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Abstract
Neural network accelerators are an increasingly utilized

component of heterogeneous multicore architectures. This new
utilization stems from their capability to improve the power–
performance of machine learning algorithms and emerging
techniques like core state prediction and code approxima-
tion. We explore the exploitation of the inherently redundant
structure of neural networks for fault-tolerance. While fault-
tolerance in neural networks is far from guaranteed or trivial
to extract, we present preliminary work that uses a basic,
modular redundant approach to provide an improved level of
fault-tolerance for applications using neural networks.

1. Introduction
As CMOS technology scales to smaller dimensions, computer
architects have embraced novel designs to continue to reduce
power and improve performance. Presently, multicore archi-
tectures are ubiquitous, heterogeneous architectures are com-
mon, and dedicated computational accelerators for general- or
special-purpose applications are becoming widespread. One
type of accelerator architectures that is being actively investi-
gated is that of neural network accelerators [7].

Neural networks (NNs) are a subset of machine learning
approaches that mimic the functionality and connective struc-
ture of biological neurons and can be used for classification
and regression applications. Biological systems demonstrate
significant fault-tolerance and resilience to damage due to
their structure, defense (immune system), and repair mecha-
nisms. Artificial NNs, being an approximate model of parts
of biological systems, are not, as may naively be expected,
fault-tolerant [5]. Nevertheless, clever techniques have been
developed that enable the redundant structure of NNs to be
leveraged to improve NN fault-tolerance. These approaches
stem from a desire to create a balanced NN where the com-
putational importance of connections in the NN are approx-
imately equal. Such techniques include exposing the NN to
the types of expected faults during training [6, 2, 1, 5] as well
as setting bounds on NN weights and pruning NNs to remove
unimportant neurons or split important ones [1]. Additionally,
simple retraining [6] of a faulty NN or introducing modular
redundancy [4] can achieve improved fault-tolerance.

We explore the use of an N-modular redundancy-like (N-
MR) approach, modeled off of existing work [4], to provide a
varying amount of fault-tolerance. We create an new N-MR
configuration (i.e., a new NN topology) from a non-redundant
one in the following way:
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Figure 1: Our NN accelerator architecture executes NN Re-
quests received from general-purpose cores by dynamically
scheduling neurons on processing elements (PEs).

1. Hidden neurons and their weights are replicated N times
2. Weights of replicated neurons are multiplied by 1/N

This differs from standard modular redundancy [4] as no ex-
plicit voting is used. This approach provides gradual improve-
ments in fault-tolerance at the cost of power–performance
trade-offs. We evaluate these trade-offs using an NN accel-
erator of our own design when executing NNs from modern
applications to determine the viability of this N-MR approach.

2. Architecture
Figure 1 shows our NN accelerator architecture. This ac-
celerator can compute one or more simultaneous multilayer
perceptron (MLP) NN Requests from connected CPU cores.
We define an NN Request as a request by a thread to compute
the output of a specific NN. NN Requests are recorded in an
NN Table and their configurations are cached locally after
being read from memory. Control logic dynamically maps
neurons in valid NN Requests to unallocated Processing Ele-
ments (PEs). The outputs of intermediate computations (from
hidden neurons) are stored in Intermediate Storage.

3. Evaluation
We compute the power–performance and accuracy data for a
16-PE version of our NN accelerator placed-and-routed in a
45nm predictive technology model standard cell library [8, 3].
Our accelerator consumes 571mW at 89MHz. For selected
function approximation [7] and state prediction [9] applica-
tions that use MLP NNs (see Table 1), we compute their
latency and application-specific output accuracy for varying
amounts of N-MR in the presence of single PE faults. We
approximate a PE fault by setting the internal PE accumulator
to a random value. We do not train the NNs in any special way
to impart fault-tolerant properties.
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Figure 2: Normalized latency (Left), percentage error increase (Mid-Left), normalized accuracy (Mid-Right), and normalized
energy–delay product (Right) for blackscholes (b), rsa (r), and sobel (s).

Table 1: Evaluated neural networks and their topologies
Application NN Topology Description

blackscholes (b) [7] 6×8×8×1 Financial option pricing
rsa (r) [9] 30×30×30 Brute-force prime factorization
sobel (s) [7] 9×8×1 3×3 Sobel filter

Figure 2 shows normalized latency/accuracy, percentage
accuracy difference compared to a fault-free NN, and normal-
ized energy–delay product (EDP) when executing the NNs
shown in Table 1 with varying amounts of N-MR on our NN
accelerator. We do not report energy as it is proportional to
latency.1 We compute each accuracy datapoint as an expected
accuracy when a random fault is introduced at run-time. This
accuracy is normalized to the accuracy of an NN with a single
fault and no redundancy. Accuracy is measured using mean
squared error (MSE) for blackscholes and sobel and using
the percentage of correct predictions for rsa. We also show
accuracy compared to a fault-free NN to give a sense of scale.

NN size is a dominant factor for accuracy measurements.
In small NNs (e.g., sobel) the individual contribution of each
neuron is much higher than in large NNs (e.g., blackscholes,
rsa) where computational importance is more distributed.
Consequently, applying N-MR results in substantial accu-
racy increases for sobel while moderate gains are realized
for blackscholes and rsa. These gains are tempered by
the large percentage accuracy difference of sobel versus a
fault-free NN. The relationship between latency/energy and
redundancy is, at worst, linear, e.g., an application with no
redundancy takes C cycles and uses E energy while an N re-
dundant version takes approximately NC cycles and uses NC
energy. However, as seen in the left of Figure 2, the increased
work from added redundancy allows energy and latency to,
generally, scale more slowly than the baseline worst case.

N-MR shows increases in normalized EDP as it increases
both energy and latency. This can be seen in the right plot of
Figure 2.

1Due to our use of a fixed power value for our 16-PE accelerator

4. Conclusion
The graph structure of NNs enables N-MR to be easily utilized
to improve fault-tolerance at run-time. One simple NN config-
uration can be scaled up or down with dedicated multipliers
and modifications to the control logic of our NN accelerator.
The amount of redundancy can then be varied in accordance
with the required output accuracy of a specific application or
increased over time to extend the operational lifespan of a
device. Nevertheless, this approach, since it uses redundancy
does incur EDP costs. However, this preliminary work does
demonstrate that the topology of NNs can be leveraged to
provide varying levels of fault-tolerance and warrants further
exploration.
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