
BlackParrot: An Agile
Open-Source RISC-V
Multicore for
Accelerator SoCs

Daniel Petrisko, Farzam Gilani, Mark Wyse,

Dai Cheol Jung, Scott Davidson, Paul Gao,

and Chun Zhao

University of Washington

Zahra Azad and Sadullah Canakci

Boston University

Bandhav Veluri and Tavio Guarino

University of Washington

Ajay Joshi

Boston University

Mark Oskin and Michael Bedford Taylor

University of Washington

Abstract—This article introduces BlackParrot, which aims to be the default open-source,

Linux-capable, cache-coherent, 64-bit RISC-Vmulticore used by the world. In executing

this goal, our research aims to advance the world’s knowledge about the “software

engineering of hardware.” Although originally bootstrapped by the University of

Washington and Boston University via DARPA funding, BlackParrot strives to be

community driven and infrastructure agnostic; a multicore which is Pareto optimal in

terms of power, performance, area, and complexity. In order to ensure BlackParrot is easy

to use, extend, and, most importantly, trust, development is guided by three core

principles: Be Tiny, Be Modular, and Be Friendly. Development efforts have prioritized the

use of intentional interfaces andmodularity and silicon validation as first-order design

metrics, so that users can quickly get started and trust that their design will perform as

Digital Object Identifier 10.1109/MM.2020.2996145

Date of publication 20 May 2020; date of current version

30 June 2020.

Theme Article: Agile and Open-Source HardwareTheme Article: Agile and Open-Source Hardware

July/August 2020 Published by the IEEE Computer Society 0272-1732 � 2020 IEEE 93
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

expected when deployed. BlackParrot has been validated in a GlobalFoundries 12-nm

FinFET tapeout. BlackParrot is ideal as a standalone Linux processor or as amalleable

fabric for an agile accelerator SoC design flow.

& RISC-V9 IS A disruptive technology. Never

before has such a large, global community worked

together to put forth a complete open source

instruction set, machine model, and software

stack. There is a strong belief in the community

that RISC-Vwill find their foothold as low-NRE, high

performancehost cores to the agile-developed spe-

cialized accelerators that are being created to in

response to the end of Dennard Scaling.

Strangely lacking, however, is a similarly

globally maintained open source implementation

of a RISC-V SoC. BlackParrot, described in this

article, is designed to fill this gap. BlackParrot

is open source and available now under the

BSD-3 license. BlackParrot is written in standard

SystemVerilog and hence effortlessly integrates

into existing design methodologies and is

easily understood and modified by industrial

designers. BlackParrot has been fabricated in

the GlobalFoundries 12-nm process, with sev-

eral iterations of refactoring to attain high area,

delay, and power efficiency.

Taking lessons from software engineering and

the scalability of Linux development, BlackParrot

has a modular design that puts its interfaces first.

We believe that this will enable scalable collabora-

tion by allowing contributors to work indepen-

dently without having to completely understand

all of BlackParrot’s components, or how they are

evolving.We seek not only to advance the state-of-

the-art in open source processor architecture, but

also to develop approaches that change the way

theworld designs hardware.

SUCCESS METRICS
We believe adoption of BlackParrot will be

driven by optimizing across four dimensions, as

shown in Figure 1: quality, virality, functionality,

and efficiency.

Quality: From the beginning, BlackParrot was

architected not simply to achieve RISC-V compli-

ance, but to produce a quality codebase that

engineers could inherently trust as a secure and

high-quality design. At the heart of this approach

(which we term informally the software engineer-

ing of hardware) is the pervasive use of inten-

tionally designed, narrow, modular interfaces

that make the design easy to reason about with-

out sacrificing performance, power, or area.

Leveraging years of processor design experi-

ence, we developed a high-level design docu-

ment that partitioned the multicore into three

major modules with easy-to-understand, light-

weight transactional interfaces. Each module

then had its own design document which speci-

fied its own internal modular interfaces, and

worked through the important nuances and spe-

cial cases. From there, we produced schematics

and then SystemVerilog RTL which leveraged

BaseJump Standard Template Library (STL),8 an

expansive set of intentionally designed interfa-

ces for common computer architecture and

hardware atoms that comes with corresponding

silicon-verified SystemVerilog implementations.

