complex classifier, so no

accuracy penalty will be incurred. The energy e�ciency penalty in such a case could

be expressed as 0.6EE
linear

+0.3EE
poly

�0.9EE
RBF

. Similar analysis can be performed

if only the polynomial classifier is used.

The above example is known in the optimization community as “No Free Lunch”

theorem (Wolpert and Macready, 1997, Gómez and Rojas, 2016), which states that

“if the performance of one approach is superior to that of another approach, than the

reverse must be true over the set of all other optimization problems”, which in simpler

terms says “there is no free lunch in optimization”. However, although there is no

way of super-optimizing for both accuracy and energy e�ciency, in our work we focus

on balancing the two for an optimal trade-o↵ between the error rate and energy-

e�ciency. To achieve that we introduce a “chooser” function, which identifies the

“hardness” of the problem and enables either high-accuracy or high-energy-e�ciency

algorithm.

4.2.2 Training the “chooser” for a fixed energy budget

During the o✏ine training of the adaptive classifier, all the “core” classifiers are first

trained to achieve the minimum error rate possible. After that pseudo-labels for

the “chooser” are created depending on correct predictions of the “core” classifiers.

Earlier in this section we have shown table 4.2 which shows an example for creating

pseudo labels for a handwritten digit recognition. Once the pseud-labels are identi-

fied, the “chooser” is trained (o✏ine) to classify the “hardness” of the inputs based

on the “hardness” pseudo-labels. The “chooser” function is trained for a given error

rate constraint, which allows the adaptive classifier system to dynamically trade o↵

classification accuracy versus energy e�ciency.

As shown in table 4.3, in any given dataset the number of “hardest” inputs is not
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Lee =

0

B@

lin poly RBF

Easy 0. 0.6(EE
lin

� EE
poly

) 0.6EE
lin

+ 0.3EE
poly

� 0.9EE
RBF

Harder 0. 0. 0.3(EE
poly

� EE
RBF

)

Hardest 0. 0. 0.

1

CA

(4.1)

Lac =

0

B@

lin poly RBF

Easy 0. 0. 0.

Harder 0.3(Acc
poly

� Acc
lin

) 0. 0.

Hardest 0.1Acc
RBF

+ 0.3Acc
poly

� Acc
lin

0.3(Acc
RBF

� Acc
poly

) 0.

1

CA

(4.2)

the same as the number of “easy” inputs. That means, that the “chooser” function

most of the time is trained on imbalanced data3 biased towards one of the pseudo-

labels. To avoid the situation where all of the inputs are treated as “easy” we use

a loss matrix which is defined by the ratios of the number of “easy”, “harder”, and

“hardest” inputs. To construct the loss matrix, we consider the penalty incurred by

choosing one of the “core” classifiers, and the train the “chooser” to minimize that

penalty. Considering the same example we used in the previous subsection, let us

construct a loss matrix L = ↵eeLee + ↵acLac, where Lee and Lac are energy e�ciency

and accuracy loss respectively, and ↵ is a scaling coe�cient. Given the “hardness”

distributions shown earlier, we want to penalize the incorrect decision of the “chooser”

function, and the penalty should be proportional to both the distribution of the

classes (to avoid imbalanced classes) as well as the energy e�ciency and accuracy loss.

The equations (4.1) and (4.2) show the matrices constructed using the distributions

between “easy”, “harder”, and “hardest” being 60%, 30%, and 10%. This example

shows that misclassification in the “chooser” function will increase the total loss either

in energy dissipation or in the accuracy, and the training of the “chooser” becomes a

3The term “imbalanced” in this context refers to the imbalanced classes – a situation when classes
are not represented equally within the same dataset.
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minimization problem.

To formalize the training of the “chooser” function, the behavior described earlier

arises from the optimization problem when learning over training data. Given a set

of n training data/label pairs, (x
1

, y
1

) , . . . , (xn, yn) 2 X ⇥ {1, . . . , C}, where X is the

input space, and {1, . . . , C} is the collection of output labels, and given a collection

of k classifiers f
1

, . . . , fk : X ! {1, . . . , C} with associated energy e�ciency budget

c
1

, . . . , ck 2 R, the goal is to learn a “chooser” function g : X ! {1, . . . , k} that maps

each example to one of the k models in input space X such that the average error

rate is minimized subject to energy e�ciency budget constraint. This optimization

problem can be formulated as:

min
g2G

1

n

nX

i=1

kX

j=1

1f
j

(x
i

) 6=y
i

1g(x
i

)=j, (4.3)

Subject to:
1

n

nX

i=1

kX

j=1

cj1g(x
i

)=j  �

where � is the chosen average EDP budget and 1z is the indicator function, with

a value of 1 when the logical expression z is true and a value of 0 when the logical

expression z is false. By representing the constraint as a Lagrange multiplier, the

problem can be represented as an unconstrained optimization problem:

min
g2G

1

n

nX

i=1

kX

j=1

Lj (xi, yi)1g(x
i

)=j, (4.4)

where Lj (xi, yi) = 1f
j

(x
i

) 6=y
i

+ �cj is defined as the loss associated with using the

classification function fj on example xi, incorporating both the classification error of

the prediction function as well as the EDP modulated by the Lagrangian multiplier �

(in practice, the value � is swept over in order to find a feasible system that satisfies

the budget constraint4). This problem is equivalent to the well-studied cost-sensitive

4Note that we derive this problem for the EDP/energy/power constraint, however we could pose
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learning problem, allowing for existing learning techniques to be applied.

In practice, we upper bound the objective as an importance weighted supervised

learning problem of the form

min
g2G

nX

i=1

Wi1g(x
i

) 6=l
i

, (4.5)

where the pseudo-label li and importance weight Wi are defined as

Wi = max
p,q2{1,...,k}

Lp(xi, yi)� Lq(xi, yi) (4.6)

li = min
p2{1,...,k}

Lp(xi, yi).

This allows for e�cient training and implementation using standard supervised learn-

ing techniques such as logistic regression and support vector machines.

The pseudo-label li and importance weight Wi define if an example is “easy”,

“harder”, “hardest”, etc. We consider an example to be “harder” or “hardest” if

the pseudo-label li (representing the optimal classification system to route example i)

points to a complex, energy-ine�cient classifier. Conversely, we consider an example

to be “easy” if the pseudo-label li points to an energy-e�cient classifier. Note that for

examples with no variation in error rate across classifiers, the importance weight Wi

is generally small, as a di↵erence in losses simply represents the di↵erence in energy

e�ciency between classifiers. The over-fitting of the classifiers (including the chooser)

should be addressed during the training period, however, no special steps are required

to avoid such problems, as the “chooser” function is not prone to over-fitting due to

the fact that it is expected to be much simpler than the most complex classifier in the

ensemble. For example in our approach, the “chooser” function is a linear classifier,

the problem as a minimum energy dissipation system given an average error constraint. Introducing
a Lagrange multiplier for the average error constraint yields an identical optimization problem
(modulated by a constant) as (4.4), and therefore solving the EDP constrained problem is equivalent
to solving the error constrained problem.
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while the classifier for the “hardest” examples is an RBF kernel function.

4.2.3 Training the “chooser” for a changing energy budget

From equations (4.3) and (4.4) we notice, that the training of the “chooser” function

is performed with minimum EDP in mind. However, if such a constraint is very tight,

the average accuracy of the adaptive classifier system might su↵er. To mitigate such

a problem, we propose using a system where the adaptive classifier is aware of the

current energy reserves, and would change its behavior accordingly. In that case, the

equation (4.3) changes its form as follows

min
g2G

1

n

nX

i=1

kX

j=1

1f
j

(x
i

) 6=y
i

1g(x
i

,�)=j, (4.7)

Subject to:
1

n

nX

i=1

kX

j=1

cj1g(x
i

,�)=j  �, 8� 2 B

where B is a set of energy budgets that in which the adaptive classifier is expected

to operate. In this case, the current energy budget � is an input to the “chooser”

function as a feature. The equation (4.7) could be rewritten as an unconstrained

minimization problem:

min
g2G

1

n

nX

i=1

kX

j=1

Lj,b (xi, yi)1g(x
i

,�
b

)=j, (4.8)

where the loss is defined as Lj,b (xi, yi) = 1f
j

(x
i

) 6=y
i

+ �(cj � �b).

This change in the training assumes that the adaptive classifier has information

about the current energy reserves5, which allows the adaptive classifier to change its

behavior in order to meet the imposed constraints. To visualize how this approach

di↵ers from the one described in subsection 4.2.2, refer to figure 4·1. In this figure, (a)

shows the training approach that takes changing energy budgets into considerations,

5The overhead of acquiring the current energy budget is not considered in the current work.
Refer to section 4.5 for discussion on this matter.
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Figure 4·1: EDP and Error rate vs. the budget of an adaptive clas-
sifier: (a) trained with EDP budget as a feature; (b,c,d) trained to
maximize the accuracy while meeting an energy constraint of 10�20,
10�18, and 10�16 respectively.

while (b, c, d) are trained to maximize the accuracy, while being constrained by the

EDP of 10�20, 10�18, and 10�16 respectively. Note that subfigures (b, c, d) meet their

respective EDP constraints, however, when the energy budget changes, they become

suboptimal: if the adaptive classifier is trained only for 10�20 EDP constraint (figure

4·1(b)), the EDP is the lowest across all EDP budgets, but the error rate is higher

on average. The error rate is lower for training for 10�18, and 10�16 EDP (figures

4·1(c, d)), but the average EDP of the classifier is very high. At the same time, figure

4·1(a) shows that the modified training routine manages to keep the average energy

dissipation within the imposed constraints, while maintaining high accuracy.

The systems proposed in this section present many beneficial properties rarely found

in energy-e�cient systems. By treating each classification model as a “black box”

as opposed to a known, modifiable object, existing energy-e�cient classification ap-

proaches can be directly used when constructing the system. Furthermore, multiple

complex classifiers can be easily integrated into the system by providing the capability

to upload the data to a server to apply an extremely complex classifier. Due to the

modularity of our design, the system is even able to integrate humans into the loop
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for cases where humans have lower error rates than machines in classifying objects.6

Additionally, changing the energy constraint of the proposed system does not re-

quire that the classifiers be retrained. This is particularly valuable for mobile systems,

where adaptation is required to account for the di↵erence in usage patterns of users,

and energy budgets need to be updated due to changes in battery usage settings

(Lane et al., 2010). Rather than changing the classifiers, the system only needs to

re-train the chooser function g to adapt to a new budget constraint. Furthermore,

the usage of a convex supervised approach such as logistic regression or a Support

Vector Machine (SVM) to train the chooser function g allows for streaming online

updates to be applied during runtime using stochastic gradient updates.

4.3 Adaptive Classifier – Microarchitecture Description

In this section, we present a detailed description of our adaptive classifier approach.

We present the theory and the implementation details of three di↵erent classifiers and

a chooser function that chooses one of the three classifiers based on the “hardness”

of the data.

