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Abstract

We model a situation in which two players bargain over two pies, one of which

can only be consumed starting at a future date. Suppose the players value the

pies asymmetrically: one player values the existing pie more than the future one,

while the other player has the opposite valuation. We show that players may

consume only a fraction of the existing pie in the first period, and then consume

the remainder of it, along with the second pie, at the date at which the second pie

becomes available. Thus, our model features a special form of bargaining delay,

in which agreements take place in multiple stages. Such partial agreements arise

when players are patient enough, when they expect the second pie to become

available soon, and when the asymmetry in their valuations is large enough.
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1 Introduction

In many real life situations, parties negotiate over multiple issues. While bargaining

over an issue today, the parties involved may know that in the future they will come

back to the negotiating table and bargain over a new issue altogether. In this paper

we construct a bilateral bargaining model that captures such a situation. The model

features two pies, X and Y . Pie X is already on the table, while pie Y can only be

consumed starting at a random future date. Players cannot commit to a division of the

second pie until it is available. The assumption that the second pie is available only

in the future may be interpreted as a physical constraint on the environment, or may

capture the idea that some issues are not yet ripe for discourse. We assume that players

have opposite valuations for the two pies: player 1 values pie X more than pie Y , while

player 2 values pie Y more than pie X.

A key feature that distinguishes our model from standard bargaining games a la

Rubinstein (1982) is that we allow players to make partial agreements : they may divide

and consume only a fraction of each available pie, leaving the remainder for future con-

sumption. The possibility of such partial agreements arises naturally in many settings.

For instance, legislators in Congress may pass a law that leaves some aspects of the issue

unresolved, with the idea of dealing with the unresolved aspects at some future date.

A firm negotiating a contract with a supplier may also choose to leave parts of their

agreement unspecified at the start of their business relationship, with the intention of

specifying them in the future.

We show that our game has a unique subgame perfect equilibrium (SPE) outcome.

In the SPE outcome, players may reach a partial agreement on the first pie at the

beginning of the game, consuming the remainder of it (along with the second pie) at the

date at which the second pie becomes available. Thus, our model features a special form

of bargaining delay, in which agreements take place in multiple stages. These partial

agreements arise when players are patient enough, when they expect the second pie to be

available soon, and when the asymmetry in their valuations of the pies is large enough.

Otherwise, the players consume the entirety of the first pie in the first period, and the

entirety of the second pie when it becomes available.

The intuition behind our partial agreement result is as follows. If players come to a

complete agreement on pie X (i.e., the first pie), then they will split the second pie Y
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evenly as soon as it is available. However, players can reach a more efficient agreement

by saving a fraction of pie X until pie Y is available: by doing this, player 1 will get

what remains of this pie, and in return he will consume less of pie Y . If the fraction that

remains of pie X is small, player 1 will never accept an offer that gives him a zero share

of pie Y . Hence, player 1 will consume a share of the pie he values less, regardless of who

is proposer. In this case, saving marginally more of pie X until pie Y is available always

leads to a more efficient allocation. On the other hand, if the fraction that remains of

pie X is above a threshold λ ∈ (0, 1), player 1 will accept offers that give him most of

what remains of this pie, and none of the other one, when he is responder. The marginal

benefit of saving more of pie X is therefore lower when the fraction of it that remains

is larger than λ: in this case, any additional savings of pie X will only lead to a more

efficient allocation when player 1 is proposer, but not when he is responder.

In equilibrium, players trade off the benefit from saving a fraction of the first pie

against the delay cost of waiting until the second pie becomes available. When the ben-

efit is larger than the cost, players reach a partial agreement on the first pie, consuming

1 − λ of it, and they complete this agreement when the second pie becomes available.

Otherwise, if the cost of delay is larger than the benefit, players reach a complete agree-

ment on the first pie immediately, and then consume the second pie as soon as it is

available. Finally, note that the benefit of saving a fraction of the first pie is large when

the asymmetry in the players’ valuations is large, while the cost of delay is small when

players are more patient and the second pie is expected to be available soon.

Our paper relates to the literature on delay and inefficiencies in bargaining.1 In

particular, it relates to Compte and Jehiel (2004), who construct a bargaining model

with history-dependent outside options and show that in this setting players will make

gradual concessions until reaching an agreement. However, in their model agreement (i.e.

consumption) takes place at a single stage, while in our model agreement takes place

in multiple stages. Because of the presence of the second issue, our paper also relates

to the literature on repeated bargaining (e.g., Muthoo, 1995) and to the literature on

multi-issue bargaining.2 Finally, our proof of existence and uniqueness of SPE adapts

arguments in Shaked and Sutton (1984) to our setting with partial agreements.

1For bargaining models featuring delay see, for instance, Kennan and Wilson (1993), Merlo and

Wilson (1995, 1998), Abreu and Gul (2000) and Yildiz (2004).
2See, for instance, Fershtman (1990), Hortsmann (1997), Inderst (1998), Lang and Rosenthal (2001)

and In and Serrano (2003, 2004).
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2 Model

There are two players i = 1, 2 and two perfectly divisible pies X and Y . Time is discrete

and indexed by t = 0, 1, 2, .... If (x1t, x2t) and (y1t, y2t) are the shares of pies X and

Y that players i = 1, 2 consume in period t, then the players’ payoffs in period t are

u1(x1t, y1t) = x1t+ry1t and u2(x2t, y2t) = rx2t+y2t, where 0 < r < 1 is player 1’s marginal

rate of substitution between pies and ∞ > 1/r > 1 is the corresponding quantity for

player 2. Therefore, player 1 values pie X more than pie Y , while player 2 values

pie Y more than pie X. An outcome is denoted {((x1t, x2t) , (y1t, y2t))}∞t=0. Player i’s

preferences over (possibly random) outcomes are represented by E
[∑

t≥0 δ
tui(xit, yit)

]
,

where δ ∈ (0, 1) is a common discount factor and the expectation is taken over the

realizations of the random outcome.

