
A Programmable Hardware Monitor for Security of
RISC-V Processors

Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay Joshi, and Manuel Egele
Department of Electrical and Computer Engineering, Boston University

{delshad, scanakci, bobzhou, schuye, joshi, megele}@bu.edu

Abstract—There is a growing trend in the industry to im-
plement security policies in hardware; however, the current
approach to do this is a lengthy and costly process. Additionally,
the dedicated hardware security extensions enforce fixed security
policies, which cannot evolve as security threats evolve. In
contrast to this trend, we propose a minimally-invasive and
efficient implementation of a Programmable Hardware Monitor
(PHMon) that can enhance and enforce a variety of security
policies. We interface our hardware monitor with an open-source
RISC-V processor and leverage our design for four different
security use cases. We have prototyped our RISC-V processor
interfaced with PHMon design on an FPGA, and we have open-
sourced our design to the community.1

I. INTRODUCTION

In recent years, there has been a growing trend in the in-
dustry to implement security policies in hardware. A success-
ful hardware implementation provides a permanent solution
against a specific class of security attacks without the need
for software patches. Additionally, such hardware solutions
typically have considerably lower performance overhead com-
pared to their software counterparts. However, implementing
security policies in a new generation of processors is a lengthy
and costly process. Moreover, these solutions are typically
customized for a specific class of attacks and cannot evolve
as security threats evolve.

In contrast to the current industrial trend to implement
security policies in customized hardware, a flexible hardware
monitor can enforce a variety of security policies and can
be enhanced as security threats evolve. However, the existing
flexible hardware monitors typically suffer from one (or more)
of three common drawbacks:

1) A broad class of hardware monitors are tag-based mon-
itors, where each memory address and register is ex-
tended with a tag. These tag-based monitors are limited
only to enforcing memory protection policies.

2) Some hardware monitors require an idle core on a
general-purpose processor to enforce the security poli-
cies, which results in high power and area consumption.

3) The implementation of some hardware monitors results
in invasive modifications in the processor design, which
prohibits their adoption in commercial processors.

To address the aforementioned drawbacks, we propose a
minimally-invasive and low-overhead implementation of a
Programmable Hardware Monitor (PHMon) [2] interfaced

1https://github.com/bu-icsg/PHMon

with an open-source RISC-V [4] Rocket processor [1]. PHMon
is a trace-based monitor applicable to a wide range of security
use cases (not limited to memory protection policies). To
evaluate PHMon for real security use cases, we provide a
software API and Operating System (OS) support for our
monitor and prototype our design (including a full software
stack) on an FPGA board. We demonstrate the versatility of
PHMon and its ease of adoption by leveraging it for four
different security-based use cases: a shadow stack, a hardware-
accelerated fuzzing engine, an information leak prevention
mechanism, and a hardware-accelerated debugger.

Our FPGA evaluation shows that a PHMon-based shadow
stack incurs only 0.9% performance overhead, on average,
while our hardware-accelerated fuzzing engine improves the
performance by 16× over the state-of-the-art software-based
approach. According to our ASIC evaluation, PHMon incurs
5% and 13.5% power and area overhead, respectively.

II. PHMON

PHMon is a minimally-invasive hardware monitor capable
of monitoring one or more processes running on a RISC-
V processor. To enable per process monitoring, we provide
a software API as well as OS support for PHMon. At the
hardware level, PHMon monitors the execution of the program,
collects the runtime execution trace, checks for specified mon-
itoring patterns, and performs a series of follow-up actions. In
this section, we briefly discuss PHMon’s architecture and its
software support.

A. PHMon: Architecture

PHMon is interfaced with the open-source RISC-V Rocket
processor [1] through the RoCC interface. At the hardware
level, we minimally modify the write-back stage of the
pipeline to collect the runtime execution trace information,
called commit log. The commit log consists of five sepa-
rate entries, i.e., the undecoded instruction (inst), the current
Program Counter (PC) (pc src), the next PC (pc dst), the
memory/register address used in the current instruction (addr),
and the data accessed by the current instruction (data). We
transfer the commit log to PHMon through a modified RoCC
interface. Figure 1 shows a simplified overview of PHMon’s
hardware connected to the RISC-V Rocket core through the
modified RoCC interface.

In PHMon’s architecture, Match Units (MUs) are responsi-
ble to monitor each incoming commit log and finding matches
with programmed patterns. The user can specify the matching

RISC-V Rocket
Microprocessor

Pipelined
Processor Core

L1
Data Cache

P
C
_
G
E
N

/
F
e
t
c
h

D
e
c

E
x
e

M
e
m

W
B

TU

PHMon

PHMon

ALU
Local

Register
File

Control Unit
(CU)

Ma
tc
h

Qu
eu

e
MU

_d
at

a
MU

_a
dd

r
MU

_i
d

..
.

Match Packet

conf_ptr

Config Unit-0 (CFU-0)

...
Type
2b

In1
3b

In2
3b

Fn
4b

Out
3b

Data
64b

Action Config Table

conf_ctr

Action Unit (AU)

Commit
Log
- inst
- pc_src
- pc_dst
- addr
- data

Cmd/Resp

Interrupt
Memory

Match Unit-0 (MU-0)

Predicate:
- inst = *8067
- pc_src = *
- pc_dst = *
- addr = *
- data = *

Counter Threshold

=?