Microarchitecture

Figure 4·2 shows the microarchitecture of our proposed adaptive classifier system. It

consists of the “Chooser” function (marked as ? ), and several “core” classifiers with

various complexities. In our case, the “chooser” function uses a multi-class logistic

regression classifier. Once trained the “chooser” function serves as a MUX/DEMUX

controller which selects an appropriate classifier. In the current work the “chooser”

function is implemented as a logistic regression based multi-class one-vs-all classifier

6In this case, a second budget constraint may exist regarding the number of times a human is
queried. Due to lack of space, we do not discuss this model here, however the exact same reduction
to a cost-sensitive learning problem can be made by incorporating a second Lagrange multiplier for
this new constraint.



74

Figure 4·2: Block diagram of the adaptive classifier. “Chooser” func-
tion is marked as ? , and its microarchitecture is the same as the
“Easy” block. Data paths are shown as solid lines, while control path
is dashed. The linear classifier is implemented as a multiply-accumulate
(MAC) block and is equivalent to equation (4.9). The polynomial func-
tion implementation uses a MAC to compute higher order components
↵p
(·)x(·)p as per equation (4.10). The RBF classifier also uses and MAC

and its the exponential function is implemented as a look up table.

with three labels. Note that the adaptive classifier design proposed in this paper

doesn’t include the training hardware, and all the classifiers, including the “chooser”

are trained o✏ine.

During the o✏ine training of the system, all the “core” classifiers are trained to

achieve the minimum error rate possible. The “chooser” is then trained (o✏ine) to

classify the “hardness” of the inputs by analyzing the results of the “core” classifiers

using the procedures described in sections 4.2.2 and 4.2.3. The “easy”, “hard” and

“hardest” class labels identified by the “chooser” function are used to route the input

to the “core” classifier of appropriate complexity. The “chooser” function is trained

for a given error rate constraint, which allows the adaptive classifier system to dy-

namically trade o↵ classification accuracy versus energy e�ciency. The computations
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are performed using fixed point, 2’s complement representations, thus only the most

significant bit (MSB) is required to identify the label of a binary class.

Below, we describe the functional form of three “core” classification functions –

linear function, polynomial function, and RBF kernels, which we used in our eval-

uation. The binary functional forms are presented, with multi-class prediction ac-

complished using a one-versus-all max-margin coding to convert from multi-class to

binary classification.

We consider linear classifiers of the form

flin(x) = sign

 
DX

d=1

↵dx(d) + �

!
, (4.9)

where D is the dimensionality of the data and x(d) corresponds to the value of

the dth-dimensional element of example x. The classifier is parametrized by the

weights ↵
1

, . . . ,↵D and the o↵set �, with these parameters learned using training

data. The “easy” inputs are routed to this low complexity classifier. This classifier

is of similar complexity as the “chooser” function, and is the simplest of the “core”

functions. It is implemented as a multiply-accumulate block as shown in Figure

4·2(Easy). Depending on the design topology chosen after design space exploration,

the MAC block is parallelized accordingly. It has the highest energy e�ciency, but it

also has a high error rate.

Similarly, we utilize homogeneous polynomial classifiers of the form

fpoly(x) = sign

 
DX

d=1

PX

p=1

↵p
dx(d)

p + �

!
, (4.10)

where P is the power of the polynomial classifier. As in the linear case, the classifier

is parametrized by the weight parameters ↵1

1

, . . . ,↵P
D and the o↵set �. The “harder”

input is routed to this higher complexity classifier block. This block is implemented as

a 5th order polynomial evaluation function. The “harder” block reuses the multiply-
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accumulate block from the “easy” block. This classifier provides a moderate com-

promise between error rate, energy e�ciency and execution time. The polynomial

is computed iteratively in five clock cycles using a multiply-and-accumulate (MAC)

block (see Figure 4·2(Harder)). The MAC block is used to compute the higher order

components ↵p
· x(·)p by feeding the multiplier output as the input.

Finally, we consider radial basis function kernel classifiers of the form

frbf (x) = sign

 
nX

i=1

�ie
�kx�x

i

k2
2

�

!
, (4.11)

where � is a user-specified kernel parameter and the points x
1

, . . . , xn are the train-

ing data points. The classifier is parametrized by the kernel weights �
1

, . . . , �n. The

“hardest” input is routed to this highest complexity classifier block. Because RBF

includes an exponential function, this block is the most complex compared to the

previous two. However, an SRAM is used as a look-up table (LUT) in order to

avoid lengthy computations of the exponential function. The RBF function compu-

tation partially reuses the blocks in the other two classifiers in order to reduce area

and increase hardware utilization. The block diagram shown in figure 4·2(Hardest)

includes an exponential function that is implemented as a look-up table. The MAC

block than computes �ie(·).

4.4 Evaluation

In this section we first discuss the evaluation setup and the evaluation of our pro-

posed adaptive classifier. Later in this section we will describe the modified training

approach results, as well as the results on large datasets.
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Current Work SEC
Time EDP Time EDP

Synthetic 1.67e-04 1.81e-19 1.72e-04 3.86e-19
Image Segm. 2.60e-03 1.30e-17 3.22e-03 3.99e-17
ISOLET 2.51e-02 8.98e-12 2.50e-02 1.78e-11
Letter Rec. 4.86e-03 3.27e-17 5.42e-03 8.13e-17
MNIST w/ bkgnd 3.69e-02 1.77e-11 3.67e-02 3.48e-11
Penbase Rec. 5.15e-03 3.23e-17 5.57e-03 7.54e-17
Spam 2.83e-03 4.73e-15 3.39e-03 1.36e-14
Vowel Rec. 4.03e-03 1.91e-17 4.05e-03 3.85e-17

Table 4.5: Comparison of the proposed and SEC approaches
(Venkataramani et al., 2015a) trained for low energy subject to error
rate budget. The time is in seconds.

Figure 4·3: Energy delay products for di↵erent adaptive classifier
designs generated by Aladdin (Shao et al., 2014).

4.4.1 Experimental Setup

Before exploring the hardware design space of our adaptive classifier, the training of

the adaptive classifier system was performed o✏ine using Python for several di↵erent

constraints scenarios7, where we set the maximum acceptable error rate independent

of the application, but we assume linear decrease in energy budget over a period

of time. Our goal was to minimize the average energy dissipation for a given error

7Scenarios such as high accuracy, high energy-e�ciency, or linear switch from high accuracy to
high energy-e�ciency.
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rate. In software models8, the minimum EDP point is equivalent to the use of the

simplest9 model possible for the given constraints. The “chooser” function was trained

to achieve minimum energy dissipation by optimizing the “core” classifiers utilization

for a given error rate, i.e. if two classifiers with di↵erent energy dissipations have

comparable error rates, the “chooser” function would be biased towards the simpler

classifier. The data sets were separated into training and evaluation sets using an

80/20 scheme, where 80% of the inputs were used for training, and 20% for evaluation.

All figures of merit in the evaluation section were acquired using the “evaluation” data

sets, thus guaranteeing that inputs were never seen before by the systems under test.

The main figures of merit that were considered for evaluation were computational

performance (defined as average computation time per input), energy dissipation,

and statistical performance, defined as misclassification error rate.

The training phase of the adaptive classifier could be performed in two di↵erent

ways: 1) training for static energy budget (Takhirov et al., 2016); 2) training for

energy-budgets that change over time. The first approach assumes that the energy

budgets don’t change over time while the second training approach assumes that

energy budgets change over time, thus the behavior of the “chooser” should be more

dynamic. As part of the current evaluation we assumed that the second approach

was performed in an environment with uniform and almost linear battery discharge

rate (thus decreasing the available energy budget). This means that the system had

to be trained without being biased to any particular classifier.

After the training, in order to explore and narrow down the hardware design

space of our adaptive classifier, we used the Aladdin toolset (Shao et al., 2014). The

8We used sklearn (Pedregosa et al., 2011) models as well as custom designed Tensorflow (Abadi
et al., 2015) models

9Simplest model means the one that has the smallest number of computations per example. For
example, if a linear and a polynomial function give the same error rate for a given input, the linear
function is considered to be the simplest.
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di↵erent design choices that we considered include level of MAC parallelization, size

of SRAM for lookup table, level of computational parallelism, and the number of

pipeline stages. Figure 4·3 shows the results obtained using the Aladdin tool for

one of the input data sets (Letter Recognition). Here, all the EDP points are

computed for the maximum statistical classifier accuracy and are acquired by varying

the size of the computational units, memory size, level of computational parallelism,

and number of pipeline stages across the di↵erent designs. The scatter plot shows

how the various design choices a↵ect the EDP of the system. The figure also shows

the EDP at di↵erent voltages and the corresponding accuracy levels. The goal for

the current work was minimizing the EDP for the given error rate constraint. Hence

we selected the designs with the minimum EDP.

The chosen design was then implemented using Chisel (Bachrach et al., 2012).

This framework was chosen, as it generates both hardware description code (Verilog)

as well as C++ functional model. That allows us to perform a rapid verification of

the design. The Verilog HDL code was then synthesized and placed-and-routed using

40nm Global Foundries technology with Synopsys standard cell libraries. The delay

and energy dissipation were acquired from placed-and-routed, RC-extracted designs

using Cadence toolset. We used seven di↵erent data sets from the UCI library (UC

Irvine Machine Leanring Repository, 2017) and a synthetic data set for our evaluation.

The list of the used data sets is shown on Table 4.4. In addition to the adaptive

system, individual classifiers were implemented for comparison and validation: SVM

(linear, polynomial, RBF kernels), RF, and CNN. The training of the system was

performed o✏ine using MATLAB for several di↵erent constraints scenarios, where

the maximum acceptable error rate was set, while the minimum energy dissipation

point was the goal.
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Choice of the “Chooser” function

Although any type of classifier can serve as a “chooser” function, in this work we use a

linear regression-based SVM classifier as a “chooser” (see equation 4.9). This choice

was motivated by the tight EDP requirements for the “chooser”, as well as minor

average error drop when a more complex classifier is used as a “chooser” function.

During the analysis, we considered three di↵erent classifiers: logistic regression-based

SVM (linear classifier), third order polynomial SVM, and a fifth order polynomial

SVM classifiers. Figure 4·4 shows the average EDP and error rate overheads when

using di↵erent types of “chooser” functions. The EDP overhead is the EDP contri-

bution of the “chooser” relative to the total EDP of the adaptive classifier. The error

rate overhead is the average increase in error rate of the adaptive classifier with the

specified “chooser” function as compared to the error rate of an ideal “chooser”10. As

we can see from the figure, the more complex “chooser” functions don’t contribute

much in terms of error rate, while the EDP overhead is quite high. Third-order and

fifth-order polynomials introduce 13% and 26% higher EDP than the linear classifier,

while the error rate contributions are 0.5% and 1% lower respectively.

4.4.2 Experimental Results of an approach with static energy budget

Results presented in this subsection are for the adaptive classifier using a näıve train-

ing approach11. Figure 4·5 shows the Error Rate vs. EDP of the proposed approach

and that of the linear, polynomial, and RBF classifier when used individually. We

can see from the figure that depending on the input data set the proposed approach

behaves di↵erently. Adaptive classifier system performs best when the input data set

has uniformly distributed “hardness”, meaning the input has an equal mix of “easy”,

10Ideal “chooser” function is a function that has 100% accuracy in identifying the “hardness” of an
input. Although such classifier does not exist in practice, it is useful to acquire comparison metrics
for di↵erent “chooser” functions.
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Figure 4·4: Average overheads of di↵erent types of “chooser” func-
tions. The EDP overhead is average EDP contribution of the “chooser”
with respect to an adaptive classifier where this “chooser” is imple-
mented. The error rate overhead is the error rate contributed by the
“‘chooser” function itself.