In every period t, each player is recognized with probability 1/2 to be proposer. The

proposer offers nonnegative consumption shares ((x1t, x2t), (y1t, y2t)). Importantly, we

allow these consumption shares to be partial offers ; that is, the proposer may offer to

consume a fraction of the available pies, leaving the remainder for future consumption.

The other player, the responder, must then either accept or reject the offer. If the offer

is accepted, then the proposed shares are consumed and the period ends; if the offer is

rejected, then the players consume 0 of each pie and the period ends.

The only restriction on offers is that they be feasible, and feasibility depends on

the state. In each period the state is given by (j, s) where j = 1, 2 is the identity of

the proposer and s determines the fractions of pies X and Y that can be consumed in

that period.3 We assume that pie X exists beginning in period 0, and thus part or all

of it may be consumed starting in the first period. On the other hand, pie Y arrives

stochastically: if it has not arrived by period t, then it arrives at the beginning of period

t + 1 with probability p ∈ (0, 1). Players cannot consume any fraction of Y before it

arrives. Moreover, they cannot commit to a division of this pie prior to its arrival.

Let λt be the fraction of X not yet consumed by t. Thus λ0 = 1 and λt = 1 −∑
τ<t(x1τ + x2τ ) for all t > 0. We will later show that in the period in which pie Y

arrives, the players will come to an agreement over all of pie Y and all of the fraction

of pie X that has not yet been consumed. Thus, at this point the game will effectively

end. In other words, if pie Y arrives in period t and λt is the fraction of pie X not yet

3We sometimes abuse terminology and refer only to component s as the state.
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consumed by that period, then in equilibrium the players will consume the total shares

x1t + x2t = λt and y1t + y2t = 1 in period t. This implies that the only relevant periods

are those up to (and including) the period in which pie Y arrives. For such periods t,

the state st can be written either as λtX if Y has not yet arrived, or λtXY if Y arrived

in period t. Feasibility of offers at time t with state st = λtX,λtXY requires that

x1t + x2t ≤ λt and y1t + y2t ≤ ψt =

{
0 if st = λtX

1 if st = λtXY .
(1)

Consider states st = λtX,λtXY . If st = 0X, then we say that the players are waiting

for Y to arrive (having already consumed all of X). We say that players reach a complete

agreement at state st, st 6= 0X, if they consume x1t+x2t = λt and y1t+y2t = ψt. We say

that the players delay at state st 6= 0X, if they consume x1t + x2t = 0 and y1t + y2t = 0.

We say that the players reach a partial agreement at state st in all other cases, i.e. if

they do not delay, are not waiting, or do not reach a complete agreement.

3 Equilibrium

This section characterizes the subgame perfect equilibrium (SPE) of the model. Our first

result shows that states λXY are terminal: in any SPE, players consume all of pie Y

and all λ of pie X in these states. Before stating the lemma, define λ(δ, r) ≡ rδ
2−δ ∈ (0, r).

Lemma 1. In every SPE, the players reach a complete agreement when the state is λXY .

Moreover, the SPE payoffs in these states are unique. For j = 1, 2, let ((xj1, x
j
2), (y

j
1, y

j
2))

be the offer that player j makes at state λXY . These quantities are as follows:

1. If λ ≥ λ(δ, r), then

(x11, y
1
1) =

(
λ, 2(1−δ)(2−δ(1+rλ))

4(1−δ)+δ2(1−r2)

)
(x21, y

2
1) =

(
λ− 2(1−δ)(λ(2−δ)−rδ)

4(1−δ)+δ2(1−r2) , 0
)
.

2. If, on the other hand, λ ≤ λ(δ, r), then

(x11, y
1
1) =

(
λ, 1− δ(r+λ)

2r

)
(x21, y

2
1) =

(
λ, rδ−λ(2−δ)

2r

)
.

And, in both cases, xj2 = λ− xj1 and yj2 = 1− yj2 for j = 1, 2.

Proof. See Appendix A.
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Lemma 1 shows that players reach a complete agreement at states λXY . At such

states, the proposer j makes an offer ((xj1, x
j
2), (y

j
1, y

j
2)) that maximizes his payoff, subject

to the constraint that the offer is acceptable to i. That is, the proposer’s offer solves:

max
xj1,x

j
2,y

j
1,y

j
2≥0

uj
(
xjj, y

j
j

)
subject to

ui
(
xji , y

j
i

)
≥ δ

(
1

2
ui
(
xji , y

j
i

)
+

1

2
ui
(
xii, y

i
i

))
xj1 + xj2 ≤ λ, and yj1 + yj2 ≤ 1 (2)

Lemma 1 states the offers that solve (2) for j = 1, 2. These offers depend on the

fraction λ of pie X that is available. When λ = 0 each player obtains approximately

1/2 of pie Y (if δ is large). As λ increases, the players are able to reach a more efficient

allocation: player 1 obtains what remains of pie X, and in return he gets less of pie Y .

