Energy-Efficient Classification: Adaptive Approach

Zafar Takhirov, Joseph Wang, Venkatesh Saligrama, Ajay Joshi
Department of Electrical and Computer Engineering, Boston University

Abstract—Designing energy-efficient machine learning-based
systems for mobile and embedded applications is a hard problem
— it is not straight forward to meet the energy-delay constraints,
while achieving the accuracy goals. Moreover, the energy, delay
and accuracy requirements could change at run-time, which
could make the design-time optimization sub-optimal. In this
work we propose an adaptive classifier that leverages the wide
variability in data complexity to dynamically allocate computa-
tional resources and improve energy-efficiency of a hardware
accelerator for machine learning. On average, our proposed
adaptive classifier can achieve up to ~100x better energy-
efficiency by trading off ~1% accuracy as compared to a complex
radial basis function classifier. As compared to a cheap linear
classifier our adaptive classifier achieves ~40% higher accuracy,
but is ~10x less energy efficient.

I. INTRODUCTION

The beginning of the 21st century is proving to be the “data
age” — with an exponential increase in mobile and embed-
ded systems, and development of internet, media, and social
networks, the amount of data transmitted and processed is
booming. At the same time the workloads have become more
diverse, and are increasingly trending towards utilizing com-
putationally expensive machine learning approaches to process
the large amounts of data [1]. However, small form factors and
energy-source limitations of mobile systems, makes execution
of machine learning algorithms very challenging. As a result,
maintaining a suitable energy dissipation versus performance
trade off, while achieving desired accuracy becomes more
critical.

There has been some prior work in the design of energy-
efficient classifiers. The system proposed by Venkataramani
et al. [2] centers on using increasingly complex classifiers
on examples close to the decision boundary. This system
assumes that complex classifiers will always correctly classify
examples, potentially using multiple complex classification
functions on inherently noisy examples. Panda et al. [3]
introduce a system for object detection using energy-efficient
neural computing. Their hierarchical framework of classifiers
was set up in an increasing level of complexity, making
the dynamic trade-off between classification performance and
energy efficiency hard. Similarly, the system proposed by Park
et al. [4] uses dynamic threshold adjustment in deep neural
networks (DNN) to achieve low power operation. In their
work, a bigger DNN is used if smaller DNN fails. Because of
the system topology it is not possible to automatically enable
the necessary DNN without running all other DNNs.

Our proposed classifier, as described in section II, solves
the problem of minimizing the test-time cost [5]. As the main
obstacle in the test-time budget problem is the sequential
revelation of input information, the optimal energy expenditure

Y
X =t Easy >

I é """ | e
£ |>Harder>| 5
(7] [a =

O] r——--7 1

Hardest

[I]

-0

|Data Path Control Path |
— —————-

Fig. 1: Conceptual block diagram of the proposed approach. “Chooser”
function is marked as , and its microarchitecture is the same as the “Easy”
block. Data paths and Control paths are shown using solid lines and dashed
lines, respectively.

of the selection system is generally hard to account for.
Additionally, many approaches to test-time budgeted learning
[6] require design of both the resource allocation as well as
the classification functions, preventing the use of optimized
modular systems.

II. ADAPTIVE CLASSIFICATION

Rather than selecting a single classification approach for all
examples, our approach is to design an adaptive classification
system that dynamically selects a classifier that is appropriate
for the data under consideration. In our approach, we lever-
age the variation in “hardness” of the data across various
examples found in real world data sets. In simpler terms,
some data samples are extremely hard to classify and require
a very complex and energy inefficient classifier to achieve
high accuracy. Other input examples could be classified easily
and even the simplest classifier would achieve the desired
statistical performance at very low energy cost. Intuitively,
the strategy of our adaptive classifier system is to route
each example to the most energy-efficient classifier such that
it is correctly classified, with examples that are incorrectly
classified by all decision functions routed to the most energy-
efficient classifier. The routing decision is made by a “chooser”
function (described in section II), which identifies the hardness
of the current input, and routes the input accordingly. Formally,
the “hardness” level of any given example is found by solving

an unconstrained optimization problem
n k

o1
min= > > " L; (@i, i) Lo(a,)=j» (1)

where Lj (7;,yi) = g (z,)y, + Acj is defined as the
loss associated with using the classification function f; on
example z;. The loss function includes both the classification
error Ly (4,)#y, as well as the energy dissipation ¢; (A is a
Lagrangian multiplier, 1, is an indicator function).