“harder” and “hardest” examples. If the input data set is mostly “easy” or mostly

“hard”, adaptive classifier would waste energy because the overhead introduced by

the “chooser” would not justify a limited number of switchings between di↵erent

classifiers required. As seen from the data plots, linear classifier cannot achieve low

error rates, while RBF, although showing extremely low error rates, has high EDP.

For example, Letter recognition data set shown in Figure 4·5 shows that linear

classifier cannot achieve an error rate below 65%, while RBF, which has error rate

close to 0%, has very high delay and energy dissipation.

Unlike the conventional classifiers, the adaptive classifier system enables us to

trade-o↵ error rate and EDP. For example, in case of the Letter Recognition data

11The approach is considered to be “näıve” because it näıvely assumes static, never-changing
energy budgets.
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Figure 4·5: Error rate vs. Energy Delay Product (EDP) for adaptive
classifier and conventional classifiers. Adaptive classifier can be tuned
to achieve any of the intermediate error rate values.

set, if the EDP constraint falls between the EDP of the linear and polynomial classi-

fiers, then in the conventional approach one has to choose the linear classifier which

results in a high error rate. However, if one were to use an adaptive classifier, then

the “chooser” function could be tuned to the EDP constraint and an error rate lower

than that of a linear classifier can be achieved. This allows for dynamic selection of

polynomial or linear classifier when lower error rates are required. Similar approach

can be adopted for EDP constraints lying between polynomial and RBF classifier for

the Letter Recognition data set as well as for other data sets to achieve lower error

rates compared to conventional classifiers. Figure 4·6 shows one of the possible usage

ratio of di↵erent classifiers in our adaptive classifier which shows one of the possible

energy dissipation distribution of di↵erent classifiers in our adaptive classifiers. These

plots are for a training for minimum EDP scheme, while the “chooser” function was

swept for di↵erent error rates. From the plots we can see that for lower error rate

requirements, the system becomes biased towards RBF and polynomial, while for
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cases where a higher error rate is acceptable the system chooses to use linear and

polynomial classifiers. Note that the utilization correspondingly a↵ects the total en-

ergy dissipation of the adaptive system, thus a dynamic trade-o↵ between error rate

vs. EDP is achievable.

Table 4.4 shows the energy dissipation and delay values of the adaptive classifier

when running the various data sets. The delays represent the minimum achievable

delay without change in the achieved error rate. “High error rate” represents the

training scheme where we do not constrain the error rate (due to which the linear

classifier is always preferred) resulting in lowest EDP. On the other hand, the “Low

error rate” column shows the training scenario where the target error rate budget is

set to be low (the target error rate is set at the error rate of the RBF in this example)

resulting in a higher EDP. On average the proposed adaptive classifier approach

consumes 10x more energy as compared to the linear classifier and 100x less energy

than RBF. The average delay of the adaptive system across all examples is ⇡2x of

the linear approach, and ⇡0.33x times of that of RBF. At the same time the error

rate is on average 0.5% higher than RBF, but ⇡ 40% lower than linear.

From Table 4.4 we can see that the “High Error Rate” and “Low Error Rate”

results (both energy and delay) are comparable to linear and RBF classifiers, respec-

tively. This behavior is expected, because if the training is biased towards one of the

error rate extremes, the adaptive classifier tends to choose only linear or only RBF.

This is also confirmed by the energy distribution plots shown on Figure 4·6. This

figure shows the total energy consumed by the adaptive classifier system at di↵erent

error budgets as well as the distribution of energy consumption in the di↵erent parts

of the adaptive classifier. Note that the “chooser” function tends to use linear classi-

fier more often when a high error rate is acceptable, while being biased towards using

RBF when the error rate constraints are tight. That means that energy dissipation
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Figure 4·6: Energy dissipation distribution and the total energy dis-
sipation vs. error rate for di↵erent classification problems.

of the linear classifier dominates at high error rate budgets.

Figure 4·7 shows the area of post-placement-and-routing design of the adaptive

classifier. The bars show the relative areas of di↵erent blocks, while the solid line

shows the total area. The results include the SRAM LUT as part of the RBF block.

This LUT occupies 43900 µm2 and is used to evaluate the exponentiation function.

Note that the area distributions are di↵erent across di↵erent data sets as we generated

a unique classifier design for every data set separately.

4.4.3 Experimental Results of the approach with dynamic energy budget

The training routine described in section 4.2, is significantly di↵erent from the work

presented in the (Takhirov et al., 2016). The main di↵erence is that by changing

the training routine and the microarchitecture of the “chooser” function, we have

managed to reduce the average energy-dissipation by up to 12% and improve the
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Figure 4·7: Relative area distribution of subblocks in adaptive classi-
fier (bars) as well as the total area (solid line).

computational performance by 7% as compared to (Takhirov et al., 2016) (see figure

4·8). At the same time, the statistical performance is left almost unchanged (within

0.5% drop in accuracy on average). This e↵ect is caused by the the “chooser” aware-

ness of the change in energy budgets. That way it can utilize the computational

resources more e�ciently: in the static training approach, if the energy budgets are

very low, the “chooser” sends all of the examples to the less complex “core” classifiers,

which drastically reduces the accuracy. The main goal of the “chooser” in this case

is to meet the energy constraints no matter what accuracy is. In the dynamic tuning

approach, the “chooser” takes into account the impact of individual “core” classifiers

on the average energy dissipation, and sends only a subset of the inputs to the simpler

classifiers as long as the energy constraints are met. The main goal of the “chooser

in this case is to maximize the accuracy while meeting the energy constraints.

To evaluate the approach with training on dynamic energy budgets, we trained
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Figure 4·8: Energy dissipation and accuracy for dynamic adaptive
classifier normalized to the adaptive classifier trained for the static en-
ergy budget.

the adaptive classifier, and assumed that the energy budgets change over time. The

adaptive classifier takes an immediate energy budget constraint as a feature, and

adjusts its behavior in accordance to the training routine described in by equations

(4.7) and (4.8). Direct behavior comparison between di↵erent training routines is

described by figure 4·1. In figure 4·1(a) we show the behavior of an adaptive classifier

that was trained with Penbase Recognition dataset and assuming three di↵erent

energy dissipation budgets: 10e-12, 1e-9, and 0.1e-6 J/classification with the delay

fixed at 1GHz, which translates to EDP constraints of 1e-20, 1e-18, and 1e-16 respec-

tively. Notice on subfigure (a), which corresponds to the dynamic training approach,

the EDP constraint is met across all budgets, and the error rate curve shows a smooth

trade-o↵ between low and high accuracy modes. On subfigure (b), the adaptive classi-

fier was trained for very tight energy budget, which prevents the classifier to improve

on accuracy when the energy budget constraints are loosened. Conversely, on sub-
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figure (d) we see that although the accuracy is the lowest, the classifier fails to meet

the energy (or EDP) constraints. Figure 4·1(c) shows the behavior which is a combi-

nation of the previous two: it fails to meet the energy constraints when budgets are

tight, and fails to reduce the error rate when the budgets are loosened.

Figure 4·8 shows the experimental results of the dynamic approach relative to the

approach is to assume that the energy budgets are static. We see that in the best case

we reduce the energy dissipation by > 11% and reduce the delay by > 6% (MNIST).

In the worst case, dynamic approach reduces the energy dissipation and delay by

⇡ 4.5% and ⇡ 3% respectively (Average). The dynamic approach has insignificant

area impact on the design, which varies from 0.6% (Average) to 1% (Spam) overhead

as compared to the static approach. The variation on the area depends on the number

of features of the dataset that the classifier was designed to operate for.

4.5 Discussion

Although in the current work we provide implementation details of a classifier, in prac-

tice any machine learning problem could be handled in a similar fashion. Adaptive

classifier allows replacing the “core” classifiers with any machine learning estimator in

addition to classification: clustering, regression, and even dimensionality reduction.

For example, an adaptive clustering algorithm could have a “chooser” classifier that

identifies the “hardness” of the current input, and the “core” clustering algorithms

of di↵erent complexity would be used to achieve energy-e�cient behavior.

In addition to that, adaptive classifier is well suited to work with remote or “cloud”

computing in mind. The “chooser” function can be trained to identify if a problem is

too expensive to compute locally, such that it would be computed remotely. This idea

has some challenges in itself: it requires more research in the area of computation vs.

communication energy-delay trade o↵s. The problem is that o✏oading large amount
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of data to the “cloud” might be expensive both in terms of energy and in terms of

delay, and such an approach would require careful consideration.

As mentioned before, the approach that takes into account change in the current

energy-budgets requires information on the current energy reserves. Although not a

part of the current work, we would like to point out that acquiring the information

about the energy reserves might have some energy penalty as well. For example, the

energy/delay cost of acquiring current battery reserves could be very high. In such a

case, the host CPU could retrieve and bu↵er the current energy budget infrequently

in order to avoid a drop in EDP.

Both static and dynamic adaptive classifiers also have one major problem: the

“hardness” of the input data is usually very unbalanced, with “easy” classes domi-

nating, and the “hardest” classes being only a small fraction of all the inputs. That

makes the training of the “chooser” prone to having “false” high accuracy, where

every input is identified as “easy” because the absolute majority of the inputs were

“easy”. There are several di↵erent ways to avoid such problem. One of the solutions

is constructing loss matrices described by example equations (4.1) and (4.2). How-

ever, this approach requires a detailed analysis of the input datasets. Another way

to resolve this issue is to change the loss metric from accuracy to F
1

score, which is a

harmonic mean of precision and recall. This solution is not straightforward, and also

requires detailed prior knowledge of the input dataset.

4.6 Conclusion

As part of our evaluation, we have performed a detailed comparison of our approach to

the state-of-the-art scalable e↵ort classifier (SEC) approach described in (Venkatara-

mani et al., 2015a) (see Table 4.5). To make the comparison as fair as possible, SEC

system was designed using the same process as the proposed approach. We used our
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linear, polynomial, and RBF classifiers to implement the three stages of the SEC,

and the SEC design space exploration was performed using Aladdin tool. However,

the energy results for the SEC approach were from just synthesized designs, while the

adaptive classifier approach energy results were using netlists extracted from placed-

and-routed designs. The “Time” column shown in Table 4.5 shows the results of

C++ simulations. Results show that the execution time of for both approaches is

comparable. However, the adaptive classifiers can achieve almost 2⇥ lower EDP while

operating at the same error rate. The reason for this is that when facing “harder”

problems, the SEC approach still utilizes “easy” stages of the classification system

before switching to more complex classifiers, thus wasting energy. Adaptive classifier

approach chooses only one (appropriate) classifier depending on the “hardness”.