The RTL then underwent extensive code review,

and both unit and random testing. We are sys-

tematically measuring toggle, line, and functional

coverage, and driving up the coverage of our veri-

fication methodology on a daily basis. The goal is

that an experienced engineer can evaluate the

documentation, code, and tests; appreciate Black-

Parrot’s quality; and use it confidently.

Virality: While BlackParrot is a quality design,

we realize it will ultimately be unsuccessful if it

is not widely adopted and if the community does

not collectively take stewardship of it. For this

reason, we have focused on the out-of-the-box

experience, making it simple to get up and

Figure 1. BlackParrot Success Metrics and

Manifesto. The Success Metrics strategically align

the project for widespread adoption, and the

BlackParrot Manifesto provides tactical guidance for

technical decisions.

Agile and Open-Source Hardware

94 IEEE Micro

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

running via a github checkout, and pulling in as

few external components as possible. We

employ a widely known language, SystemVerilog,

instead of Chisel or BlueSpec. We have a focus

on friendliness and inclusiveness in our social

interactions. Too many online collaboration

forums are marred by a tolerance of abusive

behavior particularly by respected members of

the community, as highlighted by a recent case

where Linus Torvalds himself stepped away

from Linux for several months to try to contem-

plate the toxic effects of his curmudgeonly atti-

tude. We actively try to prevent “not invented

here” syndrome from taking hold in the Black-

Parrot effort. Our effort welcomes your contribu-

tions and the modular nature of the design

makes it easy for individual contributors to get

up to speed.

Functionality: BlackParrot boots Linux. It imple-

ments all of the core features of the RISC-V instruc-

tion set that are used by current software stacks. It

also contains all the useful features required by

modern SoCs, such as interrupt controllers, coher-

ent cache hierarchies, and easy-to-integrate accel-

erator interfaces.

Efficiency: BlackParrot must have best-of-

class PPA for its target domain; a Linux host mul-

ticore for accelerator chips. Early Coremark

scores show BlackParrot achieves competitive

performance with both academic and commer-

cial cores of its class, as shown in Figure 2.

Extensive design and RTL code review are used

to ensure BlackParrot contains efficient imple-

mentations of modern microarchitectural fea-

tures expected of a Linux-class microprocessor.

SRAM and logic structures are sized to be

performance, power, and area (PPA) efficient. To

validate the design we have fabricated BlackPar-

rot in GlobalFoundries 12-nm process node (see

Figure 4), and are deploying new features across

frequent 12-nm and 40-nm tapeouts.

DESIGN MANIFESTO
During the course of the project, there have

been many cases where there are two reason-

able technical directions to take the project. To

guide our effort, we developed an informal mani-

festo to help decide these difficult chases. The

manifesto has the following three key rules.

1) Be Tiny. When choosing among alternatives,

we choose the option that results in a smaller,

more understandable code base and in less

die area, simpler critical paths, and fewer

bugs. The result is a code base that is as small

and understandable as possible, and hard-

ware that is PPA efficient. We take care to not

implement esoteric and performance non-

critical components in RTL, and to avoid a

common problem in recent generator-based

RTL methodologies: a multitude of tunable

knobs in whichmost combinations have been

untested and yield dubious PPA benefit. If a

feature is required by the RISC-V spec but is

not performance critical, we implement it

through emulation. The code is “all the RTL

you need and nothing that you do not.”

2) Be Modular. We employ clean, latency-insen-

sitive interfaces that do not rely on knowl-

edge of the other module’s internals.

This allows multiple contributors to work

Figure 2. Recent energy/performance optimized 64-bit RISC-V open source Linux-capable ASIC application

class processor cores. Per-core performance is given in CoreMark/MHz as is industry standard. For

reference, we give the equivalent closed source, for-money, Linux-capable SiFive U54 core. (Note that since

these open source projects are living, breathing projects, this is just a snapshot in time!)