For small values of λ, player 1 never accepts an offer that gives him nothing of pie Y

when he is responder. Thus, in this case he always consumes some of pie Y , regardless

of who makes offers. On the other hand, for large values of λ player 1 will accept offers

that give him most of what remains of pie X, and none of pie Y , when he is responder.

The threshold λ(δ, r) defines the point below which player 1 consumes pie Y regardless

of the identity of the proposer. Note that the marginal benefit of saving more of X is

discontinuous at λ. For λ < λ, saving more of pie X implies that player 1 will consume

less of pie Y regardless of the identity of the proposer. For λ > λ, saving more of pie X

implies that player 1 will consume less of pie Y only when he is proposer.

The threshold λ(δ, r) is increasing in r and δ. Intuitively, λ(δ, r) depends on the

magnitude of the proposer advantage: if player 2’s proposer advantage is large, his offer

at states λXY will be such that he will consume all of Y even when the fraction λ that

remains of pie X is small. As usual, the proposer advantage is large when players are

impatient (i.e., δ small). Moreover, in this setting the proposer advantage is also large

when the asymmetry in valuations is large (i.e., r small). The reason for this is that the

responder’s incentives to delay are weaker when r is small: the responder’s benefit of

delaying is that this may enable him to obtain a portion of the pie he values less if he is

proposer next period, while the cost is that he has to delay consumption of the pie he

values more. Clearly, the benefit is decreasing in r, while the cost is independent of r.

Define the function φ(p, δ, r) = p− 1−δ
δ

2r2

1−r2 . This function takes larger values when

players are patient (δ large), when pie Y is expected to arrive soon (p large), and when
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the asymmetry in the players’ valuations is large (r small). Note that r is a measure of

the efficiency gains that arise from saving X: for any fraction λ of X that remains, the

efficiency gains from saving this fraction until Y arrives are large when r is small. On

the other hand, δ and p measure the delay cost of waiting until Y arrives. Thus, the

function φ(p, δ, r) quantifies the net benefit of delay.

The function φ(·) partitions the parameters space into two sets: the set of parameters

(p, δ, r) ∈ (0, 1)3 for which φ(p, δ, r) ≥ 0, and the set of parameters (p, δ, r) ∈ (0, 1)3 for

which φ(p, δ, r) < 0. Note that these two sets of parameters have nonempty interiors.

The next result characterizes the equilibrium outcomes on the two regions separated by

the function φ(·).

Theorem 1. There are unique SPE payoffs. Moreover,

1. If players are impatient enough, if the second pie is expected to arrive late, and if

the asymmetry in valuations is small enough (i.e., if φ(p, δ, r) < 0), then in every

SPE the players reach a complete agreement in the first period.

2. If players are patient enough, if the second pie is expected to arrive soon, and if

the asymmetry in valuations is large enough (i.e., if φ(p, δ, r) > 0), then in every

SPE the players reach a partial agreement in the first period, t = 0, consuming

x1 + x2 = 1− λ(δ, r). Players then complete the agreement in the period in which

pie Y arrives.4

Proof. See Appendix B.

The results on Theorem 1 can be best understood in terms of the relation between

the cost and benefit of saving pie X. To see this, consider first the case with φ(p, δ, r) > 0

and suppose that the state is λX with λ ≤ λ(δ, r). Lemma 2 in the Appendix shows that

players will always delay at these states. The reason for this is that when φ(p, δ, r) > 0

the delay cost of waiting until Y arrives is small. Moreover, by our discussion above, the

marginal benefit from saving pie X is large when λ ≤ λ(δ, r), since in this case player

1 will always consume a portion of pie Y when it arrives. Combining these two effects,

at these states the marginal cost of saving pie X is lower than the marginal benefit, so

players delay making an agreement on what remains of X until pie Y arrives.

4The knife-edge case φ(p, δ, r) = 0 supports equilibria with both partial and complete agreements.
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Next, consider states λX with λ > λ(δ, r). Lemma 3 in the Appendix shows that

if φ(p, δ, r) > 0, then the proposer will make an offer to consume a total λ − λ(δ, r)

of pie X. The reason for this is that the marginal benefit of saving more of pie X is

lower at states λX with λ > λ(δ, r). Therefore, even if φ(p, δ, r) > 0, at these states the

marginal benefit of saving pie X is lower than the marginal cost, so players are better

off consuming a positive fraction of pie X than delaying an agreement. The fraction

λ(δ, r) that they leave unconsumed is exactly the point at which the marginal benefit

from saving more of X becomes larger.

The fraction λ − λ(δ, r) of X that players consume at states λX with λ > λ(δ, r)

does not depend on the identity of the proposer. Intuitively, the fraction of X that

players consume depends on the cost and benefit of saving more of this pie for future

consumption; and these costs and benefits are independent on who is making offers

today. Note that the fraction λ− λ(δ, r) of X that players consume is smaller when δ is

large and when r is large.

In Appendix C we show how the players divide the fraction λ− λ(δ, r) of pie X that

they consume at states λX with λ > λ(δ, r), depending on the identity of the proposer.

Let (xi1, x
i
2) be the shares that player i proposes at such states and let xj = 1

2
(x1j + x2j)

be the expected share that player j consumes. In Appendix C we show that x1 > x2, so

player 1 consumes a larger fraction than player 2. Moreover, the fraction of λ− λ(δ, r)

that player 1 consumes is increasing in δ and p. Intuitively, if player 1 chooses to delay

an agreement at states λX, pie Y may arrive next period. If this occurs, player 1 will

get most of what remains of pie X. Therefore, player 1 has a greater incentive to delay

when δ and p are large, so in this case he bargains from a stronger position.