Chapter 5

Random Forest and the Field of Groves

5.1 Introduction

Over the last couple of decades the consumer market has gradually moved towards

mobile computing. According to the comScore report, people of age 18-64 spend

⇡70% of their digital time using a mobile device (ComScore Report 2016, 2016).

Mobile workloads are increasingly data intensive, and hence machine learning (ML)

algorithms are commonly used in these applications (Lane et al., 2010). The data-

intensive nature of these applications does not allow us to run these applications

purely on our mobile systems. For example, applications like speech recognition,

although used quite often, are still evaluated remotely because limited energy budgets

prohibit running a powerful ML algorithm on a mobile device.

Mobile systems are energy constrained, and hence while designing machine learn-

ing algorithms for mobile applications we need to manage two conflicting require-

ments – high accuracy and low energy dissipation. Over the past few years several

architecture-level, circuit-level and algorithm-level optimizations have been proposed

for improving the power, performance, area, and accuracy of machine learning ac-

celerator designs (Du et al., 2015, Takhirov et al., 2016, Kusner et al., 2014, Gao

and Koller, 2011, Park et al., 2012, Xu et al., 2012, Trapeznikov and Saligrama,

2013, Wang et al., 2015, Kusner et al., 2014, Nan et al., 2015, Al Maashri et al.,

2012, Albericio et al., 2016, Han et al., 2016, Chen et al., 2016b, Shafiee et al.,

2016, Chi et al., 2016, Rahman et al., 2016).

91
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The machine learning community has shown that we do not always require com-

plex classifiers such as convolutional neural networks (CNN) or kernel support vector

machines (SVM) for classifying data, and that low-complexity classifiers such as ran-

dom forests (RFs) are an adequate substitute for applications where high accuracy

with low energy dissipation is required (Nan et al., 2015). In this paper, we pro-

pose an alternative implementation of RF classifiers. We divide the RF into groups

of trees called groves for budget-constrained environments, where the budget is ac-

curacy, energy, delay or energy-delay product. In general, RFs are a collection of

decision trees (DTs) that independently predict the classification result, with the fi-

nal decision made by combining the decisions of individual trees. Our approach uses

the confidence of groves within the RF about their decision to optimize the resource

utilization. In this work:

– We first evaluate the use of RF algorithm as an alternative to CNN, SVM with

linear (SVMLR) and with radial-basis function (SVMRBF ) as the kernels, and Multi-

layer Perceptron (MLP) algorithms. Our analysis shows that the RF accuracy is

comparable to the accuracy of CNN, SVMLR, SVMRBF and MLP for all evaluated

datasets, and on average RF consumes ⇡10⇥ lower energy per classification.

– We also propose a novel implementation of RF called Field of Groves (FoG). FoG is

composed of multiple groves, where every grove is a subset of decision trees. During

the evaluation period, the groves start the class probability estimations in parallel,

with every grove receiving di↵erent inputs. If the probability threshold (confidence

level) is not met, the “partially computed” result is issued to the next grove. That

way more computational resources are dynamically allocated to examples with higher

uncertainty, thus reducing the average cost of estimation. Our evaluation shows that

at comparable accuracy FoG consumes ⇡1.48⇥, ⇡24⇥, ⇡2.5⇥, and ⇡34.7⇥ lower

energy per classification compared to conventional RF, SVMRBF , MLP, and CNN,
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respectively. FoG is 6.5⇥ less energy e�cient than SVMLR, but achieves 18% higher

accuracy on average across all considered datasets.

5.2 Energy-E�cient Computing using Random Forests

L LR R

T0L+T1L T0R+T1R T0L+T1R T0R+T1L

T0L T0R T1L T1R

T0 T1

Figure 5·1: Example of decision making within a random forest or
a Grove with two decision trees T

0

and T
1

. “L” and “R” represent
the decision paths within the trees. Symbols within the decision nodes
represent the distribution during the training phase. The bottom bar
plots illustrate the decision combinations. For example, “T

0

L+T
1

R”
shows what the resulting distribution would look like if tree T

0

chooses
path “L”, and tree T

1

chooses path “R”.

As mentioned in Section 5.1, we commonly use SVM as well as traditional neural

network-based algorithms like CNN or MLP for classifying data sets with large num-

ber of features. Figure 5·2 shows high-level logical view of SVM, MLP, and CNN.
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Figure 5·2: Conceptual diagrams of Support Vector Machine, Multi-
Layer Perceptron (fully connected), and Convolutional Neural Network.

Figure 5·3: Accuracy degradation for MLP and RF. For simplicity, a
reduced Digits dataset was used. In the RF every estimator is a DT.

In this section we analyze the use of RFs as compared to the popular classification

algorithms.

RF is composed of binary decision trees (DT ) (see Figure 5·4a), and although

the entire RF is composed of O(t2d) decisions, where t is the number of trees, and d

is the upper bound on the tree depth, evaluation during testing requires only O(td)

computations. Every DTi receives some input features XRi, where XRi is a random

subset of input X. A “Majority Vote” across trees is then used to identify the label.

Such an approach avoids overfitting and ensures high accuracy. To illustrate the
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operation of a random forest, consider the equation 5.1 and 5.2 below

ŷ = argmax
�
FT (x

(i))
�

(5.1)

FT (x
(i)) = �

TX

t=1

ht(x
(i)), (5.2)

where ŷ is the class prediction, FT is the aggregated decision of the forest with T

trees, and ht is the decision of tree t. � in this context is a normalization factor,

and is set to 1/T for random forest (as opposed to boosting methods where � is a

per-tree normalization factor). To illustrate the equation, let us look at the example

on figure 5·1, which shows a forest with 2 decision trees of depth 2. When combining

the results of individual trees, the results are aggregated using a majority vote shown

on equation 5.2. For example, if tree T
0

goes through path “L”, and tree T
1

goes

through decision path “L”, than the example decision is obvious, as there is a clear

maximum in the decision leaf. However, if T
0

goes through decision path “L”, and

T
1

through “R”, there is no obvious maximum.

Note that during the random forest training (shown on algorithm 1, the trees are

generated depending on their validation cost, where the cost could be energy, delay,

energy-delay product, or accuracy. Because the DTs within RF work independently

on random subsets of input features, those decision trees can be seen as having addi-

tive properties, which means that even if several of the DT blocks are turned o↵, the

total accuracy degrades gracefully (Figure 5·3). This “scalability” property, where

the accuracy of RF scales with the number of DTs makes the RF a suitable candi-

date for budget-limited environments, with budget being energy, delay, accuracy, or

a combination of them. For example, depending on the budget requirements, some

of the trees could be turned o↵ to improve energy e�ciency, but at the cost of sta-

tistical performance. The reason why turning o↵ DT blocks in an RF generally leads

to a graceful degradation of accuracy, is that the predicted label for a new test ex-
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ample within a sub-tree is independent of other trees and the majority vote is used

to reduce variance. This type of “scalability” is also observed in CNNs and MLPs

but the scalability is less forgiving and hence, those algorithms are hard to adapt to

environments with changing budgets. The reasoning is that inontrast to RFs, CNN

and MLP network nodes are connected to many other nodes, which usually makes it

di�cult to predict how each node a↵ects the accuracy of the the neural network at

run-time (it is possible to achieve that o✏ine however). In general, when operating at

unlimited energy budgets, CNNs and MLPs generally provide higher accuracy than

RF, but RF provides us an opportunity to game accuracy for energy-e�ciency in

energy-constrained environments. In Section 5.3, we show more detailed comparison

of the classifiers.

Algorithm 1 Constructing Feature Budgeted Random Forest. Validation cost is
the energy dissipation cost of classifying “unseen” examples.

Require: Training feature set X; Training label set y; Budget B - budget could be
accuracy, energy, delay, energy-delay-product, etc.

Ensure: Set of trained decision trees T
1: procedure BudgetRF(X, y,B)
2: T  ; . Assume that empty set has a cost of 0
3: while Average validation cost on T  B do
4: T  T[Tree(X, y)
5: end while
6: return T
7: end procedure

5.2.1 Field of Groves Algorithm

As described in section 5.2, RF is suitable for environments where accuracy could be

traded-o↵ for energy e�ciency. The main advantage of the RF approach stems from

the fact that the accuracy of RF tends to improve with an increase in the number of

DTs. Moreover, DTs have few active computational nodes during prediction, and the

nodes are generally of very low computational complexity. One of the disadvantages
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Algorithm 2 Constructing Field of Groves Classifier

Require: Number of estimators n > 0; Maximum size of a grove k  n; Training set
X, y

1: procedure GCTrain(n, k,X, y)
2: Train RF  RandomForestTrain(n,X, y)
3: return Split(RF, k)
4: end procedure

Subroutine - Splitting a Random Forest

Require: Pretrained random forest RF ; Maximum size of a grove k > 0
Ensure: Split grove ensemble GC
5: procedure Split(RF, k)
6: i 0
7: GC  ;
8: while i < Length(RF.estimators) do
9: G new Random Forest of size k

10: G.estimators RF.estimators[i..i+ k]
11: GC  GC [G
12: i i+ k
13: end while
14: return GC
15: end procedure

that RF experiences is “over-utilization” of the computational resources. Previous

works have shown that large portion of input samples within datasets are far enough

from the decision boundaries, and do not require complex classifiers (Takhirov et al.,

2016, Venkataramani et al., 2015a). Conventional RFs, however, lack the ability to

allocate less computational resources for the inputs if desired. This problem could be

solved by using only a limited number of trees, depending on the current confidence

level.

In this section we propose a novel RF implementation called Field of Groves

(FoG), which avoids any unnecessary expending of energy on inputs with low un-

certainty. Each grove is composed of a random, non-overlapping subset of the trees

from the “original” RF. Figure 5·4(b) shows the logical view of our proposed FoG
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Algorithm 3 Evaluating Field of Groves Classifier

Require: Stopping threshold 0 < thresh < 1; Maximum number of hops
max hops  Number of groves n groves; Input set X

1: procedure GCEval(X, thresh,max hops)
2: parallel for every x in X
3: start Random(from 0 to n groves) . Start at random grove to avoid

bias
4: prob  {0}#labels

5: for j  from 0 to max hops do
6: index (start+ j) mod n groves
7: prob prob+Grove(index).predict prob(x)
8: prob norm prob/(j + 1)
9: if MaxDiff(prob norm) � thresh then

10: return prob norm
11: end if
12: end for
13: return prob norm
14: end parallel for
15: end procedure

Subroutine - Minimum Di↵erence of Maximum Values

Require: Array ar
16: procedure MaxDiff(ar)
17: max1, max2  TwoMaximumValues(ar)
18: return abs(max1 - max2) . In case of “Multi-output classification”, min(·)

function is called prior to returning
19: end procedure

implementation of RF. Equation 5.4 shows the decision making process of the FoG.

