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It is not our job to identify the secret of the red rose
Maybe our job is to dive into the magic of the red rose
And camp behind the wisdom
Wash our hand in the glory of a green leaf and go our way
We shall be born in the mornings when the sun rises
Shall let the excitement fly
Shall sprinkle moisture on understanding, space, color, voice, window and
flower
Letting the sky sit between the pronunciation of being
Letting our lungs fill up and empty from eternity
Letting the load of knowledge down from the shoulders of the blue jay
Taking the name back from the fog, evergreen, mosquito and summer
Let us rise up to the height of kindness on the wet legs of rain
To open the doors for human, light, insect and tree
Maybe this is our job, to be after the song of the truth between the
century and the morning glory

– Sohrab Sepehri (1964)
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ABSTRACT

Over the past decades, there has been a growing number of attacks compromising the

security of computing systems. In the first half of 2020, data breaches caused by se-

curity attacks led to the exposure of 36 billion records containing private information,

where the average cost of a data breach was $3.86 million. Over the years, researchers

have developed a variety of software solutions that can actively protect computing

systems against different classes of security attacks. However, such software solutions

are rarely deployed in practice, largely due to their significant performance overhead,

ranging from ∼15% to multiple orders of magnitude. A hardware-assisted security

extension can reduce the performance overhead of software-level implementations and

provide a practical security solution. Hence, in recent years, there has been a growing

trend in the industry to enforce security policies in hardware. Unfortunately, the cur-

rent trend only implements dedicated hardware extensions for enforcing fixed security

policies in hardware. As these policies are built in silicon, they cannot be updated at
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the pace at which security threats evolve.

In this thesis, we propose a hybrid approach by developing and deploying both

dedicated and flexible hardware-assisted security extensions. We incorporate an ar-

ray of hardware engines as a security layer on top of an existing processor design.

These engines are in the form of Programmable Engines (PEs) and Specialized En-

gines (SEs). A PE is a minimally invasive and flexible design, capable of enforcing a

variety of security policies as security threats evolve. In contrast, an SE, which re-

quires targeted modifications to an existing processor design, is a dedicated hardware

security extension. An SE is less flexible than a PE, but has lower overheads.

We first propose a PE called PHMon, which can enforce a variety of security

policies. PHMon can also assist with detecting software bugs and security vulner-

abilities. We demonstrate the versatility of PHMon through five representative use

cases, (1) a shadow stack, (2) a hardware-accelerated fuzzing engine, (3) information

leak prevention, (4) hardware-accelerated debugging, and (5) a code coverage engine.

We also propose two SEs as dedicated hardware extensions. Our first SE, called

SealPK, provides an efficient and secure protection key-based intra-process memory

isolation mechanism for the RISC-V ISA. SealPK provides higher security guarantees

than the existing hardware extension in Intel processors, through three novel sealing

features. These features prevent an attacker from modifying sealed domains, sealed

pages, and sealed permissions. Our second SE, called FlexFilt, provides an efficient

capability to guarantee the integrity of isolation-based mechanisms by preventing the

execution of various instructions in untrusted parts of the code at runtime.

We demonstrate the feasibility of our PE and SEs by providing a practical proto-

type of our hardware engines interfaced with a RISC-V processor on an FPGA and

by providing the full Linux software stack for our design. Our FPGA-based evalua-

tion demonstrates that PHMon improves the performance of fuzzing by 16× over the

vii



state-of-the art software-based implementation while a PHMon-based shadow stack

has less than 1% performance overhead. An isolated shadow stack implemented by

leveraging SealPK is 80× faster than an isolated implementation using mprotect, and

FlexFilt incurs negligible performance overhead for filtering instructions.

viii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Flexible Hardware Support for Security . . . . . . . . . . . . . 3

1.1.2 Dedicated Hardware Support for Security . . . . . . . . . . . . 5

1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background and Related Work 12

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 RISC-V Instruction Set Architecture . . . . . . . . . . . . . . 12

2.1.2 Privilege Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 RISC-V Virtual-Memory Systems . . . . . . . . . . . . . . . . 15

2.1.4 Physical Memory Protection (PMP) . . . . . . . . . . . . . . 15

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Hardware-assisted Features for Security . . . . . . . . . . . . . 16

2.2.2 Intra-Process Memory Isolation . . . . . . . . . . . . . . . . . 23

2.2.3 Runtime Instruction Filtering . . . . . . . . . . . . . . . . . . 26

3 A Programmable Hardware Monitor for Security 30

3.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 PHMon: Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 PHMon: Software Interface . . . . . . . . . . . . . . . . . . . 39

ix



3.2.3 PHMon: OS Support . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 PHMon: Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Shadow Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Hardware-Accelerated Fuzzing . . . . . . . . . . . . . . . . . . 45

3.3.3 Preventing Information Leakage . . . . . . . . . . . . . . . . . 48

3.3.4 Watchpoints and Accelerated Debugger . . . . . . . . . . . . . 49

3.3.5 Code Coverage Engine . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Intra-Process Memory Isolation 63

4.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 SealPK: Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 OS Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 Sealing Features . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 SealPK: Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Runtime Instruction Filtering 79

5.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 FlexFilt: Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 FlexFilt: Hardware Design . . . . . . . . . . . . . . . . . . . . 81

x



5.2.2 FlexFilt: OS Support . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.3 FlexFilt: Software Interface . . . . . . . . . . . . . . . . . . . 88

5.3 FlexFilt: Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 JIT compilation . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 V8 JIT Compilation Experiment . . . . . . . . . . . . . . . . 90

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusion and Future Work 100

6.1 Summary of Major Contributions . . . . . . . . . . . . . . . . . . . . 100

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 Extending Our Array of Security Engines to Other Computing

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.2 An Unlimited Number of Memory Protection Domains . . . . 106

6.3.3 Fine-grained Protection Domains . . . . . . . . . . . . . . . . 108

6.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

References 110

Curriculum Vitae 126

xi



List of Tables

2.1 Comparison of previous hardware monitoring techniques. . . . . . . . 20

2.2 Comparison of previous works that prevent the execution of target

instructions at runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 PHMon’s RISC-V extension instructions transmitted over RoCC. . . 40

3.2 PHMon’s Application Programming Interface (API). . . . . . . . . . 41

3.3 Parameters of Rocket core and PHMon. . . . . . . . . . . . . . . . . 52

3.4 List of the benchmark applications used to evaluate AFL. . . . . . . . 52

3.5 Performance overhead of PHMon-based shadow stack compared to that

of HDFI-based and LLVM-based shadow stacks. . . . . . . . . . . . . 55

3.6 Performance overhead of previous software and hardware implementa-

tions of shadow stack compared with PHMon. . . . . . . . . . . . . . 55

3.7 The performance overhead of PHMon as a code coverage engine. . . . 60

3.8 The power and area of PHMon’s AU and RISC-V Rocket core deter-

mined using 45nm NanGate. . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 The FPGA utilization of SealPK compared to the baseline Rocket core. 77

5.1 FlexFilt’s Application Programming Interface (API). . . . . . . . . . 89

5.2 The measured size of executable bytes generated for browsing the Alexa

top-10 websites, on average. . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Cycle counts for FlexFilt configuration. . . . . . . . . . . . . . . . . . 95

xii



5.4 Performance overhead of FlexFilt due to maintaining FlexFilt’s infor-

mation during context switches. . . . . . . . . . . . . . . . . . . . . . 96

5.5 The FPGA utilization of the Rocket core enhanced with FlexFilt com-

pared to the baseline Rocket core. . . . . . . . . . . . . . . . . . . . . 96

5.6 Opcode-based grouping of RV64I instructions. . . . . . . . . . . . . . 97

xiii



List of Figures

2·1 The RISC-V Rocket Coprocessor (RoCC) interface. . . . . . . . . . . 14

2·2 Page Table Entry (PTE) of Sv39 (a) and Sv48 (b). . . . . . . . . . . 16

2·3 Simplified overview of how Intel MPK checks the permission bits of a

memory access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3·1 An overview of the event-action model provided in PHMon. . . . . . 33

3·2 The RoCC interface extended with commit log execution trace. . . . . 35

3·3 PHMon’s microarchitecture. . . . . . . . . . . . . . . . . . . . . . . . 35

3·4 The RISC-V custom instruction format. . . . . . . . . . . . . . . . . 40

3·5 Integration of PHMon with AFL. . . . . . . . . . . . . . . . . . . . . 47

3·6 The performance overhead of PHMon as a shadow stack. . . . . . . . 54

3·7 Performance improvement of PHMon over the baseline AFL compared

to the fork server AFL. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3·8 The performance overhead of PHMon compared to GDB for a loop

conditional breakpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3·9 The power and area overheads of PHMon components compared to the

baseline Rocket processor. . . . . . . . . . . . . . . . . . . . . . . . . 61

4·1 Modified MMU of the RISC-V Rocket core for SealPK support. . . . 65

4·2 Example scenario for SealPK’s sealable features. . . . . . . . . . . . . 69

4·3 High-level view of SealPK’s hardware support to seal pkey permissions. 72

4·4 Performance overhead of various LLVM-based shadow stack implemen-

tations for SPECint2000, SPECint2006, and MiBench benchmarks. . 76

xiv



5·1 The Flexible Filter design, applied to a subset of RISC-V branch

instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5·2 Simplified overview of the modifications to the RISC-V Rocket core to

support FlexFilt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6·1 An example of integrating various PEs and SEs to a RISC-V processing

tile consisting of an out-of-order RISC-V BOOM processor and an

accelerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6·2 An example of a heterogeneous SoC generated by RocketChip genera-

tor and integrated with an array of SEs and PEs. . . . . . . . . . . . 107

xv



List of Abbreviations

AFL . . . . . . . . . . . . . . . . . . . American Fuzzy Lop
ALU . . . . . . . . . . . . . . . . . . . Arithmetic and Logical Unit
API . . . . . . . . . . . . . . . . . . . . Application Programming Interface
ASLR . . . . . . . . . . . . . . . . . . Address-Space-Layout-Randomization
AU . . . . . . . . . . . . . . . . . . . . . Action Unit
AXI . . . . . . . . . . . . . . . . . . . . Advanced eXtensible Interface
BC . . . . . . . . . . . . . . . . . . . . . Bounds Checking
CAM . . . . . . . . . . . . . . . . . . Content-Addressable Memory
CET . . . . . . . . . . . . . . . . . . . Control-Flow Enforcement Technology
CFG . . . . . . . . . . . . . . . . . . . Control Flow Graph
CFI . . . . . . . . . . . . . . . . . . . . Control Flow Integrity
CFU . . . . . . . . . . . . . . . . . . . Config Unit
CPI . . . . . . . . . . . . . . . . . . . . Code Pointer Integrity
CSR . . . . . . . . . . . . . . . . . . . Control Status Register
CU . . . . . . . . . . . . . . . . . . . . . Control Unit
DBI . . . . . . . . . . . . . . . . . . . . Dynamic Binary Instrumentation
DEP . . . . . . . . . . . . . . . . . . . Data Execution Prevention
DIFT . . . . . . . . . . . . . . . . . . Dynamic Information Flow Tracking
DTLB . . . . . . . . . . . . . . . . . Data Translation Lookaside Buffer
FPGA . . . . . . . . . . . . . . . . . Field Programmable Gate Array
HDL . . . . . . . . . . . . . . . . . . . Hardware Description Language
HPC . . . . . . . . . . . . . . . . . . . Hardware Performance Counter
IFC . . . . . . . . . . . . . . . . . . . . Information Flow Control
IoT . . . . . . . . . . . . . . . . . . . . Internet of Things
IPR . . . . . . . . . . . . . . . . . . . . Instruction Protection Register
IR . . . . . . . . . . . . . . . . . . . . . Intermediate Representations
ISA . . . . . . . . . . . . . . . . . . . . Instruction Set Architecture
ITLB . . . . . . . . . . . . . . . . . . Instruction Translation Lookaside Buffer
JIT . . . . . . . . . . . . . . . . . . . . Just-In-Time
LBA . . . . . . . . . . . . . . . . . . . Log-Based Architecture
LBR . . . . . . . . . . . . . . . . . . . Last Branch Record
MMU . . . . . . . . . . . . . . . . . . Memory Management Unit
MPK . . . . . . . . . . . . . . . . . . . Memory Protection Key
MU . . . . . . . . . . . . . . . . . . . . Match Unit
OS . . . . . . . . . . . . . . . . . . . . . Operating System

xvi



PC . . . . . . . . . . . . . . . . . . . . . Program Counter
PE . . . . . . . . . . . . . . . . . . . . . Programmable Engine
PHMon . . . . . . . . . . . . . . . . Programmable Hardware Monitor
PMO . . . . . . . . . . . . . . . . . . . Persistent Memory Object
PMP . . . . . . . . . . . . . . . . . . . Physical Memory Protection
PT . . . . . . . . . . . . . . . . . . . . . Processor Trace
PTE . . . . . . . . . . . . . . . . . . . Page Table Entry
PTW . . . . . . . . . . . . . . . . . . Page Table Walker
RD . . . . . . . . . . . . . . . . . . . . Read Disable
RoCC . . . . . . . . . . . . . . . . . . Rocket Custom Coprocessor
ROP . . . . . . . . . . . . . . . . . . . Return-Oriented Programming
SE . . . . . . . . . . . . . . . . . . . . . Specialized Engine
SFI . . . . . . . . . . . . . . . . . . . . Software Fault Isolation
SGX . . . . . . . . . . . . . . . . . . . Software Guard Extensions
SoC . . . . . . . . . . . . . . . . . . . . System on Chip
SVM . . . . . . . . . . . . . . . . . . . Secure Virtual Machine
TLB . . . . . . . . . . . . . . . . . . . Translation Lookaside Buffer
TU . . . . . . . . . . . . . . . . . . . . . Trace Unit
TXT . . . . . . . . . . . . . . . . . . . Trusted Execution Technology
VM . . . . . . . . . . . . . . . . . . . . Virtual Machine
WD . . . . . . . . . . . . . . . . . . . . Write Disable

xvii



1

Chapter 1

Introduction

1.1 Motivation

Over the last decade, the security of an increasing number of computing systems has

been compromised. In 2019, there have been 1,743 reported data breaches in the

United States, leading to the exposure of 164.68 million sensitive records (Johnson,

2021). Due to the large number of security attacks and data breaches, we will only

name a few of the most well-known attacks and breaches in recent years to demon-

strate the prevalence of security attacks. In 2014, the Heartbleed vulnerability (Heart-

bleed, 2020) in the popular OpenSSL cryptography library impacted 24–55% of

HTTPS servers in the Alexa Top 1 Million websites (Durumeric et al., 2014). The

Heartbleed vulnerability allows attackers to read sensitive information, such as cryp-

tographic keys and login credential, from vulnerable servers. By 2017, nearly 180,000

internet-connected devices were still vulnerable to Heartbleed bug (Wikipedia, 2021).

In 2017, a data breach at Equifax leaked the social security numbers of approxi-

mately 150 million Americans (Wikipedia, 2017). In 2018, Marriott International

announced that between 2014 and 2018 attackers had stolen data on about 500 mil-

lion customers (Fruhlinger, 2018). The stolen data included a combination of contact

information, passport number, travel information, and other personal information.

The Spectre (Kocher et al., 2019) and Meltdown (Lipp et al., 2018) attacks in 2019

exploited critical architectural vulnerabilities in modern processors, including both

Intel and AMD processors, to leak confidential information such as passwords and
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personal data. In 2020, the Zoom application faced various security and privacy issues

such as Zoom-bombing, questionable routing, and inadequate encryption (Feldman,

2020; Price, 2020). In April 2020, the founder and CEO of Zoom (Eric S. Yuan)

publicly apologized for “falling short of the community’s privacy and security expec-

tations” (Yuan, 2020).

Ever since we have been building computing systems, security has been an af-

terthought. Every year there is a growing number of software patches to protect

against reported exploits. The current pattern of enforcing software patches on an

exploit-by-exploit basis results in windows of vulnerability, where attackers can com-

promise the security of unpatched systems. For example, in recent years software

patches have been released to fix the Heartbleed bug in the popular OpenSSL cryp-

tography library (Heartbleed, 2020), to protect against Meltdown attacks (Owaida,

2018), to harden software against Spectre attacks (Owaida, 2018), to fix zero-day

vulnerabilities in Microsoft Windows (Owaida, 2020; Warren, 2020) (e.g., in Kernel

Cryptography Driver and file-sharing protocol), etc.

Over the past three decades, there have been various software-only proposals

for enforcing highly desirable security properties, such as Information Flow Control

(IFC) (Myers, 1999; Efstathopoulos et al., 2005; Krohn et al., 2007; Zeldovich et al.,

2008; Giffin et al., 2012; Xu et al., 2014) and Control-Flow Integrity (CFI) (Abadi

et al., 2009; Davi et al., 2012; Kuznetzov et al., 2018), that could protect against po-

tential security attacks. Unfortunately, many of these software-only implementations

remain virtually unused in practice due to significant performance overheads, oner-

ous requirements in terms of developer policy specification, programming language

requirements, or substantial Operating System (OS) kernel modifications. Compared

to a software-only implementation, a hardware-assisted implementation can reduce

the performance overhead of enforcing security policies, can be independent of the
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higher-level programming languages, and can reduce the burden of policy specifica-

tions by largely being transparent to developers. Hence, in order to protect against

the growing number of security attacks in an efficient and timely manner, there is a

pressing need to build systems where hardware and software work together for security

enforcement. The existing hardware-assisted security solutions such as NX bit have

helped protect against various security attacks. However, the modern exploitation

techniques such as Just In Time (JIT)-based exploitation techniques (Blazakis, 2010;

Snow et al., 2013) and code reuse attacks (Shacham, 2007; Buchanan et al., 2008;

Checkoway et al., 2010; Bletsch et al., 2011) require stronger and more advanced

hardware-assisted solutions than simple solutions like NX bit.

1.1.1 Flexible Hardware Support for Security

In recent years, there has been a growing trend in the industry to provide dedi-

cated hardware-assisted features for security, e.g., Intel Trusted Execution Technol-

ogy (TXT) (Intel Corporation, 2006), Intel Software Guard Extensions (SGX) (Anati

et al., 2013), Intel Memory Protection Extensions (MPX) (Intel Corporation, 2013),

Intel Control-Flow Enforcement Technology (CET) (Intel Corporation, 2017), ARM

TrustZone (ARM Corporation, 2009), AMD Secure Virtual Machine (SVM) (AMD

Corporation, 2006), and many more. This approach of providing dedicated hardware-

assisted security extensions, however, suffers from several drawbacks. Implementing

new security extensions in a new generation of processors is a time consuming and

costly process. It can take up to several years to add and deploy a single hardware-

assisted security extension. Given that these dedicated security extensions are built

in silicon, any problems in the design or implementation of these extensions requires a

fix in the next generation of the processors. For example, Intel introduced MPX (In-

tel Corporation, 2013) as a hardware-assisted extension for spatial memory safety.

As an alternative to software-based approaches, Intel MPX provides new instructions
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and registers to enforce memory safety through bounds checking. Software-based

techniques, such as Safe-C (1994) (Austin et al., 1994) and SoftBound (2009) (Na-

garakatte et al., 2009), existed several years before Intel MPX was announced in

2013 and introduced commercially in late 2015. Unexpectedly, Intel MPX incurred

a considerable performance overhead (up to 4× slow down in the worst case) and

its supporting infrastructure could not compile/run 3-10% of legacy programs. Due

to various Intel MPX problems, GCC, LLVM, and Linux discontinued their support

for MPX (Larabel, 2018b; Larabel, 2018a). Subsequently, by 2019 Intel deprecated

MPX. The above Intel MPX example shows the lengthy and imperfect process of

implementing dedicated hardware-assisted security extensions. Moreover, these ex-

tensions cannot evolve with the same pace as security threats.

Unlike dedicated hardware-assisted extensions for security, a flexible hardware

implementation can enforce and enhance a variety of security policies as security

threats evolve. Such a flexible hardware implementation can provide a realistic en-

vironment (a hardware prototype with full software stack) to evaluate the security

policies before a manufacturer enforces a policy as a dedicated feature in hardware.

This realistic evaluation environment increases the chance of success for the dedicated

hardware features. As shown by prior work (Chen et al., 2006b; Chen et al., 2008;

Deng et al., 2010; Deng and Suh, 2012; Dhawan et al., 2015), a flexible hardware to

enforce security policies can be designed in the form of a hardware runtime monitor.

These flexible hardware monitors can enforce a variety of security policies such as

CFI, Bounds Checking (BC), data-race detection, and Dynamic Information Flow

Tracking (DIFT) at runtime. However, the existing flexible hardware monitors suffer

from various limitations. Most existing flexible hardware monitors (Deng et al., 2010;

Deng and Suh, 2012; Dhawan et al., 2015) are only designed for tag-based memory

corruption prevention. Some of the flexible hardware monitors (Chen et al., 2006b;
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Chen et al., 2008; Lo et al., 2015) have a broader applicability scope but they rely

on a separate general-purpose core to enforce the security policies. These techniques

incur large overheads (in terms of performance, power, and area) despite leveraging

filtering and hardware-acceleration strategies. Additionally, a variety of flexible hard-

ware monitors require invasive modifications to the processor design (Corliss et al.,

2003; Dhawan et al., 2015; Song et al., 2016). Such invasive modifications may limit

the feasibility of hardware monitor adoption in commercial processors as well as the

composition of flexible hardware monitors. These limitations indicate the need for a

minimally-invasive and low-overhead implementation of a flexible hardware monitor

that can enforce and enhance a variety of security policies.

1.1.2 Dedicated Hardware Support for Security

As discussed in Section 1.1.1, a flexible hardware monitor can efficiently enforce a

variety of security policies. One could argue that by incorporating flexible hardware

monitors with modern processors, dedicated hardware-assisted security extensions are

no longer required. Unfortunately, such an argument does not consider the limita-

tions of flexible hardware monitors. Efficient enforcement of a variety of fine-grained

security policies requires dedicated hardware support through targeted modifications

to various parts of a processor. A dedicated hardware extension can be more efficient

than a generalized flexible hardware monitor.