Consider next the case where φ(p, δ, r) < 0, so that delaying the consumption of pie

X until pie Y arrives is costly. In this case, the proposer will always find it optimal to

make an offer such that players consume all of the remainder of pie X at states λX,

regardless of whether λ > λ(δ, r) or λ ≤ λ(δ, r). Intuitively, when φ(p, δ, r) < 0 the

marginal benefit of saving more of pie X is smaller than the cost of waiting until pie Y

arrives, regardless of the fraction of pie X that remains. Hence, players always reach a

complete agreement on X at the beginning of the game, and then consume all of Y as

soon as it arrives.
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4 Final Remarks

We end the paper with three comments about our model. First, throughout the paper

we assume that players cannot commit to a division of pie Y until it arrives. This

assumption is crucial for the results in Theorem 1. If players could commit to a future

division of Y , then at t = 0 they would effectively bargain over the two issues together.

Then, by arguments similar to those in Lemma 1, players would reach an agreement

over the division of the two pies at the beginning of the game.

Another assumption we made throughout the paper is that pies X and Y have the

same size. The results of Theorem 1 generalize to settings in which the two pies have

different sizes. Let pie X be of size 1 and pie Y be of size ρ > 0. In this case, the

agreement that players reach at states λXY will again depend on the fraction λ of pie

X that remains. In particular, in this setting there exists a threshold λ̃(δ, r, ρ) such that

player 1 consumes a positive share of pie Y regardless of the identity of the proposer

at states λXY with λ < λ̃(δ, r, ρ). Moreover, λ̃(δ, r, ρ) = ρλ(δ, r), where λ(δ, r) is the

threshold in Lemma 1. If waiting until pie Y arrives is costly, players will reach a partial

agreement on X at the start of the game, consuming a fraction 1 − ρλ(δ, r), and they

will then complete this agreement when Y arrives. That is, in this setting players want

to consume pie X until the proportion of what remains of X to all of Y equals λ(δ, r).

Note that the fraction of X that players consume at the start of the game is decreasing

in ρ. Moreover, if ρ is large enough (i.e., if 1 ≤ ρλ(δ, r)), then players will completely

delay the consumption of X until Y arrives.

Finally, the model in this paper is one in which players can make partial offers. A

previous version of this paper also analyses a model in which players are constrained

to make complete offers; i.e. in which all offers must satisfy the constraints in (1) with

equality. There, we show that there exists a function φ̂(p, δ, r), which is increasing in

δ and p and decreasing in r, such that: (i) if φ̂(p, δ, r) < 0 players reach a complete

agreement on X at t = 0, and then reach a complete agreement on Y as soon as it

arrives; and (ii) if φ̂(p, δ, r) > 0, players delay an agreement on X until Y arrives.

Moreover, we show that φ̂(p, δ, r) < φ(p, δ, r) for all p, δ, r, and that there is an open and

nonempty set of parameters such that φ̂(p, δ, r) < 0 < φ(p, δ, r). Therefore, there are

settings in which players would reach a complete agreement on X at t = 0 if they were

constrained to make complete offers, but would reach a partial agreement if they could.
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Appendix

A. Proof of Lemma 1

Suppose s = λXY . Let vi(j, λXY ) and vi(j, λXY ) be the infimum and supremum SPE

payoffs to player i = 1, 2 when the state is (j, λXY ), j = 1, 2, and let wi(λXY ) =
1
2
vi(1, λXY ) + 1

2
vi(2, λXY ) and wi(λXY ) = 1

2
vi(1, λXY ) + 1

2
vi(2, λXY ). To prove

Lemma 1, let i 6= j and consider player j’s problem of choosing an offer that maximizes

his payoff, subject to the constraint that player i’s payoff from accepting this offer equals

δwi(λXY ). Since δ < 1, at the solution to this problem player j will make an offer such

that he and player i consume all λ of pie X and all of pie Y . The payoff that player j

receives when this offer is accepted is a lower bound on his SPE payoff, since player i

always accepts such an offer. Similarly, consider player j’s problem of choosing an offer

that maximizes his payoff, subject to the constraint that player i’s payoff from accepting

this offer equals δwi(λXY ). Again, at the solution to this problem, player j makes an

offer such that he and player i consume all λ of pie X and all of pie Y . Moreover, the

payoff that j gets if this offer is accepted is an upper bound to his SPE payoff, since this

is the worst offer that player i would accept. Using these bounds on payoffs, one can

apply arguments similar to those in Shaked and Sutton (1984) to show that SPE payoffs

at states s = λXY are unique, and that these payoffs are attained by a strategy profile

in which the proposer makes an offer to consume all λ of X and all of Y . Finally, the

offers that players make at states λXY are the solution to problem (2) for j = 1, 2.