C
o
m
p
a
r
a
t
o
r

Commit Log

Memory Request

Command

Response

Interrupt

Memory Response

RoCC Interface

Fig. 1. A simplified overview of PHMon’s microarchitecture connected to
the RISC-V Rocket core through the modified RoCC interface.

patterns at bit-granularity using PHMon’s software API. Once
an MU finds a match, the Action Unit (AU) performs a series
of programmed actions in the form of arithmetic and logical
operations, memory operations, or triggering an interrupt.

B. PHMon: Software Support
Using RISC-V’s standard ISA extension, called custom

instructions, we provide a list of functions written in C
for programming PHMon and communicating with it. We
also provide a feature to “seal” PHMon’s configuration to
prevent an unauthorized process from reconfiguring PHMon.
To enable per process monitoring capabilities, the OS support
for PHMon is mandatory. To provide this support, we modify
the task_struct in the Linux kernel to maintain PHMon’s
state for each process. Also, we delegate the machine-level
interrupts of the Rocket core to OS, where we alter the
interrupt handler to manage these interrupts.

III. USE CASES

To demonstrate the versatility of PHMon and its ease of
adoption, in this section, we briefly describe four use cases,
i.e., a shadow stack, a hardware-accelerated fuzzing engine,
preventing information leakage, and hardware-accelerated de-
bugging, of PHMon. For a more detailed discussion and
evaluation of these four use cases, refer to our USENIX
Security 2020 paper [2].
A. Shadow Stack

A shadow stack is a secondary stack that can prevent
Return-Oriented Programming (ROP) attacks by keeping track
of function return addresses. We can simply program PHMon
to act as a shadow stack using two MUs, where one MU
monitors call instructions and the other MU monitors ret
instructions. If there is a mismatch between the call and ret
addresses, PHMon triggers an interrupt and the OS terminates
the violating process. We evaluated our PHMon-based shadow
stack on an FPGA prototype. On average, PHMon only has
a 0.9% performance overhead on evaluated applications from
MiBench, SPECint2000, and SPECint2006 benchmark suites.

B. Hardware-Accelerated Fuzzing Engine

Fuzzing is an automated software testing techniques that
provides a program under test with invalid, unexpected,
or random inputs with the goal of finding bugs, crashes,
and security vulnerabilities. Big software companies such
as Google, Microsoft, and Facebook, use fuzzing constantly
and extensively. As our hardware-accelerated fuzzing engine,
we integrate PHMon with American Fuzzy Lop (AFL), a
state-of-the-art fuzzer. For closed-source programs, AFL uses
QEMU as its instrumentation suite. QEMU, which is a soft-
ware emulator, incurs considerable performance overhead for
instrumentation. We simply replace QEMU with PHMon to
improve the performance of AFL. Based on our evaluation,
PHMon improves AFL’s performance by 16× over QEMU-
based implementation of AFL.

C. Preventing Information Leakage

Preventing information leakage is another use case of
PHMon. As a concrete example, we leverage PHMon for
preventing Heartbleed [3], a buffer over-read vulnerability in
the popular OpenSSL library. The Heartbleed vulnerability
allowed attackers to leak the private key of any web-server
relying on the OpenSSL library. To prevent Heartbleed, we
identify the memory addresses containing the private key and
manually white-list all legitimate read accesses. We program
PHMon to trigger an interrupt for any illegitimate accesses
(any accesses other than white-listed ones). Our PHMon
prototype shows that we can prevent a Heartbleed attack with
negligible performance overhead.

D. Watchpoints and Accelerated Debugging

PHMon can provide watchpoints by monitoring (a range of)
memory addresses and trapping into GDB by triggering an
interrupt. PHMon can also accelerate the debugging process.
For example, PHMon can provide an efficient conditional
breakpoint and trap into GDB.

IV. CONCLUSION

In this paper, we discussed PHMon, a programmable Hard-
ware monitor with a full software stack. The flexible design
of PHMon enables us to use it in a wide range of security use
cases. We demonstrate the flexibility of PHMon through four
use cases: a shadow stack, a hardware-accelerated fuzzing en-
gine, information leak prevention, and a hardware-accelerated
debugger. PHMon has a 5% power and 13.5% area overhead
while it incurs low performance overhead.

REFERENCES

[1] Krste Asanović et al. The Rocket Chip generator. Tech. Report, EECS
Dep., UCB, 2016.

[2] Leila Delshadtehrani et al. Phmon: a programmable hardware monitor
and its security use cases. In Proc. USENIX Security, 2020.

[3] John Graham-Cumming. Searching for the prime suspect:
how heartbleed leaked private keys. https://blog.cloudflare.com/
searching-for-the-prime-suspect-how-heartbleed-/leaked-private-keys/,
2015.

[4] Andrew Waterman et al. The RISC-V instruction set manual, volume i:
Base user-level ISA. Tech. Report UCB/EECS-2011-62, EECS Depart-
ment, UC Berkeley, 2011.