ŷ = argmax
�
F 0
T (x

(i))
�

(5.3)

F 0
T+1

(x(i)) = 1M(F 0
T

�⌧)F
0
T (5.4)

+ 1M(F 0
T

<⌧)(F
0
T + hT+1

(x(i))),

where 1z is an indicator function of subset z, T is the current Grove, initially randomly

chosen from all the available Groves1. M(f) is a minmax function that returns the

di↵erence of the two maximum values in an array f. If f is a 2-dimensional array, it



99

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 3

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 2

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 1Tree 0

Σ(Probability)

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 3

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 2

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 1Tree 0

Σ(Probability)

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 3

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 2

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 1
xi Input feature
wi Splitting 

threshold

Tree 0

Σ(Probability)

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 3

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 2

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 1Tree 0

Σ(Probability)

VOTE

x0 > w0

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 3

x0 > w0

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 2

x0 > w0

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x6 > w6

xi
wi

Input feature
Splitting 
threshold

Tree 1

x0 > w0
Input

feature
Splitting 
threshold

Tree 0

(a) Random Forest (b) Field of Groves

xi Input feature
wi Splitting 

threshold

xi Input feature
wi Splitting 

threshold

xi Input feature
wi Splitting 

threshold

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x7 > w6

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x7 > w6

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x7 > w6

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x7 > w6

x1 > w1 x2 > w2

x3 > w3 x4 > w4 x5 > w5 x7 > w6

Figure 5·4: Logical view of RF and FoG.

returns the minimum of the maximum di↵erences. ⌧ is the threshold value. Equation

5.4 redefines the equation 5.2 by including a conditional execution of the next subset

of trees depending on the confidence level M(FT�1

) � ⌧ . Also, in the context of FoG,

hT (x(i)) is a T ’th Grove (or a collection of decision trees), rather than a single decision

tree.

Training and Testing

The training of the FoG is described in Algorithm 2 and is done o✏ine. During this

training phase, a RF is first pre-trained (using Algorithm from (Nan et al., 2015)),

and the DTs are randomly split into groves. The splitting involves a simple division

of the forest into sets with k DTs, where k is the size of the grove.

The label evaluation algorithm for the approach is shown in Algorithm 3. Here,

for every input x 2 X, we compute the confidence score using one of the randomly

selected grove. Confidence in this context is defined as the di↵erence between the most

probable and second most probable labels2 If the confidence is higher than the goal

threshold, the computation for x is complete. Otherwise, x and the current probability

distribution is sent to the next grove, where the probability array is recomputed again

1Incrementing and decrementing the Grove indexes follows the rules of modular arithmetic
2In case the classification problem is “multi-label” or “multi-output”, the MaxDiff returns the

Min of the di↵erences within the label. That means that confidence level is defined as the “minimum
di↵erence of the maximum values”
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form x and combined with the one received from the previous grove. That way more

groves contribute to the inputs with high uncertainty. This process is repeated until

either the threshold is exceeded or the the entire forest is evaluated. Note the contrast

between FoG and conventional RF evaluation: in FoG the groves return probability

distributions which are averaged out across groves; in the conventional RF however

the DTs return class predictions, which are later put to a majority vote.

5.2.2 Micro-architecture

The high-level architecture of the FoG implementation of RF is shown on Figure

5·5. Here, the groves are connected in a circular fashion, with each grove being able

to send its current inference to the next grove. To understand the operation of the

system, let’s consider an example with a 3-class (class A, class B and class C) problem

and the threshold value set to 0.1, which means that in order to come to a decision,

the probability di↵erence between two most probable classes should be at least 0.1.

Let us assume that the processor sends an input X that has 5 features. When FoG

receives this input, it is assigned an id, and is sent to one of the groves (say grove G0

in Figure 5·5) through the accelerator Input Queue.

Notation Description

a Value of variable a
$a Memory address of variable a (pointer)

$a+ c Memory o↵set by c
aj j-th element in vector a 2 Rm

a(i) i-th vector
frG, bkG Front and back of a queue in Grove G

Table 5.1: Notation used in section 5.2.2

Data Queue

Once G0 receives a new input, it places it into the local memory, which serves as a

data queue. The queue is controlled using two pointers: $frG0

and $bkG0

for front
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Figure 5·5: Random Forest implemented as Field of Groves and the
microarchitecture of a grove. Notice the grove G0 can communicate
to grove G1 through the “Handshake” block without going out of the
FoG. The “Data Queue” includes a controller to maintain pointers $fr
and $bk.

and back of the queue respectively. $frG0

always points to location that contains the

input that is currently being processed and $bkG0

points to the first empty location

at the back of the queue. For each input we store Input Payload, which holds

the received input features + id; Probability Array, which contains the current

prediction probabilities; hops which is a count of groves that have so far processed

the current Input Payload. Whenever a new input is received: if the input is received

from the processor, it is placed at the back of the queue. The Input Payload and

Probability array values are set based on the information sent by the processor

and the hop count is set to 0. If the input is received from the neighboring grove,

it is placed at the front of the queue. The Input Payload and Probability array

values are set based on the information sent by the neighboring grove and the hop

count is incremented by 1. This ensures that the input that were partially computed

have higher priority. In our example, because the input is from the processor, it is

placed into the $bkG0

location of the queue. For the new input: {hops = 0, Input

Payload = X, Probability = {0,0,0}}

Data queue is controlled by the queue controller (DQC) which is responsible for

maintaining the $fr and $bk pointers. For each received input, DQC routes $fr to
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Figure 5·6: Grove Processing Element (PE) as shown on figure 5·5.
The decision making process goes in a pipeline through di↵erent levels
of the decision trees using “Fetch-and-Compare” blocks. The results are
aggregated using fixed-point adder tree and a maximum finder (com-
parator tree).

the processing element, the processing element reads the entries corresponding to $fr

and once the computation is complete, it writes the results back to $fr. $fr and $bk

are incremented by �, which is the length of queue word and represents number of

rows in physical memory that are required to store the hop count, Input Payload

and Probability Array. � is a variable, and it depends on the number of features

and number of classes in dataset. In our example, � = 1 + 5 + 1 + 3 = 10 (1 byte

for hops, 5 bytes for features in Input Payload + 1 byte id, and 3 bytes to store

the current label prediction in the Probability Array). Our current implemetation

of the FoG has a data queue of 6kB, and can store 8 MNIST examples per grove.

Note that the memory can be easily increased to support datasets with larger feature

counts and label counts.

Processing Element (PE)

The PE in every grove is represented by a set of decision trees and its operation

is described in algorithm 3. The implementation block diagram is shown on figure
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5·6. Controller / Queue Interface is responsible for routing the values from DQC

to the pipelined PE. As shown on the figure, first L stages are decision trees being

executed in parallel. The level of parallelism and number of pipeline stages are design-

time optimization parameters. Every decision node in a tree consists of fetch-and-

compare blocks, which load the input and weights from the PE bu↵er (not illustrated),

and compare the values to identify the next stage node variables. Note that both

blocks are subject to pruning – a process of “early stopping” of the decision process

in a tree to improve generalization (Hastie et al., 2001). After the decision levels,

the PE employs a “Hypothesis Loader” – a pretrained set of probability vectors per

decision tree leaf. Every leaf has its own probability vector. Because there is a one-

to-one mapping from the decision leaf to the precomputed probability, this block is

implemented as a simple look-up table (a tree with 5 levels will have 25 = 32 entries in

the LUT). After that, the probabilities across all trees are summed up in the “Adder

Tree”, and the two maximum values in the resulting probability array is found using

a “Comparator Tree”.

The Input Payload (X) is processed by all the trees within the grove to deter-

mine the probability distribution of the labels. This result is then averaged with

Probability Array received from previous grove or just written back in case of a

new input and the current confidence level is computed (as the di↵erence between

the two largest values in the Probability Array). The latency of the PE depends

on the number of trees per grove, the maximum depth of each tree and degree of

parallelism.

Once PE finishes the computation, a decision is made if the current confidence

level is adequate. If so, the DQC is notified that the classification of the current

Input Payload is complete and the computed result needs to be sent back to the

processor. However, if the confidence level is lower than a threshold thresh, a request



104

is sent to the next grove for further processing. Here the entire entry (Hop Count,

Input Payload and Probability Array) for the current input is copied to the next

grove.

Continuing with the previous example, let us say that after G0 completes process-

ing the input X, it returns the probability distribution of {0.32, 0.35, 0.33}. This is

used to compute the confidence. In this example the confidence is 0.35� 0.33 = 0.02.

Because the threshold was set at 0.1, the classification of input X is considered in-

complete. It is written back to the location $frG0

, and a req flag in the handshake

is raised. At this point, the frG0

is incremented, and grove G0 is ready for the

next input. The value stored at $frG0

� 1 is {hops = 1, Input Payload = X,

Probability = {0.32, 0.35, 0.33}}

Handshaking Protocol

Groves use a simple handshaking protocol to talk with each other. After G0 computes

the output probabilities, it checks its confidence and if the confidence is low it sets

a req flag to signal the neighboring grove G1 to copy the current input as well as

computed probabilities. Once the copy is complete, an acknowledgment flag ack is

raised by G1 for one cycle to notify that the copy procedure is complete. At that

time G0 pulls the req line down, completing the handshake.

Because G1 receives its input from another grove (in our case G0), it places it

at $frG1

of its queue. Assume that G1 computed the probability distribution as

{0.28, 0.45, 0.27}. These values are averaged with the values computed by G0. The

entries corresponding to the current input are now {hops = 2, Input Payload = X,

Probability = {0.3, 0.4, 0.3}} and the predicted label is argmax (Probability) = 1.

At this point, the threshold value constraint is met 0.4 � 0.3 � 0.1, which indicates

that this input does not require any further processing, and should be sent to the

accelerator output queue. Note that in the example discussed above, the value of
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hops was increasing with every new grove.

Run-time Tunability

In our proposed FoG implementation of RF the energy-e�ciency and accuracy could

be easily tuned by changing the probability threshold and maximum hops parame-

ters. The threshold parameter indirectly controls the number of groves that process

the input. The maximum hops parameter places an upper limit on the number of

groves that process the input (based on EDP or accuracy constraints). A detailed

evaluation of how the probability threshold parameter and the maximum hop count

parameter a↵ects the energy e�ciency and accuracy of our FoG implementation is

presented in Section 5.3.

Reprogrammability

To support various trained RFs corresponding to various datasets, the DTs were

implemented to be reprogrammable. For a given dataset, every node is populated

with the weights !i, as well as memory address o↵sets for the respective features xj.

In addition to that the DQC is programmable to support variable step for the queue

pointer. For example, if a node N checks the conditional xN > !N , then this node

will store the constant !N , as well as o↵set OFFxN . This indicates that the location

of the input xN is at $fr + OFFxN . At the same time the DQC stores a value �

and the next entry in the queue has an address $frnext = $fr + �. The reasoning

behind having a variable step size � is that we want to support di↵erent number

of features as well as di↵erent number of labels for di↵erent datasets. For example,

MNIST dataset has 784 features and 10 labels, while Penbase Digits dataset has only

16 features and 10 labels3.
3Physically each entry of the data queue is spread over several rows. Here OFFxN is the o↵set

within an Input
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One of the aspects of the programmability of the decision trees in the RF and a

FoG. This is done by reprogramming the hypothesis look-up tables (LUT) shown on

figure 5·6. The LUTs hold information about the probability distributions at every

leaf of a decision tree. The number of entries in every lookup is 2D, where D is the

depth of a decision tree (D is capped at 5 in our implementation). Note that the

current work does not support changing the number of trees at run-time.