Intra-process memory isolation is one of the security policies that benefits from

dedicated hardware support. With the continuous increase in the number of software-

based attacks, there has been a growing effort towards isolating sensitive data and

trusted software components from untrusted third-party components. A hardware-

assisted intra-process isolation mechanism enables software developers to partition a

process into isolated components (domains), and in turn secure sensitive data from

untrusted components. However, most of the existing hardware-assisted intra-process
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isolation mechanisms in modern processors, such as ARM (ARM Corporation, 2018)

and IBM Power (IBM Corporation, 2017), rely on costly kernel-level transactions for

switching between trusted and untrusted domains. More recently, Intel proposed a

hardware-assisted feature, called Intel Memory Protection Keys (MPK) (Intel Corpo-

ration, 2019), to efficiently support intra-process memory isolation by leveraging an

unprivileged instruction (WRPKRU) for updating the associated permission of a domain.

Intel MPK allows the user to create a protection domain by assigning a protection key

(pkey) to a group of memory pages. Creating memory protection domains requires

modifications to the Memory Management Unit (MMU) as well as the Translation

Lookaside Buffer (TLB). The non-privileged WRPKRU instruction, which updates the

pkey permissions, is fast, does not require a context switch, and does not lead to a

TLB flush. However, Intel MPK suffers from security (Vahldiek-Oberwagner et al.,

2019; Hedayati et al., 2019; Schrammel et al., 2020) and scalability (Park et al., 2019;

Xu et al., 2020) drawbacks. Intel MPK does not prevent a compromised or malicious

component from updating permissions using WRPKRU instruction. For example, an

attacker can exploit an implicit occurrence of WRPKRU instruction using control-flow

hijacking attacks and in turn elevate the privilege of a protection domain. Addition-

ally, Intel MPK is vulnerable to protection-key use-after-free issue and only provides

16 protection keys. Intel MPK’s drawbacks indicate the need for an efficient and

secure dedicated hardware support for intra-process memory isolation.

Runtime filtering of security-sensitive instructions also benefits from dedicated

hardware support and targeted hardware modifications to an existing processor. To

limit the effects of bugs and security vulnerabilities, a variety of security solutions

partition the sensitive data and code into isolated components. Researchers have

leveraged various techniques including OS-based techniques (Chen et al., 2016; Lit-

ton et al., 2016), virtualization-based techniques (Belay et al., 2012; Liu et al., 2015;
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Koning et al., 2017), techniques built upon hardware-based trusted execution en-

vironments (Frassetto et al., 2017; Azab et al., 2014), and memory protection do-

mains (Vahldiek-Oberwagner et al., 2019; Hedayati et al., 2019; Schrammel et al.,

2020), to enforce isolation. To guarantee the integrity of the isolation, the above-

mentioned security solutions have to prevent an untrusted component from accessing

or modifying the isolated components. For example, the isolation-based mechanisms

leveraging Intel MPK (Hedayati et al., 2019; Vahldiek-Oberwagner et al., 2019) pro-

pose solutions to prevent an attacker from exploiting the unprivileged WRPKRU in-

struction in untrusted components and modifying a domain’s permissions. Similarly,

a variety of prior work (Frassetto et al., 2017; Frassetto et al., 2018; Wu et al., 2018;

Gu et al., 2020; Zhou et al., 2020; Azab et al., 2014; Azab et al., 2016; Park et al.,

2019; Xu et al., 2020) addressed a common challenge, i.e., preventing the execution

of various unsafe instructions in untrusted parts of the code. Such unsafe instruc-

tions could compromise the integrity of the isolation in-place by modifying access

permissions, disabling protections, gaining higher privilege, etc.

To prevent the execution of unsafe instructions, previous works have leveraged

various approaches such as CFI (Frassetto et al., 2018; Park et al., 2019) and binary

scanning and binary rewriting (Hedayati et al., 2019; Vahldiek-Oberwagner et al.,

2019; Park et al., 2019; Gu et al., 2020; Wu et al., 2018; Zhou et al., 2020; Azab

et al., 2014; Azab et al., 2016). As currently existing CFI solutions (Gu et al., 2017;

Ding et al., 2017; Hu et al., 2018; Liu et al., 2017; Ge et al., 2017) have non-trivial

performance overhead (> 10%), leveraging CFI to prevent the execution of unsafe in-

structions is expensive. Additionally, an efficient implementation of binary scanning

and binary rewriting for dynamically generated code is challenging. A dedicated hard-

ware feature can efficiently prevent the execution of unsafe instructions at hardware

level without the need for binary scanning/binary rewriting.
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1.2 Thesis Contribution

Rather than only relying on dedicated hardware-assisted features or flexible hardware

support for security, in this thesis we propose a hybrid approach by leveraging both

dedicated and flexible hardware-assisted security features. At a broader level, this

thesis proposes an approach where security is an added concept layered on top of a

hardware design. In other words, we envision security as a hardware library. Towards

this end, we propose a methodology that incorporates an array of hardware engines

as a security layer on top of existing processor designs. The hardware engines could

be in the form of Programmable Engines (PEs) or Specialized Engines (SEs). We

envision a PE as a minimally invasive design, capable of enforcing and enhancing a

variety of security policies as security threats evolve. An SE provides the hardware

support to efficiently enforce security policies for protecting against a specific class of

security attacks. Compared to a PE, an SE is less flexible and requires more invasive

and targeted modifications to an existing processor design. We present the thesis

statement as following:

A hybrid array of programmable and specialized hardware security

engines can efficiently enforce a variety of security policies to protect

against known threats and also provides the flexibility to enforce new

security policies as security threats evolve.

Therefore, we propose to build an array of hardware security engines consisting

of PEs and SEs. The main contributions of this PhD research are as follows:

• A Programmable Hardware Monitor for Runtime Enforcement of Se-

curity: We propose a PE in form of a minimally-invasive and efficient pro-

grammable hardware monitor, called PHMon. We identify that a PE can be

designed as a hardware runtime monitor. PHMon enforces an event–action mon-

itoring model with programmable monitoring rules and flexible hardware-level
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follow-up actions. PHMon can be used in a wide range of applications, includ-

ing, but not limited to, enforcing a variety of security policies and assisting with

detecting software bugs and security vulnerabilities. We interface PHMon with

a RISC-V (Waterman et al., 2011) Rocket (Asanović et al., 2016) processor,

and we minimally modify the core to expose an instruction execution trace to

the hardware monitor. This execution trace captures the whole architectural

state of the core. Each event is identified based on programmable monitoring

rules applied to the instruction execution trace. Once the hardware monitor

detects an event, it performs follow-up actions in the form of hardware opera-

tions including ALU operations and memory accesses or an interrupt (handled

by software). We modify the Linux OS kernel to support PHMon at the process

level; hence, PHMon offers the option of enforcing different security policies for

different processes. We demonstrate the versatility of PHMon and its ease of

adoption through five representative use cases: a shadow stack, a hardware-

accelerated fuzzing engine, information leak prevention, hardware-accelerated

debugging, and a code coverage engine. To evaluate our design in a realistic

scenario, we implement a prototype of our design interfaced with a RISC-V

Rocket core (Asanović et al., 2016) on an FPGA and provide a full Linux-based

software stack for our design. Similarly, we provide an FPGA-based evaluation

environment for our proposed SEs. Our FPGA-based evaluation shows that

PHMon improves the performance of fuzzing by 16× over the state-of-the art

software-based implementation while our programmed shadow stack (for call

stack integrity protection) has 0.9% performance overhead, on average. When

implemented as an ASIC, PHMon incurs less than 5% power and 13.5% area

overhead compared to an unmodified RISC-V core.
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• Intra Process Memory Isolation through Sealable Memory Protection

Keys: We propose an SE, called SealPK, for efficient intra-process memory iso-

lation in RISC-V ISA. Similar to Intel MPK, SealPK provides a per-page pro-

tection key; however, SealPK addresses the scalability and security limitations

of Intel MPK. SealPK supports up to 1024 domains (64× more than Intel MPK)

by leveraging the 10 unused bits available in the Page Table Entry (PTE) of

each virtual page (RISC-V Sv-39). While Intel MPK does not provide a solution

to maintain the integrity of protection domains and their permissions, we pro-

pose three novel sealing features to prevent an attacker from modifying sealed

domains, their corresponding sealed pages, and their permissions. In particular,

our hardware-assisted permission sealing feature enables the software developer

to restrict access to the WRPKRU instruction within a contiguous range of mem-

ory, e.g., a trusted component. Any attempt to execute a WRPKRU instruction

outside of the specified range would lead to a hardware exception. Hence, this

sealing feature efficiently prevents the manipulation of a domain’s permission by

an attacker. We demonstrate the efficiency of SealPK by leveraging it to imple-

ment an isolated shadow stack on our FPGA prototype. Our isolated shadow

stack prototype is, on average, 80× faster than an isolated implementation using

mprotect across SPECint2000 (Henning, 2000), SPECint2006 (Henning, 2006),

and MiBench (Guthaus et al., 2001) benchmarks.

• Runtime Instruction Filtering for Security: We observe that a variety of

isolation-based security solutions, on various processor architectures, have to

prevent the execution of various unsafe instructions in untrusted parts of the

code. The previous works are tailored to filter the execution of certain un-

safe instructions. This limits the scope of the prior work. We propose an SE,

called FlexFilt, for runtime filtering of unsafe instructions at page granularity.
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FlexFilt creates instruction protection domains by assigning the same protec-

tion key to a group of executable pages. At hardware level, FlexFilt provides

configurable filters to prevent the execution of various instructions. Each in-

struction protection domain can be configured to apply a combination of the

configured filters to its corresponding pages, i.e., prevent the execution of various

user-defined instructions at page granularity. FlexFilt is an efficient hardware-

assisted feature and incurs negligible performance overhead for filtering target

instructions at runtime. In addition to filtering user-space instructions, FlexFilt

is capable of filtering privileged instructions (i.e., supervisor mode and hyper-

visor mode). To illustrate the effectiveness of FlexFilt compared to binary

scanning approaches, we measure the overhead of scanning JIT compiled bytes

generated by V8 JavaScript engine while browsing various webpages.

1.3 Organization

The remainder of this thesis is organized as follows. We review the background

and state-of-the art on RISC-V, flexible hardware monitors, intra-process memory

isolation, and runtime instruction filtering in Chapter 2. Chapter 3 presents our work

on the design and implementation of a programmable hardware monitor for security.

In Chapter 4, we introduce our hardware-assisted feature for enforcing an efficient

and secure intra-process memory isolation approach. Chapter 5 presents our work on

a hardware engine to efficiently filter user-defined unsafe instructions at runtime. In

Chapter 6, we discuss the future directions and conclude this thesis.
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Chapter 2

Background and Related Work

In this chapter, we provide a background on RISC-V and review the related work on

flexible hardware monitors, intra-process memory isolation, and runtime instruction

filtering.

2.1 Background

In this thesis, we leverage the RISC-V open Instruction Set Architecture (ISA) to im-

plement and evaluate our hardware security engines. We choose the RISC-V ecosys-

tem, which provides open-source software and hardware tools. Hence, the RISC-V

ecosystem enables us to prototype a processor with the full Linux software stack. In

this section, we provide the background information on the RISC-V ISA.

2.1.1 RISC-V Instruction Set Architecture

RISC-V (Waterman et al., 2011) is a free and open ISA, which has been widely used

in recent years by both academia and industry for building processors and the sur-

rounding software environment. RISC-V supports 32-bit, 64-bit, and 128-bit address

spaces, namely RV32, RV64, RV128, respectively. In this thesis, our focus is on com-

monly used RV64 processors. RISC-V specifies a base integer instruction set (e.g.,

RV64I) as well as various standard extensions. RV64G is the standard general-purpose

RISC-V ISA for 64-bit address space, where “G” represents the base integer prefix

as well as the names of the rest of the general extensions, i.e., RV64IMAFD. Here,
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“M” stands for standard extension for integer multiplication and division. “A” repre-

sents the standard extension for atomic instructions. “F” and “D” are the standard

extensions for single-precision and double-precision floating-point, respectively. The

RISC-V ISA also provides a standard extension for compressed instructions (“C”).

Additionally, the RISC-V ISA (RV32G and RV64G) dedicates four encodings for

custom instruction-set extensions. These instructions, called custom instructions

(custom0-custom3) are reserved for customization and will not be used by future

standard extensions. We leverage these RISC-V custom instructions to provide a

software Application Programming Interface (API), which enables a software devel-

oper to configure our hardware security engines.

We interface our hardware engines with the open-source RISC-V Rocket

core (Asanović et al., 2016). The Rocket core supports RV64-GC extensions and

is capable of booting up Linux kernel. Additionally, Rocket core implements the

support for custom instructions through the Rocket Custom Coprocessor (RoCC) in-

terface. Figure 2·1 shows the RoCC interface, consisting of various wires and bundles.

The RoCC interface (Asanović et al., 2016; Lee, 2015) provides a command/respond

channel to transfer data to the core’s register using custom instructions. Addition-

ally, the coprocessor/accelerator can send read/write memory requests to the L1 data

cache through the RoCC interface.

2.1.2 Privilege Mode

The RISC-V ISA provides specifications for the unprivileged ISA (Waterman et al.,

2019a) as well as privileged ISA (Waterman et al., 2019b). Currently, the RISC-V ISA

provides three privilege levels, i.e., user/application, supervisor, and machine modes.

The highest level of privilege belongs to the machine mode, which is a mandatory

privilege level for any RISC-V core. User mode and supervisor mode separate the

execution of application and operating system codes. The RISC-V Rocket core sup-
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Figure 2·1: The RISC-V Rocket Coprocessor (RoCC) interface (Asanović et al.,
2016; Lee, 2015). command/respond channel allows data to be transferred from/to
the core’s register. command carries the entire instruction as well as two source reg-
isters. Respond transfers the value from the coprocessor/accelerator to be written
into the destination register. Additionally, the RoCC interface provides a chan-
nel to transfer memory requests to the L1 cache and memory responses to the
coprocessor/accelerator.
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ports all the three privilege modes. At any point, a RISC-V hardware thread runs

in one of the privilege levels. This privilege level is encode in one or more Control

Status Registers (CSRs).

2.1.3 RISC-V Virtual-Memory Systems

For RV64 systems, RISC-V specifies two page-based virtual memory systems, i.e.,

Sv39 and Sv48. Sv39 and Sv48 provide a 39-bit and a 48-bit virtual address space,

respectively, where in both cases the address space is divided into 4KB pages. In

addition to 4KB pages, both Sv39 and Sv48 support 2MB megapages and 1GB giga-

pages.

The privilege specification of RISC-V ISA specifies the virtual address translation

process. Figure 2·2 shows the Page Table Entry (PTE) format of Sv39 and Sv48. Each

PTE holds the mapping between a virtual address of a page and its corresponding

address of a physical frame. In Figure 2·2, bits 3-1 are the page permission bits,

where R, W, and X bits indicate whether a page is readable, writable, and executable,

respectively. As shown in Figure 2·2, the top 10 bits of an Sv39 and Sv48 PTE (bits

63-54) are reserved for future use, e.g., to facilitate research experiments (Waterman

et al., 2019b).

2.1.4 Physical Memory Protection (PMP)

In addition to page protection through access permissions stored in PTE, RISC-V

ISA specifies the Physical Memory Protection (PMP) capability. PMP provides a per

thread view (for each hart) that enables the programmable machine mode to limit the

physical addresses that are accessible by software. PMP divides the physical memory

address into up to 16 configurable regions, where each region can be configured with

specific access permissions. At hardware level, a PMP unit utilizes machine-mode

CSRs that allows the memory access permission (read, write, and execute) of each
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Figure 2·2: Page Table Entry (PTE) of Sv39 (a) and Sv48 (b) (Waterman et al.,
2019b). The V bit specifies if the PTE is valid. R, W, and X bits indicate whether a
page is readable, writable, and executable, respectively. The U bit shows whether
this page is accessible in user mode. The G bit indicates a global mapping, which
exists in all address spaces. For leaf PTEs, the A bit specifies whether the virtual
page has been read, written, or fetched from since the last time this bit was cleared.
Similarly, the D bit shows whether the virtual page has been written since the last
time the D bit was cleared.

region to be specified. At runtime, PMP checks are applied to all the accesses in user

and supervisor modes. Various previous works (Lee et al., 2020; Kim et al., 2020;

Lindemer et al., 2020; Hex Five Corporation, 2020; Karlsson, 2020) leverage PMPs

for providing an additional security layer.

2.2 Related Work

2.2.1 Hardware-assisted Features for Security

The first contribution of this thesis is on providing a PE for enforcing a variety of

security policies. In this subsection, we discuss the background and related work on

flexible hardware features and extensions for security enforcement.

Modern processors provide hardware features and extensions to collect runtime

hardware usage information. Hardware Performance Counters (HPCs) are hardware

units to count the occurrence of microarchitectural events, such as cache hits and

misses, at runtime. A number of previous works use the microarchitectural informa-

tion collected by HPCs for malware detection (Demme et al., 2013; Tang et al., 2014;
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Khasawneh et al., 2015; Ozsoy et al., 2015; Kazdagli et al., 2016; Wang et al., 2016;

Singh et al., 2017). However, recent studies (Das et al., 2018; Zhou et al., 2018) shed

light on the pitfalls and challenges of using HPCs for security. Moreover, HPCs are

limited to a predefined pool of microarchitectural events, which prevents the software

developer from defining new events.

Last Branch Record (LBR) (Intel Corporation, 2016) is a hardware feature avail-

able in the recent Intel processors, which records a history of the most recent N

executed branches. Depending on the processor model, N can be 4, 8, 16, or 32. Sev-

eral works (Cheng et al., 2014; Pappas et al., 2013; Yuan et al., 2015) rely on LBR,

as a pseudo shadow stack, to mitigate Return-Oriented Programming (ROP) attacks.

However, history-flushing attacks (Carlini and Wagner, 2014; Schuster et al., 2014)

can evade such LBR-based detection techniques. LBR is not designed for security

purposes; hence, it cannot provide a principled security solution.

Modern processors also provide architectural extensions, like Intel Processor Trace

(PT) (Intel Corporation, 2016) and ARM CoreSight (Mijat, 2010), to capture debug-

ging information. Both Intel PT and ARM CoreSight provide enormous debugging

capabilities. These technologies are primarily designed to provide debugging traces

for post-processing while online processing capabilities are essential for the timely de-

tection of security threats. Intel PT efficiently collects the change of flow instructions

that cannot be derived statically. Accordingly, PT collects three types of packets

in encoded format: 1) TNT packets that record taken or non-taken information (1

bit) for conditional jumps, (2) TIP packets that record the target of indirect control

transfers, and (3) FUP packets that record the control flow transfers due to signals

and interrupts. Intel PT directly logs the encoded traces into physical memory. To

reconstruct the control-flow of the program, we need a software decoder to decode

the collected encoded PT packets. Although Intel PT is designed for offline debug-
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ging and failure diagnosis, recent techniques (Ding et al., 2017; Ge et al., 2017; Hu

et al., 2018) utilize this hardware extension to enforce Control Flow Integrity (CFI)

at runtime. Similarly, recent works (Schumilo et al., 2017; Chen et al., 2019) leverage

Intel PT to obtain code coverage information for fuzzing. To employ Intel PT for on-

line enforcement of security policies, prior works overcame various challenges. As an

example, the prior work had to design custom PT decoders to reduce the significant

overhead caused during decoding of PT encoded packets (Schumilo et al., 2017; Hu

et al., 2018). In contrast to debugging features, a PE designed for security enables us

to efficiently collect the required execution trace information in its original format and

enforce the security policies at runtime without the need for decoding the collected

traces.

Given the various limitations of the debugging features, rather than leveraging the

existing debugging features for enforcing security policies, a variety of previous works

provide customized security extensions in hardware. These extensions can be in form

of dedicated or flexible hardware monitors. A dedicated hardware monitor is designed

for enforcing a specific security policy while a flexible hardware monitor is capable

of enforcing various policies. To characterize a general runtime monitor, we present

an event-action model. In this model, we define the runtime monitoring by a set of

events, where each event is defined by a finite set of monitoring rules, followed by a

finite sequence of actions. This definition does not restrict events/actions to high level

(e.g., accessing a file) or low-level (e.g., execution of an instruction) events/actions.

Accordingly, runtime monitoring consists of three main steps: 1) collecting runtime

execution information, 2) evaluating the finite set of monitoring rules on the collected

information to detect events, and 3) performing a finite sequence of follow-up actions.

Intuitively, a monitoring system that allows the user to define generic rules, events,

and actions is more widely applicable than a system that restricts the expressiveness of
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these aspects. Such a monitoring system can be used in a wide range of applications,

including, but not limited to, enforcing security policies, debugging, and runtime

optimization.

A hardware monitor is a subset of a reference monitor. A reference monitor (An-

derson, 1972; Schneider, 2000) is a well-known concept, which defines the require-

ments for enforcing security policies. A reference monitor observes the execution of

a process and halts or confines the process execution when the process is about to

violate a specified security policy. The reference monitor observation can happen at

different abstraction levels, e.g., OS kernel, hardware, or inline. In this work, we de-

scribe a reference monitor using the event-action monitoring model, where the events

are specified by security policies and the sequence of actions is limited to halting/con-

fining the process execution. An event-action monitoring model has a broader scope

and is not restricted to specifying reference monitors for enforcing security policies.

Software-only runtime monitoring techniques can enforce security policies based on

the event–action monitoring model with virtually no restriction. However, these soft-

ware techniques are not suited for always on monitoring and prevention mechanisms

due to their considerable performance overhead (2.5× to 10× (Luk et al., 2005; Reddi

et al., 2004) caused by the dynamic translation process of Dynamic Binary Instrumen-

tation (DBI) tools). Hardware-assisted monitoring techniques reduce this significant

overhead (Deng and Suh, 2012; Dhawan et al., 2015; Zhou et al., 2007).