July/August 2020 95
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

independently of each other, and to minimize

bugs that emerge from incomplete under-

standing of the entire code base.

3) Be Friendly. We ask ourselves both in design

decisions and in our presentation: Does this

make the project more approachable? With

this, we can build a large open source project

culture that encourages contributions and

avoids the “not invented here” syndrome.

System Architecture
The BlackParrot multicore implements the

RISC-V 64-bit “RV64 G” architecture, which

includes the base integer ISA “I,” multiplication

and division “M,” atomics “A,” single and double

precision floating-point “F/D.” It supports three

privilege levels—machine, supervisor, and

user—as well as SV39 virtual memory; these

extensions are sufficient to efficiently run full-

featured operating systems such as Linux.

Race-Free Programmable Cache Coherence

BlackParrot implements a distributed

directory-based cache coherence protocol,

which currently supports VI, MSI, and MESI. The

underlying implementation, BedRock, consists of

a collection of local cache engines (LCEs), each

controlling an L1 cache, that connect over an

interconnection network to the programmable

cache coherence engines (CCEs), which collec-

tively maintain the address-sharded directory

state.

The BedRock protocol implementations have

the unique property of being race-free, because

they ensure that coherence state transitions

occur at the CCEs and not at the local caches

or LCEs, which significantly reduces protocol

complexity.

Heterogeneously Tiled Multicore SoC

Microarchitecture

BlackParrot is designed as a scalable, hetero-

geneously tiled multicore microarchitecture, as

shown in Figure 3(a). (We use the term multicore

microarchitecture because the user or program-

mer is not aware of how the multicore’s compo-

nents are arranged; it is hidden beneath the

multicore ISA layer.) Decomposing the system

into replicated subblocks has several benefits:

structures are regularized for scalability and

ease of timing closure, systems can be flexibly

composed into different topologies, and proto-

col complexity can be shifted from the compo-

nent level to the network level. Rather than

connecting these tiles with a shared bus, Black-

Parrot uses a collection of NoCs. The routers

used in BlackParrot are dimension-ordered and

wormhole-switched, using credit-based flow-con-

trol to limit congestion.

In order to promote regularity for hierarchi-

cal ASIC flows, the system is designed as a 2-D

mesh with a single router per network contained

in each tile. Some networks may have multiple

endpoints within a tile—these endpoint connec-

tions are combined and connected to the router

through a wormhole concentrator. While many

other processors use standard bus-based inter-

faces such as AXI or AHB for all on-chip commu-

nication, these protocols are highly complex and

require sophisticated IP blocks to achieve rea-

sonable performance. Rather than couple its

internal networks with any particular implemen-

tation of a standard bus, BlackParrot provides a

set of adapters to transduce between a set of

well-known protocols, such as AXI or WishBone.

BlackParrot Microarchitectural Tile Types

BlackParrot microarchitectural tiles fall into

one of the four categories enumerated in

Figure 3(a), which we detail below.

BlackParrot Core Tile A BlackParrot Core

Tile contains a full BlackParrot processor or an

accelerator which acts a processor, comprising

one or more coherent caches as well as a direc-

tory shard and an L2 slice. A typical system has

many Core Tiles.

L2 Extension Tile An L2 extension tile pro-

vides a simple scale-out method to increase the

amount of on-chip L2 in a BlackParrot system.

Each L2 extension contains a directory and a

noninclusive nonexclusive L2 slice. By distribut-

ing the L2 slices, a system designer can easily

change the compute to cache ratio of a BlackPar-

rot system without perturbing critical paths

within the cores or the NoCs.