B. Proof of Theorem 1

Outline. The proof is organized as follows. After establishing some preliminaries, we

begin by considering the case where φ(p, δ, r) > 0. Lemma 2 shows that, in this case,

players delay in states λX with λ ≤ λ(δ, r). Lemma 3 shows that at states λX with

λ > λ(δ, r), the proposer finds it optimal to make an offer to consume a total λ−λ(δ, r)

of pie X. Lemma 4 uses these results to derive upper and lower bounds on the players’

SPE payoffs at states λX with λ > λ(δ, r). Using these bounds, Lemma 5 adapts the

arguments in Shaked and Sutton (1984) to show that SPE payoffs are unique. Finally,

Lemma 6 provides a sketch of the argument for the case where φ(p, δ, r) < 0. In what

follows, we suppress notation by writing φ and λ in place of φ(p, δ, r) and λ(δ, r).

9



Preliminaries. We first introduce some definitions. Note that player i’s payoff at state

(j, λXY ) is vi(j, λXY ) = xji + ryji , where
((
xj1, x

j
2

)
,
(
yj1, y

j
2

))
is the offer that player j

makes. Player i’s expected payoff is wi(λXY ) = 1
2
vi(1, λXY ) + 1

2
vi(2, λXY ). Using the

expressions for
((
xj1, x

j
2

)
,
(
yj1, y

j
2

))
in Lemma 1, we get

w1(λXY ) =

{
2r(1−δ)+λ(2−δ−r2δ)
4(1−δ)+δ2(1−r2) if λ ≥ λ(δ, r),

r+λ
2

if λ ≤ λ(δ, r).

w2(λXY ) =

{
(2−δ−r2δ)+2λr(1−δ)
4(1−δ)+δ2(1−r2) if λ ≥ λ(δ, r),

r+λ
2r

if λ ≤ λ(δ, r).
(B.1)

Let W (λXY ) = rw1(λXY ) + w2(λXY ) be the total (normalized) payoff. Using (B.1),

W (λXY ) =

{
2r(1−δ)(r+λ)+(1+rλ)(2−δ−r2δ)

4(1−δ)+δ2(1−r2) if λ > λ(δ, r),
(1+r2)(r+λ)

2r
if λ ≤ λ(δ, r).

(B.2)

Now let the state be λX and normalize t = 0 to be the period in which this state is

reached. A consumption path is a sequence {(x1t, x2t)}∞t=0 with the interpretation that

xit is the share of pie X that player i consumes in period t conditional on the event

that pie Y has not arrived. Define the consumption sequence {µt}∞t=0 associated with

the consumption path {(x1t, x2t)}∞t=0 by µt = x1t + x2t for all t. The total (normalized)

payoff from consumption path {(x1t, x2t)} is

U ({(x1t, x2t)}) ≡ E

[
r
∞∑
t=0

δtu1 (x1t, y1t) +
∞∑
t=0

δtu2 (x2t, y2t)

]
, (B.3)

where the shares xit are given by the consumption path {(x1t, x2t)} until pie Y arrives,

and are determined in equilibrium along with the shares yit when pie Y arrives. If pie Y

has not arrived by period t−1, it arrives in period t with probability p and players come

to an agreement over all of what is left of pie X and all of pie Y (by Lemma 1); with

probability 1 − p pie Y does not arrive in period t, so players consume x1t and x2t as

determined by the consumption path. For any period t prior to the arrival of pie Y , we

have ru1(x1t, y1t)+u2(x2t, y2t) = rµt. On the other hand, if pie Y arrives in period t > 0

then ru1(x1t, y1t) + u2(x2t, y2t) = W (λtXY ), where λt = λ −
∑t−1

τ=0 µτ is the fraction of

pie X left in period t and W (λXY ) is given by (B.2) (recall that the state at t = 0 is

λX). Therefore, (B.3) becomes

U ({(x1t, x2t)}) = r

∞∑
t=0

δt(1−p)tµt+δp

∞∑
t=0

[
δt(1− p)tW

((
λ−

t∑
τ=0

µτ

)
XY

)]
(B.4)
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Define ξ ≡ r(2−δ−r2δ)+2r(1−δ)
4(1−δ)+δ2(1−r2) , ζ ≡ r

2
+ 1

2r
, and α ≡ δp

∑∞
t=0 δ

t(1 − p)t = δp
1−δ(1−p) . The

number α is the “effective discount rate” of waiting until pie Y arrives. The following

facts will be repeatedly used in the proof.

Fact 1: W ((λ− κ)XY ) =

{
W (λXY )− ξκ if λ ≤ λ− κ ≤ λ ≤ 1,

W (λXY )− ζκ if 0 ≤ λ− κ ≤ λ ≤ λ.

Fact 2: r − αξ > 0 for all δ, p, r. Moreover, φ > 0 iff r − αζ < 0.

The quantities in Fact 2 measure the net benefit of consuming marginally more of pie

X at state λX before the arrival of pie Y . To see this, note that when λ > λ consuming

marginally more of pie X increases the players’ normalized total surplus by r today, but

it decreases it by ξ in the period in which pie Y arrives. Since α is the effective discount

rate of waiting until Y arrives, the quantity r−αξ measures the net benefit of consuming

marginally more of pie X at states λX with λ > λ. Similarly, when λ ≤ λ consuming

more of X also increases the players’ total surplus by r today, but it decreases it by ζ in

the period in which pie Y arrives. Thus, r − αζ measures the net benefit of consuming

marginally more of pie X at states λX with λ ≤ λ. The first part of Fact 2 says that

the net benefit of consuming marginally more of pie X is positive at states λX with

λ > λ for all parameter values. On the other hand, the second part of Fact 2 says that,

at states λX with λ ≤ λ, this net benefit is positive if and only if φ < 0.