We classify the hardware security monitors into two categories: “trace-based”

and “tag-based”. Trace-based monitors apply the monitoring rules and actions on

the whole execution trace, while the tag-based monitors restrict the monitoring rules

and/or actions to tag propagation. Table 2.1 compares different features of the prior

tag-based and trace-based monitors. We can consider the tag-based monitors as ref-

erence monitors that can enforce one or more security policies for memory corruption
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Table 2.1: Comparison of previous hardware monitoring techniques.
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prevention. In contrast, trace-based monitors have wider applicability than merely

memory protection. For example, as listed in Table 2.1, the Log-Based Architecture

(LBA) (Chen et al., 2006a; Chen et al., 2006b), which is a trace-based monitor, can

assist with data race detection.

Dedicated hardware monitors have been used for a variety of debugging and

security applications including hardware-assisted watchpoints for software debug-

ging (Greathouse et al., 2012; Zhou et al., 2004) and hardware-assisted Bounds

Checking (BC) (Devietti et al., 2008; Ghose et al., 2009; Nagarakatte et al., 2012).

Dynamic Information Flow Tracking (DIFT) is a technique for tracking information

during the program’s execution by adding tags to data and tracking the tag propaga-

tion. Software-only implementations of DIFT (Nagarajan et al., 2008; Newsome and

Song, 2005; Qin et al., 2006) have large performance overheads. To reduce the per-

formance overhead, hardware implementations for DIFT have been proposed (Chen

et al., 2012; Dalton et al., 2007; Suh et al., 2004; Venkataramani et al., 2008). These

dedicated hardware implementations for DIFT provide different levels of flexibility,

from 1-bit tags (Qin et al., 2006) and multi-bit tags (Dalton et al., 2007) to more

flexible designs (Chen et al., 2012; Venkataramani et al., 2008).

Flexible hardware monitors provide flexible monitoring capabilities and can be

applied to a range of applications. Over the years, a variety of flexible hardware

monitors have been proposed. MemTracker (Venkataramani et al., 2007) implements

tag-based hardware support to detect memory bugs. Several existing works (Deng

et al., 2010; Deng and Suh, 2012; Dhawan et al., 2015) extend DIFT tag-based moni-

toring into more flexible frameworks capable of supporting different security use cases.

PUMP (Dhawan et al., 2015) provides programmable software policies for tag-based

monitoring with invasive changes to the processor pipeline. FlexCore (Deng et al.,

2010) is a re-configurable architecture decoupled from the processor, which provides a



22

range of runtime monitoring techniques. The programmable FPGA fabric of FlexCore

restricts its integration with a high-performance core. Harmoni (Deng and Suh, 2012)

is a coprocessor designed to apply different runtime tag-based monitoring techniques,

where the tagging capability is not as flexible as FlexCore or PUMP. HDFI (Song

et al., 2016) and REST (Sinha and Sethumadhavan, 2018) provide memory safety

through data-flow isolation by adding a 1-bit tag to the L1 data cache.

Among the tag-based flexible hardware monitors, HDFI (Song et al., 2016) is the

closest work to our envisioned PE (called PHMon) in terms of providing a realistic

evaluation environment. HDFI implements a hardware prototype, rather than relying

on simulations, and evaluates a full Linux-based software stack on an FPGA. However,

HDFI applies invasive modifications to the processor pipeline (adds a 1-bit tag to

L1 data cache and modifies the decode and execute stages of the pipeline). HDFI

is restricted to enforcing data-flow isolation policies to prevent memory corruption.

Overall, to the best of our knowledge, the existing flexible tag-based monitoring

techniques are a subset of an event-action monitoring model, where the actions are

restricted to tag-propagation and raising an exception (handled by software). In this

regard, these tag-based flexible hardware monitors are reference monitors that enforce

memory protection policies. We envision a more comprehensive language for actions

of our PE. Hence, we could leverage PHMon in a wider range of security applications,

not limited as a reference monitor to enforce memory protection policies.

In a multi-core system, Log-Based Architectures (LBA) (Chen et al., 2006a; Chen

et al., 2006b) implement trace-based monitors that capture an execution log from

a monitored program on one core and transfer the collected log to another general-

purpose core, where a dynamic tool (lifeguard) executes and enforces the security

policies. The optimized LBA (Chen et al., 2008) considerably reduces the perfor-

mance overhead of LBA (Chen et al., 2006b) (from 3×-5× to ∼50%) at the cost of
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higher power and area overheads. From the perspective of the event-action moni-

toring model, LBA’s expressiveness in terms of monitoring rules and actions is close

to software-based techniques. However, the LBA trace-based monitor suffers from

considerable performance, power, and area overheads. Similar to optimized LBA,

FADE (Fytraki et al., 2014), DISE (Corliss et al., 2003), and partial monitoring (Lo

et al., 2015) apply filtering, pattern matching, and dropping decisions to the execution

trace, respectively.

2.2.2 Intra-Process Memory Isolation

The second contribution of this thesis is an efficient and secure hardware-assisted

support for intra-process memory isolation. In this subsection, we discuss the related

work on intra-process memory isolation. A variety of prior works rely on software-

based approaches. A Software Fault Isolation (SFI) technique (Wahbe et al., 1993)

instruments each memory access by address masking instructions to prevent unin-

tended memory accesses; however, it suffers from large performance overhead. As the

original implementation of SFI does not protect against control-flow hijacking attacks

(which might bypass SFI’s inserted memory access checks), various SFI-based tech-

niques leverage CFI and binary rewriting to achieve stronger security (McCamant

and Morrisett, 2006; Ford and Cox, 2008; Yee et al., 2009; Sehr et al., 2010; Zhao

et al., 2011; Deng et al., 2015). However, existing CFI solutions incur non-trivial

performance overheads (> 10%).

Hardware approaches can reduce the overhead of isolating the code running within

the same virtual address space. CODOMs (Vilanova et al., 2014) and CHERI (Wat-

son et al., 2015) propose efficient capability-based systems, which require significant

and invasive hardware modifications. Compared to capability-based architectures,

our proposed SE requires less invasive modifications. IMIX (Frassetto et al., 2018)

and MicroStach (Mogosanu et al., 2018) enable secure data encapsulation by mini-
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mally extending the x86 ISA with secure load and store instructions. However, these

mechanisms require CFI to protect against control-flow hijacking attacks.

In recent years, a growing number of modern processors, including ARM (ARM

Corporation, 2018), IBM Power (IBM Corporation, 2017) and Intel (Intel Corpora-

tion, 2019), have provided a per-page protection key capability, where a group of

virtual memory pages form a domain and all pages in the domain are assigned the

same protection key (pkey). Intel MPK utilizes 4 previously unused bits of the PTE

to specify the pkey of each page and to divide the address space into up to 16 different

protection domains. Intel MPK stores the permission bits of all the pkeys in a single

32-bit register (per logical core), called protection key rights register (PKRU). The ac-

cess permission of each pkey is specified using a 2-bit value in the PKRU. Accordingly,

each pkey specifies a domain as readable/writable, read-only or non-accessible.

As shown in Figure 2·3, Intel MPK modifies the Memory Management Unit (MMU)

in a way that for each memory access, in addition to checking the page-table permis-

sion bits, it checks the corresponding PKRU bits of the page’s pkey. The intersection

of these two checks determines the validity of the memory access. A PKRU check is

only applicable to memory accesses and not an instruction fetch.

Intel MPK provides two new unprivileged instructions, i.e., WRPKRU and RDPKRU, to

write/read into/from PKRU. A user can leverage the WRPKRU instruction to update the

permission bits of all domains without the need for a context switch. Hence, updating

the permission bits of a domain is fast (11-260 cycles (Vahldiek-Oberwagner et al.,

2019)); however, PKRU is not protected from manipulation by control-flow hijacking

attacks (Vahldiek-Oberwagner et al., 2019; Hedayati et al., 2019; Schrammel et al.,

2020).

The Linux kernel provides the support for Intel MPK (since v4.6) through three

new system calls, i.e., pkey alloc, pkey free, and pkey mprotect. The kernel main-
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PPage# RW PkeyVPage#

00011024 1223

110 2089

87 760 000111

11 1111

DTLB

...

WRPKRU:write pkey permission
RDPKRU:read pkey permission

0
AD/WD

11415

01

PKRU

11

User Space

Figure 2·3: Simplified overview of how Intel MPK checks the permission bits of
a memory access. The intersection of the page permissions stored in the DTLB
and the corresponding permission bits of the protection domain (stored in PKRU)
specifies the effective access permission.

tains a 16-bit allocation bitmap to keep track of the allocated keys. A user-space

thread has to allocate a new pkey using the pkey alloc system call prior to assigning

the pkey to a page (group) by invoking the pkey mprotect system call. Using the

pkey free system call, the user frees an allocated pkey; however, the kernel only

updates the allocation map to indicate that the corresponding pkey is free without

erasing the pkey from the PTE of all the corresponding memory pages. The same

pkey might be assigned to another domain on future pkey alloc invocations; hence,

unintentionally the previous domain would share the same pkey as the new domain,

giving rise to the pkey use-after-free problem.

To address Intel MPK’s limitations, ERIM (Vahldiek-Oberwagner et al., 2019)

and Hodor (Hedayati et al., 2019) combine Intel MPK with binary inspection to pre-

vent reusing of WRPKRU instruction by an attacker. The sealing permission feature of

SealPK, our SE for intra-process memory isolation, provides a similar capability by

restricting valid WRPKRU instructions to a contiguous range of memory addresses for

each pkey. Although our sealing feature is limited to one valid memory range for each

pkey, its simplicity and efficiency distinguishes our work form ERIM and Hodor. Intel



26

MPK only provides up to 16 protection domains; however, some real-world use cases

such as Persistent Memory Object (PMO) (Xu et al., 2020) and OpenSSL (Park

et al., 2019) require more than 1000 pkeys. libmpk (Park et al., 2019) and Xu et

al. (Xu et al., 2020) provide a software-based and a hardware-based virtualization

technique, respectively, to address the limited number of pkeys. These virtualization

techniques are complementary to our SE. We can leverage such virtualization tech-

niques to support more than 1024 domains for SealPK. Donky (Schrammel et al.,

2020) provides a secure user-space software framework to protect the domain permis-

sions against control-flow hijacking attacks without relying on binary inspection or

CFI. Donky proposes a pkey extension for RISC-V ISA, and implements it on the

Ariane core (Ariane, 2018). Donky uses the 10 unused bits of Sv39 PTEs to store

the pkeys; however, Donky relies on a 64-bit CSR (managed by a software library)

to store the permission bits of only 4 pkeys at a time. If the pkey of the accessed

memory address is not loaded into that CSR, Donky requires extra cycles for the

software library (which stores all the pkey information) to load the missing pkey and

its permission into the register. In our SE, we leverage an on-chip memory (rather

than a CSR) and access it in the same cycle as page-table permission checks.

2.2.3 Runtime Instruction Filtering

The third contribution of this thesis is on providing an SE for runtime filtering of

unsafe instructions. A variety of previous works tackled the challenge of preventing

unsafe instructions in untrusted parts of the code. Table 2.2 lists the prior works,

their target instructions, and the approaches they used for filtering the instructions.

Here, “target” instructions refer to the unsafe instructions that should be filtered.

A recent example of the need for runtime instruction filtering is Intel MPK. To

ensure the security of Intel MPK for intra-process memory isolation, it is necessary to

prevent an untrusted component from executing WRPKRU or XRSTOR instructions, which
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might elevate the privilege of a protection domain.1 As shown in Table 2.2, several

recent works leveraged different approaches to prevent the unsafe execution of WRPKRU

(and XRSTOR) instructions. As mentioned before, ERIM (Vahldiek-Oberwagner et al.,

2019) relies on binary inspection and binary rewriting techniques to prevent an unsafe

execution of a WRPKRU or an XRSTOR instructions. Hodor (Hedayati et al., 2019) lever-

ages binary scanning and hardware watchpoints to prevent the execution of unsafe

WRPKRU instructions. The virtualization techniques for Intel MPK (Park et al., 2019;

Xu et al., 2020) rely on CFI or previous approaches such as ERIM and Hodor to filter

unsafe WRPKRU instructions. Donky (Schrammel et al., 2020) uses a hardware-assisted

call-gate mechanism to secure the domain transitions of MPK, without the need for

binary scanning or CFI. Prior to Intel MPK, IMIX (Frassetto et al., 2018) proposed a

secure data encapsulation approach by extending the x86 ISA with SMOV instruction

for secure load and store. IMIX assumes the mitigation approaches such as CFI and

Code-Pointer Integrity (CPI) (Kuznetzov et al., 2018) to prevent an attacker from

reusing the trusted code containing SMOV.

The need to filter target instructions in x86 architecture is not limited to user-space

instructions protecting MPK. Fidelius (Wu et al., 2018) and Underbridge (Gu et al.,

2020) provide security isolation in hypervisor and kernel space, respectively. Hence,

as shown in Table 2.2, Fidelius and Underbridge needed to restrict the execution

of privileged target instructions as part of their protection mechanisms. Fidelius

proposes a software-based extension to protect the Virtual Machine (VM) against an

untrusted hypervisor. Fidelius utilizes binary scanning to restrict the execution of

instructions that might hijack the control flow (e.g., VMRUN) or switch the address

space (e.g., MOV CR3). Underbridge retrofits Intel MPK for kernel-space isolation. To

1XRSTOR restores the full or partial state of a processor’s state during a context switch. The XRSTOR
instruction can modify the contents of the PKRU register (which stores the permission bits of all the
domains) by setting a specific bit in the eax register before executing the instruction (Vahldiek-
Oberwagner et al., 2019).
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Table 2.2: Comparison of previous works that prevent the execution of target
instructions at runtime.

Architecture Mechanism Target Instructions Privilege Level Filtering Approach

x86

(Vahldiek-Oberwagner et al., 2019) WRPKRU, XRSTOR User Binary inspection and rewriting

(Hedayati et al., 2019) WRPKRU User Binary scanning and
hardware watchpoints

(Park et al., 2019) WRPKRU User CFI or relying on
an approach like ERIM

(Xu et al., 2020) WRPKRU User Relying on approach like Hodor
or ERIM

(Schrammel et al., 2020) WRPKRU User Hardware-assisted call-gates

(Frassetto et al., 2018)
Extended instruction

(SMOV) User CFI

(Wu et al., 2018)
MOV CR0, MOV CR4,

WRMSR, VMRUN,
MOV CR3

Supervisor Binary scanning

(Gu et al., 2020) MOV CR3 Supervisor Binary scanning and rewriting

ARM

(Zhou et al., 2020) MSR User Binary scanning

(Azab et al., 2014) LDC, MCR Supervisor Binary scanning

(Azab et al., 2016) N/A Supervisor Binary scanning

RISC-V

(Schrammel et al., 2020) N/A User Hardware-assisted call-gates

SealPK
Extended instruction

(WRPKR) User Hardware-assisted
instruction filtering

FlexFilt Various instructions User & Supervisor Hardware-assisted
flexible filters

prevent the bypassing of the isolation enforced by MPK, Underbridge leverages binary

scanning and rewriting. Subsequently, Underbridge ensures that system servers do

not contain any explicit or implicit CR3 instructions that modify the page table base

register.

Researchers have faced the instruction filtering requirement on ARM processors

too. Silhouette (Zhou et al., 2020) provides a protected implementation of the shadow

stack on embedded ARM processors. Silhouette scans the code to ensure that it does

not contain an instruction, such as Move to Special register from Register (MSR), that

can be used to modify the program state without the need for a store instruction. TZ-

PKR (Azab et al., 2014) provides a real-time protection of the OS kernel by leveraging

ARM TrustZone (ARM Corporation, 2009). SKEE (Azab et al., 2016) implements
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a light-weight framework for a secure kernel-level execution environment on ARM

architectures, without relying on a higher privilege layer. To prevent the kernel from

executing target privileged instructions, both TZ-PKR and SKEE scan the kernel

executables looking for certain control instructions, such as Move to Coprocessor

from ARM Register (MCR) and Transfer Data from memory to Coprocessor (LDC).

These instructions are replaced with hooks that jump to a switch gate.

Although RISC-V is a relatively new ISA, Donky (Schrammel et al., 2020) provides

the memory protection key capability for RISC-V and leverages hardware-assisted

call-gates to secure its implementation. SealPK (our SE for intra-process memory

isolation in RISC-V) also implements the memory protection keys for RISC-V. SealPK

provides a hardware-assisted feature allowing the software developer to restrict the

execution of the WRPKR instruction to a contiguous range of memory addresses (e.g.,

one trusted function). Unlike the flexible design of our proposed SE for instruction

filtering (FlexFilt), SealPK’s implementation is limited to allowing the execution of

a fixed instruction in only one trusted function.
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Chapter 3

A Programmable Hardware Monitor for

Security

A successful hardware extension to enforce security policies provides an efficient per-

manent security solution against a specific class of security attacks. However, fixed

security policies built in dedicated hardware extensions cannot get updated at the

same pace as security threats evolve. In this chapter, we discuss our design of a PE

in form of a programmable hardware monitor that can enforce and enhance a variety

of security policies as security threats evolve. Such a flexible hardware implementa-

tion can also provide a realistic environment (a hardware prototype with full software

stack) to evaluate the security policies before a manufacturer enforces a policy as a

dedicated feature in hardware. Our programmable hardware monitor, called PHMon,

can enforce a variety of security policies and it can also assist with detecting software

bugs and security vulnerabilities.

3.1 Threat Model

In this chapter, we focus on detecting software security vulnerabilities and preventing

attackers from leveraging these vulnerabilities. We follow the common threat model

among the related works. We assume software may include one or more security

bugs and vulnerabilities that attackers can leverage to perform an attack. We do not

assume any restrictions about what an attacker would do after a successful attack.

Specifically for our use cases, we assume an application may suffer from a security
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vulnerability such as buffer overflow and an attack can leverage that to gain the

control of program’s stack. Also, motivated by our information leakage prevention

use case, we assume that sensitive memory contents can be leaked to unauthorized

entities.

Since PHMon relies on OS support, we assume that the OS kernel is trusted. In

principle, PHMon can be extended to protect (part of) the OS kernel. However, to

achieve this protection from an attacker who has compromised the kernel, PHMon

must be able to guarantee that an attacker cannot reprogram or disable engaged

protections. As PHMon is configured from the kernel, providing such a guarantee is

challenging against an adversary who holds the same privilege as the defense mecha-

nism. The same is true for most architecturally supported security features, such as

page permissions or Intel CET (Intel Corporation, 2017). While PHMon can easily

be configured to ensure the integrity of configuration information and control in-

structions, integrity is merely a necessary condition to protect against a kernel-level

adversary, it is not sufficient. For example, with integrity intact, attackers can launch

mimicry or confused deputy attacks to reprogram PHMon. “Sealing” configurations

(as we will discuss in Section 3.2.2) and protecting integrity will raise the bar against

kernel-level adversaries, but a complete solution that protects an OS kernel with a

kernel-controlled defense mechanism requires further study.

Also, we assume all hardware components are trusted and bug free. Hence,

hardware-based attacks such as row hammer (Kim et al., 2014) and cache-based side-

channel attacks are out-of-scope of this work. For security enforcement use cases, we

can consider PHMon as a reference monitor (Anderson, 1972; Schneider, 2000). A

reference monitor should satisfy three principles: complete mediation, tamperproof-

ness, and verifiability. PHMon satisfies the complete mediation principle. Whenever

a context switch into a monitored process occurs, PHMon continues monitoring. Ad-
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ditionally, PHMon monitors the execution of the forked processes of a parent process.

Regarding tamperproofness, PHMon provides the option of “sealing” configurations

to prevent further modifications. With respect to verifiability, PHMon is small enough

to be subject to verification (13.5% area overhead compared to an in-order processor)

through simulation and/or formal methods.

3.2 PHMon: Design

We propose a minimally-invasive programmable hardware monitor (for a general-

purpose processor) to enforce an event-action monitoring model. Figure 3·1 presents

a high-level overview of PHMon that implements such an event-action monitoring

model. To enable per process monitoring, software API (to configure/program the

hardware monitor) and OS support are mandatory. A user/admin can configure the

hardware to monitor the execution of one or more processes. Then, the hardware

monitor collects the runtime execution information of the processor, checks for the

specified events, and performs follow-up actions. Once the process terminates or the

user/admin disables the monitoring, the hardware monitor stops monitoring. In the

rest of this section, we discuss the challenges associated with designing PHMon and

our design decisions to address these challenges. In the next three subsections, we

explain the hardware design for PHMon, its software interface, and the OS support

for PHMon.

3.2.1 Architecture

In this subsection, we present the hardware design of PHMon. Our main design goal

for our hardware monitor is to provide an efficient and minimally invasive design.

According to the event-action monitoring model, our hardware monitor should per-

form three main tasks: collect the instruction execution trace of a processor, examine

the execution trace to find matches with programmed events, and take follow-up ac-
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Figure 3·1: An overview of the event-action model provided in PHMon.

tions. To perform these tasks, PHMon consists of three main architectural units: a

Trace Unit (TU), Match Units (MUs), and an Action Unit (AU).

Trace Unit (TU)

The TU is responsible for performing the first task, i.e., collecting the instruction

execution trace. To design our TU, we need to answer the following questions: what

information should the TU collect, from where should it collect this information,

and how to transfer the collected information to the hardware monitor?

In the current implementation of PHMon, we only collect information about the

architectural state of the processor (not the micro-architectural state). To this end,

the TU collects the entire architectural state of the processor using five separate

entries, i.e., the undecoded instruction (inst), the current Program Counter (PC)

(pc src), the next PC (pc dst), the memory/register address used in the current

instruction (addr), and the data accessed by the current instruction (data). The inst

entry contains the opcode as well as the input and output operand identifiers. In

principle, we can collect this information from different stages of a processor’s pipeline
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(i.e., decode, execute, memory, and write-back stages). We can take advantage of the

FIRRTL (Li et al., 2016) compiler1 (via annotations) to extract specific signals with

low effort and transfer them to PHMon. To ensure that we monitor the instructions

that are actually executed and in the order they are committed, we collect the above-

mentioned information from the commit stage of the pipeline. Hence, we call the

collected information a commit log.

During each execution cycle, the TU collects a commit log and transfers it to our

hardware monitor. To prevent stalling the processor’s pipeline while PHMon processes

each commit log, we design PHMon as a parallel decoupled monitor. Such a decoupled

monitor requires an interface to receive the commit log from the processor. In this

work, we design PHMon as an extension to the open-source RISC-V Rocket processor

via its RoCC interface. We choose the Rocket processor due to the availability of its

RISC-V open ISA and the capability of running the Linux OS on the processor.