Agile and Open-Source Hardware

96 IEEE Micro

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

Coherent Accelerator Tile Attaching a

coherent accelerator tile to the BlackParrot

network can be done with a few degrees of spe-

cialization. From an abstract system view, a

coherent accelerator is simply an LCE with a

backing coherent cache. Depending on the

accelerator’s needs and the project’s com-

plexity budget, users may (in increasing order of

complexity):

1) attach the accelerator directly to the pro-

vided BlackParrot data cache;

Figure 3. (a) BlackParrot multicore SoCs comprise amesh of heterogeneous tiles, allowing flexible

composition of cores, accelerators, L2 cache slices, I/O, and DRAM controllers. Four different kinds of tiles are

pictured. Core tiles implement a processor, a directory shard, and an L2 slice. Coherent Accelerator tiles

implement an accelerator that has access to the cache coherent memory system. L2 extension tiles allow the

amount of L2 cache to be changed. Streaming accelerator or I/O tiles allow flexible interfacing of a common

memory system via a shared non L1-cached address space that is routed over the coherence network.

(b) BlackParrot coremicroarchitecture. Both the front end (IF1 and IF2 stages in the diagram) and back end

adhere to the interface specifications, with simple and efficient pipeline implementations. Because of a

modest misprediction penalty, complex branch predictors are unnecessary. In order to remove a physical

design intensive global stall signal, the back end is nonstalling after the issue stage, instead flushing the

pipeline and replaying instructions upon infrequent cachemisses. Cachemisses are handled entirely through

the BedRock coherence system.

July/August 2020 97
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

2) reuse the provided BlackParrot LCE and pro-

vide a specialized cache;

3) provide a specialized LCE implementation

that interfaces with directly with the network.

Streaming Accelerator Tile Streaming tiles

are tiles which have no locally cached memory

and do not logically control any physical mem-

ory. That is, these tiles do not contain a backing

Figure 4. BlackParrot GF12 placed and routed. A quad-core BlackParrot system was taped out in July 2019

using GlobalFoundries 12 nm. Lessons learned from this tapeout have driven several major changes in the

BlackParrot system architecture, resulting in a 50% reduction in tile area as well as a 50% reduction in total

wire length. Although RTL-level simulation is effective at analyzing and comparing relative performance, an

experiment without ASIC validation can mask serious physical limitations of a design.

Agile and Open-Source Hardware

98 IEEE Micro

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

coherent cache for its LCE, nor a directory.

These tiles may be used for basic I/O devices,

network interface links, or even heavyweight

streaming-based accelerators such as GPUs.

Other Tile Components

As a truly tiled microarchitecture, BlackPar-

rot distributes as many system resources as pos-

sible. Each BlackParrot core tile contains a

memory-mapped configuration block, a slice of

the core level interrupt controller and a global L2

slice. Splitting these system resources promotes

regularity in the tiles, removes globally routed

configuration and interrupt signals, ultimately

easing physical design implementation. With sim-

ple adjustments to the network memory map,

components can easily be attached to the Black-

Parrot system and addressed from any other tile.

Networks-On-Chip

There are 3 NoC classes in BlackParrot:

Coherence (BedRock), DRAM, and I/O. Although

the NoCs are implemented using standard Base-

Jump STL modules, BlackParrot specializes each

network for the protocol, including flit width,

packet length, and coordinate width, to optimize

physical design.

BedRock Network The BedRock network is a

cache-coherent fabric connecting all tiles in a

BlackParrot system. Specifically, the network is

the connection point for all LCEs and CCEs in

the system. The BedRock protocol has three log-

ical channels: request, command, and response.

The request channel is used by an LCE to initiate

a transaction, specifying whether it is a read or

write, whether it is cached or uncached, and

additional metadata used for return addressing.

The command channel is used by a CCE tomodify

the system’s LCE state. Example commands

include setting tags, filling data, and completing

synchronization sequences. Additionally, LCEs

may be commanded to transfer cache lines

among each other—these transfers travel over

the command network as well. Finally, the

response channel is used for coherence acknowl-

edgements, allowing for serialization of requests.

Although the BedRock protocol does not

require it, the current implementation of the net-

work is a wormhole-routed 2-D mesh, with one

physical channel per logical channel.

DRAM Network The DRAM network connects

CCEs to devices which are able to service mem-

ory requests, for example DRAM, Flash or on-chip

ROMS. Since all requests are initiated by a tile

and serviced bymemory devices at the bottom of

the chip, the memory network is a lightweight

0.5-D network. The DRAM network is particularly

suited to wormhole routing, as DRAM controllers

tend to return least significant word first.