Using Fact 1 in (B.4) and rearranging the terms in the sum yields

U ({(x1t, x2t)}) =

{
(r − αζ)

∑∞
t=0 δ

t(1− p)tµt + αW (λXY ) if λt ≤ λ∀t,
(r − αξ)

∑∞
t=0 δ

t(1− p)tµt + αW (λXY ) if λt ≥ λ∀t. (B.5)

Lemma 2. Let φ > 0. Then in every SPE the players delay in states λX with λ ≤ λ.

Proof. Fix an equilibrium strategy profile. Note that every strategy profile generates

a probability distribution over consumption paths. Let {(x1t, x2t)} be a consumption

path in the support of the distribution generated by this strategy profile, and let {µt} be

the associated consumption sequence. Assume for the sake of contradiction that players

don’t delay, so that λ ≥ µ0 > 0. By equation (B.5), the total normalized payoff from

the consumption path {(x1t, x2t)} is

U({(x1t, x2t)}) = (r − αζ)
∞∑
t=0

δt(1− p)tµt + αW (λXY ) < αW (λXY ),

11



where the inequality follows from Fact 2 and µ0 > 0. Therefore, the total payoff from

this consumption path is strictly smaller than αW (λXY ), which is the total payoff of

delaying all consumption until pie Y arrives. This means that at least one player receives

a payoff strictly lower than the payoff he would get if there were delay. Since that player

can always delay unilaterally (either by rejecting an offer or by making an unacceptable

proposal), it cannot be that players consume µ0 > 0 in states λX with λ ≤ λ.

Lemma 3. Let φ > 0 and s = λX with λ > λ. Consider proposer j’s problem of choos-

ing an offer that maximizes his expected discounted payoff subject to the constraint that

the responder’s expected discounted payoff be equal to wi ≤ ui(λ − λ, 0) + αwi(λXY ),

where wi(λXY ) is given by (B.1). At the solution to this problem, the proposer makes

an offer such that he and the responder consume a total fraction λ− λ of pie X.

Proof. We prove Lemma 3 for j = 1 and i = 2. The proof for j = 2 and i = 1 is

symmetric and omitted. Suppose player 1 makes an offer (x1, x2) with x1 + x2 = λ− λ.

Player 2’s discounted payoff from accepting this offer is rx2+αw2(λXY ), since Lemma 2

implies that after such an offer is accepted the players will delay until pie Y arrives. Let

x2 be the consumption share that gives player 2 a value of w2, i.e. rx2+αw2(λXY ) = w2.

Player 1’s payoff from this offer is λ−x2 +αw1(λXY ) = (λ−λ− 1
r
w2)+α(1

r
w2(λXY )+

w1(λXY )). Multiplying this quantity by r, player 1’s normalized payoff from player 2

accepting this offer is

r(λ− λ)− w2 + α(w2(λXY ) + rw1(λXY )) = r(λ− λ) + αW (λXY )− w2 ≡ U∗ − w2

which implicitly defines the quantity U∗. On the other hand, suppose player 1 makes

any other offer that gives player 2 an expected discounted payoff of w2, and which

leads to a (possibly random) consumption path {(x1t, x2t)} with associated consumption

sequence {µt} = {x1t + x2t}. Player 1’s expected normalized payoff from this offer is

E[U ({(x1t, x2t)})] − w2, where U ({(x1t, x2t)}) is given by (B.4) and the expectation is

over consumption paths. This follows since player 2’s expected discounted payoff must

be w2. We now show that U∗ > U ({(x1t, x2t)}) for all other possible consumption paths

{(x1t, x2t)}. This will prove the lemma, since it implies that player 1 is better off making

an offer (x1, x2) with x1 + x2 = λ− λ.

There are two cases to consider: (1)
∑∞

t=0 µt ≤ λ − λ, and (2) there exists t′ ≥ 0

such that
∑t′

t=0 µt > λ−λ (and
∑τ

t=0 µt ≤ λ−λ for all τ < t′). Consider case (1). Note

12



that in this case, λt = λ−
∑t−1

τ=0 µτ ≥ λ for all t. Equation (B.5) then implies that

U({(x1t, x2t)})− U∗ = (r − αξ)
∞∑
t=0

δt(1− p)tµt + αW (λXY )− r(λ− λ)− αW (λXY )

< −αξ(λ− λ) + αW (λXY )− αW (λXY ) = 0

where the inequality follows by Fact 2 and since
∑∞

t=0 δ
t(1 − p)tµt <

∑∞
t=0 µt ≤ λ − λ,

and the last equality is a consequence of Fact 1. Thus U∗ > U({(x1t, x2t)}).
Consider case (2). By Lemma 2, we have µt = 0 for all t > t′, since for any such t

the state would be λtX with λt < λ (and hence players will delay). Let {µ̃t} be such

that µ̃t = µt for all t 6= t′, µ̃t′ = λ−λ−
∑t′−1

t=0 µt. Note that
∑t′

t=0 µ̃t =
∑∞

t=0 µ̃t = λ−λ.