However, our PHMon design is independent of the transport interface and ISA.

Figure 2·1 depicts the extended RoCC interface used in our design to communicate

with the Rocket processor. We have extended the RoCC interface to carry the commit

log trace (shown in red in Figure 3·2). Since Rocket is an in-order processor, we

minimally modify the write-back stage of the Rocket processor’s pipeline to collect

the commit log trace. PHMon receives the commit log, collected by the TU, from

the RoCC interface. Then, as shown in Figure 3·3, PHMon applies the configured

monitoring rules to the commit log to detect events (handled by MUs) and performs

follow-up actions (managed by the AU). As PHMon is decoupled from the processor

and processes the incoming commit logs one by one, we need a queuing mechanism to

record incoming commit log traces. Rather than placing a queue between the RoCC

interface and PHMon, we filter the incoming packets using MUs and only record the

1FIRRTL is an Intermediate Representation (IR) for digital circuits. The FIRRTL compiler is
analogous to the LLVM compiler.
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matched events in a queue prior to taking actions.

Match Units (MUs)

MUs are responsible for monitoring an incoming commit log and finding matches with

programmed events. Each MU is in charge of detecting a distinct event using a set of

monitoring rules. An event is specified at bit-granularity by a match entry and its

corresponding care/don’t care mask entry, which are applied on each commit log

entry. An MU matches the care bits of each match entry with the corresponding

bits in the commit log entry. As an example, consider a scenario where a user wants

to monitor any of the four branch instructions including BLT, BGE, BLTU, and BGEU.

The user can configure an MU to monitor these four instructions using the following

matching condition:

BLT, BGE, BLTU, BGEU: i n s t = 0x00004063 ; mask b i t = 0 x f f f f b f 8 0

The matching condition for inst evaluates to true when the current instruction

is a match with one of the BLT, BGE, BLTU, or BGEU instructions. Note that each of

these instructions is identified based on the opcode and func3 bits (Waterman et al.,

2011). For each of the remaining entries of the commit log (i.e., pc src, pc dst,

addr, and data), we set the masking bits to 0xffffffffffffffff, indicating these

fields are don’t cares. In Section 3.2.2, we will present our software interface for

programming MUs to monitor the target events. Whenever the predicate (the logical

conjunction of the matches on all the commit log entries) evaluates to true, a counter

in the corresponding MU increases. Once the counter reaches a programmed threshold

value, the MU triggers an activation signal and sends a match packet to the AU. The

AU queues the incoming match packets, while it performs actions for the packets

arrived earlier. To reduce the queuing traffic, an MU filters commit log traces based

on the monitoring rules before queuing them. An MU may be programmed by a user
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process to monitor only its own execution or by an admin to monitor processes with

lower permissions. In both cases, MU configuration becomes part of a process’ context

and is preserved across context switches by the OS. Although each MU monitors a

separate event, PHMon is capable of monitoring a sequence of events using multiple

MUs communicating through a shared memory space set up by either the OS or the

monitored process itself. For example, multiple MUs may all write to or read from

the shared memory.

Action Unit (AU)

The AU is responsible for performing the follow-up actions. Our main goal in de-

signing the AU is to provide a minimal design that supports a variety of actions

including arithmetic and logical operations, memory operations, and interrupts. To

this end, we effectively design our AU as a small microcontroller with restricted I/O

consisting of four microarchitectural components: Config Units (CFUs), an Arith-

metic and Logical Unit (ALU), a Local Register File, and a Control Unit (CU). In

addition to these four components, the Match Queue that records the match packets

(generated by MUs) is placed in the AU (see Figure 3·3).

Each MU is paired with a CFU, where the CFU stores the sequence of actions

to be executed once the MU detects a match. These programmable actions are in

fact the instructions of a small program that executes in the AU. The CU performs

the sequence of actions via hardware operations (i.e., ALU operations and memory

requests) or an interrupt (handled by software) and leverages the registers in the Local

Register File (6 registers in total) to perform these operations. The CU executes all

of the follow-up actions of one match packet before switching to the actions of the

next match packet. As part of the actions, the AU can access memory by sending

requests to the L1 data cache, a virtually-indexed physically-tagged cache, through

the RoCC interface. Hence, all memory accesses are to virtual addresses. The L1 data
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cache of Rocket processor has an arbiter to handle incoming requests from several

agents including the Rocket core and the RoCC interface. Note that the memory

hierarchy of Rocket core manages the memory consistency.

Config Units (CFUs): In the PHMon design, each MU is paired with a CFU.

Each CFU consists of three main components: an Action Config Table, a conf ctr,

and a conf ptr. The Action Config Table contains the list of actions (programmed

by the user) that PHMon should perform after the MU finds a match and triggers the

activation signal. The conf ctr and conf ptr preserve the index of the total number

of actions and the current action, respectively. Each entry in the Action Config Table,

called action description, consists of Type, In1, In2, Fn, Out, and Data elements

(see Figure 3·3). Type specifies one of the following four types: ALU operation,

memory operation, interrupt, and skip actions. In case of an ALU operation, In1

and In2 act as programmable input arguments of the ALU whereas for memory

operations, In1 and In2 are interpreted as data and address of the memory request.

In both cases, In1 and In2 can be programmed to hold the local register values

(maintained in Local Register File) or an immediate value. The Out element specifies

where the output of the ALU/memory operation is stored. The Fn element determines

the functionality of an ALU operation or the type of the memory request. The Data

element only applies to an ALU operation as immediate data. In case of a memory

operation, PHMon sends a memory request through the L1 data cache using the

RoCC interface. The interrupt action triggers an interrupt, which will be handled by

the OS. The skip actions provide the option of early action termination. In this case,

when the result of an ALU operation is equal to zero, the AU will skip the remaining

actions of the current event.

Local Register File: The Local Register File consists of three dedicated registers

for memory requests and their responses: Mem addr, Mem data, and Mem resp, and
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three general-purpose registers: Local 1, Local 2, and Local 3. Memory operations

occur using Mem addr and Mem data registers as the addr and data of the request

while the result gets stored in the Mem resp register. The user can use Local 1,

Local 2, and Local 3 registers for ALU operations.

Arithmetic and Logic Unit (ALU): We include a small ALU in PHMon to

support a variety of actions. The ALU operations are restricted inside PHMon;

however, these operations can be combined with other PHMon’s actions (i.e., memory

operations and interrupts) to provide the user with the capability to influence the

process’ execution. The input and output arguments of our ALU (including In1,

In2, Fn, and Out) are programmable. The Fn argument determines the ALU function

out of the following 10 different operations: Addition, Subtraction, Logical Shift

Left, Logical Shift Right, Set Less Than, Set Equal, AND, OR, XOR, and NOP.

Control Unit (CU): The CU handles all the tasks related to performing actions.

Our CU consists of a small FSM with three states: ready, wait, and busy. Depending

on the current state of the CU, it performs one or more of the following tasks: dequeue

a match packet from the Match Queue, update the Local Register File, receive the

next action description, and perform an action. Once all of the listed actions are

performed, the CFU notifies the CU. In this case, the CU enters the ready state,

repeating all of the described tasks for the next element stored in the Match Queue.

3.2.2 PHMon: Software Interface

We use RISC-V’s custom instructions to configure PHMon’s MUs and CFUs, as well

as to communicate with PHMon. Figure 3·4 shows the instruction format of the

custom instructions. According to this format, the type of an instruction is deter-

mined based on the combined values of the opcode and funct fields. The xs1, xs2,

and xd fields are corresponding booleans of rs1, rs2, and rd registers, respectively,

indicating whether these registers are being used in the instruction. In our design, we
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Figure 3·4: The RISC-V custom instruction format (Waterman et al., 2011).

Table 3.1: PHMon’s RISC-V extension instructions transmitted over RoCC.

Instruction Category funct xd xs1 xs2

Configure matching patterns 0 0 1 1
Configure actions 1 0 1 1
Control 2 0 1 1
Read status 3 1 1 0
Write status 4 0 1 1

only use the custom1 opcode; accordingly, the value of the funct field distinguishes

between our different instruction types. As listed in Table 3.1, we use custom instruc-

tions to augment the RISC-V ISA with five instruction categories that send/receive

data to/from PHMon by rs1, rs2, and rd registers. Each of our extended instruc-

tion categories consists of one or more instructions. As an example, the read status

instruction category contains instructions for reading the values of local registers as

well as the counters of each MU. PHMon distinguishes between the instructions in

the same category by decoding the values stored in the rs1 register.

We provide a list of functions that one can use to communicate with PHMon,

where each function is accessible by a user-space process, a supervisor, or both. Ta-

ble 3.2 shows the list of functions that one can use to communicate with PHMon,

and it also specifies whether the function is accessible through a user-space process,

a supervisor, or both. When a user process programs PHMon, then PHMon only

monitors that process’ execution. When an admin programs PHMon, it can be con-

figured to monitor a specific user process or monitor all user processes. To prevent an

unauthorized process from reconfiguring PHMon (after an MU and its paired CFU

are configured), we provide an optional feature to stop any further configuration (i.e.,
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Table 3.2: PHMon’s Application Programming Interface (API).

Function Instruction Category Accessibility Description

set pattern(MU id, *mask, pid) Configure matching patterns User/Supervisor Set the MU’s matching pattern
set thresh(MU id, count) Configure matching patterns User/Supervisor Set the matching threshold
set action(CFU id, *action) Configure actions User/Supervisor Program the CFU’s list of actions
conf matchpacket(MU id, element) Configure actions User/Supervisor Select MU data of match packet
reset(MU id) Control Supervisor Reset an MU and its paired CFU
enable(MU id) Control Supervisor Enable monitoring for an MU
disable(MU id) Control Supervisor Disable monitoring for an MU
count = rd count(MU id) Read status User/Supervisor Read the value of an MU’s counter
reg = rd register(reg id) Read status User/Supervisor Read the value of a local register
wr count(MU id, count) Write status User/Supervisor Write the value of an MU’s counter
wr register(count, reg id) Write status User/Supervisor Write the value of a local register

to seal PHMon’s configuration). To this end, we leverage the Rocket’s privilege level

(MStatus.priv) provided to PHMon through the RoCC interface. According to the

privilege level, PHMon permits or blocks incoming configuration requests.

The set pattern function in Table 3.2 configures the matching patterns of a spe-

cific MU using the MU id and a matching input for a specific process or all processes.

The matching input defines the matching conditions for each commit log entry. As

discussed before, a match condition consists of matching and masking bits. As an

example, according to the RISC-V ISA, a ret instruction is a pseudo-instruction de-

fined by JALR when rd=x0 and rs1=x1. We can monitor a ret (“jalr x0,x1,0”)

using the following matching condition:

r e t : i n s t = 0x00008067 ; mask b i t = 0x00000000

Accordingly, the matching condition for inst evaluates to true when the current

instruction is an exact match with the value of a ret instruction. For all the other

entries of the commit log (pc src, pc dst, addr, and data), we set the masking bits

to 0xffffffffffffffff, indicating all these fields are don’t cares. set thresh

function programs the number of matches that a specific MU needs to monitor prior

to triggering an action. Once an MU triggers an action, it sends the commit log

element specified by conf matchpacket function to the Match Queue as part of the

match packet. The actions are programmed using set actions function for a specific

CFU based on the value of an action struct. This struct has the same elements as
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an action description and the user can program each element. Our API provides

two separate functions for reading an MU’s counter value and reading the values

of registers stored in the Local Register File, namely rd count and rd register,

respectively. Similarly, wr count and wr register are available for writing into an

MU’s counter and local registers.

3.2.3 PHMon: OS Support

In this section, we discuss the necessary modifications to the Linux OS kernel to

support PHMon. We categorize our modifications into two classes: per process mod-

ifications and interrupt handling modifications.

Per Process OS Support: We extend Linux to support PHMon and provide a

complete computing stack including the hardware, the OS, and software applications.

We provide the OS support for PHMon at the process level. To this end, we alter

the task struct in the Linux Kernel to maintain PHMon’s state for each process.

We store the MUs’ counters, MUs’ thresholds, the value of local registers, and CFUs’

configurations as part of the task struct (using the custom instructions for reading

PHMon register values). We modify the Linux kernel to initialize the PHMon infor-

mation before the process starts its execution. Once PHMon is configured to monitor

a process, we enable a flag (part of the task struct) for that process. Our mod-

ified OS allocates a shared memory space for communication between MUs. After

allocation, the OS maintains the base address and the size of the shared memory as

part of the PHMon information for the process in the task struct. Additionally,

the OS sends the base and size values to PHMon. PHMon can simply protect the

shared memory from unauthorized accesses, where only the AU and the OS are au-

thorized to access the shared memory. To provide this protection, one of the MUs can

monitor any user-space load or store accesses to this range of memory and trigger

an interrupt in case of memory access violation. During a context switch, the OS
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reads the MU information (counter and threshold values) as well as the Local Regis-

ter File information from PHMon and stores them as the PHMon information of the

previous process in the task struct. Before the OS context switches to a monitored

process, it reads the MU information of the next process and writes it to PHMon

registers using the functions provided in the PHMon API. To retain the atomicity of

the programmed actions, our modifications to the OS delay a context switch until the

execution of the current set of actions and the corresponding actions of all the match

packets stored in the Match Queue are completed. It is worth mentioning that our

current implementation of PHMon is not designed for real-time systems. Hence, we

currently do not provide any guarantees for meeting stringent real-time deadlines.

Interrupt Handling OS Support: The OS is responsible for handling an in-

coming interrupt triggered by the CU. We configure our RISC-V processor to delegate

the interrupt to the OS. Additionally, we modify the Linux kernel to handle the in-

coming interrupts from the RoCC interface. In our security-oriented use case, the

OS terminates the process that caused the interrupt based on the assumption that

an anomaly or violation has triggered the interrupt. For debugging use cases, upon

an interrupt, we can trap into GDB for further debugging.

3.3 PHMon: Use Cases

PHMon distinguishes itself from prior work by its flexibility, versatile application do-

mains, and its ease of adoption. To demonstrate the versatility of PHMon, we present

five representative use cases: a shadow stack, a hardware-accelerated fuzzing engine,

an information leakage prevention mechanism, hardware-accelerated debugging, and

a code coverage engine.
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3.3.1 Shadow Stack

Our first use case is a shadow stack, a security mechanism that detects and prevents

stack-based buffer overflows as well as Return-Oriented-Programming (ROP) attacks.

As data on the stack is interleaved with control information such as function return

addresses, an overflow of a buffer can violate the integrity of such control information

and in consequence compromise system security. A shadow stack is a secondary stack

that keeps track of function return addresses to protect them from being tampered

with by an attacker. A stack buffer overflow attack occurs when a program writes data

into a stack-allocated buffer, such that the data is larger than the buffer itself. ROP is

a contemporary code-reuse attack that combines a sequence of so-called gadgets into

a ROP-chain. Gadgets typically consist of a small number of instructions ending in

a ret instruction. However, executing a ROP-chain violates function call semantics

(i.e., there are no corresponding calls to the rets in the chain). A shadow stack

can therefore detect ROP attacks.

Rather than providing a dedicated hardware solution (e.g., Intel CET (Intel Cor-

poration, 2017)), we leverage PHMon’s flexibility to implement a hardware-assisted

shadow stack. A shadow stack can easily be realized in PHMon with two MUs. We

program one MU (MU0) to monitor call instructions and another MU (MU1) to

monitor ret instructions. Also, we configure each of the MUs to trigger an action

for every monitored instance of call and ret (threshold = 1). The OS allocates a

shared memory space, i.e., space for the shadow stack, for each process that is being

monitored. Both MUs have access to this shared memory space. We can simply

protect the integrity of the shadow stack against unauthorized accesses by monitor-

ing load and store accesses to this range of addresses leveraging a third MU. Any

user-space access to this memory space results in an interrupt and termination of the

violating process. Once the OS allocates this memory space (during the initialization
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of a new process), it stores the base address and the size of the allocated memory

in the first two general-purpose registers of the Local Register File in PHMon. We

configure the CFUs to use the base address register as the shadow stack pointer. The

AU accesses the shadow stack by sending memory requests to the L1 cache using the

RoCC interface.

The summary of our event-action scenario for implementing a shadow stack is as

follows: the first MU (MU0) monitors calls and pushes the corresponding pc src

value to the shadow stack. The second MU (MU1) monitors rets and compares the

pc dst value with the value stored on the top of the shadow stack. If there is a mis-

match between calls and rets (e.g., an illegal ret address or a ROP attack), PHMon

triggers an interrupt and the OS handles the interrupt. In our current implementa-

tion, the OS simply terminates the process that caused the interrupt. Analogous

to (Broadwell et al., 2003), we can address call-ret matching violations caused

by setjmp/longjmp by augmenting the jmp buf struct with one more field to store

the shadow stack pointer. In addition to implementing a shadow stack (backward-

edge CFI enforcement), as shown in (Canakci et al., 2020), PHMon can assist with

forward-edge CFI enforcement.

3.3.2 Hardware-Accelerated Fuzzing

Fuzzing is the process of providing a program under test with random inputs with

the goal of eliciting a crash due to a software bug. It is commonly used by software

developers and security experts to discover bugs and security vulnerabilities during

the development of a software product and mostly for the deployed software. Big

software companies such as Google (Aizatsky et al., 2016) and Microsoft (Microsoft

Corporation, 2017) use fuzzing extensively and continuously. For instance, Google’s

OSS-Fuzz platform found over 1,000 bugs in 5 months (Google Corporation, 2017).

Similarly, American Fuzzy Lop (AFL) (Zalewski, 2017) is one of the state-of-the-art
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fuzzers that successfully identified zero-day vulnerabilities in popular programs, such

as PHP and OpenSSH.

AFL aims to explore new execution paths in the code to discover potential vulner-

abilities. AFL consists of two main units: the fuzzing logic and the instrumentation

suite. The fuzzing logic controls the mutation and scheduling of the inputs, and also

decides if the current input is interesting enough for further fuzzing. During fuzzing,

the instrumentation suite collects branch coverage information of the program for

the current input. In the current version of AFL (2.52b), the instrumentation can

be applied either at compile time with a modified gcc compiler (afl-gcc) if source

is available or at runtime by adding instructions to the native binary through user-

mode QEMU for closed-source programs. As QEMU uses DBI, it can instrument

each control-flow instruction with the necessary book-keeping logic. While this capa-

bility is flexible, DBI comes at a significant performance overhead (2.5× to 5× (Reddi

et al., 2004)). PHMon can easily monitor the control-flow instructions and apply the

necessary book-keeping logic without incurring the DBI overhead. In this study, we

do not modify the fuzzing logic of AFL. However, we program PHMon to implement

the instrumentation suite.

AFL uses a shared memory region, called bitmap, to store the encountered basic

block transitions (a basic block is an instruction sequence with only one entry and

one exit point) for the program executed with the most recent input. Each basic

block has an id, calculated by performing logical and bitwise operations using the

current basic block address. The address that points to the transition information

in the bitmap is calculated based on the current and the previous block id. We use

PHMon as part of AFL as follows (see Figure 3·5): (1) AFL starts executing the target

program on the RISC-V processor. (2) PHMon monitors the control-flow instructions

of the target binary. (3) Whenever PHMon detects a control-flow instruction, it
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Figure 3·5: Integration of PHMon with AFL. (a) The overview of QEMU-based
AFL. (b) The overview of PHMon-based AFL.
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updates the bitmap. (4) The child process (fuzzed program) terminates. (5) The

fuzzing unit compares the output bitmap with the global bitmap (the collection of

the previously observed basic block transitions) and determines whether the current

input is interesting enough for further fuzzing. PHMon conducts step (2) and step (3)

of the above-described AFL process. To this end, we program two MUs to monitor

the control-flow instructions (branches and jumps) with threshold = 1. Both of

these MUs have access to the bitmap allocated by AFL. We program each MU with

12 actions to update the bitmap.

3.3.3 Preventing Information Leakage

PHMon can also be used to prevent the leakage of sensitive information, such as

cryptographic keys. A concrete example is Heartbleed (Graham-Cumming, 2015), a

buffer over-read vulnerability in the popular OpenSSL library that allowed attackers

to leak the private key2 of any web-server relying on that library (Graham-Cumming,

2015). To prevent Heartbleed, we first identified the memory addresses that contain

the private key. Second, we manually white-listed all legitimate read accesses (i.e.,

instructions that access the key). As legitimate accesses to the key are confined to

three functions that implement cryptographic primitives, this was a straightforward

task. Finally, we programmed PHMon to trigger an interrupt in case any instruction

but those white-listed above accesses the key. To this end, we configure an MU to

monitor load instructions that access the key, and the CFU contains a series of actions

that compare the pc src of the load instruction against the white-list. As a proof

of concept, we programmed PHMon to prevent the leakage of the prime number p

and PHMon successfully prevented the disclosure. Note that the location of sensitive

information and its legitimate accesses can vary in different environments. Ideally, the

2More precisely, the attack leaks the private prime number p which allows the attacker to recon-
struct the private key.
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information about the location of an instruction that accesses sensitive data would be

produced by a compiler (e.g., by annotating sensitive variables). However, we leave

augmenting a compiler tool-chain to produce such meta-information which can be

readily enforced by PHMon as future work.

3.3.4 Watchpoints and Accelerated Debugger

As another use case, we focus on the debugging capabilities of PHMon. PHMon

can provide watchpoints for an interactive debugger, such as GDB, by monitoring

memory addresses (addr entry of the commit log) and then triggering an interrupt.

Although the number of MUs dictates the maximum number of unique watchpoints

that PHMon can monitor, our watchpoint capability is not limited by the number

of MUs. Each MU can monitor a range of monitoring addresses, specified by match

and mask bits. Here, the range of watchpoint addresses can be contiguous or non-

contiguous. Additionally, for each range, the user can configure PHMon to monitor

read accesses, write accesses, or both by specifying the inst entry of the commit log.