Let us consider a simple reprogramming example to illustrate the above process.

Suppose that FoG was setup to process handwriting digit recognition, and was con-

figured for MNIST dataset. That means that � = 784, and the features for input i

are stored at $x(i)
0

= $fr + 0, ..., $x(i)
783

= $fr + 783. The next input in the queue will

be stored at $x(i+1) = $frnext = $fr + � = $fr + 784, which means that the input

i + 1 is queued in the memory address $x(i+1)

0

= $fr + 784, ..., $x(i+1)

783

= $fr + 1567.

Suppose that we have decided to reduce the resolution of the handwriting recogni-

tion dataset, and switch to Penbase Digits dataset, which has only 16 features.

This makes � = 16, and the consecutive inputs in the memory would be stored at

$x(i)
0

= $fr + i�+ 0, ..., $x(i)
15

= $fr + i�+ 15, $x(i+1)

0

= $fr + (i+ 1)�+ 0, ...

Although our approach requires mechanism for queue management and needs an

additional mechanism to “dereference” the o↵set pointer (which slightly increases the

complexity per tree), this design choice is a necessary trade-o↵ to support program-

ming of hardware required to support datasets having di↵erent feature counts.

5.3 Evaluation

5.3.1 Experimental Setup

General Design Flow for Custom Accelerator

We designed SVM with linear regression kernel (SVMLR), SVM with Radial-Basis

Function kernel (SVMRBF ), MLP, CNN, RF and FoG classifiers for our analysis. To
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compare the di↵erent classifiers we used five di↵erent datasets from the UCI library

(UC Irvine Machine Leanring Repository, 2017), and the list of these datasets is

shown in table 5.2 under the “Dataset” column. These datasets were chosen because

they represent a diverse set of workloads typically seen on a mobile device. It is worth

making a side note that there are datasets which would require much more complex

classifiers such as deep neural networks (i.e. ImageNet dataset). However, because

the main gaol of this project is energy-e�ciency and it is not expected an embedded

system to work with extremely large datasets, we have decided to exclude them from

the evaluation. All the results shown in this section are acquired using the inputs

never seen before by the systems under test.

Data Set Description Features Size

ISOLET Spoken letters 617 7797
Penbase Hand written digits 16 10992
MNIST Hand written digits 784 62000
Letter Hand written letters 16 20000
Segment. Image patches 19 2310

Table 5.2: Datasets used for evaluation.

We used the following design flow for performing a detailed power (shown on figure

5·7), performance and area comparison of our proposed FoG with other ML classifier

algorithms:

Step 1: First, basic computational blocks, such as adders, multipliers, multiply-

accumulate (MAC), sigmoid, etc. that are required by all the classifiers are designed

considering trade-o↵s between energy and delay by sweeping through architectural

and circuit level parameters, such as bitwidth precision, parallelization, pipelining,

memory ports, memory and bu↵er size. We used Aladdin tool (Shao et al., 2014) to ex-

plore the architectural design space, and Cadence tools to extract Power-Performance-

Area (PPA) values for each block in this step.

Step 2: Once the library of computational units is generated, it is used in the
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Figure 5·7: System design flow diagram. At steps 1 basic building
blocks are designed and simulated to acquire the Power-Performance-
Area (PPA) numbers. The PPA is then fed into the step 2 to get the
accelerator configuration given energy constraints. The PPA numbers
are also fed into the µArchitecture exploration 3 , which generates a

suitable chip layout for simulation 4

o✏ine budgeted training described in algorithm 1 (Nan et al., 2015) and algorithm 2.

We used energy-delay product (EDP) as budget metric during this phase. If there are

several designs that meet the energy constraints, we choose the one with the maximum

accuracy. Budgeted training requires information about the costs of building blocks

which is provided by the PPA models4. We use SciKit-Learn (Pedregosa et al., 2011)

for the training (and exploration of logical structure) of the classifiers.

Step 3: At this step, the detailed hardware microarchitecture of the accelerator

is designed. Microarchitecture exploration is independent of training, and is done

using Aladdin toolset (Shao et al., 2014). The PPA models from the previous step

are used during this step to determine Pareto optimal frontier and select the most

energy-e�cient design. The parameters explored for Pareto optimality are the same

4Note that the cost could be defined as either energy, delay, area, accuracy or any combination
of them. The PPA library has information about delay, energy, and area, while the accuracy cost is
determined using cross-validation data.
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as the ones used in step 1, but in this step individual blocks (adders, multipliers, etc.)

are seen as black-boxes.

Step 4: In this final step we design the whole architecture using Chisel HDL

(Bachrach et al., 2012). This design environment was chosen, as it generates both

hardware description code (Verilog) as well as C++ functional model. That allows

for the functionality of the hardware to be verified against software implementation

for correctness. The Verilog code was synthesized using 40 nm Global Foundries

technology with Synopsys standard cells for detailed power-performance analysis.

FoG Design Considerations

In our implementation, all the classifiers were designed for minimum EDP at maxi-

mum accuracy. The FoG classifier was designed from the RF classifier by extracting

the pre-trained DTs and re-assembling them into groves. As described above, the

number of decision trees per grove and the number of groves is decided during the

design time. During the design time we analyzed the EDP and accuracy of di↵erent

FoG topologies and the minimum EDP design point was selected (while maintain-

ing the accuracy). Figure 5·9 shows the accuracy and EDP results across di↵erent

combinations of sizes of groves and total numbers of groves in the FoG.

To illustrate the choice of design time parameters while considering run-time tun-

ability, let us discuss an example with 16 decision trees and ISOLET dataset. After

examining the accuracy and EDP of di↵erent topologies (see Figure 5·9a), we iso-

lated two candidate topologies: 8x2 and 4x45. At this point we can use the “run-

time tunability” as a deciding factor between these two roughly equivalent candidate

topologies. Figure 5·10 shows the accuracy and EDP across all datasets as a function

of threshold. Figure 5·10a shows that 8x2 topology is more energy-e�cient, but the

accuracy is lower for lower threshold settings. Figure 5·10b shows, in contrast, that

the accuracy penalty for lower thresholds is not as drastic, but the energy-e�ciency
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SVM FoG
Dataset lr rbf MLP CNN RF max opt

M
a
x
i
m
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m

A
c
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r
a
c
y

(
%
)

ISOLET 69 93 87 94 92 91 90
Penbase 86 95 91 96 96 93 93
MNIST 82 95 87 96 96 94 93
Letter 78 93 93 96 95 85 85
Segment. 67 91 91 96 95 94 92

E
n
e
r
g
y

(
n
J
/
c
l
a
s
s
.
)

ISOLET 5.9 980 82.5 1150 41 49 30
Penbase 0.4 18 13.3 186 16 14 7.1
MNIST 6.1 1020 93 1300 43 47 38
Letter 0.5 19 13.7 192 16 12.9 7.6
Segment. 0.6 26 14.5 203 13 9 4.7

Area (mm2) 0.13 0.53 0.93 2.1 1.38 1.9 1.9

Table 5.3: Accuracy (top) and Energy dissipation (bottom) in nJ
per classification for di↵erent datasets (UC Irvine Machine Leanring
Repository, 2017). Frequency is fixed at 1 GHz for all datasets. SVMlr

and SVMrbf show the results for SVM with linear and RBF kernels;
FoGmax and FoGopt show the results for FoG with its threshold set to
maximum and to the optimal accuracy tuning point, respectively. The
area results are in mm2

.

penalty is higher. In our case we go with 8x2 topology as minimum EDP is our pri-

mary goal. Note that once the physical topology is selected, the “threshold” variable

could be changed during run-time to achieve a di↵erent operating point.

Design for use on GPU and Other Accelerators

GPUs have been widely used to support ML due to their speed advantage over SIMD

CPU. To evaluate the scalability of di↵erent algorithms, we implemented the base-

line algorithms as well as RF and FoG on a modern GPU card (NVIDIA GTX

660M, 2GB GDDR5). We compare the results against a CPU implementation (Intel

Core i7-3610QM, 8 cores @ 2.3GHz, with compilation flags “-O3 -ftree-vectorize

-march=native”). As shown on figure 5·11 GPU achieves an average speedup of 23x-

90x with respect to SIMD CPU implementation. The results are similar to the pre-

5We use a x b to describe a FoG topology with a number of groves with b decision trees in each
grove.
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Figure 5·8: Average Accuracy vs. Average Energy dissipation scatter
plot for di↵erent classifiers. CNN achieves the highest accuracy but
orders of magnitude more expensive in terms of energy dissipation.
Linear SVM is the most energy e�cient, but the accuracy is the lowest
across di↵erent classifiers. Random Forest and Field of Groves provide
a reasonable tradeo↵ between accuracy and energy dissipation.

viously reported speed comparisons for ML applications for GPU vs. CPU (Cireşan

et al., 2011, Teodoro et al., 2009). In order to ensure a fair comparison, both GPU

and CPU implementations were designed to guarantee functional equivalence. This

also makes the accuracy to be the same for both GPU and CPU implementations.

The proposed approach can also be used as part of other accelerators. For example,

FoG and RF algorithms would benefit from parallel architectures of DianNao-family

processors (Chen et al., 2016a), as well as Cambricon (Liu et al., 2016). The functional

units in these accelerators are suitable to execute the weak classifiers (decision trees

and groves) e↵ectively.
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5.3.2 Experimental Results

To perform a comparison of the classifier algorithms listed in section 5.3.1, we first

trained all the algorithms for their maximum accuracy without worrying about energy

e�ciency. Table 5.3 shows the comparison of accuracy between di↵erent classifiers.

Two di↵erent numbers for the FoG are reported: FoGmax and FoGopt. FoGmax shows

the results for the FoG with its “threshold” parameter set to maximum. This forces

the FoG to behave like an RF because every input will have to go through every

decision tree of every grove. FoGopt shows the results for the case when confidence

threshold was set to accuracy optimal point – a threshold point above which accuracy

does not increase with threshold but below which accuracy decreases with decrease

in threshold.

From the table we can see that CNN has the highest accuracy for all datasets.

The accuracy of the traditional RF classifier is comparable to CNN for all datasets.

In terms of energy per classification, RF consumes ⇡ 95.4%, 91.5%, and 99.4% less

energy than SVMRBF , MLP and CNN, respectively. The RF energy consumption is

⇡22.4% higher than that of SVMLR, but RF on average provides 20% higher accuracy

than linear SVM. The very low energy dissipation in RF is due to the fact that the

basic computational unit in a DT is very simple (a basic comparator).

Table 5.3 also shows the accuracy and energy dissipation of our proposed FoG

implementation of the RF classifier. Here all classifiers have been designed to operate

at 1 GHz. The maximum achievable accuracy of the FoG (both max and opt)

implementation is lower than RF and CNN by 3.2% and 4%, respectively, but FoGopt

classifier consumes 42% and 99.7% lower energy than RF and CNN, respectively. The

FoGmax on average consumes 6% lower energy than RF, and 99.5% lower than CNN.