Let {(x̃1t, x̃2t)} satisfy x̃1t + x̃2t = µ̃t for all t. Since
∑∞

t=0 µ̃t′ = λ − λ, the arguments

above imply that U∗ > U({(x̃1t, x̃2t)}). Note that λ−
∑t′

t=0 µt = λ− (µt′ − µ̃t′). Then,

U({(x̃1t,x̃2t)})−U({(x1t,x2t)})
δt′ (1−p)t′ = r (µ̃t′ − µt′) + α

[
W
(
λXY

)
−W

((
λ− (µt′ − µ̃t′)

)
XY

)]
= (r − αζ)(µ̃t′ − µt′) > 0

where the first equality follows since µ̃t = µt for all t < t′ and µ̃t = µt = 0 for all t > t′

and since λ−
∑t′

t=0 µt = λ− (µt′ − µ̃t′), the second equality follows from Fact 1, and the

inequality follows from Fact 2 and µ̃t′ < µt′ . It then follows that U∗ > U({x1t, x2t}).

Lemma 4. Let vi(j, λX) and vi(j, λX) be the infimum and supremum SPE payoffs for

player i when the state is (j, λX), and define wi (λX) = 1
2
vi(1, λX) + 1

2
vi(2, λX) and

wi (λX) = 1
2
vi(1, λX) + 1

2
vi(2, λX). If λ > λ and φ > 0, then we have

1. vi(j, λX) ≥ δ(pwi(λXY ) + (1− p)wi(λX)) for i, j = 1, 2, j 6= i

2. vi(j, λX) ≤ δ(pwi(λXY ) + (1− p)wi(λX)) for i, j = 1, 2, j 6= i

3. rv1(1, λX) ≥ r(λ− λ) + αW (λXY )− δ(pw2(λXY ) + (1− p)w2(λX))

4. rv1(1, λX) ≤ r(λ− λ) + αW (λXY )− δ(pw2(λXY ) + (1− p)w2(λX))

5. v2(2, λX) ≥ r(λ− λ) + αW (λXY )− rδ(pw1(λXY ) + (1− p)w1(λX))

6. v2(2, λX) ≤ r(λ− λ) + αW (λXY )− rδ(pw1(λXY ) + (1− p)w1(λX))

where wi(λXY ), i = 1, 2, are the functions defined in (B.1).
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Proof. Claims (1) and (2) are immediate, and the arguments for (5) and (6) are the

same as the arguments for (3) and (4). We therefore only prove (3) and (4).

We start by proving (3). Suppose the state is λX with λ > λ. Suppose player 1

offers (λ−λ−x2, x2) where 0 ≤ x2 ≤ λ−λ. (Note that this offer leaves fraction λ of pie

X for future consumption.) By Lemma 2, if player 2 accepts this offer then players delay

an agreement on the remainder of pie X until pie Y arrives. Therefore, the payoff to

player 2 from accepting this offer is rx2 + αw2(λXY ). Note that if rx2 + αw2(λXY ) =

δ (pw2(λXY ) + (1− p)w2(λX)), then player 2 will accept the offer (λ − λ − x2, x2).

Importantly, one can show that this value of x2 that gives player 2 this payoff is smaller

than λ − λ, so that (λ − λ − x2, x2) is in fact a feasible offer.5 The payoff player 1

gets if this offer is accepted is λ − λ − x2 + αw1(λXY ). Using rx2 + αw2(λXY ) =

δ (pw2(λXY ) + (1− p)w2(λX)), it follows that

rv1(1, λX) ≥ r(λ− λ)− δ(pw2(λXY ) + (1− p)w2(λX)) + α(rw1(λXY ) + w2(λXY ))

which establishes (3) since rw1(λXY ) + w2(λXY ) = W (λXY ).

Next, we prove (4). To show this, consider player 1’s problem of making an offer

that maximizes his discounted payoff subject to the constraint that player 2’s payoff is

equal to w2 = δ(pw2(λXY ) + (1− p)w2(λX)). By definition, such an offer is the worst

offer that player 2 would ever accept. Moreover, note that w2 ≤ rx2 + αw2(λXY ) ≤
r(λ−λ)+αw2(λXY ), since w2(λX) ≤ w2(λX) and x2 ≤ λ−λ. By Lemma 3, the solution

to this problem is for player 1 to make an offer (λ−λ−x2, x2) with rx2 +αw2(λXY ) =

δ(pw2(λXY ) + (1 − p)w2(λX)). The payoff player 1 gets if this offer is accepted is

λ− λ− x2 + αw1(λXY ). Using rx2 + αw2(λXY ) = δ(pw2(λXY ) + (1− p)w2(λX)),

rv1(1, λX) ≤ r(λ− λ)− δ(pw2(λXY ) + (1− p)w2(λX)) + α(rw1(λXY ) + w2(λXY ))

which establishes (4) since rw1(λXY ) + w2(λXY ) = W (λXY ).

Lemma 5. Let φ > 0 and λ > λ. For each j = 1, 2, all SPE starting at state (j, λX)

are payoff equivalent. Moreover, in every SPE the players reach a partial agreement,

consuming a total fraction λ− λ of pie X.