It is worth mentioning that most modern architectures only provide a few watchpoint

registers (e.g., four in Intel x86). We have used and validated the watchpoint ca-

pability of PHMon as part of the information leak prevention use case, described in

Section 3.3.3.

In addition to watchpoints, PHMon accelerates the debugging process. As an

example, PHMon can provide an efficient conditional breakpoint and trap into GDB.

Consider a debugging scenario for a conditional breakpoint in a loop as “break

foo.c:1234 if i==100”, where i is the loop counter. Here, we want to have a

breakpoint and trap into GDB when the loop reaches its 100th iteration. To this

end, PHMon monitors an event where pc src has the corresponding PC value of

line 1234. Then, PHMon triggers an interrupt when the MU’s counter reaches the

threshold of 100. Subsequently, the interrupt handler traps into GDB. For the de-
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bugging use cases, such as watchpoints and conditional breakpoints, the only required

action in case of detecting an event is triggering an interrupt. As a result, PHMon is

synchronized with the program’s execution.

3.3.5 Code Coverage Engine

As software complexity increases, the importance of software testing, i.e., the pro-

cess of evaluating a software product to detect possible bugs and errors, has gained

significant traction in academia and industry (Schumilo et al., 2017; Aizatsky et al.,

2016; Microsoft Corporation, 2017). Since the number of possible input test cases

for most programs is infinite, a smart method for selecting rational test cases is vi-

tal. One of the widely-used methods to evaluate the quality of software testing is

code coverage; a measurement of how many lines, branches, or functions of the pro-

gram execute due to a particular set of test inputs. Code coverage can be collected

by applying dynamic instrumentation using DBI tools such as Pin and DynamoRIO

or static instrumentation by annotating the source of the program (e.g., gcov [68]).

The former method adds software probes into the executable during runtime using dy-

namic binary translation; therefore, this technique introduces significant performance

overhead. The latter requires access to source code which prevents the analysis of

closed-source software.

Using PHMon, we collect the branch coverage and function coverage metrics for

both open-source and closed-source propriety software with low performance over-

head. To this end, we use two MUs, where MU0 monitors call instructions and MU1

monitors branch instructions with threshold = 1. Subsequently, MU0 and MU1 are

responsible for collecting the call and branch statistics to measure the function and

branch coverage metrics, respectively. When either of the MUs detects a match, it

writes the pc src, pc dst, and its id into a shared memory and appropriately in-

creases the address pointer. Measuring coverage does not require an online response.
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Hence, analogous to gcov, we post-process the collected information to present the

coverage results in a human-understandable way (function names, control flow graphs,

etc.).

3.4 Evaluation Framework

In this section, we discuss our evaluation framework for PHMon as well as our per-

formance, power, and area evaluation results.

3.4.1 Experimental Setup

We implemented PHMon as a RoCC (using Chisel HDL (Bachrach et al., 2012))

and interfaced it with the RISC-V Rocket processor (Asanović et al., 2016) that we

prototyped on a Xilinx Zynq Zedboard evaluation platform (Digilent, 2017). We per-

formed all experiments with a modified RISC-V Linux (v4.15) kernel. We compared

the PHMon design with a baseline implementation of the Rocket processor. For both

the baseline and PHMon experiments, we used the same Rocket processor configura-

tions featuring a 16K L1 instruction cache and a 16K L1 data cache. Table 3.3 lists

the microarchitectural parameters of Rocket core and PHMon. Note that similar to

HDFI (Song et al., 2016), we do not include an L2 data cache in our experiments

running on Rocket core. Due to the limitations of our evaluation board, in our ex-

periments, the Rocket Core operated with a maximum frequency of 25 MHz (both in

the baseline and PHMon experiments). For our ASIC evaluation, we synthesized the

Rocket core with a target frequency of 1 GHz.

For our shadow stack use case, we calculated the runtime overhead of 14 ap-

plications from MiBench (Guthaus et al., 2001), 9 applications (out of 12) from

SPECint2000 (Henning, 2000), and 8 applications (out of 12) from SPECint2006 (Hen-

ning, 2006) benchmark suites. To measure the performance improvement of our

hardware-accelerated AFL, we evaluated 6 vulnerable applications (Zalewski, 2017)
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Table 3.3: Parameters of Rocket core and PHMon.

Rocket Core

Pipeline 6-stage, in-order
L1 instruction cache 16 KB, 4-way set-associative
L1 data cache 16 KB, 4-way set-associative
Register file 32 entries, 64-bit

PHMon

MUs 2
Local Register File 6 entries, 64-bit
Match Queue 2,048 entries, 129-bit
Action Config Table 16 entries

Table 3.4: List of the benchmark applications used to evaluate AFL.

Application Description Version

indent Indentation for C code writing 2.2.1
zstd A compression application N/A
PCRE A regular expression library 8.38
sleuthkit A library to view file systems 4.1.3
nasm An assembler tool 2.11.07
unace Managing ACE archives 1.2b

listed in Table 3.4. To assess power and area, we used Cadence ASIC toolflow for

45nm NanGate process (Nangate Corporation, 2008) to synthesize PHMon and the

Rocket processor to operate at 1 GHz. We then measured the post-extraction power

consumption and the area of our system as well as our baseline system, i.e., the un-

modified Rocket processor. We considered all memory blocks (both in PHMon and

Rocket) as SRAM blocks and used CACTI 6.5 (Thoziyoor et al., 2008) to estimate

their power and area.

3.4.2 Experimental Results

Functionality Validation and Performance Results

In this subsection, we validate the functionality of our use cases and evaluate their

performance overhead. Additionally, we evaluate the performance overhead that PH-

Mon imposes during context switches.
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Shadow Stack: We validated the functionality of our shadow stack using be-

nign benchmarks and programs vulnerable to buffer overflow attacks. All benchmark

programs ran successfully with the shadow stack enabled resulting in no false detec-

tions from PHMon. We developed simple programs vulnerable to the buffer overflow

using strcpy and exploited this vulnerability.3 As designed, PHMon detected the

mismatches between calls and rets, triggered an interrupt, and the Linux Kernel

terminated the process. We measured the runtime overhead of our shadow stack

on different benchmark applications from MiBench, SPECint2000, and SPECint2006

benchmark suites. We ran each benchmark five times and calculated the average run-

time overhead. All standard deviations were below 1.5%. Unfortunately, we were not

able to successfully cross-compile and run three of the SPECint2000 benchmarks, i.e.,

eon, perlbmk, and vortex, for RISC-V. For the rest of the SPECint2000 benchmarks,

we used -O2 for compilation and reference input for evaluation (we clarify the ex-

ceptions in the results). For SPECint2006 benchmark applications, we used -O2 for

compilation. Considering the limitations of our evaluation board, we used the test

inputs to evaluate SPECint2006. Nevertheless, we were not able to run mcf, sjeng,

omnetpp, and perlbench benchmarks mainly due to memory limitations. Figure 3·6

shows the performance overhead of PHMon as a shadow stack over the baseline Rocket

processor. On average, PHMon incurs 0.5%, 1.4%, and 1.2% performance overhead for

our evaluated MiBench, SPECint2000, and SPECint2006 applications, respectively.

Overall, PHMon has a 0.9% performance overhead on the evaluated benchmarks.

Table 3.5 (the first three columns) provides a head-to-head comparison for the

performance overhead of PHMon-based and HDFI-based shadow stacks. For both

PHMon and HDFI, the evaluation baseline is the RISC-V Rocket processor. Unfortu-

nately, HDFI only provides the shadow stack overhead numbers for four SPECint2000

3We disabled Address Space Layout Randomization (ASLR) to simplify our buffer overflow at-
tack.
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Figure 3·6: The performance overhead of PHMon as a shadow stack.
† We were not able to run mcf benchmark with reference input on our evaluation board; as a result, we used the
test input for this benchmark.
? Due to the memory limitations of our evaluation board, we had to reduce the buffer size of the reference input
to 3 MB for gzip and bzip2 benchmarks.
± We had to use -O0 and an input buffer size of 96 MB to successfully run gap benchmark.

benchmarks (Song et al., 2016). These four benchmarks are cross-compiled for RISC-

V using the GCC toolchain. On average, for these four benchmarks, PHMon has a

1.0% performance overhead compared to a 2.1% performance overhead of HDFI. In

the last column of Table 3.5, we reported the performance overhead of our front-end

pass LLVM implementation of a shadow stack. Our LLVM pass instruments the pro-

logue and epilogue of each function to push the original return address and pop the

shadow return address, respectively. We used Clang to compile four SPECint2000

benchmarks and used the reference input for our evaluations. We only compiled

the main executable of SPEC benchmarks (without libraries such as glibc) using

Clang. Hence, the implemented front-end pass only protects the main executable.

On average, our LLVM plugin has a 5.4% performance overhead. The main source of

performance overhead for PHMon is an increase in the number of memory accesses.

Unlike our Rocket processor configuration, in a realistic deployment, the processor
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Table 3.5: Performance overhead of PHMon-based shadow stack compared to
that of HDFI-based (as reported in (Song et al., 2016)) and LLVM-based shadow
stacks.

Benchmark PHMon HDFI LLVM Plugin

gzip 1.12%? 1.12% 2.24%?

mcf 0.42%† 1.76% 8.42%†

gap 1.92%± 3.34% 12.30%±

bzip2 1.15%? 3.05% 3.66%?

? Similar to HDFI, due to the memory limitations of our evaluation board, we had to reduce the
buffer size of the reference input to 3 MB for gzip and bzip2 benchmarks.
± We used -O0 for PHMon and -O2 for LLVM and an input buffer size of 96 MB to run gap.
† Due to memory limitation of our evaluation board, we used test input for mcf benchmark.

Table 3.6: Performance overhead of previous software and hardware implemen-
tations of shadow stack compared with PHMon.

Mechanism Methodology Performance Overhead

(Szekeres et al., 2013) Software (LLVM plugin) 5% on SPEC2006

(Abadi et al., 2009) Software (binary rewriting) 21% on SPEC2000 (CFI + ID check)

(Corliss et al., 2005) Software (binary rewriting) 20.53% on SPEC2000 (encoding)
53.60% on SPEC2000 (memory isolation)

(Davi et al., 2011) Software (Pin tool) 2.17× on SPEC2006

(Sinnadurai et al., 2008) Software (DynamoRIO) 18.21% on SPEC2000

(Zhang et al., 2014) Software (static binary instrumentation) 18% on SPEC2006

(Dang et al., 2015) Software 3.5% on SPEC2006

(Ozdoganoglu et al., 2006) Hardware ∼0.5%-∼2.4% on SPEC2000

(Moon, 2017) Hardware 0.24% on SPEC2006

(Song et al., 2016) Hardware 2.1% on SPEC2000

PHMon Hardware 1.4% on SPEC2000, 1.2% on SPEC2006

would at least include an L2 data cache. Hence, we expect PHMon’s performance

overhead to be lower in a realistic deployment, which alleviates the significant per-

formance overhead caused by a cache miss.

To put PHMon’s performance overhead into perspective, Table 3.6 compares PH-

Mon’s overhead with that of other state-of-the-art software and hardware shadow

stack implementations. To facilitate this comparison, we have only listed the im-

plementations that measure their performance overhead on SPEC benchmarks. As
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an overall criterion, the average overhead of a technique should be less than 5% for

getting adopted by industry (Szekeres et al., 2013), which PHMon’s shadow stack

implementation satisfies.

Hardware-Accelerated Fuzzing: To fuzz RISC-V programs, we integrated

AFL into the user-mode RISC-V QEMU version 2.7.5. We fuzzed each of the 6

vulnerable programs for 24 hours using QEMU on the Zedboard FPGA. To provide

a fair comparison, for the PHMon-based AFL experiments, we fuzzed each of these

programs for the same number of executions as in the QEMU experiments. Similar

to other works in fuzzing (Schumilo et al., 2017; Stephens et al., 2016), we used

the number of executions per second as our performance metric. We fuzzed each

vulnerable program three times and calculated the average value of performance (all

standard deviations were below 1%).

For performance evaluation, we used the user-mode QEMU-based AFL running on

the FPGA as our baseline. We also ran the QEMU-based fork server version of AFL

as a comparison point for PHMon. Figure 3·7 shows the performance improvement of

the PHMon-based AFL over our baseline compared to the performance improvement

of the fork server version of AFL. On average, PHMon improves AFL’s performance

by 16× and 3× over the baseline and fork server version, respectively. Similar to

the baseline AFL, we can integrate PHMon with the fork server version of AFL.

We expect this integration to further enhance PHMon’s performance improvement of

AFL. We validated the correct functionality of the PHMon-based AFL by examining

the found crashes. On average, for the 6 evaluated vulnerable programs, PHMon-

based AFL and the baseline AFL detected 12 and 11 crashes, respectively, for the

same number of executions. The mismatch between the two approaches is due to the

probabilistic nature of AFL-based fuzzing. Since PHMon improves the performance

of AFL, it increases the probability of finding more unique crashes compared to the
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the number of executions per second for the baseline AFL.

baseline.

Detecting Information Leakage: To validate that PHMon detects and pre-

vents confidential information leakage, specifically private key of a server, we repro-

duced the Heartbleed attack on the FPGA by using OpenSSL version 1.0.1f. We

initially sent non-malicious heartbeat messages to the server. As expected, none of

these messages resulted in false positives. Next, we sent malicious heartbeat messages

to the server to leak information. PHMon successfully detected the information leak-

age attempt and triggered an interrupt; and then, the OS terminated the process. For

the non-malicious heartbeat messages, PHMon has virtually no performance overhead

(only once a key is accessed, PHMon performs a few ALU operations).

Watchpoints and Accelerated Debugger: We have used and validated the

watchpoint capability of PHMon as part of the information leak prevention use case.

Also, we evaluated PHMon’s capability in accelerating a conditional breakpoint in
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Figure 3·8: The performance overhead of PHMon compared to GDB for a loop
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a loop. Once the program execution reaches the breakpoint, PHMon triggers an

interrupt. We evaluated two scenarios for handling the interrupt, trapping into

GDB (PHMon GDB) and terminating the process by generating the core dump file

(PHMon CoreDump). Figure 3·8 shows the activation time of the breakpoint over the

loop index value for GDB compared to two PHMon-accelerated scenarios. In case

of GDB, which uses software breakpoints, each loop iteration results in two context

switches to/from GDB, where GDB compares the current value of the loop index with

the target value. For the PHMon GDB case, since PHMon monitors and evaluates the

conditional breakpoint, GDB can omit the software breakpoints used in the previous

case. Due to the initial overhead of running GDB, PHMon GDB has a similar execution

time as GDB for the first breakpoint index (i = 0). By increasing the breakpoint

index, PHMon GDB’s execution time virtually stays the same while GDB’s execution

time increases linearly. For the PHMon CoreDump case, since PHMon monitors the
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conditional breakpoint and generates a core dump (without running GDB), the per-

formance overhead is negligible (i.e., virtually 0). This experiment clearly indicates

PHMon’s advantage as an accelerated debugger.

Code Coverage Engine: To validate the correct functionality of our code cover-

age engine, we collected the function call and branch coverage information from three

different applications. As a first application, we wrote a basic program that includes

several branches and function calls. Additionally, we used two more applications, i.e.,

PCRE and zstd. For these three applications, we examined several different inputs

that produce different coverage results and compared our results with those reported

by gcov (Gcov, 2021) results for the same set of inputs. These results are based on

two different methods; 1) running the applications through the user-mode RISC-V

QEMU on x86-64 and 2) running the applications on RISC-V Linux. We compiled

the test applications with RISC-V GCC (-fprofile-arcs -ftest-coverage), and visualized

the branch and function call coverage using gcov and lcov (LCOV, 2021), the graph-

ical front-end of gcov. The branch coverage results of gcov for both of our methods

match with that of PHMon results. For the function coverage, PHMon detects all

the function calls successfully. To evaluate the performance overhead of our code cov-

erage engine over the unmodified baseline RISC-V processor, we used 6 vulnerable

applications tested with 5 different inputs for each application. As listed in Table 3.7,

on average, PHMon incurs 2.15% performance overhead (3.55% in worst case).

Context Switch Performance Overhead: We measured the performance over-

head of maintaining PHMon’s configuration (including the configuration of MUs and

CFUs, the counter and threshold of each MU, and local registers) across context

switches for mcf benchmark with test input. On average, over three runs, PHMon

increases the execution time of a context switch by 4.01%. The required operation

to maintain PHMon’s configuration during a context switch is constant. Hence, we
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Table 3.7: The performance overhead of PHMon as a code coverage engine.

Application Performance Overhead (%)

indent 2.39
zstd 3.11
PCRE 1.16
sleuthkit 0.11
nasm 3.55
unace 2.58
Geometric Mean 1.43

expect the performance overhead of PHMon during context switches to be the same

for other benchmarks. According to our evaluations for the shadow stack use case,

the activation queue is empty before each context switch and there is no need to delay

a context switch to complete the remaining actions. However, for different use cases

depending on the actions, we might need to delay a context switch to perform the

remaining actions.

Power and Area Results

We measured the post-extraction power and area consumption of PHMon and the

Rocket processor using the Cadence Genus and Innovus tools (at 1 GHz clock fre-

quency). In this measurement, we used black box SRAMs for all of the memory

components; then, we used CACTI 6.5 to estimate the leakage power and energy/ac-

cess of memory components. Rocket contains an L1 data cache and L1 instruction

cache while PHMon includes a Match Queue and Action Config Table as the main

memory components. In our implementation, the Match Queue and each Action

Config Table consist of 2,048 and 16 elements, respectively. Each Match Queue el-

ement is 129-bit wide (for a configuration with 2 MUs), while each Action Config

Table is 79-bit wide. Due to the small size of the Action Config Table, its power

and area overheads are negligible.

To estimate the dynamic power of the Rocket’s L1 caches and PHMon’s Match
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Figure 3·9: The power and area overheads of PHMon components compared to
the baseline Rocket processor.

Queue, we determined the average memory access rate of these components using

PHMon and CSR cycle address. We estimated the access rate of the Match Queue

for two of our use cases,4 i.e., the shadow stack and the hardware-accelerated AFL,

by leveraging PHMon (2 MUs with threshold=max) to count the umber of calls

and rets, jumps and branches, and call and branches, respectively. We averaged

the access rates of our two use cases and determined the average dynamic power

consumption based on this metric. Figure 3·9 depicts the total area overhead as well

as the power overhead of the main components of PHMon compared to the baseline

Rocket processor. There is a trade-off between the number of MUs and the power

and area overheads of PHMon. For the number of MUs ranging from 1 to 6, PHMon

incurs a power overhead ranging from 3.6% to 10.4%. Similarly, area overhead ranges

from 11% to 19.9% as we increase the MU count from 1 to 6. For all of our use

cases in this work, we used a design with only 2 MUs. This design has a 5% power

4The access rate for the other two use cases is negligible.
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Table 3.8: The power and area of PHMon’s AU and RISC-V Rocket core deter-
mined using 45nm NanGate.

Power (µW/MHz)
Description @1 GHz @180 MHz Area (mm2)
Rocket core 534.3 556.7 0.359

PHMon’s AU 43.8 25.0 0.048

overhead and it incurs a 13.5% area overhead. Table 3.8 lists the absolute power and

area consumed by PHMon’s AU and the Rocket core.5 Our FPGA evaluation shows

that a PHMon configuration with 2 MUs increases the number of logic Slice LUTs

by 16%.

3.5 Summary

In this chapter, we have presented PHMon, a PE in form of a programmable hard-

ware monitor. We have provided a minimally invasive and efficient implementation

for PHMon with expressive monitoring rules and flexible fine-grained actions. PH-

Mon is capable of enforcing a variety of security policies as well as assisting with

detecting software bugs and security vulnerabilities. We have implemented a prac-

tical prototype, consisting of a Linux kernel and user-space running on a RISC-V

processor interfaced with PHMon, on an FPGA. We have demonstrate the flexibility

and ease of adoption of PHMon via five representative use cases. Our evaluations in-

dicate that PHMon incurs low performance, power, and area overheads. In the spirit

of open science and to facilitate reproducibility of our experiments, we have open-

sourced the hardware implementation of PHMon, our patches to the Linux kernel,

and our software API: https://github.com/buicsg/PHMon.

5Note that in 40GPLUS TSMC process, Rocket processor has 0.034 mW/MHz dynamic power
consumption and its area is 0.39 mm2 (Lee et al., 2014). Here, we use a non-optimized but publicly
available process (45nm NanGate) for power and area measurements.
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Chapter 4

Intra-Process Memory Isolation

Intel MPK provides an efficient protection key-based approach for intra-process mem-

ory isolation. However, the current hardware implementation of Intel MPK and its

software support suffers from security and scalability issues, i.e., allowing a compro-

mised or malicious component to update permissions using a user-space instruction,

being vulnerable to protection-key use-after-free issue, and providing only 16 pro-

tection keys. While the flexible design of PHMon enables us to enforce a variety of

security policies, due to the limited number of MUs, PHMon is not suited for assisting

with intra-process memory isolation at page granularity. In this chapter, we propose

an SE, called SealPK, for intra-process memory isolation in RISC-V ISA. Similar to

Intel MPK, SealPK provides a per-page protection key (pkey); however, SealPK sup-

ports up to 1024 domains (64× more than Intel MPK) by leveraging the 10 unused

bits available in the PTE of each virtual page (RISC-V Sv-39). We mitigate the pkey

use-after-free problem at OS level by keeping track of the number of pages belonging

to the same domain and a lazy de-allocation approach. While Intel MPK does not

provide a solution to maintain the integrity of protection domains and their permis-

sions, we propose three novel sealing features to prevent an attacker from modifying

sealed domains, their corresponding sealed pages, and their permissions.
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4.1 Threat Model

We assume that the software may contain one or more memory corruption vulnerabil-

ities that an adversary can leverage to perform an attack. SealPK’s goal is to prevent

the adversary from reading or writing from/into sensitive memory pages. We assume

that the OS and all hardware components are trusted and bug free. Side-channel and

rowhammer attacks as well as microachitectural leaks are out-of-scope of this work.

4.2 SealPK: Design

In this section, we discuss the design of SealPK at hardware level, OS level, and

software level.