IO Network The I/O network exists to connect

a BlackParrot processor to peripherals such as

serial ports, PCIe controllers, external I/O devi-

ces, and debug interfaces. Messages may be initi-

ated on or off chip, so the I/O network is

implemented as a 1-D wormhole network. This

network only exists in the I/O complex; gener-

ally, it serves as a lightweight transducer and

physical transport layer between BlackParrot

protocols and standard protocols such as AXI,

WishBone, and simple bit banging.

Decoupled Core Microarchitecture
BlackParrot is designed to be modular, reap-

ing the usual benefits of simpler verification,

more agile development and easier onboarding

of users and developers. Additionally, by focus-

ing on interfaces rather than concrete implemen-

tations, BlackParrot is provisioned to support a

wide variety of possible microarchitectures.

Figure 3(b) shows the current BlackParrot core

microarchitecture.

Efficiency Through Thin Interfaces

While software interface abstractions are a

useful tool, hardware interfaces have physical

overheads which can cripple a design. Interfaces

in BlackParrot are designed to have minimal

overhead, partitioning regions which are both

logically and physically separated. Each inter-

face described here is implemented as a parame-

terizable SystemVerilog struct passed through a

latency insensitive port, usually via a small FIFO.

Decoupling the Ends ensures there are no

timing paths between these logically separated

components and provides confidence that imple-

mentation changes in one End will not break

another.

July/August 2020 99
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

Front End

The front end presents an in-order but specu-

lative instruction stream to the back end. The

issue queue decouples the front end fetch from

the back end execution, allowing speculative

fetching during long latency back end operations

such as servicing cache misses. During instruc-

tion fetch, exceptions may arise. Since exceptions

in this domain are purely speculative, they are

sent to the back end to be serviced in-line with

instructions. Because the RISC-V virtual memory

scheme may modify architectural state during

instruction fetch [setting the “Access (A) bit”],

all TLB misses in the front end are sent to the

back end to be handled inline with other excep-

tions. Along with the PC/instruction/exception

pair, the front end also sends metadata associ-

ated with the branch prediction that resulted in

that particular PC fetch.

Back End

The back end executes instructions, handles

exceptions, and generally maintains the architec-

tural state of the processor. Messages from the

back end to the front end are used to correct

mispeculation and update shadow state in the

front end. Messages include branch resolution,

interrupt redirection, iTLB manipulation, and

privilege mode changes. Upon branch resolution,

the branch metadata associated with the branch

is forwarded back to the front end. This meta-

data is never inspected by the back end; the par-

ticular branch prediction scheme used by the

front end is completely opaque to the back end.

Memory End

BlackParrot’s memory end, BedRock, is a

scalable, distributed, directory-based coherence

scheme designed with an emphasis on simplicity

and verification. Nodes in the coherence system

are either an LCE or CCE. CCEs are responsible

for managing coherence for a slice of physical

address space. LCEs are responsible for initiat-

ing and responding to coherence requests on

behalf of a coherent cache. BedRock connects

all components of a BlackParrot multicore,

including non-coherent or I/O devices.

Three types of CCE are available in Bedrock:

a novel microprogrammed variant, a traditional

fixed-function management engine, and a

minimal controller which implements only unc-

ached requests, and is used for I/O or simple

accelerators. The microprogrammed CCE is the

default for a BlackParrot core and provides sub-

stantial flexibility and adaptability when imple-

menting variants of coherence protocols, but

comes at a small area cost. Notably, since micro-

code can be changed out by a simple firmware

update, advanced coherence experimentation

and security patches can be applied even on

existing silicon designs.

Agile Development Process
In this section, we describe the key features

of the BlackParrot development effort that lead

it to be a design users can trust.

Leveraging Open-Source Libraries

In order to rapidly iterate on BlackParrot, it is

important to leverage established open-source

codebases. By building upon battle-tested hard-

ware libraries such as BaseJump STL for System-

Verilog8 and Berkeley Verilog HardFloat,6 and

integrating using latency insensitive design princi-

ples, BlackParrot is able to minimize its universe

of possible bugs. Development of BlackParrot is

done using commercial tools, such as Synopsys

VCS, but supporting at least one open-source

alternative, such as Verilator,7 is a first-class infra-

structure concern.