5To see this, note that w2(λX) ≤ U ({(x1t, x2t)})−rw1(λX) for some consumption path {(x1t, x2t)}.
By Lemma 3, U ({(x1t, x2t)}) ≤ r(λ− λ) + αW (λXY ). Moreover, w1(λX) ≥ αw1(λX), since player 1

can get αw1(λX) by delaying until Y arrives. From these inequalities, we can show that x2 < λ− λ.
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Proof. The inequalities stated in Lemma 4 imply

rw1(λX) ≤1

2

(
r(λ− λ) + αW (λXY )− δ (pw2(λXY ) + (1− p)w2(λX))

)
+

1

2
rδ (pw1(λXY ) + (1− p)w1(λX))

rw1(λX) ≥1

2

(
r(λ− λ) + αW (λXY )− δ (pw2(λXY ) + (1− p)w2(λX))

)
+

1

2
rδ (pw1(λXY ) + (1− p)w1(λX))

These inequalities imply r (w1(λX)− w1(λX)) ≤ δ(1−p)
2−δ(1−p) (w2(λX)− w2(λX)). Simi-

larly, for player 2 we get that w2(λX)− w2(λX) ≤ rδ(1−p)
2−δ(1−p) (w1(λX)− w1(λX)). Com-

bining these inequalities yields w1(λX) − w1(λX) ≤ ( δ(1−p)
2−δ(1−p))

2 (w1(λX)− w1(λX)),

which implies w1(λX) = w1(λX) ≡ w1(λX). This in turn implies that w2(λX) =

w2(λX) ≡ w2(λX), so vi(j, λX) = vi(j, λX) ≡ vi(j, λX) for i, j = 1, 2, and the SPE

payoffs are unique. Using the inequalities in Lemma 4, we find that for i, j = 1, 2, i 6= j

vi(j, λX) = δ (pwi(λXY ) + (1− p)wi(λX))

rv1(1, λX) = r(λ− λ) + αW (λXY )− v2(1, λX)

v2(2, λX) = r(λ− λ) + αW (λXY )− rv1(2, λX) (B.6)

Note that rv1(1, λX) = r(λ− λ) + αW (λXY )− (rv1(2, λX) + v2(1, λX)) + rv1(2, λX).

Note further that rv1(2, λX)+v2(1, λX) = δ(pW (λXY )+(1−p)(r(λ−λ)+αW (λXY ))),

since rw1(λX) + w2(λX) = r(λ− λ) + αW (λXY ). Therefore,

rv1(1, λX) = r(λ− λ)(1− δ(1− p)) + δp(W (λXY )−W (λXY )) + rv1(2, λX)

= (λ− λ) (r(1− δ(1− p))− δpξ) + rv1(2, λX), (B.7)

where the first equality follows from combining terms and using the definition of α,

and the second equality follows from Fact 1. Using (B.6) and (B.7), rw1(λXY ) =
r
2
(v1(1, λX) + v1(2, λX)) is equal to

rw1(λX) =
1

2
(λ− λ)(r(1− δ(1− p))− δpξ) + rδ(pw1(λXY ) + (1− p)w1(λX))

=⇒ rw1(λX) =
1

2
(λ− λ)(r − αξ) + rαw1(λXY ). (B.8)

Similarly, we can show that w2(λX) = 1
2
(λ− λ)(r − αξ) + αw2(λXY ).
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Lemma 6. Let φ < 0 and λ ∈ [0, 1]. For each j = 1, 2, all SPE starting at state (j, λX)

are payoff equivalent. Moreover, in every SPE the players reach a complete agreement.

Proof. (Sketch) Let the state be s = λX. Using arguments similar to those in Lemma

3, one can show that when φ < 0 the proposer will find it optimal to make an offer such

that the players consume all λ of pie X, regardless of whether λ > λ or λ ≤ λ. Because

players always make offers over all λ of pie X, we can again find bounds for vi(j, λX)

and vi(j, λX) as in Lemma 4, and then use an argument similar to the one in Lemma 5

to establish the uniqueness of equilibrium payoffs.

Proof of Theorem 1. Part 1 follows from Lemma 6 and part 2 follows from Lemma 5.

C. Equilibrium Offers in States λX with λ > λ(δ, r) (when φ(p, δ, r) > 0)

We can use the unique SPE payoffs from Lemma 5 in Appendix B to pin down the offers

that players make in states λX with λ > λ. Suppose that player 2 is proposer, and note

that player 1 will only accept offers giving him a payoff of at least v1(2, λX). If player 1

accepts an offer (x21, x
2
2) with x21+x22 = λ−λ, his payoff is x21+

∑∞
t=0 δ

t(1−p)tw1(λXY ) =

x21+αw1(λXY ). Thus, player 2’s offer will be such that x21+αw1(λXY ) = δ(pw1(λXY )+

(1 − p)w1(λX)) = αw1(λXY ) + δ(1 − p) (λ−λ)
2r

(r − αξ), where the last equality follows

from (B.8). By a symmetric argument, player 1’s offer (x11, x
1
2) at state λX is such that

rx12 + αw2(λXY ) = αw2(λXY ) + δ(1− p) (λ−λ)
2

(r − αξ). Using (B.1), it follows that

x12 = (λ− λ)

(
α

2(1− δ)
4(1− δ) + δ2(1− r2)

+
δ(1− p)

2r
(r − αξ)

)
, (C.1)

x21 = (λ− λ)

(
α

2− δ − r2δ
4(1− δ) + δ2(1− r2)

+
δ(1− p)

2r
(r − αξ)

)
, (C.2)

and x11 = λ−λ−x12 and x22 = λ−λ−x21. Let xi = 1
2
(x1i +x2i ) denote the expected fraction

of pie X that player i gets. From (C.1) and (C.2), x1 = (λ−λ)(1
2

+ 1
2

αδ(1−r2)
4(1−δ)+δ2(1−r2)) and

x2 = (λ− λ)(1
2
− 1

2
αδ(1−r2)

4(1−δ)+δ2(1−r2)). Note that αδ(1−r2)
4(1−δ)+δ2(1−r2) is increasing in δ and p.
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