4.2.1 Hardware Design

We leverage the 10 unused bits of the RISC-V Sv39 PTE to store the pkey. The

Sv48 PTE also has 10 unused bits while a 32-bit RISC-V processor uses Sv32, where

there are no unused bits in PTE. In this case, we can store the pkey information

in a separate OS-managed data structure and use a TLB to cache the information

at hardware level. Figure 4·1 demonstrates our hardware modifications to support

SealPK. We add a new entry to each line of the DTLB to store the corresponding

10-bit pkey of each virtual page.1 Hence, our SealPK design supports up to 1024

domains, which is 64× more than the 16 domains supported by Intel MPK. We can

use a virtualization-based mechanism, like libmpk (Park et al., 2019), to support more

than 1024 domains. Although with a virtualization technique we can create more than

1024 domains, in reality we are still limited to 1024 concurrent physical pkeys. We

store the permission bits of the pkeys separately. In our design, we use 2 bits, i.e.,

(Read Disable (RD), Write Disable (WD)), to specify the access permission of

1As that pkey checks are only applicable to data memory accesses and not an instruction fetch,
we do not modify the ITLB.
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Figure 4·1: Modified MMU of the RISC-V Rocket core for SealPK support.
Here, we color-code the TLB entries of each domain, consisting of various pages
sharing the same pkey. For each data memory access, the effective permission bits
are determined by the intersection of the PTE permissions and pkey permissions
stored in PKR.

each protection key. Following the principle of the least privilege, unlike Intel MPK

and previous works, our design enables a write-only page, which can in turn reduce

the attack surface. Such a write-only page is specifically useful for log entries,

where one thread is responsible for writing the log and another thread processes the

written log. Note that the RISC-V ISA does not support write-only pages,2 and

our design provides this feature by leveraging pkeys regardless of the support in PTE

permissions.

We support 1024 pkeys in our design; hence, unlike Intel MPK, we cannot simply

use a single register to store all the pkey permission bits. To provide fast access

to these bits, we use a 2Kb on-chip SRAM-based memory to store the permission

bits. This memory, called PKR (shown in Figure 4·1), consists of 32 rows, where each

row stores the permission bits of 32 pkeys (64 bits total). We utilize the custom

2The PTE permissions for a write-only page is a feature reserved for the future use.
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instruction extension of the RISC-V ISA to define two new instructions, RDPKR and

WRPKR, to read from and write to PKR.3 The RDPKR instruction uses two registers,

i.e., rs1 and rd, for its operation. The input register (rs1) contains the pkey. At

hardware level, the upper 5-bits of the pkey are used to index into PKR and read the

corresponding 64-bit row of permissions. This 64-bit value is returned as the output

and stored in rd. The WRPKR instruction uses two input registers, i.e., rs1 and rs2, for

its operation. The first input register (rs1) contains the pkey, which is used to index

into PKR. The second input register (rs2) contains the new value of 64-bit permissions

of the corresponding row. The hardware uses this new 64-bit value to overwrite the

permission bits of the row indexed by pkey.

In our hardware design, we provide a control logic to determine the effective per-

mission bits of each data memory access. Consider the example shown in Figure 4·1,

where there is an incoming write request to the virtual page #87. In addition to

reading the page’s read/write permission bits stored in DTLB (11), the control logic

reads the corresponding 2-bit permission bits of the pkey (1111000001) stored in PKR.

The control logic uses the upper 5 bits of the pkey to index into a specific 64-bit row of

PKR and the lower 5 bits to select the 2 permission bits (01). The effective permission

is the intersection of the DTLB’s and pkey’s permission bits. In this example, the

effective permission is 10; hence, the write access is not allowed. If a data access is

not allowed according to the effective permission, it leads to a load/store page fault;

the processor triggers an exception, and the OS handles the page fault.

4.2.2 OS Support

At the OS level, we add the support to store each page’s pkey in the 10 unused bits of

the PTE. Our RISC-V kernel support is built upon the existing Linux kernel support

3To simplify the implementation of the custom instructions, we leverage the RoCC extension
of the Rocket core, which adds the support for decoding and executing custom instructions to the
Rocket core’s pipeline.
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for MPK, i.e., through pkey alloc, pkey free, and pkey mprotect system calls.

Lazy de-allocation

To keep track of the allocated pkeys, we implement a 1024-bit allocation bitmap.

To efficiently address the pkey use-after-free problem of Intel MPK, we leverage a

lazy de-allocation approach. We implement a 1024-bit dirty map to indicate whether

each pkey has been lazily de-allocated. We also keep track of the number of pages

currently associated with each pkey using a counter map. If a pkey’s corresponding

counter is not zero, pkey free updates the permission bits of the pkey in PKR to

(0,0); hence, the page-table permissions determine the effective permission of the

corresponding pages. Rather than clearing the corresponding bit of the pkey in the

allocation map, pkey free sets the dirty bit and pkey alloc would not allocate a

dirty pkey. Whenever a memory page with a dirty pkey gets freed, we update the

number of pages associated with the dirty pkey in the counter map, accordingly. Once

the counter becomes zero, we erase the dirty bit of the corresponding pkey; hence, it

can safely be allocated afterwards. If pkey alloc cannot find a free non-dirty pkey,

it returns an allocation error to indicate no free pkey is available.

Per thread OS support

We modify the task struct in the Linux kernel to maintain the contents of PKR for

each thread during the context switches. According to our evaluations, maintaining

PKR information during context switches incurs less than 2% performance overhead.

Furthermore, we modify the RISC-V page fault handler in the Linux kernel to identify

a page fault caused by a pkey permission violation. We augment the segmentation

fault with the pkey information to accurately reflect the cause of the fault to the

developer and assist with debugging.
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4.2.3 Sealing Features

In this subsection, we describe three novel sealing features to protect allocated do-

mains, their associated pages, and their permission bits from tampering by an at-

tacker. To clarify the defensive capabilities of these features, consider the example

shown in Figure 4·2. In this example, a software developer writes a program that

handles sensitive financial records. The Main function (written in-house) initially al-

locates the memory pages for the financial record (log) as readable-writable and

assigns a protection key to these pages. Following the principle of the least privilege,

the initial value of the pkey restricts the permission to read-only pages. In this

example, Func-A updates the contents of the log. We assume that this function is

developed in-house and has access to the pkey. Prior to writing the sensitive finan-

cial information into the log, Func-A modifies the domain permission of the log to

write-only. For performance reasons, the software developer leverages third-party

untrusted libraries in the implementation of Func-B, Func-C, and Func-D. Funct-B

reads the log and returns a sorted copy of the log. Func-C does not have access to

the log, instead it receives a list of prices and converts them to a different currency.

Funct-D reads the log and prints all the transactions of a specific account. Hence,

Func-B and Func-D, can only access the log as read-only memory. For security

reasons, the untrusted functions are not aware of the pkey value. In the rest of this

section, we explain how each of our sealing features protects the log against potential

attacks originating from the untrusted components.

Sealing the domain: In this scenario, Func-B is a malicious third-party compo-

nent, which receives the log as a read-only input. Funct-B is supposed to read the

log and return a sorted copy of it. However, as shown in Figure 4·2, this untrusted

component allocates a new readable-writable pkey, invokes the mprotect system

call and assigns the new pkey to the log. In this way, Func-B can falsify the finan-
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Func-A
/* Trusted component;
updates the log */
asm volatile(seal_start)
pkey_set(pkey, 0x2)
update_log(log)
asm volatile(seal_end)
pkey_perm_seal(pkey)

Main
// The main function allocates the log and configures the memory
int *log
log = mmap(NULL, N*getpagesize(), PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
int pkey = pkey_alloc(0x1) // read_only domain
pkey_mprotect(log, N*getpagesize(), PROTE_READ | PROT_WRITE, pkey)
pkey_seal(pkey, true, true)

Func-B (log)
/* Untrusted malicous component; should
only be able to read the log */
/* tries to gain write access to the log */
// readable-writable pkey
int new_pkey = pkey_alloc(0x0) 
pkey_mprotect(log, N*getpagesize(), 
   PROT_READ | PROT_WRITE, new_pkey)
buffer = update_log(log)
...
new_log = sort(log)

Func-C (prices)
/* Untrusted malicous component; does
not have access to log */
/* tries to cause a carash by adding the
prices to the same domain as log with
brute-force */
static int target_pkey = 0
pkey_mprotect(prices, M*getpagesize(),
      PROT_READ|PROT_WRITE, target_pkey)
target_pkey++
...
convert_currency(prices)

Func-D (log)
/* Untrusted component;
only reads the log but it
suffers from a buffer
overflow vulnerability */
char name[20]
//buffer overflow vulnerability
gets(name) 
print_log(log, name)

Buffer overflow

An atacker

injects 

WRPKR(0x1, 0x0)

Figure 4·2: Example scenario for SealPK’s sealable features. The red texts in
Func-B and Func-C show an effort to attack the pkeys. The yellow texts in Func-D

show a vulnerability that can be leveraged by an attacker to compromise the pkey
permissions. The green texts in the Main and Func-A functions show our sealing
features to protect the domain, its associated pages, and its permissions from
unauthorized modifications.
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cial records stored in the log. Unfortunately, the developer who uses this untrusted

function does not have access to its source-code and is unaware of its maliciousness.

In this scenario, Intel MPK is not capable of preventing this malicious modification

to the log within the same thread. To prevent such unauthorized modifications,

we provide a domain sealing option by adding a sealed domain map to the kernel.

We modify the pkey mprotect system call to check the sealed domain map prior

to modifying a domain’s pkey. Once a domain is sealed, pkey mprotect prevents

any further modifications to PTE permissions as well as the pkey value, efficiently

throwing such attacks.

Sealing pages: We assume that after the initialization step in the Main function,

no more pages will be added to the protection domain. Consider a scenario where

Func-C, a malicious third-party component, aims to crash this financial application.

Crashing the application at runtime could lead to denial-of-service and financial losses.

Func-C does not have access to the log; it only receives a list of prices and converts

them from one currency to another one. This price list does not include any sensitive

information; hence, Func-A does not assign a protection domain to it. In this exam-

ple, in each call, the malicious Func-C adds the pages associated with the price list

to a different domain, hoping that the new domain would restrict the read permis-

sion. As a result, after the price list is assigned with the same pkey as the log, once

Func-A tries to read the price list the program crashes with a segmentation fault.

Intel MPK cannot prevent this issue within the same thread; similarly, our domain

sealing feature is not sufficient in this scenario. To ensure that no more pages can be

added to a domain (either by mistake or by a malicious component), we provide a

page sealing option by adding a sealed page map to the kernel, indicating whether

the pages associated with each pkey are sealed. We modify the pkey mprotect sys-

tem call to check the sealed page map and only allow adding new pages to a pkey
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domain if the associated pages of that domain are not sealed. As shown in Fig-

ure 4·2, we add a new system call, pkey seal(int pkey, bool seal domain, bool

seal page), which allows the programmer to seal a domain and/or its associated

pages. Note that once a domain or its associated pages are sealed, the seal cannot be

broken unless the corresponding pkey and all its associated pages are freed.

Sealing permissions: In this scenario, we assume Func-D is a third-party com-

ponent, suffering from a buffer overflow vulnerability. As shown in Figure 4·2, an

attacker can leverage this vulnerability to inject a WRPKR instruction at runtime and

modify the permission bits of the log to readable-writable. Subsequently, the

attacker can falsify the sensitive contents of the financial record. Intel MPK does

not protect pkey permissions against control-flow hijacking attacks that leverage the

WRPKRU instruction. To prevent such a tampering, we provide a permission sealing

feature, which allows the developer to restrict the execution of the WRPKR instruction

to a specified range of memory addresses. In this example, we aim to restrict the

occurrence of the WRPKR instruction to the address range of Func-A.

At hardware level, as shown in Figure 4·3, we keep track of sealed pkey permissions

using a local memory, called SealReg. We modify the Rocket core’s pipeline to consult

SealReg prior to executing a WRPKR instruction. If the permission bits of the pkey

are sealed, the WRPKR instruction is only allowed in the permissible range, specified

by the developer. We leverage a Content-Addressable Memory (CAM) like structure,

named PK-CAM, to cache the permissible range of each pkey. If the pkey information

is available in PK-CAM but the current address of the WRPKR instruction is not in

the permissible range, then SealPK prevents the execution of WRPKR and causes an

exception. If PK-CAM does not include the pkey information, we will refill PK-CAM.

To do this, we trigger an interrupt and insert the pkey and its permissible range to

PK-CAM in the OS interrupt handler. As part of our future work, we plan to delegate
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Figure 4·3: High-level view of SealPK’s hardware support to seal pkey permis-
sions.

this interrupt to user level and provide a secure software library to update PK-CAM.

We also provide the software support for sealing the permissions. We provide two

new custom instructions, i.e., seal start and seal end, to specify the contiguous

permissible range of each pkey. Although these instructions can be added to the source

code (Figure 4·2), the more efficient way of using them is by a compiler pass or through

runtime mechanisms such as ld-preload. After specifying the start and end addresses

of a permissible range for WRPKR, the developer has to invoke a newly added system

call (pkey perm seal) to seal the permissions. This system call leverages a custom

instruction, which is only accessible to the supervisor mode, to seal the permission

bits by updating the SealReg and PK-CAM. We modify the Linux kernel to maintain

the SealReg information as well as permissible range of each pkey during context

switches for each process. Note that SealReg and the permissible range of a pkey are

implemented similar to a one-time fuse, i.e., they can only be written once for each

process. Hence, after configuration, the permission sealing feature cannot be modified.

The simplicity and efficiency of our permission sealing feature distinguishes our work

from existing works focused on preventing the manipulation of a domain’s permissions

by an attacker, e.g., (Hedayati et al., 2019) and (Vahldiek-Oberwagner et al., 2019).

By leveraging SealPK’s sealing features, the software developer can implement a
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tamper-proof log of financial records in the face of buggy and malicious third-

party components.

4.3 SealPK: Case Study

To demonstrate the effectiveness of SealPK, as a case study, we use SealPK to protect

an isolated shadow stack that prevents ROP attacks. It is imperative to guarantee

the integrity of the shadow stack (Burow et al., 2019), i.e., the shadow stack area

should be an isolated area within the process’ address space to prevent attackers

from modifying it. We isolate the shadow stack memory in a protection domain.

Once the shadow stack memory is allocated and assigned to a domain, no more pages

will be added and the protection domain stays the same during the process execution.

We leverage the domain and page sealing features to protect the allocated domain and

pages of the shadow stack from further modifications (similar to scenarios described

in Section 4.2.3) after the initial configuration.

For the shadow stack implementation, we first implement a baseline front-end pass

LLVM plugin (the same plugin that we used in PHMon’s evaluation). This front-end

pass allocates a memory area for the shadow stack and instruments the prologue

and epilogue of each function to push the original return address into the shadow

stack memory and pop the shadow return address from that memory, respectively.

To isolate the shadow stack, we modify the front-end pass to allocate a pkey and

to assign it to the shadow stack memory pages. To protect the shadow stack from

modifications, we initialize the pkey as read-only. We implement a RISC-V back-

end pass to temporarily update the pkey permission to readable-writable in the

prologue, where we push the return address into the shadow stack. Right after pushing

the return address, the back-end pass disables the pkey write permission. Our back-

end pass inserts the required RDPKR and WRPKR instructions to update the pkey’s
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permission bits. We can leverage our permission sealing feature to restrict the WRPKR

occurrences to the memory range of the back-end pass.

4.4 Evaluation

In this section, we evaluate the performance overhead of SealPK for the isolated

shadow stack. Additionally, to demonstrate the hardware overhead of SealPK, we

report its FPGA resource utilization.

4.4.1 Experimental Setup

We use the Chisel HDL to implement SealPK on the RISC-V Rocket core, with the

same configurations that we described in Section 3.4.1. We add the OS support for

SealPK to the Linux kernel v4.15. As a case study, we implement an isolated shadow

stack using LLVM front-end and back-end passes. We use Clang v.7 and v.8 for our

front-end and back-end passes, respectively. We prototype our hardware design with

the full software stack on a Xilinx Zedboard FPGA.

For performance evaluation, we use RISC-V LLVM to cross-compile 6 applica-

tions (out of 12) from SPECint2000 (Henning, 2000), 4 applications (out of 12) from

SPECint2006 (Henning, 2006), and 7 applications from MiBench (Guthaus et al.,

2001) benchmark suites. Due to compilation issues and memory limitations of our

FPGA, we were not able to successfully cross-compile and run all the applications

from these benchmark suites. In particular, for SPECint2000, we got a segmentation

fault for the baseline execution of vortex and gcc, and faced LLVM cross-compilation

issues for the remaining 4 applications. For SPECint2006, with the baseline code, we

got an out of memory error for mcf and a segmentation fault for gcc. We faced

various LLVM cross-compilation issues for the remaining 6 applications. Note that

RISC-V LLVM is still not as mature as GCC support for RISC-V. In our evaluations,

we use the large inputs for MiBench and evaluate SPECint2000 and SPECint2006
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applications using test inputs. We use the test inputs for SPEC evaluations due

to the memory limitation of our FPGA board (256MB) as well as the long execution

time of the benchmarks for the mprotect comparison point (multiple days). In our

evaluations, we measured the total execution time of an application as our perfor-

mance metric. For the baseline, we compiled the benchmarks using Clang v.8 without

applying any passes and ran the benchmarks on an unmodified core and Linux kernel.

We ran each application three times and report the geometric mean of the execution

times.

4.4.2 Experimental Results

Performance Results

Figure 4·4 shows the performance overhead of various shadow stack implementations

compared to the baseline. The Inline implementation is a non-isolated shadow

stack as a front-end LLVM pass, where the shadow stack capability is inserted as

an inline code. The Inline implementation has a 7.12%, a 4.44%, and a 2.18%

performance overhead, on average, for SPEC2000, SPEC2006, and MiBench bench-

marks, respectively. The performance overhead difference between the Inline and

Func implementations (6.73% for SPEC2000, 4.94% for SPEC2006, and 1.47% for

MiBench) shows the effect of using a function call in the front-end pass rather than

an inline code. Note that Inline and Func implementations of the shadow stack can-

not guarantee its integrity; hence, the shadow stack memory remains unprotected.

SealPK-WR is an isolated implementation of the shadow stack, which leverages SealPK

to temporarily allow write permission into the shadow stack memory. We implement

SealPK-WR as a back-end pass that uses the function name in the Func implemen-

tation to simply identify the exact location to insert the necessary WRPKR instruc-

tions. For SPEC2000 and SPEC2006, respectively, SealPK-WR has an average of

19.59% and 13.95% performance overhead while for less-intensive MiBench applica-
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Figure 4·4: Performance overhead of various LLVM-based shadow stack im-
plementations for SPECint2000, SPECint2006, and MiBench benchmarks. The
Inline implementation is a front-end LLVM pass, where the shadow stack capa-
bility is inserted as an inline code. The Func implementation uses a function call
in the front-end pass rather than an inline code. SealPK-WR is implemented as a
back-end pass built upon Func, where it writes the new value of pkey permission
bits without maintaining the rest of the permission bits. SealPK-RD+RW adds the
support to read the corresponding row of the pkey before updating it. mprotect is
implemented as an inline front-end pass by invoking mprotect system call before
and after writing the return address into the shadow stack.

tions SealPK-WR only incurs 8.12% performance overhead. SealPK-WR assumes that

during the program execution, only one pkey is allocated; hence, it writes the new

value of pkey permission bits without reading and maintaining the rest of the permis-

sion bits. Adding the support for reading the corresponding row of the pkey before

updating it, i.e., SealPK-RD+RW, increases the performance overhead by 1.41%, 0.86%

and 0.40% for SPEC2000, SPEC2006, and MiBench, respectively.

As a comparison point, we implemented an isolated version of the shadow stack

leveraging the mprotect system call. In this scenario, we modified our inline front-end

pass to invoke mprotect before and after writing the return address into the shadow

stack to allow and disallow the write permission, respectively. As expected, using

mprotect incurs considerable performance overhead, i.e., 2875.62% for SPEC2000,

1982.70% for SPEC2006, and 320.21% for MiBench, on average, which makes it an

infeasible option. mprotect requires a context switch into the kernel, followed by a
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Table 4.1: The FPGA utilization of SealPK compared to the baseline Rocket
core.

Baseline Rocket Core + SealPK
Used Utilization Used Utilization

Total Slice LUTs 32030 60.21 35019 65.83
LUTs as logic 30907 58.1 33852 63.63
LUTs as Memory 1123 6.45 1167 6.71
Slice Registers as Flip Flop 16506 15.51 19392 18.23

full page table walk to change the permissions of all the specified pages, and then

a TLB flush. On the contrary, leveraging SealPK to implement an isolated shadow

stack uses a user-space instruction to modify the pkey permission bits. We leverage

our sealing features to protect the allocated pkey, its associated pages, and their

permissions from tampering by an attacker.

FPGA Resource Utilization

Table 4.1 shows the FPGA utilization of adding SealPK to the Rocket core compared

to the baseline unmodified Rocket core. In our FPGA prototype, enhancing Rocket

core with SealPK increases the LUT and FF utilization by 5.62% and 2.72%, respec-

tively. The main source of area and power overhead for SealPK is PKR, a 2Kb local

memory. Accordingly, we estimate that our power overhead is also less than 6%, even

when considering a 100% access rate to PKR. In our FPGA evaluation, the Rocket

core operated with a maximum frequency of 25 MHz (both in the baseline and the

enhanced version with SealPK experiments).

4.5 Summary

In this chapter, we have presented SealPK, an SE for intra-process memory isolation

in RISC-V ISA. The goal of our SE is to provide an efficient and secure per-page

protection capability that can support a large number of protection domains. We

have leveraged the 10 unused bits available in the Sv39 PTE of each virtual page
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to support up to 1024 protection domains. We have developed three novel sealing

features to prevent an attacker from modifying sealed domains, their corresponding

sealed pages, and their permissions. We have demonstrated the efficiency of our

design by securing a shadow stack on our FPGA prototype.
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Chapter 5

Runtime Instruction Filtering

In this chapter, we discuss our design of an SE for runtime filtering of unsafe instruc-

tions. Such unsafe instructions could compromise the integrity of the isolation in-place

by modifying access permissions, disabling protections, gaining higher privilege, etc.