When comparing to the SVMs, the accuracy of the FoG classifier outperforms the

linear support vector machine SVMLR by ⇡15% on average, and achieves comparable
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statistical performance when compared to the SVMRBF . In terms of energy SVMLR

is ⇡20% more e�cient on average, while SVMRBF is more expensive (97.9% higher

energy consumption when compared to FoGopt).

The main advantage of the FoG is that while achieving statistical performance

comparable to the performance of the RF, it also allows easy run-time change in the

energy-accuracy trade-o↵. Figure 5·10 shows how accuracy could be traded o↵ for

energy for 8x2 and 4x4 FoG topologies. Figure 5·10a shows that energy-e�ciency

could be easily improved by an order of magnitude without sacrificing much accuracy

by tuning the confidence threshold from 1.0 to 0.5 for most datasets. After that a

“trade-o↵” region of tunability starts – one can improve energy-e�ciency by trading

o↵ accuracy. This run-time tuning opportunity will prove beneficial in environments

with constraint energy. The figure shows that for 8x2 design, two orders of magnitude

improvement in energy e�ciency could be achieved by tuning the confidence threshold

from 0.5 to < 0.1. The accuracy drop in case of aggressive confidence tuning is

anywhere between 10% to 30% depending on the dataset. The story is similar for

4x4 topology (figure 5·10a), however, the “trade-o↵” region of tunability starts at

confidence threshold of ⇡0.3. Although the accuracy drop is not as drastic, the EDP

for 4x4 topology is much higher – an order of magnitude higher for low accuracy, and

equivalent for high accuracy points.

Table 5.3 also shows the area comparison between di↵erent classifiers. It must be

noted that most classifiers’ area changes drastically with the internal parameters –

e.g. convolutional layers sometimes implemented as having “volume” activation, and

changing the size of one layer, might contribute to the total area change cubically.

Overall, the area of our FoG implementation is larger than all classifiers except CNN.

Comparison of the GPU vs. CPU implementation is also shown on figure 5·11.

GPU’s provide 23x speedup over the CPU implementation on average, and RF ar-



114

123456789 NumberofGroves

0.730.760.790.810.84

0.8
7

0.
90

1
2

3
4

5
6

7
8

9
10

N
um

be
ro

fD
Ts

/G
ro

ve

123456789 NumberofGroves

11
1.9

722
3.7

0

33
5.4

2

44
7.1

4

55
8.8

6

(a
)

IS
O

L
E

T

123456789 NumberofGroves
0.90 0.9

00.91 0.92 0.93 0.94

0.
95

1
2

3
4

5
6

7
8

9
10

N
um

be
ro

fD
Ts

/G
ro

ve

123456789 NumberofGroves

9.16

18.27
27.3736.4845.5854

.69

(b
)

P
en

b
as

e

123456789 NumberofGroves

0.8
50.8

7

0.890
.91

0.
93

1
2

3
4

5
6

7
8

9
10

N
um

be
ro

fD
Ts

/G
ro

ve

123456789 NumberofGroves

62
.71

12
5.1

5

18
7.5

925
0.0

4

31
2.4

8

(c
)

M
N

IS
T

123456789 NumberofGroves

0.
72

0.
74

0.
76

0.7
9

0.81

0.8
3

0.85

1
2

3
4

5
6

7
8

9
10

N
um

be
ro

fD
Ts

/G
ro

ve

123456789 NumberofGroves

84
.39

16
8.5

1

25
2.6

433
6.7

6

42
0.8

8

(d
)

L
et

te
r

123456789 NumberofGroves

0.87 0.8
70.880.900.91

0.93

0.9
4

0.
94

1
2

3
4

5
6

7
8

9
10

N
um

be
ro

fD
Ts

/G
ro

ve

123456789 NumberofGroves

16.86

33.6950.5267
.3584.18101.01

(e
)

S
eg

m
en

ta
ti

on

F
ig
u
re

5
·9
:
A
cc
u
ra
cy

an
d
E
D
P
as

a
fu
n
ct
io
n
of

“N
u
m
b
er

of
G
ro
ve
s”

an
d
th
e
“N

u
m
b
er

of
D
ec
is
io
n
T
re
es

p
er

G
ro
ve
”.

T
h
e
p
ro
d
u
ct

of
th
e
tw

o
va
ri
ab

le
s
sh
ow

s
th
e
to
ta
l
nu

m
b
er

of
d
ec
is
io
n
tr
ee
s
in

th
e
F
oG

.



115

(a) 8 Groves, 2 DTs/Grove (b) 4 Groves, 4 DTs/Grove

Figure 5·10: Example of FoG run-time tuning using the “threshold”
variable.

chitecture achieves 3.95⇥ and 2.1⇥ higher speedup over speedups of MLP and CNN

respectively. FoG architecture does not achieve speedups as high as RF, due to inter-

action between Groves, that is hard to synchronize on GPUs. The figure also shows

the speedup when di↵erent designs implemented on FPGA. Notice that FoG achieves

higher speedups on FPGA, because Groves are implemented as independent cores

with their own memory, which improved the computational performance. Note, that

CPU and GPU are implemented using floating point precision using Ca↵e and BLAS

(Jia et al., 2014, Whaley and Petitet, 2005), while FPGA is implemented with fixed

point precision. Table 5.4 summarizes the implementation and the results.
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Figure 5·11: Computational performance comparison between GPU,
FPGA, and SIMD CPU

5.4 Conclusion

In this work we have compared the lightweight RF classification algorithm with heavy-

weight classification algorithms like CNN, MLP, and SVM in terms of accuracy and

energy e�ciency. We proposed a novel FoGs approach to RF implementation that

can dynamically trade-o↵ accuracy for energy e�ciency at run time, while achieving

accuracy comparable to traditional RFs. The proposed FoG approach examines deci-

sion confidence for each input, and allocates the computational resources depending

on the input’s uncertainty levels. We implemented the FoG using a 40 nm technol-
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CPU GPU FPGA

Device . . . . . . . . . . . . . . . . . . . i7-3630QM GTX660M XC7020
Power (Peak) . . . . . . . . . . . . . 45 W 50 W 36 W
Precision . . . . . . . . . . . . . . . . . float float fixed
Frequency . . . . . . . . . . . . . . . . 2.3 GHz 835 MHz 667 MHz
RAM . . . . . . . . . . . . . . . . . . . . . 8 GB 2GB VRAM 512 MB
Cores . . . . . . . . . . . . . . . . . . . . 4 384 N/A
Process Node . . . . . . . . . . . . . 22nm 28nm N/A

Average speedup over CPU 1x 23x 37x

Table 5.4: CPU, GPU, and FPGA used in the evaluation. The specs of
the devices are acquired from their respective data sheets. The speedup
is normalized to CPU evaluation and training times.

ogy, and tested it using the datasets provided by the UCI repository. The evaluation

results show that the accuracy of the traditional RF classifier is comparable (if not

larger) to CNN for all datasets that we considered and at the same time RF consumes

⇡ 95.4%, 91.5%, and 99.4% less energy than SVMRBF , MLP and CNN, respectively.

The maximum achievable accuracy of the FoG implementation is lower than RF and

CNN by 3.2% and 4%, respectively, but FoG classifiers have 42% and 99.7% lower

energy than RF and CNN, respectively.



Chapter 6

Conclusion and Future Work

With this work we open a discussion of multi-layer approach to designing energy-

e�cient hardware and present two major contributions: using equalization to design

energy-e�cient digital circuits, and algorithmic and architectural approach to the

same problem. In this section, we summarize these contributions and provide some

commentary on the limitations of our proposed approach and directions for future

work.

6.1 Summary of Contributions

6.1.1 Feedback Equalization

Chapter 2 introduced the application of the feedback mechanisms in the conven-

tional digital circuits. In order to enable the feedback equalization we proposed the

FEST – a novel gate that consists of a single tap decision feedback equalizer and

a Schmitt trigger. We have observed that at nominal frequency we can reduce the

energy dissipation by 20% when using FEST. This approach is a step to dynamically

tunable circuits, where the higher level system such as instruction-level application

(firmware or OS) could potentially control the way individual signal paths (or even

gates) behave. Chapter 3 extended chapter 2 by covering the application of feedback

mechanisms in the non-conventional circuit topologies, namely pass-transistor logic

(PTL). Equalized PTL (E-PTL) uses a di↵erential computational path and modified

sense-amplifier to allow ultra low-power, high performance computation. We showed
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that PTL circuits, as well as communication-inspired design techniques, can provide

significant gains in the ultra-low power reliable design and can achieve on average

30% lower EDP for a given frequency. The use of feedback equalization to improve

the reliability of digital circuits operating at NTV was also explored. This operating

mode, su↵ering from process and temperature variability, benefits from the feedback

equalization. Results show that by using equalization it is possible to reduce the

energy dissipation by up to 30%, and improve process variability (�2/µ) by up to 5%.

This reduces stress placed on the circuit designers who often choose to “over-design”

to meet the timing and energy budgets. By relaxing the constraints, figures of merit

could be improved at design time.

Limitations

Feedback equalization often requires complete redesign of the system at the circuit

level. For example, E-PTL approach is feasible only in the context of pass-transistor

logic. The digital circuits today are designed using standard cells and automated

tools during the place-and-routing. However, synthesis of PTL circuits is extremely

hard to automate or even impossible1. This creates a huge limitation for the use of

E-PTL, which could be mitigated if such an approach is only used for time/energy

critical paths only. FEST circuit also requires custom designed libraries to operate

at its peak e�ciency. Although this limitation is not as drastic as with the E-PTL,

there is some design-time cost associated with the process. In addition to that, FEST

approach is a “last-gate” optimizer, which means it can relax the sizing requirements

for the last gate only. Although the relaxation propagates back through the logic path,

the amount of saving per gate (time or energy) diminishes as the logic path becomes

1Optimal Pass-Transistor logic circuits from the point of view of the place-and-route are closer
in nature to the analog circuits. Although there is currently some e↵ort in developing analog
synthesizers, so far those attempts are not very successful (del Mar Hershenson et al., 1998, Moreto
et al., 2015).
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longer. That means that the best application for the proposed approach is the highly-

pipelined, high-frequency, low voltage system, where the individual pipeline stages are

extremely short, and at the same time operating voltage is low, thus creating a long

rise-/fall-times that FEST could battle with. Note that equalization was shown to be

suitable for sub-threshold operation (Zangeneh and Joshi, 2014b). In this regime, the

rise- and fall-times of the circuits are extremely slow, and equalization allows much

lower EDP with minimal circuit modifications.

6.1.2 Machine Learning Accelerators

In Chapter 4 we opened a discussion of the energy-e�cient architectures and algo-

rithms by introducing adaptive classifiers and their energy-e�cient implementation

by using on-the-fly adaptivity for use in energy-constrained mobile devices. The ap-

proach described takes advantage of the “hardness” of the problems and examples.

By utilizing multiple classifiers of di↵erent complexities (and thus di↵erent FoMs),

adaptive classifier routes the data path to the most accurate, yet most energy-e�cient

classifier. Such an approach can sacrifice up to 0.5% accuracy to achieve up to 100⇥

lower power dissipation.