Evaluating Design Complexity and Out-of-Box

Experience

One of the most difficult-to-evaluate compo-

nents of the BlackParrot manifesto is whether

we have achieved our goals of virality and com-

plexity. To evaluate this, we assigned BlackPar-

rot as a 3-week class project in an VLSI class

attended by 35 fourth and fifth year students. All

of the students (including ones that had not

taken computer architecture before!) were suc-

cessful in proposing and implementing unique,

previously unsupported features into the core,

such as modifying the pipeline to change the

load-use latency to two cycles instead of three,

adding variable fill widths to the L1 cache,

enabling different bank sizes in the L1 cache,

and implementing more complex branch predic-

tors in the frontend. We intend to have yearly

Agile and Open-Source Hardware

100 IEEE Micro

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

BlackParrot-related assignments to continuously

self-evaluate these aspects of the project.

Cosimulation Testing Framework

The majority of testing in

BlackParrot is done through a

system-level testbench driven by

program-level execution. In addi-

tion to a handful of directed

white-box tests, BlackParrot sup-

ports the RISCV-tests suite, BEEBS

suite, Spec, and CoreMark as a

baseline functional regression.

Our plan is to greatly expand this

selection.

BlackParrot employs a hybrid approach of

parallel cosimulation using an open-source RISC-

V ISA simulator, Dromajo.1 First, a long-running

program is simulated using Dromajo. Every N

cycles, Dromajo collects the architectural state

of the system and creates both a memory dump

as well as a checkpoint ROM. The checkpoint

ROM comprises ordinary RISC-V instructions

designed to initialize a freshly rebooted proces-

sor to a well-defined architectural state. Next, in

parallel, the BlackParrot RTL model is restored

using each checkpoint ROM and cosimulated

alongside the Dromajo model. Imprecise events

such as interrupts and device I/O are relayed

from RTL to Dromajo to keep the two versions

aligned.

ASIC Validation

In addition to our 12-nm BlackParrot chip,

which is running in our lab, several upcoming

BlackParrot tapeouts are planned both as stand-

alone chips and as accelerator hosts. Directories

containing tapeout parameterizations, con-

straints and ASIC infrastructure are all provided

as references. Work is in progress to push Black-

Parrot through the UW OpenROAD Free45 Refer-

ence Flow2,3 so that users will simply be able to

clone the repository and generate a fully placed-

and-routed, representative BlackParrot. Providing

this capability will enable architects to quickly

validate their hardware experiments without the

financial and intellectual overheads of maintain-

ing a commercial CAD flow, or needing to sign

restrictive foundry NDAs.

CONCLUSION
RISC-V challenges the world order of x86

and ARM. The University of California Berke-

ley has bootstrapped a global

stewardship to maintain the

RISC-V ISA and its software base.

However, yet to emerge is a simi-

lar global stewardship of a Linux-

capable RISC-V implementation

that is documented, PPA efficient

and implemented in standard

SystemVerilog. BlackParrot is

architected from the ground up

to fill this role, in contrast to

prior efforts4;5;10 which have cen-

tralized stewardship models and evolved

organically to their current state.

BlackParrot is tiny, modular, and friendly. It

is an ideal SoC “base class” to integrate with

accelerators and build Linux-capable systems

with. We welcome your enhancements! As

BlackParrot becomes more widely used, com-

munity experts can contribute back to Black-

Parrot, ensuring that it remains representative

of state of the art processor designs. BlackPar-

rot is now available on GitHub (https://github.

com/black-parrot/) under a BSD-3 license.

& REFERENCES

1. Dromajo. [Online]. Available: https://github.com/

chipsalliance/dromajo/

2. UW openroad free45 PDK reference flow. [Online].

Available: https://github.com/bsg-idea/

uw_openroad_free45/

3. Ajayi et al., “Toward an open-source digital flow: First

learnings from the openroad project,” in Proc. 56th

Annu. Design Autom. Conf., 2019, Art. no. 76.