Our SE, called FlexFilt, assists with securing various isolation-based mechanisms.

Our goal is to design a flexible and efficient hardware engine capable of filtering dif-

ferent user-defined instructions at different privilege levels in various parts of the

code. Although a flexible hardware feature such as PHMon enables us to prevent the

execution of various unsafe instructions in specific ranges of memory addresses, the

number of memory regions for filtering instructions is limited to the number of MUs.

FlexFilt enables the software developer to create up to 16 instruction domains, where

each instruction domain can be configured to filter the execution of user-specified

instructions at page granularity. At hardware level, FlexFilt provides configurable

filters to prevent the execution of various user-defined instructions.

5.1 Threat Model

FlexFilt can be leveraged in a variety of security use cases introduced by prior work

(see Table 2.2). In our work, for each use case, we follow the common threat model

in the prior work. For intra-process memory isolation approaches, we assume that

the untrusted parts of the code might contain vulnerabilities that an adversary can

exploit to inject arbitrary instructions including the target instructions (e.g., WRPKRU).
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We do not assume any restrictions about what an attacker would do after a successful

attack.

As the OS is responsible for allocating the instruction domains and maintaining

FlexFilt’s information, we assume the OS kernel is (partially) trusted. In Section 5.5,

we discuss about FlexFilt’s capabilities and limitations in filtering kernel-level instruc-

tions. We assume all hardware components, including our modifications, are trusted

and bug free. Hence, we consider rowhammer, side-channel, and fault attacks beyond

the scope of this work.

5.2 FlexFilt: Design

In this section, we discuss FlexFilt’s design goals, the challenges involved in imple-

menting FlexFilt, and our solutions to address those challenges. Unlike prior works

that provide a solution capable of filtering a small number of specific target instruc-

tions, we strive to provide a generalized solution for filtering user-defined instructions

at runtime. Such a generalized solution should be flexible, efficient, and fine-grained.

To be compatible with existing OS-supported memory protections, we implement

FlexFilt at page granularity, i.e., each instruction page can apply a combination of

the configured instruction filters. This design choice allows us to leverage the already

existing OS-managed structures such as PTE as well as hardware structures such as

TLB in our implementation. Providing a finer granularity for instruction filtering

requires substantial modifications at both OS-level and hardware-level. We need to

provide the OS support as well as a software API to enable a software developer to

utilize FlexFilt. In the rest of this section, we will first discuss our hardware design

choices, followed by the OS support for FlexFilt, and then the software support to

configure our flexible instruction filters.
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5.2.1 FlexFilt: Hardware Design

In this subsection, we discuss the hardware design of FlexFilt.

Instruction Protection Domains

To leverage the existing OS-level and hardware-level structures for memory protec-

tion, we implement FlexFilt at page granularity. Inspired by the design of memory

protection keys, we devise instruction protection keys, which enables us to simply

divide the software code into trusted and untrusted executable partitions. The soft-

ware developer can assign the same instruction protection key to a group of executable

pages, which subsequently creates instruction protection domains. The existing mem-

ory protection keys such as Intel MPK are only applicable to data memory accesses,

not instruction addresses. In this work, our focus is on associating fetched instructions

to protection domains according to their corresponding addresses.

The prior work such as Donky (Schrammel et al., 2020) and SealPK leverage the

10 unused bits of Sv39/Sv48 PTE to store the memory protection key information.

Similarly, we can utilize these 10 unused bits to store the instruction protection keys,

which would provide up to 1024 instruction protection domains. Supporting a large

number of data memory protection domains is a necessity in various use cases, such as

PMO (Xu et al., 2020) and OpenSSL (Park et al., 2019). However, supporting a large

number of domains is not required for instruction protection domains. According to

our literature review, the previous works with the instruction filtering requirement

only needed two instruction domains, i.e., a trusted and an untrusted domain. How-

ever, providing only two instruction protection domains could be restrictive for some

use cases (e.g., the combination of various protection mechanisms). But, we do not

need 1024 instruction domains, even if we apply all the protection mechanisms pro-

posed by a variety of the previous works into a single system. As a trade-off for the
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number of instruction domains, we utilize the 4 lower bits of the 10 unused bits in the

PTE to store the instruction protection keys (ipkey). Accordingly, FlexFilt supports

up to 16 instruction protection domains, where each domain filters target instructions

in the domain’s corresponding pages.

Flexible Filters

Each instruction protection domain prevents the execution of target instructions in

its corresponding pages. Ideally, we are interested in a flexible feature capable of

filtering any number of target instructions in each domain. In reality, providing such

a capability is not practical due to resource limitations and substantial area and

power overheads. With a limited number of instruction filters for each domain, we

consider two design options. First, each instruction domain has a fixed number of

dedicated instruction filters. Second, there is a fixed number of shared instruction

filters, and each instruction domain can apply a combination of these shared filters

to its corresponding pages. Although the first option provides more flexibility in

terms of filtering capabilities, it requires more hardware resources. Additionally, the

instruction filter information for all the domains should be maintained at OS level

during context switches. Considering the overheads involved with the first design

option, we choose the second option in our design. We leave further investigations

into the overheads involved in implementing the first design option as part of our

future work.

By choosing the second design option, i.e., a fixed number of shared configurable

instruction filters, the next design question we have to answer is the exact number of

shared instruction filters. To choose the number of instruction filters, we examine the

number of required filters in the previous works (listed in Table 2.2). Most of the pre-

vious works required to filter only one target instruction. In the worst case scenario,

Fidelius (Wu et al., 2018) needed to filter the execution of three unique instruction
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types (five instructions in total). Considering the possibility of enforcing a combina-

tion of protection mechanisms, we choose to implement four shared instruction filters

in our design. With four instruction filters we can filter all the target instructions

in Fidelius (Wu et al., 2018) based on their instruction type. Once the software de-

veloper configures the shared instruction filters, each instruction domain applies a

combination of the shared filters to its corresponding pages, i.e., an instruction do-

main can apply or not apply each of the filters. Four configurable filters results in 16

possible combinations of applicable filters. As FlexFilt supports up to 16 instruction

domains, each domain can apply one of the 16 possible combinations of configured

filters.

One of the main design goals of FlexFilt is providing flexible instruction filters. To

achieve this goal, we enable a software developer to configure the filters (Section 5.2.3).

Additionally, we design each filter in an inherently flexible way. To do this, as a first

step, we examine the RISC-V instruction formats (Waterman et al., 2019a). At

hardware level, we can design a simple filter by maintaining the opcode of the target

instruction in a register. Then, we can apply this filter to the instruction trace at

runtime by comparing the opcode of each instruction at the execution stage with

the filter. However, various RISC-V instructions are identified by a combination of

funct3/funct7 and the opcode. As an example, consider various branch instructions,

including BEQ, BNE, BLT, BGE, BLTU, and BGEU, in the RISC-V ISA. These branch

instructions share the same opcode value (1100011) and they are distinguished based

on the value of funct3 bits. In this scenario, a flexible instruction filter offers the user

the option of filtering a specific branch instruction, a subset of the branch instructions,

or all of the above-mentioned branch instructions. To provide such flexible filtering

options, we leverage a bit-granular match/mask mechanism, similar to the matching

mechanism that we used for PHMon.
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Consider a scenario where the user is interested in filtering four of the previously

mentioned branch instructions, i.e., BLT, BGE, BLTU, BGEU. Figure 5·1 shows the for-

mat of these instructions. The common bits of these instructions, specified with a

green box, can be used for identifying them. In this example, the uncommon bits are

don’t cares, i.e., they serve no purpose in identifying the target branch instructions.

Accordingly, the software developer can simply describe the four branch instructions

using Match and Mask bits. The Match bits specify the 32-bit value of an instruction

identified as one of the four branch instructions and the Mask bits specify the don’t

care bits. At hardware level, our Flexible Filters enforce such a matching/mask-

ing approach (the bottom part of Figure 5·1). The control logic of the Mask acts like

a filter that blocks the masked parts of an instruction (specified by 1 bits in the Mask

and shown by dark gray color in Figure 5·1) and passes through the rest of the instruc-

tion bits (shown by transparent gray color in Figure 5·1). The output of this control

logic, which contains the don’t care bits, is passed into a comparator module to

be compared with the Match. If these two values match, then the Flexible Filter

activates an output signal, indicating that current instruction should be filtered.

Microarchitecture Support

FlexFilt supports up to four instruction domains and provides four Flexible Filters,

where a combination of these filters is applicable to each instruction domain. For each

page, we specify the instruction domain by storing the ipkey in the 4 previously un-

used bits of PTE. For each instruction execution, in addition to checking the PTE

permission bits (e.g., the X bit, which indicates that the page is executable), we need

to determine if the instruction should be filtered. To this end, we first have to identify

the corresponding domain of the instruction. At hardware level, the Instruction TLB

(ITLB) maintains the virtual to physical address translation of the instructions as

well as their corresponding permission bits. We augment the ITLB with a new field
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100rs1rs2imm[12|10:5] 1100011imm[4:1|11]BLT

101rs1rs2imm[12|10:5] 1100011imm[4:1|11]BGE

110rs1rs2imm[12|10:5] 1100011imm[4:1|11]BLTU

111rs1rs2imm[12|10:5] 1100011imm[4:1|11]BGEU

----------------1-------11000110000000000000000100000001100011

1111111111111111011111110000000

Match bits:

Mask bits:

Configuring the match/masks bits of a filter at software level

Filtering an instruction at hardware level

0000000001111100111001001100011

Runtime instruction: 0x03776263 (bltu  a4,s7,112aa)

----------------1-------1100011

Mask

0000000000000000100000001100011Match

Flexible Filter

Comparator

Filter?

Figure 5·1: The Flexible Filter design, applied to a subset of RISC-V branch
instructions.

to store the associated ipkey of each virtual address. Whenever there is an ITLB

miss, the hardware Page Table Walker (PTW) walks the page table and fills the

ITLB with the missing information including the ipkey. As each instruction domain

applies a combination of the Flexible Filters, we need to maintain the configured

combination of each domain. To this end, for each domain, we associate a valid bit

to each of the Flexible Filters. We store all the valid bits in a separate 64-bit

register, called Instruction Protection Register (IPR).

Figure 5·2 demonstrates our modifications to the RISC-V Rocket core to imple-

ment FlexFilt. The modified ITLB stores the ipkey information (received from PTW)

for each entry. On an ITLB hit, the ipkey value gets transferred to the I-Cache (along-

side the physical address) and subsequently on an I-Cache hit, the instruction and

its associated ipkey gets stored in the Instruction Queue. Subsequently, the ipkey

value gets transferred to the decode and then execute stage without any modifica-
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Figure 5·2: Simplified overview of the modifications to the RISC-V Rocket core to
support FlexFilt. The blue components are the new components added to provide
our page-granular flexible filtering capability. The components and arrows shown
by yellow are the existing parts of the Rocket core, which are minimally modified
to support FlexFilt. The gray components are unmodified but they communicate
with modified signals. We do not show the rest of unmodified components in the
Rocket core’s pipeline.

tions. At the execute stage, FlexFilt uses the ipkey value to read the corresponding

valid bits (4-bits) of the instruction domain from IPR. In the same cycle, each of the 4

Flexible Filters receives the 32-bit instruction in the execute stage, and performs

the filtering operation based on its Match and Mask bits configuration (Figure 5·1).

If the resulting filter signal of any of the Flexible Filters is high and at the same

time its corresponding valid bit is active, then FlexFilt prevents the execution of the

instruction by causing an illegal instruction exception.

While Figure 5·2 shows the main components of FlexFilt, this implementation

does not take the privilege level of the instructions into account. Some of the pre-

vious works focused on preventing the execution of target instructions in the kernel
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space while others focused on preventing the execution in user space. To distinguish

between privilege levels at hardware level, we simply access the priv field provided

in the MStatus CSR of the Rocket core. We consider two design options for incor-

porating the privilege level into our filtering mechanism. As the first option, we can

augment each Flexible Filter with a configurable privilege field. Subsequently,

each instruction domain applies a combination of Flexible Filters in its corre-

sponding pre-configured privilege level. As the second option, we can allow each

instruction domain to configure the privilege level of its associated valid filters. To

support this option, in addition to valid bits, we need to maintain the privilege level

of each Flexible Filter for each instruction domain. Although the second option

is more flexible, it requires more hardware resources. To choose between these two

design options, we examined the requirements of the previous works listed in Ta-

ble 2.2. As prior work did not need to prevent the execution of a target instruction at

various privilege levels in different parts of the code, we choose the first design option

(described above).

5.2.2 FlexFilt: OS Support

In our design, we consider scenarios where each process can filter different target

instructions. To enable a per-process instruction filtering capability, we need to pro-

vide the OS support for FlexFilt. In this subsection, we discuss the Linux kernel

modifications to support FlexFilt.

Instruction Protection Keys

To provide the support for instruction protection keys in the Linux kernel, we leverage

the existing support for memory protection keys. We use the existing support for

pkey alloc and pkey mprotect in the kernel to allocate an instruction protection

key and associate the specified executable pages with an ipkey, respectively. Unlike
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the existing memory protection proposals on RISC-V, we only use 4 bits of the unused

PTE bits to store our protection keys. Hence, we update the allocation bitmap to

keep track of 16 instruction protection domains.

Per Process OS Support

To enable a per process view for instruction protection domains, we maintain the

domain information during context switches. We modify the task struct in the

Linux kernel to keep the configuration of each Flexible Filter, which includes the

Match, Mask, and privilege bits. Additionally, we maintain the bitmap of allocated

ipkeys as well as IPR contents.

5.2.3 FlexFilt: Software Interface

We leverage the standard RISC-V custom instruction extension to define new instruc-

tions for configuring FlexFilt. Table 5.1 shows our software API and the unprivileged

custom instructions that each API invokes to configure FlexFilt. We provide the

config filter function to configure each Flexible Filter by specifying its cor-

responding Match, Mask, and privilege bits. The software developer can leverage

the config instr domain function to set the valid bit of a Flexible Filter for a

specific instruction domain. Additionally, we provide five more custom instructions,

which are accessible only at the supervisor level. We leverage these five instructions

to maintain FlexFilt’s information during context switches.

We leverage the existing pkey mprotect system call to associate a group of exe-

cutable pages, specified by addr and len, with an ipkey. To invoke the pkey mprotect

system call, we should obtain the address range of each instruction domain. To this

end, the software developer can annotate the source code to specify the sections of

the program belonging to an instruction domain. Then, we can modify the loader to

invoke pkey mprotect based on the extracted information from annotations. Rather
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Table 5.1: FlexFilt’s Application Programming Interface (API).

Function Invoked
Custom Instruction

config filter(uint32 t match, uint32 t mask, uint8 t priv, uint8 t index)
SETMATCH, SETMASK,

and SETPRIV
config instr domain(uint64 t d index, uint64 t v index) WRIPR

than modifying the loader, as a proof of concept, we leveraged LD PRELOAD. We leave

the required modifications to the loader as part of our future work.

To clarify the use of LD PRELOAD in specifying the instruction domains, consider a

scenario where the software developer aims to only allow the execution of WRPKRU in-

struction (or its RISC-V equivalent, i.e., WRPKR instruction that we defined in SealPK)

in trusted parts of the code. In this example, we assume that the software developer

writes two trusted functions, namely good code1 and good code2. She modifies the

permission bits of her memory protection domains through WRPKRU instructions only

in the two trusted functions and she wants to prevent the execution of WRPKRU in

other parts of the code. We annotate these two functions with a function attribute

to put them in a separate section. Then, we modify the linker script to ensure that

the instructions in this separate section are page aligned. Additionally, we use the

config filter function to configure one of the Flexible Filters with an exact

instruction match with WRPKRU running in user-level privilege. Then, we leverage

config instr domain to set the corresponding valid bit of that Flexible Filter

for the default instruction domain, i.e., domain0. To allow the execution of WRPKRU

instruction in good code1 and good code2, we can associate the instruction pages

of these two functions to a separate instruction domain, e.g., domain1. This new

instruction domain does not set the valid bit of the configured filter and in turn does

not filter the execution of WRPKRU. We leverage LD PRELOAD to obtain the address

range of the two functions and to invoke pkey mprotect for associating them with

domain1 instruction domain. We use extern function pointers for good code1 and
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good code2 to facilitate leveraging LD PRELOAD on them.

5.3 FlexFilt: Case Study

Filtering target instructions in dynamically generated code is more challenging than

static code. In this section, we provide an experimental study to demonstrate the

advantages of leveraging FlexFilt for runtime instruction filtering of dynamically gen-

erated code through Just-In-Time (JIT) compilation.

5.3.1 JIT compilation

JIT compilation dynamically compiles interpreted programming languages such as

JavaScript into bytecode (an intermediate representation) or native machine code. A

JavaScript engine (e.g., ChakraCore (Microsoft, 2020), SpiderMonkey (Mozilla, 2020),

and V8 (Google Corporation, 2020b)) is responsible for compiling and executing the

JavaScript code, memory management, and optimization. In our experiment, we rely

on V8, which is Google’s open-source JavaScript engine used in Chrome, Chromium,

and Node.js. V8 first compiles the JavaScript code into a bytecode. Then, V8’s

optimizing compiler generates an optimized machine code from the bytecode.

5.3.2 V8 JIT Compilation Experiment

As a case study, we consider the scenario of leveraging Intel MPK for intra-process

memory isolation of the Chromium browser. While browsing webpages, the V8 en-

gine dynamically compiles the JavaScript code and translates it to optimized native

machine code. To prevent reuse of JIT compiled code for unauthorized modifica-

tion of a protection domain’s permission bits, we need to ensure that the code does

not contain any implicit occurrences of WRPKRU instruction (as an attacker can ex-

ploit an implicit occurrence of WRPKRU instruction using control-flow hijacking attacks

and in turn elevate the privilege of a protection domain). To this end, the previous
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works continuously scan the newly generated code at runtime and rewrite the code

if necessary. In this section, we analyze the overhead of scanning the dynamically

generated code by measuring the number of generated bytes in native machine code

while browsing various webpages.

For this measurement, we built and ran the Chromium browser (Google Cor-

poration, 2020a) on an Intel® Core™ i7-4700MQ processor @ 3.4GHz machine

running Ubuntu 18.04.5 LTS. We used v8 enable disassembler=true flag for

building Chromium to enable disassembler support in V8. To measure the

total number of generated bytes during JIT compilation, we ran Chromium

with --js-flags=‘‘--print-bytecode’’ flag and browsed the Alexa top-10 web-

sites (Amazon Corporation, 2020). Table 5.2 shows the total size of executable bytes

generated by V8 engine while browsing the Alexa top-10 websites. For each website,

we report two numbers: 1) the total size of executable bytes generated when load-

ing the frontpage of the website, and 2) the number of bytes generated per second

while browsing each website for 5 minutes. For a website such as Google.com and

Baidu.com, we do the browsing by searching various keywords without opening any of

the search results. For each website, we repeated both the experiments, i.e., loading

of the frontpage of the website and 5 minutes browsing, three times and reported the

geometric mean. As shown in Table 5.2, some websites had zero executable bytes

generated. When loading the frontpage of these website, they did not result in any

native bytes. As a workaround for calculating the geometric mean in the presence of

samples with zero values, we converted each zero value to one. On average, a binary

scanning approach has to scan around 3,432 bytes and 3,258 bytes per second, re-

spectively, for loading the Alexa top-10 pages and browsing them. In the worst case,

366,003 bytes (for Tmall.com) and 15,454 bytes per second (for Taobao.com) should

be scanned. Considering 4KB pages, a binary scanning approach has to scan about
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Table 5.2: The measured size of executable bytes generated for browsing the
Alexa top-10 websites, on average.

Website
Executable bytes
generated when

loading the frontpage

Executable bytes
generated per second

while browsing the page
Google.com 0 3,458

Youtube.com 266,798 2,620
Tmall.com 366,003 15,323
Baidu.com 0 1,532

Qq.com 159,565 2,043
Sohu.com 34,096 2,014

Facebook.com 20,938 9,712
Taobao.com 220,299 15,454
Amazon.com 92,442 3,098

360.cn 0 400
Geometric mean 3,432 3,258

90 pages for loading Tmall.com, while for continuous browsing of Taobao.com around

4 pages should be scanned almost every 1 second. Once the binary scanning finds

an implicit occurrence of a target instruction, it can rely on a binary rewriting tool

to eliminate the target instruction from the code. For a continuous process such as

web browsing, the binary scanning and binary rewriting should be implemented very

efficiently, which is a challenging task. A dynamic binary rewriting approach incurs

considerable performance overhead. In contrast, FlexFilt examines each executed in-

struction at hardware level with negligible performance overhead and prevents the

execution of target instructions without the need for binary rewriting.

5.4 Evaluation

In this section, we discuss our experimental framework as well as FlexFilt’s perfor-

mance, power, and area overheads.
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5.4.1 Experimental Setup

Similar to the implementation of PHMon and SealPK, we implemented FlexFilt on

a RISC-V Rocket core using Chisel HDL and prototyped our full design on a Xilinx

Zedboard FPGA. We modified the Linux kernel (v4.15) to add the support for Flex-

Filt. We leveraged SealPK’s memory protection support in Linux kernel to build the

instruction protection domain support for RISC-V.

To verify the correct functionality of FlexFilt, we implemented tests that created

scenarios similar to the one described in Section 5.2.3. As an example, we leveraged

the WRPKR extended instruction to implement memory protection domains. Then,

we prevented the execution of the WRPKR instruction except in the trusted functions

specified by the user. To this end, we leveraged FlexFilt’s API and the LD PRELOAD

approach. We cross-compiled the code using RISC-V GNU toolchain and ran the

program on our FPGA prototype. As expected, FlexFilt allows the execution of

WRPKR in trusted functions and prevents its execution anywhere else in the code by

causing an illegal instruction exception.

5.4.2 Experimental Results

As FlexFilt is an SE that can assist with filtering target instructions in various sys-

tems, the efficiency of our design in terms of performance, power, and area metrics

are of great importance. In this section, we evaluate the efficiency of FlexFilt.