Chapter 5 discussed, in contrast, the possibility to achieve lower energy dissipation

through utilization of the additive properties of the ensemble systems by intelligently

choosing how many components in the ensemble will participate in the computa-

tion.This allows for machine learning algorithms, such as random forest (or any other

bagging or boosting algorithm), to become “tunable” and “adaptive”. This is done

by separating the decision trees into “Groves” that are functionally identical and that

conditionally execute the given input. Groves are arranged in a “field” (thus the name

Field-of-Groves - FoG), and every Grove can request more computational resources

from its neighbors. In this algorithm as more groves process an input, the higher is the

certainty in the result is achieved, thus allowing early stopping. Because the Groves
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are functionally identical, the data path can start at any Grove, thus allowing high

level of parallelism in data processing. The tunability of the accelerators is a critical

requirement for modern mobile computing, and by utilizing the FoG architecture, a

mobile system can trade-o↵ up to 5% accuracy for up to 20⇥ lower energy dissipation

when compared to a deep CNN.

Adaptive classifier and FoG can be seen as algorithms with dynamic resource

reallocation. In this context computational resources are reallocated by changing the

datapath and the use of conditional execution.

Limitations

We would like to note that neither adaptive classifier, nor the FoG architecture claim

to have better FoMs than state of the art classifiers such as CNN or even SVM. This

means that proposed algorithms cannot in principle achieve neither better accuracies

nor better energy-dissipation FoMs than state of the art. However, our proposed

algorithms enable higher level of robustness and flexibility by being adaptable at run-

time. We assume that it is allowed to sacrifice one of the FoMs in order to win in

another (i.e.: trade-o↵ accuracy for energy e�ciency).

One of the bigger challenges of the adaptive classifier is the area requirements.

The nature of the adaptive classifiers – utilization of several di↵erent classifiers in

parallel – would require much larger area as compared to a conventional approach.

In addition to that, in case the “hardness” in the input data is highly non-linear, the

“chooser” function in the proposed approach would have to be more complex, thus

negating any possible reduction in energy dissipation. This limitation is avoidable

if the proposed architecture is used for specific datasets, where the “hardness” is

well defined. Another approach is designing the adaptive system as a system with

incrementally increasing complexity (i.e. incrementally expanding Taylor series as an

ML kernel) as proposed by other works.
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Field of Groves has a slightly di↵erent problem – it is most beneficial when large

amount of data is being processed in parallel. However, if the input is sequential,

the FoG under-utilizes its resources, thus increasing the energy dissipation per com-

putation2. Because FoG by definition has lower-or-equal maximum accuracy than

RF, usage of FoG in this context becomes a “lose-lose” choice. However, it is worth

mentioning that it is possible to design the FoG system to be able to disable some of

its parts on demand3, in case the workload is low.

6.2 Future Research Directions

In this section we provide an overview of the future directions of the completed

research.

6.2.1 Feed-Forward Equalization in Pass-Transistor Logic

Because PTL circuits could be very well modeled as communication channels, we

can utilize other advancements in the communications theory to further improve the

energy-e�ciency of the E-PTL. Feed-forward adaptive equalization (FFE) reduces

noise and echo, while opening the “eye”4 of the signal. FFE can encode or pre-

distort the input signal, which reduces the activity factor of a PTL, thus reducing the

dynamic power dissipation. FFE deemphasizes low frequency components in order

to flatten the channel response. Without it, the input driver would transmit logical

1 as a single pulse, which is dispersed by the circuit loss and distortion. By pre-

distorting the input, the pre-/post-curse ISI could be mitigated thus increasing the

operating frequency, reducing power envelope of the system, and reducing the error

rate. However, FFE comes with its own limitations – it is extremely hard to design

a feed-forward system even with the prior knowledge of the computational channel,

2Idle parts of the system still dissipate power due to leakage.
3Clock and power gating
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and should be studied in the future work.

6.2.2 Specialized Architectures for Machine Learning Acceleration

As GPUs serve as specialized processors for image and video processing, machine

learning algorithms will require a specialized generic accelerator. Recent advance-

ments such as DianNao family (Chen et al., 2016a) and TPUs (Jouppi et al., 2017)

have shown that there is a great potential in the area of specialized processors. In

particular, it is possible to identify the set of instructions that are frequently used in

the machine learning algorithms, and accelerate them. In correlation to the FoG ar-

chitecture, such a mechanism would be composed of a highly distributed set of cores,

with each core representing a “generic” Grove. In this context the cores could be

on the same die, same package, or same board – the e↵ects of long communications

between cores must be extensively studied.

We also believe that specialized architectures should take advantage of the modern

advancements in the field of neuromorphic devices such as “memristors”. Memristors

are one of the four fundamental circuit elements. They are memory resistors in that

their resistance can be altered depending on the magnitude of the voltage applied.

Likewise, when no voltage is applied across a memristor, the most recent resistance

value is retained. Memristors have similar behavior to biological synapses, and as

such, have been frequently utilized to implement neuromorphic systems. The design

of specialized architectures using such devices would greatly improve both compu-

tational performance as well as energy e�ciency. We propose exploring the use of

memristors in the design of the adaptive classifiers and FoG.

4An “Eye” of a signal, “eye pattern” or “eye diagram”, is an oscilloscope view of a digital signal
which is repetitively scanned to evaluate the noise and inter-symbol interference. The opening of
the eye in this context is e↵ectively horizontal and vertical noise margins.
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6.2.3 Bridging the gap between Hardware and Machine Learning

The disparity and lack of e↵ective communication between machine learning (ML)

and hardware (HW) communities, caused ML researchers to often ignore the hardware

constraints such as energy or computational performance. At the same time, HW

professionals have limited view of the advancements in the ML field. We believe

that both communities need to join the e↵orts in developing specialized hardware for

machine learning.

One of the main problems that needs to be jointly resolved in the nearest future is

finding the balance between computation and communication in the mobile systems.

Processing the data locally is expensive in terms of energy dissipation, but communi-

cation with the “cloud” is not free either. Depending on the accuracy requirements,

battery status, available resources, etc. an intelligent decision is supposed to be made

on how much data to compute locally. Both adaptive classifier and FoG are suitable

candidates to be the basis for this research direction.
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J., and Asanović, K. (2012). Chisel: constructing hardware in a scala embedded
language. In Proceeding of the 49th ACM Design Automation Conference (DAC),
2012., pages 1216–1225. IEEE/ACM.

Baker, M. W. and Sarpeshkar, R. (2006). Low-Power Single-Loop and Dual-Loop
AGCs for Bionic Ears. IEEE Journal of Solid-State Circuits (JSSC), 41(9):1983–
1996.

Baker, R. J. (2004). CMOS Circuit Design, Layout, and Simulation, Second Edition.
Wiley-IEEE Press.

Belfiore, C. and Park, J.H., J. (1979). Decision feedback equalization. Proceedings
of the IEEE, 67(8):1143–1156.

Bell, C. G., Chen, R., and Rege, S. (1972). E↵ect of technology on near term
computer structures. Computer, 5(2):29–38.

Bishnoi, R., Oboril, F., and Tahoori, M. B. (2017). Design of Defect and Fault-
Tolerant Nonvolatile Spintronic Flip-Flops. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(4):1421–1432.

Bojnordi, M. N. and Ipek, E. (2016). Memristive Boltzmann machine: A hardware
accelerator for combinatorial optimization and deep learning. In IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pages
1–13.

Borkar, S., Karnik, T., and De, V. (2004). Design and Reliability Challenges in
Nanometer Technologies. In Proceedings of the 41st Annual Design Automation
Conference (DAC), pages 75–75, New York, NY, USA. ACM.

Bowman, K., Tschanz, J., Kim, N. S., Lee, J., Wilkerson, C., Lu, S., Karnik, T.,
and De, V. (2009). Energy-E�cient and Metastability-Immune Resilient Circuits
for Dynamic Variation Tolerance. IEEE Journal of Solid-State Circuits (JSSC),
44(1):49–63.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Calhoun, B. and Chandrakasan, A. (2004). Characterizing and modeling minimum
energy operation for subthreshold circuits. In Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED), pages 90–95.

Cao, Y. K. (2009). What is Predictive Technology Model (PTM)? SIGDA Newslet-
ter, 39(3):1–1.



127

Chakradhar, S., Sankaradas, M., Jakkula, V., and Cadambi, S. (2010). A Dynami-
cally Configurable Coprocessor for Convolutional Neural Networks. In Proceedings
of the 37th Annual International Symposium on Computer Architecture (ISCA),
pages 247–257, New York, NY, USA. ACM.

Chandrakasan, A. P. (1996). Ultra low power digital signal processing. In Proceed-
ings of 9th International Conference on VLSI Design, pages 352–357.

Chandrakasan, A. P. and Brodersen, R. W. (1995). Minimizing power consumption
in digital CMOS circuits. Proceedings of the IEEE, 83(4):498–523.

Chen, C.-H., Kim, Y., Zhang, Z., Blaauw, D., Sylvester, D., Naeimi, H., and Sandhu,
S. (2011). A confidence-driven model for error-resilient computing. In Proceedings
of the Design, Automation, and Test in Europe Conference Exhibition (DATE),
pages 1–6.

Chen, Y., Chen, T., Xu, Z., Sun, N., and Temam, O. (2016a). DianNao Family:
Energy-E�cient Hardware Accelerators for Machine Learning. Communications
of the ACM, 59(11):105–112.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z.,
Sun, N., and Temam, O. (2014). Dadiannao: A machine-learning supercomputer.
In Proceedings of the 47th Annual International Symposium on Microarchitecture
(MICRO), pages 609–622. IEEE/ACM.

Chen, Y. H., Emer, J., and Sze, V. (2016b). Eyeriss: A Spatial Architecture for
Energy-E�cient Dataflow for Convolutional Neural Networks. In 2016 ACM /
IEEE 43rd Annual International Symposium on Computer Architecture (ISCA),
pages 367–379.

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., and Xie, Y. (2016).
PRIME: A Novel Processing-in-Memory Architecture for Neural Network Compu-
tation in ReRAM-Based Main Memory. In 43rd Annual International Symposium
on Computer Architecture (ISCA), pages 27–39. IEEE/ACM.

Chippa, V., Raghunathan, A., Roy, K., and Chakradhar, S. (2011). Dynamic e↵ort
scaling: Managing the quality-e�ciency tradeo↵. In Proceedings of the 48th Annual
Design Automation Conference (DAC), pages 603–608. IEEE/ACM.

Chippa, V. K., Mohapatra, D., Raghunathan, A., Roy, K., and Chakradhar, S. T.
(2010). Scalable e↵ort hardware design: Exploiting algorithmic resilience for en-
ergy e�ciency. In Proceedings of the 47th Annual Design Automation Conference
(DAC), pages 555–560. IEEE.



128

Chung, J. and Shin, T. (2016). Simplifying deep neural networks for neuromorphic
architectures. In Proceedings of the 53rd Annual Design Automation Conference
(DAC), pages 1–6. IEEE/ACM.

Cinar, Y. G., Mirisaee, H., Goswami, P., Gaussier, É., Aı̈t-Bachir, A., and Strijov, V.
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