4. Asanovic et al., “The rocket chip generator,” UC

Berkeley EECS Tech. Rep. UCB/EECS-2016-17.

5. Celio et al., “The Berkeley out-of-order machine

(boom): An industry-competitive, synthesizable,

parameterized RISC-V processor,” Electr. Eng.

Comput. Sci. Dept., Univ. California Berkeley, Tech.

Rep. UCB/EECS-2015-167.

6. J. Hauser, Berkeley HardFloat. [Online]. Available:

http://www.jhauser.us/arithmetic/HardFloat.html

7. W. Snyder, “Verilator: Fast, free, but for me?” DVClub

Presentation, 2010, p. 11.

We welcome your

enhancements! As

BlackParrot becomes

more widely used,

community experts can

contribute back to

BlackParrot, ensuring

that it remains repre-

sentative of state of the

art processor designs.

July/August 2020 101
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

https://github.com/black-parrot/
https://github.com/black-parrot/
https://github.com/chipsalliance/dromajo/
https://github.com/chipsalliance/dromajo/
https://github.com/bsg-idea/uw_openroad_free45/
https://github.com/bsg-idea/uw_openroad_free45/
http://www.jhauser.us/arithmetic/HardFloat.html

8. M. Taylor, “Basejump STL: SystemVerilog needs a

standard template library for hardware design,”

in Proc. 55th Annu. Design Autom. Conf., 2018,

Art. no. 73.

9. A. Waterman et al., “The RISC-V instruction set

manual, volume i: Base user-level isa,” EECS

Department, UC Berkeley, Tech. Rep. UCB/EECS-

2011-62 116, 2011.

10. F. Zaruba and L. Benini, “The cost of application-class

processing: Energy andperformance analysis of a linux-

ready 1.7-GHz 64-bit RISC-V core in 22-nmFDSOI

technology,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 27, no. 11, pp. 2629–2640, Nov. 2019.

Daniel Petrisko is a Ph.D. student at the University

of Washington, Seattle. Contact him at petrisko@cs.

washington.edu.

Farzam Gilani is a Ph.D. student at the University of

Washington, Seattle. Contact him at farzamgl@uw.edu.

Mark Wyse is a Ph.D. student at the University of

Washington, Seattle. Contact him at wysem@cs.

washington.edu.

Dai Cheol Jung is a Ph.D. student at the University

ofWashington, Seattle. Contact him at dcjung@uw.edu.

Scott Davidson is a Ph.D. student at theUniversity of

Washington, Seattle. Contact him at stdavids@uw.edu.

Paul Gao is a Ph.D. student at the University of Wash-

ington, Seattle. Contact him at gaozihou@uw.edu.

Chun Zhao is currently a Postdoctoral Research

Associate with the University of Washington, Seattle.

Contact him at chunzhao@uw.edu.

Zahra Azad is a Ph.D. student at Boston University.

Contact her at zazad@bu.edu.

Sadullah Canakci is a Ph.D. student at Boston

University. Contact him at scanakci@bu.edu.

Bandhav Veluri is currently working toward the

M.S. degree with the University of Washington,

Seattle. Contact him at bandhav@uw.edu.

Tavio Guarino is currently working toward the M.S.

degree with the University of Washington, Seattle.

Contact him at Tavio.guarino@gmail.com.

Ajay Joshi is currently a Professor with Boston Uni-

versity. Contact him at joshi@bu.edu.

Mark Oskin is currently a Professor with the Uni-

versity of Washington, Seattle. Contact him at

oskin@cs.washington.edu.

Michael Bedford Taylor is currently a Professor

with the University of Washington, Seattle. Contact

him at prof.taylor@gmail.com.

Agile and Open-Source Hardware

102 IEEE Micro

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 25,2020 at 01:02:45 UTC from IEEE Xplore. Restrictions apply.

mailto:petrisko@cs.washington.edu
mailto:petrisko@cs.washington.edu
mailto:wysem@cs.washington.edu
mailto:wysem@cs.washington.edu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