Performance Results

To demonstrate the performance overhead of integrating FlexFilt with the RISC-V

Rocket processor, in this section, we evaluate FlexFilt’s performance overhead using

microbenchmarks and measure the context switch overhead to maintain FlexFilt’s

information.
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Microbenchmarks

FlexFilt provides four Flexible Filters. During the program execution, each

Flexible Filter receives the current instruction at the execution stage and ap-

plies its configured filter on the instruction. As the filtering operation does not need

any extra cycles, we expect FlexFilt to incur negligible performance overhead. At

hardware level, all the Flexible Filters perform the filtering operation in parallel.

Hence, regardless of the number of activated configured filters, we expect FlexFilt’s

performance overhead to remain the same. To examine the effect of number of ac-

tivated configured Flexible Filters on the performance overhead, we ran the mcf

benchmark from SPEC2000 benchmark suite (Henning, 2000) for active filter count

ranging from 0 to 4. We repeated each experiment 3 times and considered the geomet-

ric mean of execution times as the performance metric. As expected, this experiment

showed that the execution time overhead of FlexFilt did not change with the number

of activated filters. With various number of filters, the total execution time stayed the

same (the geometric mean of the execution time overhead across various configura-

tions was 0.16% with a standard deviation of less than 1%). Although we performed

this experiment for only the mcf benchmark, we expect a similar behavior in other

benchmarks.

We devised a microbenchmark to measure the overhead of configuring Flexible

Filters as well as the overhead for applying a combination of filters to an instruc-

tion domain. Table 5.3 shows the average number of cycles to configure a Flexible

Filter and an instruction domain. As discussed in Section 5.2.3, we provide a soft-

ware API to configure FlexFilt. The software API creates a wrapper function around

the custom instructions to facilitate their use. As expected, using the software API is

more costly compared to leveraging the custom instructions as inline assembly. For ex-

ample, leveraging config filter function to configure the Flexible Filters takes
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Table 5.3: Cycle counts for FlexFilt configuration.

Operation or Instruction Mechanism #Cycles

API config filter 46
config instr domain 69

Custom Instruction
as Inline Assembly

SETMATCH 4
SETMASK 5
SETPRIV 4
WRIPR 4

46 cycles, on average, while using its corresponding custom instructions (SETMATCH,

SETMASK, and SETPRIV) as inline assembly takes less than 15 cycles.

Context Switch Overhead

During the context switches, we maintain FlexFilt’s information including the con-

figuration of each Flexible Filter and the contents of IPR. As the amount of Flex-

Filt’s information to maintain stays the same during context switches, we expect

FlexFilt’s context switch overhead to be the same across all applications. We mea-

sured the performance overhead of FlexFilt during context switches for 4 SPEC2000

benchmarks (Henning, 2000), i.e., bzip2, gcc, gzip, and mcf. We ran each benchmark

three times and determined the geometric mean of the execution time overheads.

Table 5.4 shows the performance overhead of maintaining FlexFilt’s information dur-

ing each context switch. On average, FlexFilt increases the execution time of each

context switch by less than 2%. As expected, the context switch overhead virtually

stays the same for various benchmarks. As the number of context switches varies

across different benchmarks, the total performance overhead of FlexFilt is different

for each benchmark. However, FlexFilt’s overall performance overhead is negligible

(Table 5.4). In this experiment, we used four benchmarks from SPEC2000; how-

ever, as the amount of FlexFilt’s information maintained during context switches is

independent of the benchmark, we expect similar context switch overheads in any

application.
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Table 5.4: Performance overhead of FlexFilt due to maintaining FlexFilt’s infor-
mation during context switches.

Benchmark Increase in Context
Switch Execution Time

Overall Execution
Time Overhead

bzip2 1.77% 0.02%
gcc 1.81% 0.07%
gzip 1.75% 0.05%
mcf 1.78 0.16%

Table 5.5: The FPGA utilization of the Rocket core enhanced with FlexFilt
compared to the baseline Rocket core.

Baseline Rocket Core + FlexFilt
#Used % Utilization #Used % Utilization

Total Slice LUTs 32030 60.21 32584 61.25
LUTs as logic 30907 58.1 31409 59.04
LUTs as Memory 1123 6.45 1175 6.75
Slice Registers as Flip Flop 16506 15.51 17056 16.03

FPGA Resource Utilization

In our FPGA prototype, the RISC-V Rocket core enhanced with FlexFilt operated

with a maximum frequency of 25MHz. The unmodified baseline RISC-V Rocket core

also has the same maximum frequency, i.e., our microarchitectural modifications did

not reduce the operating frequency. Table 5.5 shows the FPGA resource utilization

of an enhanced Rocket core with FlexFilt compared to the baseline Rocket core.

Accordingly, as FlexFilt has less than 1% area overhead, we estimate the power

overhead of FlexFilt to be negligible.

Flexible Filtering Capability

Our Flexible Filters enable a software developer to filter instructions at bit gran-

ularity. For example, a ret instruction in RISC-V ISA is a pseudoinstruction defined

using a JALR (jump and link register) instruction with rd = x0, rs1 = x1, and imm

= 0. Rather than filtering all the JALR instructions, the software developer can con-

figure a Flexible Filter to only filter a ret instruction (MATCH = 0x00008067 and



97

Table 5.6: Opcode-based grouping of RV64I instructions (Waterman et al.,
2019a).

Instruction group Opcode Number of instructions
LUI 0110111 1

AUIPC 0010111 1
JAL 1101111 1

JALR 1100111 1
BRANCH 1100011 6

LOAD 0000011 7
STORE 0100011 4
ALUI 0010011 16
ALU 0110011 15

FENCE 0001111 1
ECALL/EBREAK 1110011 2

MASK = 0xffff0000). In addition to filtering a specific instruction or a subset of an

instruction (e.g., a ret instruction), Flexible Filters can be used to filter a group

of instructions. To clarify this capability, we examined the RV64I base instruction

set, which consists of 55 instructions (Waterman et al., 2019a). As shown in Ta-

ble 5.6, these instructions can be divided into 11 groups, based on their opcodes.

A software developer can configure a single Flexible Filter to filter any of the

above-mentioned group of instructions. Two or more groups of instructions can be

merged together and form a larger instruction filtering group. As an example, con-

sider the scenario where a security developer defines secure versions of load and store

instructions. Then, she specifies a trusted portion of the code, where she replaces

all the load and store instructions with their secure counterparts. To ensure that

the trusted code does not execute an ordinary store or load instruction at runtime,

we can leverage FlexFilt. We group all the LOAD and STORE instructions together

(11 instructions with the opcode = 0-00011) and configure one Flexible Filter

to prevent the execution of all the instructions in this group.
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5.5 Discussion

We configure FlexFilt once a process gets loaded (or during LD PRELOAD). To prevent

further modifications to FlexFilt’s configuration, the software developer can leverage

one of the Flexible Filters to prevent the execution of the configuration custom

instructions. This Flexible Filter can be sealed at hardware level from further

modifications. As a result, once the process is loaded and FlexFilt is configured, any

further execution of the configuring custom instructions causes an exception.

FlexFilt is capable of filtering instructions both in the user space and kernel space.

The software developer specifies the target privilege level of each Flexible Filter.

At hardware level, FlexFilt examines the priv bit to distinguish between various

privilege levels. To prevent the execution of target instructions at kernel level, we

can configure Flexible Filters with supervisor privilege for each process. Alter-

natively, FlexFilt can be configured to prevent the execution of target instructions at

kernel level for all the processes during the loading of the Linux kernel. Sealing Flex-

Filt’s configuration raises the bar against kernel-level adversaries. However, as OS is

responsible for maintaining FlexFilt’s information during context switches, protecting

FlexFilt completely against kernel-level adversaries requires further study. We leave

this study as part of our future work.

In previous sections, we discussed FlexFilt’s capability in filtering the execution

of target instructions in untrusted parts of the code. FlexFilt allows the execution

of target instructions in trusted parts of the code. However, an adversary might

leverage the vulnerabilities in untrusted parts of the code (e.g., buffer overflow) to

launch a control-flow hijacking attack and execute the target instructions. To prevent

such attacks, we can protect the entrance and exit points of trusted functions using

trampoline or call gates.
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5.6 Summary

In this chapter, we have presented FlexFilt, an SE for runtime filtering of various user-

defined instructions. The goal of this SE is to assist with securing various isolation-

based mechanisms by preventing the execution of unsafe instructions in untrusted

parts of the code. FlexFilt supports up to 16 unique instruction domains. To this

end, FlexFilt creates instruction protection domains by assigning the same protection

key to a group of executable pages. At hardware level, FlexFilt provides configurable

filters and each instruction protection domain can be configured to apply a combi-

nation of the configured filters to its corresponding pages. We have demonstrated

the feasibility of FlexFilt’s design by implementing a practical prototype, consisting

of the RISC-V Rocket core enhanced with FlexFilt and the Linux kernel support for

FlexFilt, on an FPGA.
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Chapter 6

Conclusion and Future Work

In this thesis, we present and evaluate an array of hardware-assisted engines for

efficiently enforcing a variety of security policies at runtime. In this chapter, we

summarize the contributions of this thesis, discuss the limitations of our proposed

hardware engines, and outline the directions for future work.

6.1 Summary of Major Contributions

In this work, we devise a methodology that incorporates an array of hardware engines

as a security layer on top of the existing RISC-V Rocket processor design. We propose

a PE, PHMon, in form of a minimally-invasive and efficient programmable hardware

monitor. We demonstrate that by enforcing an event-action monitoring model, PH-

Mon can enforce a variety of security policies. Additionally, PHMon can assist with

detecting software bugs and security vulnerabilities. We interface PHMon with the

RISC-V Rocket processor and minimally modify the commit (write-back) stage of

the pipeline to expose an instruction execution trace to PHMon. A user can monitor

various events on the collected execution trace. After detecting an event, PHMon

performs a series of follow-up actions to enforce the security policies specified by the

user. As various processes in the system can have different security requirements,

PHMon enables a per-process monitoring capability. To this end, we provide the

OS support for PHMon by maintaining its information during context switches. We

demonstrate the versatility of PHMon through five representative use cases, a shadow
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stack, a hardware-accelerated fuzzing engine, information leak prevention, hardware-

accelerated debugging, and a code coverage engine. Our evaluation of PHMon on

a realistic FPGA prototype demonstrates that PHMon improves the performance of

fuzzing by 16× over the state-of-the art software-based implementation. Addition-

ally, a PHMon-based shadow stack implementation has 0.9% performance overhead,

on average.

We propose an SE, SealPK, to enforce an efficient and secure protection key-based

intra-process memory isolation mechanism for the RISC-V ISA. SealPK provides a

per-page protection key and supports up to 1024 domains (64× more than Intel MPK)

by leveraging the 10 unused bits available in the RISC-V Sv39 PTE. To provide higher

security guarantees than Intel MPK, we propose three novel sealing features to prevent

an attacker from modifying sealed domains, sealed pages, and sealed permissions.

Additionally, we propose an OS-level lazy deallocation approach to mitigate the pkey

use-after-free problem of Intel MPK. We demonstrate the efficiency of SealPK by

leveraging it to implement an isolated shadow stack on an FPGA prototype. The

SealPK-based isolated shadow stack prototype is, on average, 80× faster than an

isolated implementation using mprotect.

To guarantee the integrity of various isolation-based security mechanisms, we pro-

pose FlexFilt, a flexible implementation of an SE. FlexFilt efficiently prevents the

execution of unsafe instructions that could compromise the integrity of the isolation

in-place. While previous works are tailored to filter the execution of certain target

instructions, FlexFilt provides configurable filters to prevent the execution of various

instructions at page granularity. In addition to filtering user-space instructions, Flex-

Filt is capable of filtering privileged instructions (i.e., supervisor mode and hypervisor

mode). We demonstrate the feasibility of FlexFilt’s design by implementing it on the

RISC-V Rocket processor, providing the OS support for it, and prototyping the full
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design on an FPGA. Our FPGA evaluation shows the FlexFilt design has negligible

area and power overheads.

6.2 Limitations

Despite the capabilities of our hardware engines in enforcing a variety of security poli-

cies, they have some limitations. In the current implementation, we interface PHMon

with an in-order processor. In principle, we can interface PHMon with an out-of-

order processor and simply collect the execution trace (commit log) from the commit

stage. Collecting the execution trace from different stages of an out-of-order proces-

sor requires further investigations. Additionally, in this work, PHMon is limited to

monitoring the execution of programs on a single-core processor. Leveraging PHMon

for enforcing security policies in a multi-core processor requires further studies and

experiments.

SealPK’s sealing features improve the security guarantees of memory protection-

key based approaches. However, SealPK’s capability in sealing permissions is limited

to restricting WRPKRU instructions in only one trusted function (contiguous memory

addresses). FlexFilt’s capability in preventing the execution of unsafe instructions

at page granularity addresses the above-mentioned limitation of SealPK. Neverthe-

less, both SealPK and FlexFilt are limited to creating protection domains at page

granularity. Supporting finer-grained protection domains requires further study. Ad-

ditionally, SealPK provides up to 1024 memory protection domains, which might not

be sufficient for some use cases.

6.3 Future Research Directions

In this subsection, we outline the potential directions for future work.
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6.3.1 Extending Our Array of Security Engines to Other Computing Sys-

tems

In this work, we interfaced our hardware security engines with an in-order RISC-V

Rocket processor. A potential future direction is extending our methodology, i.e.,

providing security through an array of hardware engines, to other computing sys-

tems from small-scale systems such as Internet of Things (IoT) devices to large-scale

systems such as heterogeneous multi-core processors.

Extending Our Security Engines to IoT Devices

A potential future direction is adapting the design of our hardware engines for IoT

devices. While IoT devices can be used in a wide range of applications, our focus

here is on deeply embedded devices relying on smaller microcontrollers such as ARM

Cortex-M family. The RISC-V Rocket processor is comparable to the higher-end

ARM Cortex-A5 core (Lee et al., 2014); hence, our current design for hardware engines

are not directly applicable to our target IoT devices.

During the past decade, the number of IoT devices has increased drastically. The

number of IoT devices in 2020 was more than 11.7 billion and by 2025 it is projected

to reach 30.9 billion devices around the world (Holst, 2021). In recent years, there

has been a growing concern regarding the security attacks on IoT devices. According

to HP analysis (HP Corporation, 2014), 70% of the most commonly used IoT devices

suffer from security vulnerabilities and on average each IoT device has 25 vulnera-

bilities. As IoT devices have limited computational processing, low power budget,

and limited memory, it is a challenging task to provide efficient security solutions for

them. As a potential future direction, we can develop light-weight and low-power

SEs for securing deeply embedded IoT devices. Such IoT devices typically consist of

pre-defined software tasks. Hence, we can leverage our instruction filtering engine to

limit the execution of valid instructions to a pre-defined set and in turn prevent the
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execution of any instruction not employed in the existing software tasks. Additionally,

developing light-weight PEs for IoT devices enables us to update the security policies

at hardware level through software configuration and without the need for updating

the IoT device hardware. As PHMon is designed for higher-end microcontrollers such

as RISC-V Rocket core, it cannot directly be deployed for deeply embedded IoT de-

vices. As part of our future work, we can focus on designing a low power PE suited

for integration with smaller microcontrollers like ARM Cortex-M family.

Extending Our Security Engines to Out-of-Order Processors

In principle, our hardware engines are also applicable to out-of-order processors. How-

ever, interfacing our hardware engines with an out-of-order processor requires addi-

tional efforts. One potential future direction is extending our hardware engines for

the out-of-order RISC-V BOOM processor (Asanovic et al., 2015; Celio et al., 2017).

Figure 6·1 shows an example integration of our hardware engines with a processing

tile consisting of various components including a BOOM processor. Recently, the

RoCC interface has been extended for the RISC-V BOOM processor; however, the

current implementation does not support interrupts, exceptions, or direct access to

the L1 data cache. As communicating with the L1 data cache and the capability

to trigger interrupts are necessary parts of PHMon’s follow-up actions, we need to

extend the RoCC interface with these capabilities for the BOOM processor.

To extend PHMon’s monitoring capabilities to an out-of-order processor, we can

simply collect the execution trace information from the commit stage of the pipeline.

Although it is feasible to collect the trace information from different stages of an

out-of-order core’s pipeline, such information might be leveraged by an attacker for

side-channel attacks. Evaluating the pros and cons of collecting execution trace in-

formation from various stages of the pipeline could be another future direction. As

an out-of-order core has a more complex design compared to an in-order core, we
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Figure 6·1: An example of integrating various PEs and SEs to a RISC-V process-
ing tile consisting of an out-of-order RISC-V BOOM processor and an accelerator.

can potentially develop a number of SEs to enforce security policies in various parts

of an out-of-order core. As an example, an SE could be dedicated for protecting

the sensitive parts of the code through execution obfuscation. We can investigate

the possibility of designing an SE that prevents time-based side-channel attacks by

providing constant-time execution (e.g., by injecting nop instructions at runtime or

by stalling the pipeline) for sensitive parts of the code.

Extending Our Security Engines to Multi-Core Processors

In a multi-core processor, each core can be integrated with a number of PEs and SEs.

While in this work we only discussed the incorporation of hardware engines with a

processor, a potential future direction is providing a distributed array of hardware

engines across a homogeneous multi-core system. In such a system, in addition to

PEs and SEs for each core, we can incorporate different hardware engines in various

parts of the system, e.g., cache subsystem and I/O networks. For example, we can

design a PE to monitor the memory transactions in various parts of the memory
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subsystem. Such a PE can be designed as a simple monitor, which is programmed

to detect anomalies in memory transactions. Once the PE detects an anomaly, it

can transfer the log of the most recent memory transactions to stronger hardware

engine for further investigations. Similarly, PEs and SEs can be deployed to monitor

the transactions on I/O bridges, memory controllers, and high-speed I/O devices for

detecting anomalies or enforcing specific transaction policies.

A distributed array of hardware engines can also be deployed for a heterogeneous

multi-core System-on-Chip (SoC). As shown in Figure 6·2, in such a system, different

cores and computing nodes can leverage various number of PEs and SEs. Each pro-

cessing tile in such a system can consist of an in-order or out-of-order core integrated

with a number of accelerators. An accelerator might be an untrusted closed-source

IP integrated with other trusted components. Such a closed-source accelerator might

contain malicious components threatening the security of the system. We can design

an SE to monitor and confine the transactions between the accelerator and the rest

of the system and/or to detect anomalies in communications.

The communication between various SEs and PEs in a large-scale SoC requires fur-

ther investigation. Simpler hardware engines can transfer their signals into a central

processing unit for further processing and performing follow-up actions. Depending

on the size of the SoC, another design option could be providing distributed process-

ing units. As a future direction, we can examine various design options for integrating

hardware engines into the hierarchies of an SoC.

6.3.2 An Unlimited Number of Memory Protection Domains

In this thesis, we develop SealPK that creates memory protection domains for intra-

process memory isolation. SealPK utilizes the unused bits of Sv39 PTEs to store the

pkey, which allows us to support up to 1024 unique memory protection domains. A

potential solution to support more than 1024 pkeys is virtualization. Although the
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Figure 6·2: An example of a heterogeneous SoC generated by RocketChip gen-
erator and integrated with an array of SEs and PEs.
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hardware-based virtualization technique by Xu et al. (Xu et al., 2020) is efficient, it

is tailored for the specific use case of PMOs. As a potential future direction, we can

develop a generic solution, where we integrate libmpk (a software-based virtualization

technique) with SealPK. Although with a virtualization technique, e.g., libmpk and

the work by Xu et al. (Xu et al., 2020), the user can create more than 1024 sequential

domains, in reality we are still limited to 1024 concurrent physical pkeys. To sup-

port an unlimited number of domains, we can leverage a generic hardware-assisted

approach. In this approach, rather than storing the pkey information as part of a

PTE, we will use a hierarchical structure similar to that of page tables to store the

associated pkey of each page. To avoid a pkey walk and a subsequent memory request

for each DTLB access, we will add a hardware structure similar to TLB to cache the

range of virtual addresses associated with a pkey as well as the pkey’s permission

bits. Even with this approach, the number of domains is still restricted by the size

of pkey. This potential future direction could also be used for cases where the PTE

does not have any unused bits. In such cases, we can store the pkey information in a

separate structure, similar to the solution described for the unlimited pkey.

6.3.3 Fine-grained Protection Domains

In this thesis, we proposed two SEs that provide protection domains at page granular-

ity. SealPK creates memory protection domains while FlexFilt provides instruction

protection domains. Creating the protection domains at page granularity enables

us to leverage the existing access permissions at PTE level and TLB level. How-

ever, depending on the size of allocated memories, creating protection domains at

page granularity might result in unused chunks of memory. A potential future di-

rection is providing a flexible fine-granular support for creating protection domains.

Such an implementation requires both hardware and OS support. Recently, Intel

VT-X provided the support for sub-page permissions, where it enables setting write
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access permissions at 128 byte granularity (Intel Corporation, 2020). However, we

need a feature that enables/disables both read and write permissions at fine gran-

ularity. Ideally, we are interested in an implementation that enables us to create

flexible protection domains with varying sizes from one byte to a page. However,

the performance overhead of defining protection domains at byte granularity will be

prohibitive. Performing a through profiling experiment on a range of real applications

such as Chromium browser will provide us with a better understanding on the distri-

bution and size of allocated memories. Subsequently, we can decide on the smallest

supported granularity for protection domains.

6.4 Final Remarks

In summary, we propose, implement, and evaluate a hybrid array of hardware engines,

consisting of a PE and two SEs, as a security layer on top of the RISC-V Rocket

core. Our proposed PE enables us to enforce a variety of security policies and also

assists us with finding software bugs and security vulnerabilities. Our proposed SEs

provide hardware assistance for intra-process memory isolation and runtime filtering

of unsafe instructions. In this thesis, we have taken the necessary steps towards

evaluating our proposed hardware security engines in a realistic environment including

an FPGA prototype of the hardware design with the full Linux-based software stack.

We strongly believe that such a realistic evaluation environment paves the path for

future research in the area of hardware security.
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Asanović, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D., Celio, C.,
Cook, H., Dabbelt, D., Hauser, J., Izraelevitz, A., Karandikar, S., Keller, B.,
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