Adaptive Effort Classifier System Conventional Classifiers

High Error Rate Low Error Rate Average Linear Polynomial Radial-Basis
Data Set Energy | Delay | Energy | Delay | Energy | Delay || Energy | Delay | Energy | Delay | Energy | Delay
Synthetic 52.6e-15 | 0.1 29e-12 0.7 903.9e-15 | 0.2 15.8e-15 | 0.03 92.3e-15 | 0.3 27e-12 | 04
Image Segm. || 4.9e-12 1.0 2.7e-9 4.9 9.3e-12 14 54e-12 1 79.8e-12 | 2.6 2.6e-9 | 4.173
ISOLET 4.5e-9 34.6 2.9e-6 153.4 | 130.0e-9 69.1 5.9¢e-9 35.1 79.4e-9 714 2.7e-6 142.6
Letter Rec. 4.1e-12 1.0 2.3e-9 4.3 29.7e-12 1.1 44e-12 | 0.8 6.5e-12 2.5 1.9¢-9 3.7
MNIST 8.6e-9 433 3.9e-6 184.1 | 186.4e-9 94.8 10.5e-9 44.5 14e-9 86.8 3.93e-6 | 181.3
Penbase Rec. || 3.3e-12 | 0.7 2.0e-9 3.7 21.5e-12 1.5 4e-12 0.9 5.3e-12 1.6 1.8e-9 3.7
Spam filter 50.1e-12 | 2.9 21.6e-9 14.5 1.1e-9 4.3 53.1e-12 | 3.2 67.6e-12 | 5.4 20.5e-9 | 13.02
Vowel Rec. l.4e-12 | 0.5 73.2e-11 | 2.8 15.9¢-12 1.2 1.7e-12 | 0.5 2.4e-12 1.3 0.7e-9 2.3

TABLE I: Energy and delay for the adaptive and conventional classifiers. Energy results are shown in J/cycle and delay is represented in us. “High Error
Rate” represents no constraint on accuracy during the training, “Low Error Rate” represent tightest accuracy constraints.

By treating each classification model (shown on figure 1 as
“Easy”, “Harder”, and “Hardest”) as a “black box™ as opposed
to a known, modifiable object, existing energy-efficient clas-
sification approaches can be directly used when constructing
the system. Furthermore, multiple complex classifiers can be
easily integrated into the system. Due to the modularity of
our design, the system is even able to integrate humans into
the loop for cases where humans have lower error rates than
machines in classifying objects.

Figure 1 shows the block diagram of the proposed adap-
tive classifier approach. It consists of the “chooser” function
(marked as), and several “core” classifiers with vari-
ous complexities. In our case, the “chooser” function uses
a multi-class logistic regression classifier, and is similar to
the “Easy” classifier. The “core” classifiers shown are lin-
ear (“easy”), polynomial (“harder”), and radial-basis function
(RBF, “hardest”) classifiers. The linear classifier is the most
energy efficient, and consists of a single multiply-accumulate
block, while the RBF is the most complex, mostly due to the
exponentiation function. From accuracy point of view, RBF
provides the highest, while linear has the lowest accuracy.
Polynomial classifier provides an intermediate point between
the “easy” and “hardest”. At run-time, depending on the
“hardness” of data, the “chooser” function picks one of the
three classifiers.

III. EVALUATION

The adaptive classifier system was trained offline using
MATLAB, after which the hardware design space was ex-
plored using Aladdin toolset [7]. The different design choices
that we considered include level of MAC parallelization,
size of SRAM for exponentiation LUT, pipeline stages, and
computational parallelism. The most energy efficient system
(in terms of energy-delay product) was then implemented in
Chisel HDL, and the Verilog HDL source was synthesized,
placed-and-routed, and extracted using 40nm Global Foundry
technology and Synopsys standard cells. All simulation results
are post-extraction. The datasets are provided by the UCI
library [8].

Table I shows the simulation results for both adaptive and
conventional classifiers. The delays represent the minimum
achievable delay without change in the budgeted error rate. On
average the proposed adaptive classifier approach consumes
10x more energy as compared to the linear classifier and

100x less energy than RBF. The average delay of the adaptive
system across all examples is ~2x of the linear approach, and
~0.33x times of that of RBF. At the same time the error rate
is on average 0.5% higher than RBF, but ~ 40% lower than
linear.

Figure 2 shows that by varying the error budget in the
“chooser” it is possible to allocate resources to more or less
complex classifier to achieve desired energy dissipation.

[1 RBF [Polynomial [Linear [l Chooser

o

N B O ®
(=l -]

o

N B O ™

Energy Dissipation Distribution (%)

Total Energy Dissipation (log,,, J/cycle)

34 47 1 3
Error Budget (%)

21
Fig. 2: Energy dissipation distribution and the total energy dissipation vs.

error rate for different classification problems.

IV. CONCLUSION

In this work we have presented a novel adaptive classifier
that can dynamically select a classifier based on the “hard-
ness” of the current input. On average our adaptive classifier
consumes 100x less energy than RBF and 10x more energy
than the linear classifier. The adaptive classifier is on average
~3x faster than RBF and ~0.5x slower than linear approach,
while the error rate of the adaptive classifier is on average only
0.5% higher than RBF but 40% lower than linear.

REFERENCES
(1]

(2]

N. Lane et al., “A survey of mobile phone sensing,” Communications
Magazine, IEEE, vol. 48, no. 9, 2010.

S. Venkataramani et al., “Scalable-effort classifiers for energy-efficient
machine learning,” in Proc. DAC, 2015.

P. Panda er al., “Object detection using semantic decomposition for
energy-efficient neural computing,” arXiv:1509.08970, 2015.

E. Park et al, “Big/little deep neural network for ultra low power
inference,” in Proc. CODES+ISSS, 2015.

J. Wang et al., “An LP for sequential learning under budgets,” in AISTATS,
2014.

F. Nan et al., “Feature-budgeted random forest,” in Proc. ICML, 2015.
Y. S. Shao et al., “Aladdin: A pre-rtl, power-performance accelerator
simulator...” in ISCA, 2014.

“Machine Learning Repo,” http://archive.ics.uci.edu/ml/.

(3]
(4]
(5]

(6]
(7]

(8]

